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A brain-computer interface (BCI) is a communication system that allows the use of brain

activity to control computers or other external devices. It can, by bypassing the peripheral

nervous system, provide a means of communication for people suffering from severe

motor disabilities or in a persistent vegetative state. In this paper, brain-signal generation

tasks, noise removal methods, feature extraction/selection schemes, and classification

techniques for fNIRS-based BCI are reviewed. The most common brain areas for fNIRS

BCI are the primary motor cortex and the prefrontal cortex. In relation to the motor

cortex, motor imagery tasks were preferred to motor execution tasks since possible

proprioceptive feedback could be avoided. In relation to the prefrontal cortex, fNIRS

showed a significant advantage due to no hair in detecting the cognitive tasks like mental

arithmetic, music imagery, emotion induction, etc. In removing physiological noise in

fNIRS data, band-pass filtering was mostly used. However, more advanced techniques

like adaptive filtering, independent component analysis (ICA), multi optodes arrangement,

etc. are being pursued to overcome the problem that a band-pass filter cannot be used

when both brain and physiological signals occur within a close band. In extracting features

related to the desired brain signal, the mean, variance, peak value, slope, skewness, and

kurtosis of the noised-removed hemodynamic response were used. For classification,

the linear discriminant analysis method provided simple but good performance among

others: support vector machine (SVM), hidden Markov model (HMM), artificial neural

network, etc. fNIRS will be more widely used to monitor the occurrence of neuro-plasticity

after neuro-rehabilitation and neuro-stimulation. Technical breakthroughs in the future are

expected via bundled-type probes, hybrid EEG-fNIRS BCI, and through the detection of

initial dips.

Keywords: brain-computer interface, functional near-infrared spectroscopy (fNIRS), feature extraction, feature

classification, physiological noise, brain-machine interface

INTRODUCTION

A brain-computer interface (BCI) system provides its users with

control channels that are independent of the brain’s output chan-

nels (i.e., the peripheral nervous system and muscles) (Wolpaw

et al., 2002). Such systems can be used as a means for commu-

nications and restoration of motor functions (through a neuro-

prosthesis) for people with motor disorders such as amyotrophic

lateral sclerosis (ALS) and spinal cord injury, and/or people in the

persistent locked-in state (LIS). It can also be used as a neurore-

habilitation tool to improve motor and/or cognitive performance

of such people.

A typical BCI system consists of five stages (see Figure 1):

brain-signal acquisition, preprocessing, feature extrac-

tion/selection, classification, and application interface. In

the first brain-signal acquisition stage, suitable signals are

acquired using an appropriate brain-imaging modality. Since the

acquired signals are normally weak and contain noises (physio-

logical and instrumental) and artifacts, preprocessing is needed,

which is the second stage. In the third stage, some useful data

so called “features” are extracted. These features, in the fourth

stage, are classified using a suitable classifier. Finally, in the fifth

stage, the classified signals are transmitted to a computer or other

external devices for generating the desired control commands to

the devices. In neurofeedback applications, a real-time display of

brain activity is desirable, which enables self-regulation of brain

functions. Figure 1 depicts a schematic of (hybrid) functional

near-infrared spectroscopy (fNIRS) and electroencephalography

(EEG) BCI.

Several modalities have been used for brain signal acquisition,

which include EEG (Wolpaw et al., 2002; Turnip et al., 2011;

Turnip and Hong, 2012; Wang et al., 2012; Hwang et al., 2013;

Kleih and Kubler, 2013; Ko and Sim, 2013; Hammer et al., 2014;

Kim et al., 2014; Soekadar et al., 2014), magnetoencephalogra-

phy (MEG) (Mellinger et al., 2007; Buch et al., 2008; Sardouie

and Shamsollahi, 2012), functional magnetic resonance imaging

(fMRI) (Weiskopf et al., 2004; LaConte, 2011; van der Heiden

et al., 2014), and fNIRS (Ferrari et al., 1985, 2004; Kato et al.,

1993; Hu et al., 2013; Bhutta et al., 2014; Rea et al., 2014; Santosa

et al., 2014). Among them, fNIRS is relatively new, which uses

near-infrared-range light (usually of 650∼1000 nm wavelength)

to measure the concentration changes of oxygenated hemoglobin

(HbO) and deoxygenated hemoglobin (HbR) (Villringer et al.,
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FIGURE 1 | Schematic of a hybrid fNIRS-EEG BCI.

1993; Hoshi et al., 1994; Hoshi and Tamura, 1997; Villringer and

Chance, 1997; Boas et al., 2004a,b; Hong and Nguyen, 2014).

Its main advantages are relatively low cost, portability, safety,

low noise (compared to fMRI), and easiness to use. Unlike EEG

and MEG, its data are not much susceptible to electrical noise,

since it is an optical imaging modality. fNIRS measures the blood

flow changes in the local capillary network caused by neuron

firings. Since the hemoglobin is an oxygen carrier, the changes

of HbO and HbR concentration levels after a neuronal activa-

tion can be related to the relevant neuronal firings. fNIRS uses

near-infrared (NI) light emitter-detector pairs operating with two

or more wavelengths. The NI light emitted into the scalp dif-

fuses through the brain tissues resulting in multiple scattering

of photons. Some of these photons exit the head after passing

through the cortical region of the brain, wherein the chro-

mophores (i.e., HbO and HbR) are changing in time. These exited

photons are then detected by using strategically positioned detec-

tors. Since HbO and HbR have different absorption coefficients

for different wavelengths of NI light, the relationship between the

exiting-photon intensity and the incident-photon intensity can

be used to calculate the changes of the concentrations of HbO

and HbR [�cHbO(t) and �cHbR(t)] along the path of the pho-

tons by applying the modified Beer-Lamberts law (Delpy et al.,

1988).

The principle of fNIRS measurement, first reported by Jobsis

(1977), has been applied to the study of cerebral hemodynam-

ics for more than two decades, even though its BCI use is only

a few years old. The first study who demonstrated the feasibility

of fNIRS for BCI was Coyle et al. (2004). They asked the subjects

to perform motor imagery of continuous squeezing and releasing

of a soft ball. Based on the activity threshold of �cHbO(t), they

determined whether the brain was activated or at rest.

In 2007, three studies demonstrated the feasibility of con-

trolling the output of fNIRS BCI: Coyle et al. (2007) used a

custom-built fNIRS system (named Mindswitch) to test on-off

control. Their protocol consisted of two options alternately pre-

sented to the subjects: When a desired option was highlighted,

the subject performed motor imagery of squeezing and releasing

a soft ball to enhance the HbO signals in the motor cortex and,

in this way, expressed their choice mentally. The signals during

motor imagery were classified against those during the rest period

with an average accuracy of more than 80%. Sitaram et al. (2007)

showed that fNIRS signal patterns during execution movement

and imagery were distinguishable with the accuracy of 80% (or

above) using support vector machines (SVM) and hidden Markov

model (HMM). On the other hand, the first investigation on ALS

patients was done by Naito et al. (2007): Forty ALS patients (17 of

them were totally locked-in) were asked to encode their response
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to several questions as “yes” or “no.” They were requested to

respond “yes” by performing mental calculation, music imagery

and other such tasks, and to respond “no” by remaining relaxed.

