
Research Article

FNDC5 Attenuates Oxidative Stress and NLRP3 Inflammasome
Activation in Vascular Smooth Muscle Cells via Activating the
AMPK-SIRT1 Signal Pathway

Bing Zhou ,1 Yun Qiu,1 NanWu,1 Ai-Dong Chen,1 Hong Zhou,1 Qi Chen,2 Yu-Ming Kang,3

Yue-Hua Li,2 and Guo-Qing Zhu 1,2

1Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for

Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
2Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
3Department of Physiology and Pathophysiology, Cardiovascular Research Center, Xi’an Jiaotong University School of Medicine,

Xi’an 710061, China

Correspondence should be addressed to Guo-Qing Zhu; gqzhucn@njmu.edu.cn

Received 30 September 2019; Revised 18 March 2020; Accepted 16 April 2020; Published 19 May 2020

Guest Editor: Fiona L. Wilkinson

Copyright © 2020 Bing Zhou et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Vascular oxidative stress and inflammation play a major role in vascular diseases. This study was aimed at determining the
protective roles of fibronectin type III domain-containing 5 (FNDC5) in angiotensin II- (Ang II-) induced vascular oxidative
stress and inflammation and underlying mechanisms. Wild-type (WT) and FNDC5-/- mice, primary mouse vascular smooth
muscle cells (VSMCs), and the rat aortic smooth muscle cell line (A7R5) were used in the present study. Subcutaneous infusion
of Ang II caused more serious hypertension, vascular remodeling, oxidative stress, NLRP3 inflammasome activation, AMPK
phosphorylation inhibition, and SIRT1 downregulation in the aorta of FNDC5-/- mice than those of WT mice. Exogenous
FNDC5 attenuated Ang II-induced superoxide generation, NADPH oxidase 2 (NOX2) and NLRP3 upregulation, mature
caspase-1, and interleukin-1β (IL-1β) production in A7R5 cells. The protective roles of FNDC5 were prevented by SIRT-1
inhibitor EX527, AMPK inhibitor compound C, or integrin receptor inhibitor GLPG0187. FNDC5 attenuated the Ang II-
induced inhibition in SIRT1 activity, SIRT1 protein expression, and AMPKα phosphorylation in A7R5 cells, which were
prevented by compound C, EX527, and GLPG0187. FNDC5 deficiency deteriorated Ang II-induced oxidative stress, NLRP3
inflammasome activation, AMPK phosphorylation inhibition, and SIRT1 downregulation in primary aortic VSMCs of mice,
which were prevented by exogenous FNDC5. These results indicate that FNDC5 deficiency aggravates while exogenous FNDC5
alleviates the Ang II-induced vascular oxidative stress and NLRP3 inflammasome activation via the AMPK-SIRT1 signal
pathway in VSMCs.

1. Introduction

Chronic vascular inflammation greatly contributes to the
pathogeneses of hypertension, atherosclerosis, and aortic
aneurysm [1–3]. Accumulated studies in animals and
humans have revealed a great contribution of inflammation
to vascular oxidative stress [4–6]. Anti-inflammation thera-
pies have protective effects in cardiovascular diseases, and
normalization of oxidative stress is an essential characteristic
of these therapies [7]. Oxidative stress represents excessive

intracellular reactive oxygen species (ROS), which promotes
inflammation, and greatly assists in the pathogenesis of car-
diovascular diseases [8]. The ROS are important oxidative
stressors implicated in driving vascular diseases by promoting
vascular inflammation, increasing the proliferation, migration,
and apoptosis of the vascular smooth muscle cells (VSMCs),
and thereby stimulating vascular remodeling [9–11].

Renin-angiotensin system (RAS) plays an important role
in the pathogenesis of cardiovascular diseases, and interven-
tion of the RAS plays beneficial effects in cardiovascular
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diseases [12]. Angiotensin II (Ang II) is a key effector peptide
of the RAS, which promotes VSMC proliferation, migration,
apoptosis, oxidative stress, and inflammation as well as vas-
cular remodeling [13]. Ang II stimulates the ROS production
primarily through nicotinamide adenine dinucleotide phos-
phate (NADPH) oxidases (NOXs) and induces inflammation
which is closely related to the activation of nod-like receptor
protein 3 (NLRP3) inflammasome in VSMCs and arteries
[14]. NLRP3 inflammasome is a cytosolic protein complex
including NLRP3, ASC, and caspase-1 [15]. When the
inflammasome is assembled, procaspase-1 turns to its active
form caspase-1, which further converts pro-interleukin-1β
(pro-IL-1β) into its active form IL-1β, and thus triggers
inflammatory responses [16]. The inflammasome activation
plays roles in the phenotypic transformation and prolifera-
tion of VSMCs in hypertension [17]. ROS serve as a trigger-
ing factor to activate NLRP3 inflammasome [18, 19].
Application of antioxidants to scavenge excessive ROS atten-
uates inflammatory responses via inhibiting NLRP3 inflam-
masome activation [20–22].

Fibronectin type III domain containing 5 (FNDC5) is a
transmembrane protein, and irisin is a peptide from the
cleavage of the extracellular domain of FNDC5 [23]. FNDC5
attenuates the disturbance of glucose and lipid metabolism,
insulin resistance, and hepatosteatosis [24–26]. It inhibits
inflammation in adipose tissues of high-fat diet-induced obe-
sity rats [27] and in adventitial fibroblasts of spontaneously
hypertensive rats (SHR) [28]. However, it is still undeter-
mined whether FNDC5 would attenuate oxidative stress
and inflammation in VSMCs. This study concentrates on
the roles of FNDC5 in Ang II-induced oxidative stress and
inflammation and its underlying mechanisms in rat aortic
smooth muscle cell line (A7R5), VSMCs, and aortas of
wild-type (WT) mice and FNDC5-/- mice.

2. Materials and Methods

2.1. Animals. Male wild-type (WT) and FNDC5-/- mice on a
C57BL/6 background were available from Nanjing Medical
University (Nanjing, Jiangsu, China). The experiments con-
formed to the Guide for the Care and Use of Laboratory Ani-
mal (US National Institutes of Health, NIH publication, 8th
edition, 2011). The mice were housed in a temperature-
controlled room with a 12h light–dark cycle and free access
to standard chow and tap water. The mice were euthanized
with an intravenous injection of an overdose of pentobarbital
sodium (200mg/kg) at the end of the experiment.

2.2. Cell Culture and Treatment. The rat aortic smooth mus-
cle cell line (A7R5) was obtained from American Type Cul-
ture Collection (Manassas, VA, USA). Primary mouse
VSMCs were isolated from the thoracic aorta of WT and
FNDC5-/-mice aged 8 weeks and cultured as described previ-
ously [29]. The VSMCs between the second and sixth pas-
sages were used for the present study. The cells with a
density at 80-90% were treated with Ang II (100 nM) for
24 h to induce oxidative stress and inflammation in
VSMCs [30–34].

2.3. Mouse Model of Hypertension. Ang II was utilized to
induce hypertension accompanied with vascular remodeling,
oxidative stress, and inflammation [35–38], which is a better
animal model of human essential hypertension [39]. The WT
and FNDC5-/- mice were subjected to subcutaneous infusion
of saline or Ang II (400ng/kg/min for 2 weeks) with an osmotic
minipump (ALZET 1002, Durect Corporation, Mountain
View, CA, USA) [39]. The blood pressure of tail artery was
examined in a conscious state with a noninvasive computerized
tail-cuff system (NIBP, AD Instruments, Sydney, Australia).
The data were obtained by averaging 10 measurements [40].