The instantaneous amplitude and phase of the light-intensity sig-

nals were then used as the features for a quadratic discriminant

analysis classifier, which successfully decoded the responses of

70% of the ALS patients who were not totally locked-in. However,

for totally locked-in ALS patients, the method worked only 40%

of subjects (with the classification accuracy of about 80%).

In 2008, Utsugi et al. (2008) showed the feasibly of a “Go-Stop”

control. They measured the spatiotemporal averages of �cHbO(t)

and �cHbR(t) arising from mental calculations. Bauernfeind et al.

(2008) developed an fNIRS system and reported that changes

in �cHbO(t) and �cHbR(t) were observed during mental arith-

metic tasks over the prefrontal cortex. The measured signals were

relatively stable across 13 subjects. Based on that, the authors

suggested its application to BCI.

In 2009, Luu and Chau (2009) demonstrated the preference-

decoding possibilities using fNIRS signals acquired from the

prefrontal cortex. Nine subjects were asked to mentally evalu-

ate two presented drinks and decide which one they preferred.

Instead of using a specific activity to choose the preferred drink,

they used the direct neural correlates in decision making. The

accuracy of this preference decoding, using light-intensity sig-

nals directly and linear discriminant analysis (LDA), was around

80%. In the same year, Tai and Chau (2009) showed the feasi-

bility for BCI development of fNIRS-signal classification from

emotion-induction tasks. The subjects preformed several trials

of positive- and negative-emotion-induction tasks, and the opti-

mal features were selected using a genetic algorithm. Then, LDA

and SVM were used to classify different sets of features to the

average accuracies ranging from 75 to 94%. Since 2009, sev-

eral studies have successfully demonstrated the use of fNIRS for

efficient BCI. Although EEG-based BCIs are most common non-

invasive versions, the trend of using fNIRS for BCI is continuously

increasing.

BRAIN-SIGNAL ACQUISITION

BCI uses brain signals to collect information on the user’s inten-

sions. The first step in developing an fNIRS-BCI system is to

acquire suitable brain signals. The two most common brain areas

are the primary motor cortex and the prefrontal cortex. Signals

corresponding to motor execution and motor imagery tasks are

acquired from the motor cortex; whereas those corresponding to

mental arithmetic, mental counting, music imagery, landscape

imagery, etc. are acquired from the prefrontal cortex. Although

several different emitter-detector configurations have been used

in these two areas, the emitter-detector distance is usually kept

within a specific range, as it plays an important role in fNIRS

measurement. For example, an increase in emitter-detector dis-

tance corresponds to an increase in imaging depth (McCormick

et al., 1992). To measure hemodynamic response signals from the

cortical areas, an emitter-detector separation of around 3 cm was

suggested (Gagnon et al., 2012). A separation of less than 1 cm

might contain only skin-layer contribution, whereas that of more

than 5 cm might result in weak and therefore unusable signals

(Gratton et al., 2006). A typical emitter-detector configuration on

the head and the paths traveled by light to reach two detectors are

shown in Figure 2. A suitable number of emitter/detector pairs

for adequate extraction of neuronal activity vary depending on

the type of brain signals that are used for BCI purpose. For the

prefrontal cortex, 3 emitters and 8 detectors may be enough to

adequately acquire most brain signals corresponding to prefrontal

tasks (Luu and Chau, 2009; Power et al., 2010, 2011, 2012a,b;

Khan et al., 2014; Naseer et al., 2014). For brain activities cor-

responding to motor cortex tasks, 6 emitters and 6 detectors can

cover the entire motor cortex. In the previous studies, 4 emitters

and 4 detectors (Sitaram et al., 2007), 6 emitters and 6 detectors

(Naseer and Hong, 2013), and 5 emitters and 4 detectors have

been applied to acquire motor-cortex activities.

MOTOR CORTEX ACTIVITIES

Activities from the primary motor cortex are a good choice for

fNIRS-BCI application, as they are natural means of providing

BCI control over external devices. Moreover, these might also be

useful from the perspective of neurorehabilitation. The two most

commonly acquired activities from the motor cortex are motor

execution and motor imagery.

Motor execution

The motor execution task stands for moving a body part to

activate the motor cortex, which involves the development of

muscular tensions through muscular actions. Since motor execu-

tion involves contraction of muscles, motor execution-based BCIs

are affected by proprioceptive feedback from contracting muscles

and, therefore, the neuronal modulation may not be solely from

the central nervous system. Several motor execution tasks includ-

ing finger tapping (Cui et al., 2010a,b; Seo et al., 2012), hand

tapping (Hai et al., 2013; Khan et al., 2014), arm lifting (Shin and

FIGURE 2 | Example of emitter-detector pairs showing the

banana-shaped paths of light.
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Jeong, 2014), knee extension (Shin and Jeong, 2014) and hand

grasping/gripping (Nagaoka et al., 2010; Fazli et al., 2012) have

been used in the previous studies.

Motor imagery

Motor imagery can be defined as a covert cognitive process of

kinesthetic imagining of the movement of one’s own body part

without the involvement of muscular tension, contraction or

flexion. Since the primary objective of BCI is to form a communi-

cation pathway for motor-disabled people, motor imagery is one

of the most commonly utilized tasks in fNIRS-BCI. The motor

imagery tasks include imagination of the squeezing of a soft ball

(Coyle et al., 2004, 2007; Stangl et al., 2013), covert imagery of

a simple or complex sequence of finger tapping (Sitaram et al.,

2007; Holper and Wolf, 2011), imagination of feet tapping (Kaiser

et al., 2014), imagination of hand grasping/gripping (Nagaoka

et al., 2010; Fazli et al., 2012; Kaiser et al., 2014), imagination

of wrist flexion (Naseer and Hong, 2013), imagination of flex-

ion and extension of elbow (Mihara et al., 2013), and folding

and unfolding of specific fingers (Mihara et al., 2013). Unlike

motor execution tasks, the motor imagery signals are free of

proprioceptive feedback.

PREFRONTAL CORTEX ACTIVITIES

The activities in the prefrontal cortex are also a good choice

for fNIRS-BCI, because they involve less motion artifacts and

signal attenuation due to the slippage in hairs. Also, they are

likely to be more effective in the case of motor-function related

disability. Given these advantages, most studies have used the pre-

frontal activities showing promising results (Naito et al., 2007;

Bauernfeind et al., 2008, 2011; Utsugi et al., 2008; Luu and

Chau, 2009; Power et al., 2010, 2011, 2012a,b; Abibullaev et al.,

2011; Falk et al., 2011; Tanaka and Katura, 2011; Abibullaev

and An, 2012; Adhika et al., 2012; Chan et al., 2012; Hu et al.,

2012; Moghimi et al., 2012; Sagara and Kido, 2012; Faress and

Chau, 2013; Power and Chau, 2013; Stangl et al., 2013; Hwang

et al., 2014; Naseer et al., 2014; Schudlo and Chau, 2014; Hong

et al., 2015). Some of the commonly used prefrontal activities

for fNIRS-BCI are mental arithmetic, music imagery, mental

counting, and landscape imagery.