2.4. Western Blot Analysis. VSMCs or aortic media were
homogenized in lysis buffer. The supernatant was extracted,
and the total protein was measured. Protein was separated
by SDS-PAGE and transferred to PVDF membranes. The
bands were visualized with the Enhanced Chemilumines-
cence Detection Kit (Thermo Scientific, Rockford, IL, USA).
Antibodies against NLRP3 (No. ab214185), SIRT1 (No.
ab110304), FNDC5 (No. ab174833), and NOX2 (No.
ab129068) were purchased from Abcam (Cambridge, MA,
USA). Antibodies against p-AMPK (4184S) and β-actin
(No. 3700S) were acquired from Cell Signaling Technology
(Beverly, MA, USA). IL-1β antibody (No. sc-12742) and
caspase-1 antibody (No. sc-56036) were purchased from
Santa Cruz Biotechnology (Santa Cruz, CA, USA). The for-
mer detected pro-IL-1β at 31KDa and IL-1β at 17KDa,
and the latter showed procaspase-1 at 45KDa and caspase-
1 at 10KDa. Antibodies against AMPK (No. 10929-2-AP),
NOX4 (No. 14347-1-AP), and ASC (No. 10500-1-AP) were
purchased from Protein Tech Group Inc. (Chicago, IL, USA).

2.5. Masson’s Staining. Aortas of mice were prefixed, and the
paraffin-embedded sections were stained with Masson’s tri-
chrome staining as we previously reported [41, 42]. The
images were collected with a light microscope (BX-51, Olym-
pus, Tokyo, Japan). The aortic medium thickness and
medium area were used as indexes of vascular remodeling.

2.6. DHE Fluorescence Staining. Dihydroethidium (DHE)
fluorescence staining was used to evaluate intracellular ROS
levels [43, 44]. For VSMCs, cells (3 × 105 cells/mL) were
seeded in the six-well plates and incubated with DHE
(10μM) in PBS at 37°C for 30min in a dark and humidified
container and, then, washed twice with cold PBS. For aortas,
the sections were embedded in OCT and then incubated with
DHE (10μM) for 5min at room temperature and rinsed two
times with PBS. The fluorescence was detected under excita-
tion at 518nm and emission at 605nm with a fluorescence
microscopy (DP70, Olympus Optical, Tokyo, Japan).

2.7. RT-PCR. Total RNA was exacted with a Trizol reagent
(Life Technologies, Gaithersburg, MD, USA). Reverse tran-
scriptase reactions were done using the PrimeScript RT
reagent Kits (No. R122-01, Vazyme Biotech, Nanjing, China).
RT-PCR was performed using Quantitative PCR with SYBR
Premix Ex Taq™ (TaKara, Otsu, Shiga, Japan) and ABI
PRISM 7500 sequence detection PCR system (Applied Biosys-
tems, Foster City, CA, USA). The quantitative data were
obtained with the ΔΔCTmethod and normalized to GAPDH.
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The primer sequences for FNDC5 are listed in a supplemen-
tary material (Supplementary Table 1).

2.8. Measurement of SIRT1 Activity. SIRT1 activity was mea-
sured using the SIRT1 Activity Assay Kit (No. ab156065,
Abcam, Cambridge, USA) following the manufacturer’s
protocol.

2.9. NLRP3 Immunofluorescence Staining. A7R5 cells were
grown on glass cover slips in a 6-well plate (100,000 cells/-
well). The cells with a density of 80-90% were treated with

PBS or FNDC5 (200 nM) for 2 h followed by PBS or Ang II
(100 nM) for 24h. The cells were washed with PBS for three
times, fixed with 10% formaldehyde for 10min, and rinsed
with deionized water and permeabilized with 0.5% Triton-
X-100 in PBS for 5min. After blocking in filtered 3% bovine
serum albumin for 1 h, cells were incubated with NLRP3
antibody (No. AMAB90569, 1 : 100; Sigma-Aldrich, St. Louis,
MO, USA) overnight at 4°C and then incubated with second-

ary antibody for 1 h at room temperature. DAPI (4′6-diami-
dino-2-phenylindole), a blue-fluorescent DNA stain, was
used for nuclear staining [45].
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Figure 1: FNDC5 deficiency deteriorates Ang II-induced hypertension and vascular remodeling in mice. Ang II was infused subcutaneously
with a micro-osmotic pump at 400 ng/Kg/min for 2 weeks in wild-type mice (WT) and FNDC5 knockout mice (KO). (a) Systolic blood pressure
(SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) in caudal artery were measured in awake state. (b) Representative
images of Masson’s staining of aorta. (c) Bar graph showing the Masson’s staining analysis for media thickness and area in aorta. (d) FNDC5
mRNA and protein expressions. Values are mean ± SE. ∗P < 0:05 vs WT; †P < 0:05 vs Ctrl; ‡P < 0:05 vs 0wks. n = 6 per group.
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2.10. Chemicals. FNDC5 and Ang II were bought from Sigma
Inc. (St. Louis, MO, USA). Compound C, GLPG0187, and
EX527 were bought from MedChem Express (Greenville,
SC, USA).