Mental arithmetic

Mental arithmetic (sometimes called mental calculation) means

performing covert calculation using the brain without any help

in the form of paper, pen, calculator, computer, etc. It activates

the prefrontal cortex. Since it does not involve any body move-

ment, it is widely used for fNIRS-BCI. A number of studies have

successfully demonstrated its feasibility as a mental task for BCI

(Naito et al., 2007; Bauernfeind et al., 2008, 2011; Utsugi et al.,

2008; Power et al., 2010, 2011, 2012a,b; Adhika et al., 2012; Sagara

and Kido, 2012; Power and Chau, 2013; Stangl et al., 2013; Hwang

et al., 2014; Naseer et al., 2014; Hong et al., 2015). Mental arith-

metic entails mental multiplication (Hwang et al., 2014) or other

arithmetic tasks. However, the most commonly utilized mental

arithmetic is backwards subtraction, which involves subtraction

of a small number (for example, a two-digit number) from a large

number (for example, a three-digit number) with successive sub-

traction of a randomly appearing small number from the result

of the previous subtraction (e.g., 450-15, 435-10, 425-19, etc.)

(Power et al., 2010; Hwang et al., 2014; Naseer et al., 2014).

Music imagery

Music imagery (also called mental singing) consists of organizing

and analyzing music in the brain without any external auditory

stimulus. Naito et al. (2007), Power et al. (2010), Falk et al. (2011),

Power et al. (2011), Chan et al. (2012) and Hwang et al. (2014)

successfully demonstrated music imagery as a brain activity that

can be effectively used for fNIRS-BCI.

Other prefrontal activities

Besides mental arithmetic and music imagery, various other

tasks in the prefrontal cortex have been shown to work well.

These include mental counting (Naito et al., 2007; Khan et al.,

2014), landscape imagery (Naito et al., 2007), mental character

writing (Hwang et al., 2014), object rotation (Abibullaev et al.,

2011; Abibullaev and An, 2012; Faress and Chau, 2013; Hwang

et al., 2014), change-detection tasks (Tanaka and Katura, 2011),

labyrinth tasks (Misawa et al., 2012), and emotion-induction

tasks (Tai and Chau, 2009; Moghimi et al., 2012). Some studies

have demonstrated direct decoding of neural correlates corre-

sponding to subjective preferences (Luu and Chau, 2009), decep-

tion (Hu et al., 2012), visual stimuli (Faress and Chau, 2013), and

others (Ayaz et al., 2009, 2012).

The best selection of optimal mental activities for the improve-

ment of classification accuracy remains an open question. Hwang

et al. (2014) evaluated the use of a variety of mental task

combinations for BCI. These tasks included motor imagery

(right- and left-hand imagery and foot imagery), mental singing,

mental arithmetic (multiplication and subtraction), mental rota-

tion, and mental character writing. Out of the 28 different combi-

nations tested, the mental arithmetic/mental rotation and mental

arithmetic/right-hand motor imagery combinations yielded the

best LDA classification results using mean hemoglobin concen-

tration values. Prefrontal activities have been used in more than

half of fNIRS-BCI studies, owing primarily to the easy applica-

tion of fNIRS to the prefrontal area. Activity selection, however,

depends on the given fNIRS-BCI application. For example, for the

purposes of limb neurorehabilitation, it is desirable to use motor

cortex activities.

PREPROCESSING

The acquired fNIRS signals can contain various noises, which can

be categorized into instrumental noise, experimental error, and

physiological noise. Since the instrumental noise and experimen-

tal error are not related to the brain activities, it is better to remove

them prior to converting the raw optical density signals to the

concentration changes of HbO and HbR through the modified

Beer-Lambert law (Huppert et al., 2009).

REMOVAL OF INSTRUMENTAL NOISE

Instrumental noise is the noise of fNIRS signals present in hard-

ware or caused by the surrounding environment (i.e., instru-

mental degradation is an example). It usually involves (constant)

high frequencies. Such high frequency can be easily removed

by a low-pass filter (for instance, 3∼5 Hz of cutoff frequency).
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Furthermore, by minimizing the variation of the external light,

instrument noise can be significantly reduced.

REMOVAL OF EXPERIMENTAL ERRORS

Experimental errors include motion artifacts like head motions,

which causes the movement of optodes from the assigned posi-

tions. This can cause a sudden change in the light intensity result-

ing in a spike-like noise. Several methods for motion-artifact

correction have been proposed in the literature; the Wiener

filtering-based method (Izzetoglu et al., 2005), eigenvector-based

spatial filtering (i.e., principle component analysis (PCA)-based

filtering) (Zhang et al., 2005), wavelet-analysis-based methods

(Sato et al., 2006; Power et al., 2010), Savitzky-Golay type filters

(Hai et al., 2013; Shin and Jeong, 2014), and others (Cui et al.,

2010a,b; Fekete et al., 2011; Cooper et al., 2012). Please see Cooper

et al. (2012) for thorough comparison of various techniques.

PHYSIOLOGICAL NOISE

Physiological noises include those due to heartbeat (1∼1.5 Hz),

respiration (0.2∼0.5 Hz), Mayer waves (∼0.1 Hz), which are

related to blood pressure fluctuations (Boas et al., 2004a,b; Zhang

et al., 2005; Franceschini et al., 2006; Huppert et al., 2009). Several

methods including band-pass filtering, adaptive filtering, PCA,

and independent component analysis (ICA) have been used to

remove them.

BAND-PASS FILTERING

Since the frequency ranges of aforementioned physiological sig-

nals are usually known, a band-pass filter can be an effective

means. Some fNIRS-BCI studies have shown promising results

using a simple low-pass, or a high-pass, or a band-pass filtering to

remove physiological noises (Coyle et al., 2004, 2007; Naito et al.,

2007; Sitaram et al., 2007; Bauernfeind et al., 2008; Luu and Chau,

2009; Power et al., 2010, 2011; Hu et al., 2012; Liu et al., 2013;

Hong et al., 2015).

Various cut-off frequencies for band-pass filtering have been

reported in the literature: For example, Luu and Chau (2009),

Power et al. (2011), Hu et al. (2012) and Tomita et al. (2014)

have used the frequency bands of 0.01∼0.8 Hz, 0.1∼0.5 Hz,

0.01∼0.2 Hz, and 0.1∼0.5 Hz, respectively. In general, the band

of 0.1∼0.4 Hz can effectively remove a large portion of phys-

iological noises including heartbeat and Mayer waves without

eliminating the fNIRS signal elicited by a task of 10 s period. The

types of band-pass filtering include Butterworth filters (Luu and

Chau, 2009; Naseer and Hong, 2013; Naseer et al., 2014), ellip-

tic filters (Hu et al., 2012), and Chebyshev filters (Sitaram et al.,

2007; Power et al., 2012b). However, no absolute advantage of a

particular filtering method over others has been reported yet.

ADVANCED FILTERING METHODS

Band-pass filtering cannot be used to filter physiological noises

whose frequencies overlap with the band of the hemodynamic

response signal, for example, due to respiration. Therefore, other

methods, such as adaptive filtering (Zhang et al., 2007; Hu et al.,

2010; Aqil et al., 2012a,b; Kamran and Hong, 2013, 2014), PCA

(Zhang et al., 2005), and ICA (Kohno et al., 2007; Santosa et al.,

2013), have also been used to remove physiological noise. To

account for physiological noises, additional noise-related ele-

ments can be added into the regression model. In addition to

modeling the canonical functional response, a series with adap-

tive amplitudes and phase components in order to model specific

physiological noise contribution from heartbeat, respiration, and

blood pressure can be included. The auto-regressive moving aver-

age with exogenous signals (ARMAX) model-based approach

incorporating physiological signals as exogenous signals can be

used to predict the brain state during a particular cognitive task.

The fNIRS signal at each channel can be regarded as an output

from a linear combination of various components. The com-

ponents include the dynamical characteristics of the HbO and

HbR changes in a specific brain region (the influence from the

current/previous stimuli), the physiological signals, the baseline

fluctuation, and other noises.

ICA AND PCA

ICA can separate physiological noises from the mixed signals

allowing the restoration of the original hemodynamic signals.

The independent components (ICs) associated with the phys-

iological signals can be identified by their spectral densities.

Isolating the main IC associated with the original hemodynamic

response results in a physiological-noise-free signal. Hu et al.

(2011) and Santosa et al. (2013) used ICA to separate physiolog-

ical noise from the original signals. Then, the original hemody-

namic response was reconstructed using all the ICs (with weights

derived from their t-values) as well as the primary IC. They

applied the proposed method to a mental arithmetic task and

compared the results with those of the conventional low-pass fil-

tering method, revealing that the ICA method outperformed the

low-pass filtering method. Funane et al. (2014) used ICA to eval-

uate signal contributions from the shallow and deep tissue layers

using multi-distance optodes. They assumed that the optical path

length in the shallow layer did not change, but it increased linearly

with the increase of emitter-detector distance. The reconstruc-

tions of the deep and shallow layer signals were performed by

summing all the ICs that had been weighted by the deep and shal-

low contribution ratio in accordance with the emitter-detector

distance.

PCA can be used to remove physiological noises (similarly

to the case of motion-artifact removal), because systematic fluc-

tuations are covariant among fNIRS measurements from dif-

ferent channels. Reducing such covariance, accordingly, filters

systematic physiological noises from the signals. However, the

performance of PCA is greatly dependent on the number of chan-

nels and the number of eigenvectors to be removed (Cooper

et al., 2012) and, therefore, PCA is not suggested for physio-

logical noise removal when the number of channels is small.

Furthermore, a real-time application of ICA for physiological

noise removal is still under investigation (a moving window

approach for computing ICs can be explored). Henceforth, due

to the non-realtimeness of the ICA approach, band-pass filtering

techniques are still dominant (Mihara et al., 2012, 2013; Kober

et al., 2014).

The fNIRS signals are also affected by the skin blood flow and

other contributions from the superficial tissues (Kohno et al.,

2007; Takahashi et al., 2011; Kirilina et al., 2012, 2013; Sato
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et al., 2013). It has been shown that the removal of these artifacts

from cerebral signals is possible by employing several different

methods: the use of additional short-distance detector(s) (Saager

and Berger, 2005; Luu and Chau, 2009; Saager et al., 2011), adap-

tive filtering (Zhang et al., 2009), statistical parametric mapping

(SPM) in which the artifacts are included as regressors into the

model (Tachtsidis et al., 2010), and ICA (Kohno et al., 2007;

Funane et al., 2014). Kohno et al. (2007) revealed that the spa-

tial distribution of one of the ICs was directly related to the

skin blood flow, which was again verified by a laser Doppler tis-

sue blood flow meter. Funane et al. (2014), on the other hand,

used ICA to separate the absorption changes in deep and shallow

tissues (due to the scalp and the skin) using multiple emitter-

detector distances. Zhang et al. (2007, 2009) used an adaptive

filter to estimate the global interference in the signals measured

from short emitter-detector separations. This global interference

was then removed from the target signals measured from long

emitter detector separations.

FEATURE EXTRACTION/SELECTION

After data preprocessing, the different brain activities are classi-

fied on the basis of certain features. In fNIRS-BCI, although some

features are extracted directly from detected light-intensity sig-

nals (Naito et al., 2007; Luu and Chau, 2009; Power et al., 2010,

2011), most are extracted from hemodynamic signals. The reason

for this is that HbO, HbR, total hemoglobin (HbT), and cerebral

oxygen exchange (COE = HbO - HbR) provide more options for

selection of appropriate features. Selection of an optimal feature

set for classification is essential for good classification. It is nec-

essary to select such features that have similarities with a certain

class and differences from other classes. Different combinations

of such features provide the necessary discriminatory information

for classification.

HEURISTIC METHODS

After noise removal, the shape of the hemodynamic signal is usu-

ally clear. By observing the hemodynamic signals arising from dif-

ferent activities, one can determine the differences in the signals:

peak amplitude, mean value, variance, slope, skewness, kurtosis,

etc. These can then be used as features for classification of differ-

ent signals. The most commonly used features for discrimination

of different activities for fNIRS-BCI are signal mean (Coyle et al.,

2004, 2007; Sitaram et al., 2007; Luu and Chau, 2009; Power et al.,

2010; Holper and Wolf, 2011; Fazli et al., 2012; Moghimi et al.,

2012; Faress and Chau, 2013; Naseer and Hong, 2013; Naseer

et al., 2014; Hong et al., 2015), signal slope (Power et al., 2011,

2012a,b; Hai et al., 2013; Naseer and Hong, 2013; Power and

Chau, 2013; Schudlo and Chau, 2014; Hong et al., 2015), signal

variance (Tai and Chau, 2009; Holper and Wolf, 2011), ampli-

tude (Naito et al., 2007; Cui et al., 2010b; Bauernfeind et al.,

2011; Stangl et al., 2013), skewness (Tai and Chau, 2009; Holper

and Wolf, 2011), kurtosis (Tai and Chau, 2009; Holper and Wolf,

2011), and zero crossing (Tai and Chau, 2009).

FILTER COEFFICIENTS

Some fNIRS-BCI studies have proposed the use of filter coef-

ficients (as classification features) obtained by Kalman filtering

(Abdelnour and Huppert, 2009), recursive least square estimation

(Aqil et al., 2012a), and wavelet transform (Khoa and Nakagawa,

2008; Abibullaev et al., 2011; Abibullaev and An, 2012). They

assumed that different brain activities will produce different fil-

ter coefficients, in which different signals can be classified. This

method has been shown to work well, even though no significant

classification-accuracy improvement over the heuristic methods

has been demonstrated.

GENETIC ALGORITHMS

Genetic algorithms are an optimization technique that is used to

select the most efficient features from a set. Power et al. (2012a)

used a genetic algorithm to select features by employing LDA as a

fitness function. For more details on genetic algorithms, please see

Pernkopf and O’Leary (2001) and Nicolas-Alonso and Gomez-Gil

(2012).

Although feature selection is also dependent on individual

activities, the mean values and slope values of HbO, HbR, or HbT

frequently have been used in fNIRS-BCI. Almost half of fNIRS-

BCI studies have used either the mean value or the slope value

of the signal as one of the features for classification. It has been

shown that HbO performs more robustly than HbR and HbT

for assessing task-related cortical activation (Mihara et al., 2012;

Naseer and Hong, 2013; Naseer et al., 2014). Plichta et al. (2006)

showed that the retest reliability and stability over time of HbO

signals are higher than those of HbR signals. From the above rea-

sons, feature extraction using HbO signals is more suitable for

classification in fNIRS-BCI.