2.11. Statistical Analysis. Experimenters were blind to group
assignment and outcome assessment. Comparisons between
two groups were made by Student’s t-test. One-way or two-
way ANOVA was used for multiple comparisons followed
by the post hoc Bonferroni’s test. All data were expressed as
mean ± SE. The P value less than 0.05 was considered statis-
tically significant.

3. Results

3.1. FNDC5 Deficiency Promotes Ang II-Induced
Hypertension and Vascular Remodeling in Mice. Hyperten-
sion and vascular remodeling were induced by subcutaneous
infusion of Ang II with a microosmotic pump for 2 weeks in
wild-type mice (WT) and FNDC5 knockout mice (KO). PBS
served as a control of Ang II. FNDC5 deficiency had no sig-
nificant effects on blood pressure in the PBS-treated mice
but aggravated Ang II-induced hypertension (Figure 1(a)).
Ang II resulted in vascular remodeling in the aorta evidenced
by increased aortic medium thickness and area in both WT
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Figure 2: FNDC5 deficiency deteriorates Ang II-induced oxidative stress and NLRP3 inflammasome activation in aorta of mice. Ang II was
infused subcutaneously with a microosmotic pump at 400 ng/Kg/min for 2 weeks. (a) Representative images showing the ROS detected by
dihydroethidium (DHE) staining. (b) Bar graph showing the relative fluorescence intensity of DHE. (c) NOX2 protein expression. (d)
NLRP3, pro-IL-1β, and IL-1β protein expressions. (e) Phosphorylated AMPKα. (f) SIRT1 protein expression. Values are mean ± SE.
∗
P < 0:05 vs WT; †

P < 0:05 vs Ctrl. n = 4 per group.
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and FNDC5 knockout mice, but the effects of Ang II were
greater in FNDC5 knockout mice than those of WT mice
(Figures 1(b) and 1(c)). On the other hand, Ang II infusion
for 2 weeks reduced FNDC5 mRNA and protein expression
in WT mice (Figure 1(d)).

3.2. FNDC5 Deficiency Aggravates Ang II-Induced Oxidative
Stress and NLRP3 Inflammasome Activation in Mice. Sub-
cutaneous infusion of Ang II for two weeks increased ROS
production and NOX2 protein expression in the aortic
media of both WT and FNDC5 knockout mice. The
changes were greater in FNDC5 knockout mice than those
of WT mice (Figures 2(a)-2(c)). Similarly, Ang II-induced
NLRP3 and pro-IL-1β upregulation and IL-1β production
were amplified in FNDC5 knockout mice compared with
WT mice (Figure 2(d)). SIRT1 is a NAD+-dependent dea-

cetylase that is responsible for deacetylating the proteins
responsible for cellular regulation. It has been found that
AMPKα1 overexpression improves postoperative cognitive
dysfunction via the AMPK-SIRT1 and autophagy signaling
pathways [46]. Activation of SIRT1 attenuates Klotho
Deficiency-induced hypertension and arterial stiffness
[47]. An interesting question is whether AMPK is associ-
ated with the effects of FNDC5 on oxidative stress and
inflammation. We found that Ang II-induced inhibition
in the AMPKα phosphorylation and SIRT1 expression
were intensified in FNDC5 knockout mice (Figures 2(e)
and 2(f)).