CLASSIFICATION TECHNIQUES

Classification techniques are used to identify the different brain

signals that are generated by the user. These identified signals are

then translated into control commands for application interface

purposes. In most existing fNIRS-BCIs, such identification is per-

formed by using classification techniques to discriminate various

brain signals based on appropriate features. Classification algo-

rithms, as calibrated by the users through supervised learning

during the training phase, are able to detect brain-signal patterns

during the testing stage. Some of the commonly used classifica-

tion methods in fNIRS-BCI are LDA, SVM, HMM, and artificial

neural networks (ANN).

LDA

LDA is the most commonly used classification in fNIRS-BCI

studies (see Figure 3). It utilizes discriminant hyperplane(s) to

separate data representing two or more classes. Because of its

simplicity and low computational requirements, it is highly suit-

able for online BCI systems. Not surprisingly, it has been used in

a number of fNIRS-BCI studies. In LDA, the separating hyper-

plane is found by seeking such data projection by maximizing

the distance between the two classes’ means and minimizing the

interclass variances. LDA assumes a normal data distribution

along with an equal covariance matrix for both classes (Lotte

et al., 2007). An LDA algorithm tries to find a vector v in the

feature space such that two projected classes 1 and 2 in the v-

direction can be well separated from each other while maintaining

a small variance for each (see Figure 4). This can be accomplished

by maximizing the Fisher’s criterion given by:
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FIGURE 3 | Types of classifiers in fNIRS BCI (from 2004 to 2014).

FIGURE 4 | LDA classification depicting the best separating

hyperplane.

J(v) =
vTSbv

vTSwv
(1)

where Sb and Sw are the between-class and within-class scatter

matrices defined as:

Sb = (m1 − m2) (m1 − m2)
T, (2)

Sw =
∑

xn∈ C1

(xn−m1)(xn−m2)
T+

∑

xn∈ C2

(xn−m1)(xn−m2)
T (3)

where m1 and m2 represent the group means of classes C1 and C2,

respectively, and, xn denotes samples. It can be seen that a vector

v that satisfies (1) can be reformulated as a generalized eigenvalue

problem as:

FIGURE 5 | SVM classification illustrating the optimal hyperplane that

maximizes the distance from the nearest support vectors.

S−1
w Sbv = λv. (4)

The optimal v is then the eigenvector corresponding to the largest

eigenvalue of S−1
w Sb or is directly obtained as:

v = S−1
w (m1 − m2) (5)

provided that Sw is non-singular.

Many fNIRS studies have successfully demonstrated the use

of LDA for BCI (Luu and Chau, 2009; Bauernfeind et al., 2011;

Holper and Wolf, 2011; Power et al., 2011, 2012a,b; Abibullaev

and An, 2012; Fazli et al., 2012; Moghimi et al., 2012; Faress

and Chau, 2013; Naseer and Hong, 2013; Power and Chau, 2013;

Stangl et al., 2013; Kaiser et al., 2014; Naseer et al., 2014; Schudlo

and Chau, 2014; Hong et al., 2015).

SVM

The SVM classifier tries to maximize the distance between

the separating hyperplane and the nearest training point(s)

(the so-called support vectors) (see Figure 5). The separat-

ing hyperplane in the 2D feature space is given by the

equation:

f (x) = r.x + b, (6)

where r, x∈R2 and b∈R1 (see Figure 5). The optimal solution

r∗ that maximizes the distance between the hyperplane and the

nearest training point(s) can be obtained by minimizing the cost

function.

J (r, ξ) =
1

2
‖r‖

2

+ C.

z∑

n=1

ξn, (7)

while satisfying the constraints:
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(xn.r + b) ≥ 1 − ξn for yn = +1, (8)

(xn.r + b) ≥ −1 + ξn for yn = −1,

ξn ≥ 0 ∀ n,

where ‖r‖2 = rTr, C is the positive regularization parameter cho-

sen by the user (a large value of C corresponds to a higher penalty

for classification errors), ξn is the measure of training error, z is

the number of misclassified samples, and yn is the class label (+1

or −1 in the case of binary classification) for the n-th sample.

Since SVM maximizes the distance from the nearest training

point(s), it is known to enhance the generalization capabilities.

Also, the regularization parameter C allows for accommodat-

ing the outliers and therefore reduces errors on the training

sets (Burges, 1998). Although SVM is a linear classifier because

it uses one or more hyperplanes, it is possible to make SVM

with non-linear decision boundaries. This can be done by using

kernel functions such as the Gaussian or radial basis functions

(known commonly as RBF). Non-linear SVM provides a more

flexible decision boundary that can result in an increased classi-

fication accuracy. Using the kernel functions might, however, be

computationally more demanding.

SVM has been shown to work well in a number of fNIRS-BCI

studies (Sitaram et al., 2007; Tai and Chau, 2009; Cui et al., 2010b;

Tanaka and Katura, 2011; Abibullaev and An, 2012; Hu et al.,

2012; Misawa et al., 2012; Hai et al., 2013; Naseer et al., 2014).

ANN

ANNs are non-linear classifiers that have been used in a few

fNIRS-BCI studies (Abibullaev et al., 2011; Chan et al., 2012; Hai

et al., 2013). ANNs were inspired by the fact that the human

and animal brains are able to react adaptively to changes in

internal and external environments. An appropriate model of

the nervous system can produce a similar process in an artifi-

cial system. ANNs therefore try to mimic brain activity to solve

problems. ANNs are widely used in pattern recognition prob-

lems, owing to their post-training capability to recognize sets

of training-data-related patterns. ANNs consist of assemblies of

several artificial neurons that allow for the drawing of non-

linear decision boundaries. They can be used in several different

architectures including multilayer perception, Gaussian classifier,

learning vector quantization, RBF neural networks, and others.

For more details on these architectures, please see (Anthony and

Bartlett, 2009).

HMM

HMM is a non-linear probabilistic classifier that provides the

probability of observing a given set of features that are suitable

primarily for classification of time series (Rabiner, 1989). Some

fNIRS studies, for example, have successfully demonstrated the

feasibility of using HMM for BCI (Sitaram et al., 2007; Power

et al., 2010; Falk et al., 2011; Chan et al., 2012; Zimmermann et al.,

2013).

Two other classifiers that have been used in fNIRS-BCI are

partial least squares discriminant analysis (PLSDA) (Seo et al.,

2012) and quadratic discriminant analysis (QDA) (Naito et al.,

2007). Although some non-linear classifiers have been shown to

increase classification accuracies over those of linear classifiers,

the high-speed execution of the linear classifiers has made them

the preferred ones for fNIRS-BCI. Almost 45% of fNIRS-BCI

studies have utilized LDA for classification (see Figure 3), due

specifically to its fine balance between the classification accuracy

and the execution speed.

fNIRS-BCI APPLICATIONS

In recent years, significant progress has been made in fNIRS-BCI

research; however, the applications have been designed mostly for

training and demonstration purposes only. fNIRS-BCI has two

main drawbacks that have limited its use in real-world appli-

cations: a slow information transfer rate, and high error rates.

Another problem is the fact that most fNIRS-BCIs are tested

in controlled laboratory environments where the user can com-

fortably concentrate well on mental tasks; whereas in real sit-

uations, performance of concentration-dependent mental tasks

(e.g., motor imagery, mental arithmetic, etc.) is much more

challenging.

NEURO-REHABILITATION

BCI systems can be used to restore some of the lost motor and/or

cognitive functions in individuals with stroke and spinal cord

injury. The underlying idea of doing so is the ability of BCI feed-

back to induce self-regulation of brain activity. EEG, due to its

high temporal resolution, has been used in a large number of

previous neurofeedback studies (please see Gruzelier, 2013, for

a review of EEG-based neurofeedback studies). However, since

EEG has the limitations of imprecise localization and inaccessi-

bility of subcortical areas, the hemodynamic activity measured by

fMRI has been used in neurofeedback studies to overcome these

problems. A comprehensive review of fMRI-based BCI and neu-

rofeedback studies is provided by LaConte (2011) and Weiskopf

(2012).

fNIRS is very attractive, in comparison with fMRI, in accessing

subcortical brain signals. It is low cost, easy to use, and most of all

it is portable. It can be used even in an ambulance. It also has a

better temporal resolution than most of fMRI scanners (Huppert

et al., 2006). Moreover, fNIRS is less sensitive to motion artifacts

because it can be attached (or worn) to the brain or on the body.

Given the above points, the potential of use of fNIRS in neuro-

feedback studies is very high. Mihara et al. (2012) demonstrated

the possibility of using fNIRS-based neurofeedback to allow the

users to willfully regulate their hemodynamic responses. They

also showed that fNIRS-based neurofeedback enhances the hemo-

dynamic correlates corresponding to motor imagery. Further, the

same group have also reported similar results for stoke patients

(Mihara et al., 2013). Recently, Kober et al. (2014) revealed that

fNIRS-based neurofeedback can be used for a long-term train-

ing as well, and such repetitive neurofeedback can induce specific

and focused brain activation: In contrast, sham feedback has led

to diffuse brain activation patterns over broader brain areas. One

important disadvantage of using hemodynamics (either fMRI or

fNIRS) for neurofeedback is the inherent delay in its response,

which makes the generation of commands slow compared to EEG.

However, in the case of fNIRS, this kind of disadvantage can be

solved if the initial dip (i.e., the phenomenon that HbO decreases
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and HbR increases with neural firing) can be measured (instead

of hemodynamics).

COMMUNICATION

The primary application of BCI is to serve as a means of com-

munication for people with motor disorders such as ALS, spinal

cord injury and/or who are suffering from a persistent LIS. Naito

et al. (2007) and Naseer et al. (2014) developed an fNIRS-BCI

system for binary communication based on activations from the

prefrontal area. The subjects were required to perform a spe-

cific task such as mental arithmetic or music imagery to increase

the cognitive load and, thereby, respond “yes” or to remain

relax and, thus, respond “no” to the given question. The average

accuracies obtained by Naseer et al. (2014) with online classifi-

cation were approximately 82%. Sitaram et al. (2007) proposed

an fNIRS-BCI-based online word speller. Their system involves

using right-hand and left-hand motor imagery to move a cursor

on a two-dimensional to select letters.

MOTOR RESTORATION/REHABILITATION

Another important application of fNIRS-BCI is the restoration

of movement capability for people with motor disabilities. The

control commands generated by a BCI system can be used to con-

trol a prosthetic limb or a wheelchair. It is desirable to have a

portable system for these applications so that the user can move

freely. Also these applications, for safety purposes, cannot afford

high error rates, and must be fast enough to provide real-time

control. Several fNIRS-BCI studies have tried to improve clas-

sification accuracies and information transfer rates (Shin and

Jeong, 2014). Using neurofeedback, induction of neuroplastic-

ity of selected brain areas which has the potential to improve

cognitive performance, also can be accomplished.

OTHER APPLICATIONS

Other applications of fNIRS-BCI include environment con-

trol and entertainment. Environment control applications (for

instance, remote control, lights and temperature control) are very

useful for motor-disabled people. Recently, BCI has also been

used for healthy individuals’ entertainment purposes, although

this is not a main priority of BCI research. The feasibility of brain-

controlled video games has been demonstrated using EEG-BCI;

however, no such fNIRS-based application has been introduced to

date. For training purposes though, such games might be useful.

Table 1 provides a summary of most studies published from

2004 to 2014 that demonstrated important roles in brain-signal-

acquisition, signal pre-processing, feature-selection, and classifi-

cation stages for fNIRS-BCI.

FUTURE PROSPECTS OF fNIRS-BCI

Given the advantages (non-invasive, cheap, portable, and silent),

the use of fNIRS for BCI purposes is more suitable than fMRI.

Furthermore, its use is easier than EEG that uses wet electrodes.

A limitation of using fNIRS for BCI is that the information

transfer rate is limited by the inherent delay in the hemo-

dynamic response. However, the detections of the fast optical

response (Gratton et al., 2006; Hu et al., 2011) and the initial dip

(Akin et al., 2006; Yoshino and Kato, 2012) have been demon-

strated, which can offer faster information transfer rate and better

control. Since the speed of EEG can be utilized, the authors believe

that the future of non-invasive, portable and wearable BCIs lies

in the use of hybrid EEG-fNIRS systems, as it has shown to

work superior to EEG-BCIs and fNIRS-BCIs alone (Fazli et al.,

2012; Kaiser et al., 2014; Khan et al., 2014; Koo et al., 2014).

The reason for using a hybrid or combined fNIRS-EEG system

is that it either improves the classification accuracy or increases

the number of control commands for BCI. This can be done

by extracting some relevant features from fNIRS and combining

them with EEG system. Fazli et al. (2012) demonstrated signifi-

cantly enhanced performance, in terms of classification accuracy,

by combined feature sets from both fNIRS and EEG. Tomita et al.

(2014) showed that an optimal time slot for command gener-

ation can be estimated using indications from fNIRS signals in

hybrid fNIRS-EEG. Khan et al. (2014) demonstrated an efficient

control strategy for active BCI by placing fNIRS and EEG at dif-

ferent brain locations. Koo et al. (2014) have also shown that

the self-paced motor imagery can be detected more efficiently

using a hybrid fNIRS-EEG system. Since the information contents

of EEG and fNIRS are very distinctive, the hybrid fNIRS-EEG

system has a strong potential for future neurorehabilitation and

neurofeedback applications.

CONCLUSIONS

In this paper, we have reviewed the state-of-the-art of fNIRS-

based BCI systems, discussing all the procedures appearing in the

standard BCI. Several different brain activities have been used for

fNIRS-BCI, including, most commonly, those from the motor

and prefrontal cortices. Motor cortex activities such as motor

execution and motor imagery have been shown to work well

and, indeed, are useful from the neurorehabilitation perspective.

Prefrontal activities, on the other hand, offer the advantages of

being free from artifacts due to hair. Both, despite of their draw-

backs, have been shown to work well for fNIRS-BCI purposes.

Use of other brain-imaging modalities, such as EEG in combina-

tion with fNIRS in a hybrid fashion, has been shown to effectively

improve BCI performance. Such hybrid systems can acquire brain

signals from the same as well as different brain areas, thereby

increasing the number of control commands.