3.3. FNDC5 Inhibits Ang II-Induced Oxidative Stress in A7R5
Cells. Ang II was utilized to induce oxidative stress and
inflammation in VSMCs [30–34]. DHE fluorescence staining
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Figure 3: FNDC5 attenuates Ang II-induced oxidative stress in A7R5 cells. The cells were treated with FNDC5 (200 nM) for 2 h followed by
Ang II (100 nM) for 24 h. (a) Representative images showing the ROS detected by dihydroethidium (DHE) staining. (b) Bar graph showing
the relative fluorescence intensity of DHE. (c) NOX2 and NOX4 protein expressions. (d) FNDC5 mRNA and protein expressions. Values are

mean ± SE. ∗P < 0:05 vs Ctrl; †P < 0:05 vs PBS. n = 4 per group.
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showed that exogenous FNDC5 inhibited Ang II-induced
ROS production (Figures 3(a) and 3(b)). FNDC5 prevented
Ang II-induced NOX2 upregulation but had no significant
effect on Ang II-induced NOX4 upregulation (Figure 3(c)).
Ang II treatment for 24 h had no significant effects on
FNDC5 mRNA and protein expressions (Figure 3(d)), while
Ang II treatment for 72 h reduced FNDC5 protein expression
(Supplementary Figure 1).

3.4. FNDC5 Prevents Ang II-Induced NLRP3 Inflammasome
Activation in A7R5 Cells. FNDC5 inhibited Ang II-induced
upregulation of NLRP3, caspase-1, and mature IL-1β but
had no significant effects on Ang II-induced upregulation

of ASC, procaspase-1, and pro-IL-1β (Figure 4(a)). These
results indicate that exogenous FNDC5 inhibits Ang II-
induced NLRP3 inflammasome activation, which may be
related to its downregulation effect on NLRP3. The findings
were further confirmed by immunofluorescence data that
FNDC5 prevented the Ang II-induced NLRP3 expression
(Figure 4(b)).

3.5. Inhibition of AMPK Prevents the Effects of FNDC5 in
A7R5 Cells. FNDC5 had no significant effect on AMPKα pro-
tein expression but prevented the Ang II-induced AMPKα
phosphorylation inhibition in A7R5 cells (Figure 5(a)). Com-
pound C, a cell-permeable AMPK inhibitor, attenuated the
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Figure 4: FNDC5 attenuates Ang II-induced NLRP3 inflammasome activation in A7R5 cells. The cells were treated with FNDC5 (200 nM)
for 2 h followed by Ang II (100 nM) for 24 h. (a) NLRP3, ASC, procaspase-1, caspase-1, pro-IL-1β, and IL-1β protein expressions. (b)

Representative images showing the immunofluorescence for NLRP3. Values are mean ± SE. ∗P < 0:05 vs Ctrl; †P < 0:05 vs PBS. n = 4 per
group.

6 Oxidative Medicine and Cellular Longevity



roles of FNDC5 in inhibiting the Ang II-induced ROS pro-
duction (Figures 5(b) and 5(c)), NOX2 upregulation
(Figure 5(d)), and NLRP3 and mature IL-1β upregulation
(Figure 5(e)) in A7R5 cells. These results indicate that

FNDC5 attenuates Ang II-induced oxidative stress and
inflammation by restoring the AMPKα phosphorylation.
Furthermore, Ang II inhibited SIRT1 activity and protein
expression which were attenuated by FNDC5, and the effects
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Figure 5: Inhibition of AMPK with compound C abolishes the protective effects of FNDC5 in Ang II-treated A7R5 cells. The cells were
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P < 0:05 vs Ctrl; †
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of FNDC5 were further abolished by the treatment with com-
pound C (Figure 5(f)).

3.6. Inhibition of SIRT1 Abolishes the Effects of FNDC5 in
A7R5 Cells. EX527, a selective inhibitor of SIRT1, abolished
the roles of FNDC5 in inhibiting the Ang II-induced ROS
production (Figures 6(a) and 6(b)), NOX2 upregulation
(Figure 6(c)), and NLRP3 and mature IL-1β upregulation
(Figures 6(d) and 6(e)) in A7R5 cells. These results indicate
that FNDC5 attenuates Ang II-induced oxidative stress and
inflammation via the AMPKα-SIRT1 pathway.