Different signal-processing and noise-removal methods

including band-pass filtering, ICA, principle component analysis,

wavelet transform and adaptive-filtering-based methods have

been discussed. Because band-pass filters are simple and incur

only low computational costs, they are still mostly used in

fNIRS BCI.

BCI-applied classification algorithms must be both accurate

and fast. Although SVM, hidden Markov models, and artificial

neural networks provide good classification accuracies, the linear

discriminant analysis (in its simple structure) has a low computa-

tional cost and also provides a good performance in classification

accuracy.

Considering all these points, it is concluded that there is much

room for future fNIRS-BCI research, particularly in its applica-

tions. Although fNIRS-BCI applications for communication and

control have been demonstrated in a number of studies, no com-

mercial fNIRS-BCI application currently is available. All of the

relevant research trends predict that interest in fNIRS-BCI will
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continue to grow. In the near future, several breakthroughs via

bundled-type fNIRS probes, hybrid EEG-fNIRS, and detection of

the initial dip are expected.

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of

Korea under the Ministry of Science, ICT and Future Planning,

Korea (grant no. NRF-2014R1A2A1A10049727).

REFERENCES
Abdelnour, A. F., and Huppert, T. (2009). Real-time imaging of human

brain function by near-infrared spectroscopy using an adaptive general

linear model. Neuroimage 46, 133–143. doi: 10.1016/j.neuroimage.2009.

01.033

Abibullaev, B., and An, J. (2012). Classification of frontal cortex hemo-

dynamic responses during cognitive tasks using wavelet transforms

and machine learning algorithms. Med. Eng. Phys. 34, 1394–1410. doi:

10.1016/j.medengphy.2012.01.002

Abibullaev, B., An, J., and Moon, J. I. (2011). Neural network classification of brain

hemodynamic responses from four mental tasks. Int. J. Optomechatronics 5,

340–359. doi: 10.1080/15599612.2011.633209

Adhika, D. R., Hazrati, M. K., and Hofmann, U. G. (2012). An experimental setup

for brain activity measurement based on near infrared spectroscopy. Biomed.

Tech. 57, 609–612. doi: 10.1515/bmt-2012-4487

Akin, A., Bilensoy, D., Emir, U. E., Gulsoy, M., Candansayar, S., and Bolay, H.

(2006). Cerebrovascular dynamics in patients with migraine: near-infrared

spectroscopy study. Neurosci. Lett. 400, 86–91. doi: 10.1016/j.neulet.2006.02.016

Anthony, M., and Bartlett, P. L. (2009). Neural Network Learning: Theoretical

Foundations. New York, NY: Cambridge University Press.

Aqil, M., Hong, K.-S., Jeong, M.-Y., and Ge, S. S. (2012a). Cortical brain imag-

ing by adaptive filtering of NIRS signals. Neurosci. Lett. 514, 35–41. doi:

10.1016/j.neulet.2012.02.048

Aqil, M., Hong, K.-S., Jeong, M.-Y., and Ge, S. S. (2012b). Detection of event-

related hemodynamic response to neuroactivation by dynamic modeling of

brain activity. Neuroimage 63, 553–568. doi: 10.1016/j.neuroimage.2012.07.006

Ayaz, H., Shewokis, P. A., Bunce, S., Izzetoglu, K., Willems, B., and Onaral, B.

(2012). Optical brain monitoring for operator training and mental workload

assessment. Neuroimage 59, 36–47. doi: 10.1016/j.neuroimage.2011.06.023

Ayaz, H., Shewokis, P., Bunce, S., Schultheis, M., and Onaral, B. (2009).

“Assessment of cognitive neural correlates for a functional near infrared-based

brain computer interface system,” in Foundations of Augmented Cognition.

Neuroergonomics and Operational Neuroscience, eds D. D. Schmorrow, I. V.

Estabrooke, and M. Grootjen (Heidelberg: Springer-Verlag), 699–708.

Bauernfeind, G., Leeb, R., Wriessnegger, S. C., and Pfurtscheller, G. (2008).

Development, set-up and first results for a one-channel near-infrared spec-

troscopy system. Biomed. Tech. 53, 36–43. doi: 10.1515/BMT.2008.005

Bauernfeind, G., Scherer, R., Pfurtscheller, G., and Neuper, C. (2011). Single-trial

classification of antagonistic oxyhemoglobin responses during mental arith-

metic. Med. Biol. Eng. Comput. 49, 979–984. doi: 10.1007/s11517-011-0792-5

Bhutta, M. R., Hong, K.-S., Kim, B.-M., Hong, M. J., Kim, Y.-H., and Lee, S.-H.

(2014). Note: three wavelengths near-infrared spectroscopy system for com-

pensating the light absorbance by water. Rev. Sci. Intrum. 85:026111. doi:

10.1063/1.4865124

Boas, D. A., Chen, K., Grebert, D., and Franceschini, M. A. (2004b). Improving

the diffuse optical imaging spatial resolution of the cerebral hemodynamic

response to brain activation in humans. Opt. Lett. 29, 1506–1508. doi:

10.1364/OL.29.001506

Boas, D. A., Dale, A. M., and Franceschini, M. A. (2004a). Diffuse optical imaging

of brain activation: approaches to optimizing image sensitivity, resolution, and

accuracy. Neuroimage 23, S275–S288. doi: 10.1016/j.neuroimage.2004.07.011

Buch, E., Weber, C., Cohen, L. G., Braun, C., Dimyan, M. A., Ard, T., et al. (2008).

Think to move: a neuromagnetic brain-computer interface (BCI) system for

chronic stroke. Stroke 39, 910–917. doi: 10.1161/STROKEAHA.107.505313

Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recogni-

tion. Knowl. Discov. Data Min. 2, 121–167. doi: 10.1023/A:1009715923555

Chan, J., Power, S., and Chau, T. (2012). Investigating the need for modeling

temporal dependencies in a brain-computer interface with real-time feedback

based on near infrared spectra. J. Near Infrared Spectrosc. 20, 107–116. doi:

10.1255/jnirs.971

Cooper, R. J., Selb, J., Gagnon, L., Phillip, D., Schytz, H. W., Iversen, H. K.,

et al. (2012). A systematic comparison of motion artifact correction tech-

niques for functional near-infrared spectroscopy. Front. Neurosci. 6:147. doi:

10.3389/fnins.2012.00147

Coyle, S. M., Ward, T. E., and Markham, C. M. (2007). Brain-computer interface

using a simplified functional near-infrared spectroscopy system. J. Neural Eng.

4, 219–226. doi: 10.1088/1741-2560/4/3/007

Coyle, S., Ward, T., Markham, C., and McDarby, G. (2004). On the suitability

of near-infrared (NIR) systems for next-generation brain-computer interfaces.

Physiol. Meas. 25, 815–822. doi: 10.1088/0967-3334/25/4/003

Cui, X., Bray, S., and Reiss, A. L. (2010a). Functional near infrared spectroscopy

(NIRS) signal improvement based on negative correlation between oxygenated

and deoxygenated hemoglobin dynamics. Neuroimage 49, 3039–3046. doi:

10.1016/j.neuroimage.2009.11.050

Cui, X., Bray, S., and Reiss, A. L. (2010b). Speeded near-infrared spec-

troscopy (NIRS) response detection. PLoS ONE 5:e15474. doi: 10.1371/jour-

nal.pone.0015474

Delpy, D. T., Cope, M., van der Zee, P., Arridge, S., Wray, S., and Wyatt, J. (1988).