3.7. Inhibition of Integrins Prevents the Effects of FNDC5 in
A7R5 Cells. Integrins are heterodimeric cell surface adhesion
receptors that are involved in activating intracellular signal-
ing pathways associated with cell proliferation, adhesion,
migration, spreading, differentiation, and survival [48].
Integrins play a critical role in eliciting a protective response
to oxidative damage in epidermal cells [49] and are essential
for leukocyte adhesion and migration in various inflamma-
tory diseases [50]. Recently, it has been found that integrins
are the receptors of irisin in adipose tissues and osteocytes
[51]. We suspect that integrins might be involved in the
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effects of FNDC5. Thus, GLPG0187, a broad spectrum integ-
rin receptor antagonist [52], was used to determine whether
integrins were mediated the effects of FNDC5. Just as
expected, GLPG0187 prevented the roles of FNDC5 in atten-
uating the Ang II-induced upregulation of NOX2 and
NLRP3 and the production of the ROS and IL-1β in A7R5
cells (Figures 7(a)-7(d)). Furthermore, GLPG0187 abolished
the roles of FNDC5 in attenuating the Ang II-induced inhibi-
tion in AMPKα phosphorylation and SIRT1 activity and
expression in A7R5 cells (Figures 7(e)-7(f)). Inhibition of
AMPK, SIRT-1, or integrin receptors had no significant
effects on FNDC5 expression in Ang II-treated A7R5 cells
(Supplementary Figure 2).

3.8. FNDC5 Prevents Ang II-Induced Oxidative Stress and
NLRP3 Inflammasome Activation in Primary VSMCs of WT
and FNDC5 Knockout Mice. Ang II had no significant effect
on FNDC5 mRNA and protein expressions in the primary
VSMCs of WT and FNDC5 knockout mice (Figure 8(a)).
Exogenous FNDC5 attenuated Ang II-induced ROS produc-
tion and NOX2 upregulation in VSMCs of both WT and
FNDC5 knockout mice (Figures 8(b) and 8(d)). It also pre-
vented the Ang II-induced NLRP3 upregulation and IL-1β
production in the VSMCs (Figure 8(e)). Moreover, Ang II-
induced inhibition in AMPKα phosphorylation, SIRT1 activ-
ity, and expression were attenuated by FNDC5 treatment
(Figures 8(f) and 8(g)).

4. Discussion

Vascular oxidative stress and inflammation are closely
related with vascular remodeling in cardiovascular diseases
such as hypertension, atherosclerosis, vascular restenosis,
and diabetic vascular complications [7]. Intervention of vas-
cular oxidative stress and inflammation attenuate vascular

remodeling in these diseases [11, 13]. Our previous studies
showed the beneficial roles of FNDC5 in attenuating the dis-
turbance of glucose and lipid metabolism, insulin resistance,
and hepatosteatosis [24–26]. Recently, we found that FNDC5
reduced NOX2-derived ROS production, NLRP3 inflamma-
some activation, and phenotypic transformation in the
adventitial fibroblasts of SHR [28]. VSMCs are the dominant
cellular constituent of arteries and play critical roles in vascu-
lar remodeling. Ang II induces oxidative stress, inflamma-
tion, proliferation, and migration of VSMCs and greatly
contributes to vascular remodeling in hypertension and other
vascular diseases [14, 53]. Based on the importance of
VSMCs and Ang II in vascular remodeling, it is very impor-
tant to explore whether FNDC5 has a protective role in atten-
uating Ang II-induced oxidative stress and inflammation in
VSMCs. The primary novel findings in the present study
are that FNDC5 deficiency aggravates Ang II-induced hyper-
tension, vascular oxidative stress, NLRP3 inflammasome
activation, and vascular remodeling in mice, and that exoge-
nous FNDC5 alleviates the Ang II-induced oxidative stress
and NLRP3 inflammasome activation in VSMCs. These
results suggest that FNDC5 might be a promising therapeuti-
cal strategy in attenuating vascular oxidase stress and inflam-
mation in vascular diseases.

Ang II increases NOX activity, ROS production, and
inflammation mediated by AT1 receptors [54, 55]. It inhibits
AMPK activation in VSMCs of SHR [56]. AMPKα1 overex-
pression increased the phosphorylated AMPK and SIRT1
expressions in the hippocampus of rats [46]. In the present
study, Ang II inhibited AMPKα phosphorylation and SIRT1
expression and activity, which were prevented by FNDC5.
Inhibition of AMPK or SIRT1 prevented the beneficial
roles of FNDC5 in attenuating Ang II-induced NOX2
and NLRP3 upregulation and ROS production but had
no significant effects on FNDC5 expression. Furthermore,
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inhibition of AMPK abolished the roles of FNDC5 in pre-
venting Ang II-induced SIRT1 downregulation. These
findings suggest that the roles of FNDC5 in attenuating
vascular oxidative stress and NLRP3 inflammasome activa-
tion are mediated by the AMPK-SIRT1 pathway. It is
noted that FNDC5 prevented Ang II-increased NOX2
upregulation rather than NOX4 upregulation, suggesting
that the role of FNDC5 in attenuating ROS production
is mediated by inhibiting Ang II-increased NOX2 upregu-
lation. It is known that high blood pressure contributes to
oxidative stress and inflammation. In the present study,
Ang II treatment caused more severe hypertension, vascu-
lar remodeling, oxidative stress, and inflammasome activa-
tion in FNDC5 knockout mice than those in WT mice. It
is probably that FNDC5 deficiency aggravates Ang II-
induced oxidative stress and inflammasome activation,
and Ang II-induced hypertension also promotes oxidative
stress and inflammasome activation. On the other hand,
the enhanced oxidative stress and inflammasome activa-
tion in FNDC5 deficiency mice exacerbates hypertension
and vascular remodeling.

Recently, it has been found that inhibition of integ-
rins blocks signaling and function of irisin, a cleaved
peptide from FNDC5, in osteocytes and fat cells [51].
We found that inhibition of integrins with GLPG0187,
a broad inhibitor of integrin family receptors, abolished
the protective roles of FNDC5 in Ang II-induced
AMPK-SIRT1 inhibition, oxidative stress, and inflamma-
tion but had no significant effects on FNDC5 expression.
The findings suggest that the effects of FNDC5 are medi-
ated by integrins, which was supported by the findings
that inhibition of integrins blocks signaling and function

of irisin, a cleaved peptide from FNDC5, in osteocytes
and fat cells [51], and that AMPK mediates the roles of
FNDC5 in attenuating adipose tissue inflammation [27].
However, it is unknown whether the effects of FNDC5
are caused directly by acting on integrins or indirectly by
its cleaved peptide irisin acting on the integrins, which is
a limitation in the present study. On the other hand,
Ang II treatment for 4 h and 24h in VSMCs had no sig-
nificant effects on FNDC5 expressions, while Ang II treat-
ment for 72 h in VSMCs or Ang II infusion for 2 weeks in
mice significantly reduced the aortic FNDC5 expressions.
These results suggest that Ang II has no direct inhibitory
effect on FNDC5 expressions in VSMCs, and the down-
regulation of FNDC5 in the sustained Ang II-treated
VSMCs or Ang II-infused mice may be caused by its sec-
ondary effects.

5. Conclusions

FNDC5 deficiency exacerbates oxidative stress and NLRP3
inflammasome activation in VSMCs, while exogenous
FNDC5 alleviates the Ang II-induced oxidative stress and
NLRP3 inflammasome activation in VSMCs. Integrin-
mediated AMPK-SIRT1 activation is involved in the protec-
tive effects of FNDC5 on vascular oxidative stress and NLRP3
inflammasome activation.

Data Availability

The raw data supporting the findings of this study are avail-
able from the corresponding author on reasonable request.
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Figure 8: FNDC5 prevents the enhanced oxidative stress and NLRP3 inflammasome activation in Ang II-treated VSMCs of FNDC5-/- mice.
The primary VSMCs of the WT and FNDC5 knockout (KO) mice were treated with PBS or FNDC5 (200 nM) for 2 h followed by PBS or Ang
II (100 nM) for 24 h. (a) FNDC5 mRNA and protein expressions. (b) Representative images showing the ROS detected by dihydroethidium
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IL-1β protein expressions. (f) Phosphorylated AMPKα. (g) SIRT1 activity and SIRT1 protein expression. Values aremean ± SE. ∗P < 0:05 vs

WT; †P < 0:05 vs PBS or Ctrl. ‡P < 0:05 vs Ang II. n = 4 per group.
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expressions in A7R5 cells. The cells were treated with Ang II
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