Estimation of optical pathlength through tissue from direct time of flight mea-

surement. Phys. Med. Biol. 33, 1433–1442. doi: 10.1088/0031-9155/33/12/008

Falk, T. H., Guirgis, M., Power, S., and Chau, T. (2011). Taking NIRS-BCIs outside

the lab: towards achieving robustness against environment noise. IEEE Trans.

Neural Syst. Rehabil. Eng. 19, 136–146. doi: 10.1109/TNSRE.2010.2078516

Faress, A., and Chau, T. (2013). Towards a multimodal brain-computer inter-

face: combining fNIRS and fTCD measurements to enable higher classification

accuracy. Neuroimage 77, 186–194. doi: 10.1016/j.neuroimage.2013.03.028

Fazli, S., Mehnert, J., Steinbrink, J., Curio, G., Villringer, A., Muller, K. R., et al.

(2012). Enhanced performance by a hybrid NIRS-EEG brain-computer inter-

face. Neuroimage 59, 519–529. doi: 10.1016/j.neuroimage.2011.07.084

Fekete, T., Rubin, D., Carlson, J. M., and Mujica-Parodi, L. R. (2011). The NIRS

analysis package: noise reduction and statistical inference. PLoS ONE 6:e24322.

doi: 10.1371/journal.pone.0024322

Ferrari, M., Giannini, I., Sideri, G., and Zanette, E. (1985). Continuous non invasive

monitoring of human brain by near infrared spectroscopy. Adv. Exp. Med. Biol.

191, 873–882. doi: 10.1007/978-1-4684-3291-6_88

Ferrari, M., Mottola, L., and Quaresima, V. (2004). Principles, techniques, and lim-

itations of near infrared spectroscopy. Can. J. Appl. Physiol. 29, 463–487. doi:

10.1139/h04-031

Franceschini, M. A., Joseph, D. K., Huppert, T. J., Diamond, S. G., and Boas, D. A.

(2006). Diffuse optical imaging of the whole head. J. Biomed. Opt. 11:054007.

doi: 10.1117/1.2363365

Funane, T., Atsumori, H., Katura, T., Obata, A. N., Sato, H., Tanikawa, Y., et al.

(2014). Quantitative evaluation of deep and shallow tissue layers’ contribu-

tion to fNIRS signal using multi-distance optodes and independent component

analysis. Neuroimage 85, 150–165. doi: 10.1016/j.neuroimage.2013.02.026

Gagnon, L., Yucel, M. A., Dehaes, M., Cooper, R. J., Perdue, K. L., Selb, J., et al.

(2012). Quantification of the cortical contribution to the NIRS signal over

the motor cortex using concurrent NIRS-fMRI measurements. Neuroimage 59,

3933–3940. doi: 10.1016/j.neuroimage.2011.10.054

Gratton, G., Brumback, C. R., Gordon, B. A., Pearson, M. A., Low, K. A., and

Fabiani, M. (2006). Effects of measurement method, wavelength, and source-

detector distance on the fast optical signal. Neuroimage 32, 1576–1590. doi:

10.1016/j.neuroimage.2006.05.030

Gruzelier, J. H. (2013). EEG-neurofeedback for optimising performance. I: a review

of cognitive and affective outcome in healthy participants. Neurosci. Biobehav.

Rev. 44, 124–141. doi: 10.1016/j.neubiorev.2013.09.015

Hai, N. T., Cuong, N. Q., Khoa, T. Q. D., and Toi, V. V. (2013). Temporal hemo-

dynamic classification of two hands tapping using functional near-infrared

spectroscopy. Front. Hum. Neurosci. 7:516. doi: 10.3389/fnhum.2013.00516

Hammer, E. M., Kaufmann, T., Kleih, S. C., Blankertz, B., and Kubler, A.

(2014). Visuo-motor coordination ability predicts performance with

brain-computer interfaces controlled by modulation of sensorimotor

rhythms (SMR). Front. Hum. Neurosci. 8:574. doi: 10.3389/fnhum.2014.

00574

Holper, L., and Wolf, M. (2011). Single-trial classification of motor imagery

differing in task complexity: a functional near-infrared spectroscopy study.

J. Neuroeng. Rehabil. 8:34. doi: 10.1186/1743-0003-8-34

Frontiers in Human Neuroscience www.frontiersin.org January 2015 | Volume 9 | Article 3 | 12

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Naseer and Hong A review of fNIRS-BCIs

Hong, K.-S., Naseer, N., and Kim, Y.-H. (2015). Classification of prefrontal and

motor cortex signals for three-class fNIRS-BCI. Neurosci. Lett. 587, 87–92. doi:

10.1016/j.neulet.2014.12.029

Hong, K.-S., and Nguyen, H.-D. (2014). State-space models of impulse hemody-

namic responses over motor, somatosensory, and visual cortices. Biomed. Opt.

Express 5, 1778–1798. doi: 10.1364/BOE.5.001778

Hoshi, Y., Onoe, H., Watanabe, Y., Andersson, J., Bergstrom, M., Lilja, A., et al.

(1994). Non-synchronous behavior of neuronal-activity, oxidative-metabolism

and blood-supply during mental tasks in man. Neurosci. Lett. 172, 129–133. doi:

10.1016/0304-3940(94)90679-3

Hoshi, Y., and Tamura, M. (1997). Near-infrared optical detection of sequential

brain activation in the prefrontal cortex during mental tasks. Neuroimage 5,

292–297. doi: 10.1006/nimg.1997.0270

Hu, X.-S., Hong, K.-S., and Ge, S. S. (2011). Recognition of stimulus-evoked neu-

ronal optical response by identifying chaos levels of near-infrared spectroscopy

time series. Neurosci. Lett. 504, 115–120. doi: 10.1016/j.neulet.2011.09.011

Hu, X.-S., Hong, K.-S., and Ge, S. S. (2012). fNIRS-based online deception

decoding. J Neural Eng. 9:026012. doi: 10.1088/1741-2560/9/2/026012

Hu, X.-S., Hong, K.-S., and Ge, S. S. (2013). Reduction of trial-to-trial

variations in functional near-infrared spectroscopy signals by accounting

for resting-state functional connectivity. J. Biomed. Opt. 18:017003. doi:

10.1117/1.JBO.18.1.017003

Hu, X.-S., Hong, K.-S., Ge, S. S., and Jeong, M.-Y. (2010). Kalman estimator- and

general linear model-based on-line brain activation mapping by near-infrared

spectroscopy. Biomed. Eng. Online 9:82. doi: 10.1186/1475-925X-9-82

Huppert, T. J., Diamond, S. G., Fransceshini, M. A., and Boas, D. A. (2009).

HomER: a review of time-series analysis methods for near-infrared spec-

troscopy of the brain. Appl. Opt. 48, D280–D298. doi: 10.1364/AO.48.00D280

Huppert, T. J., Hoge, R. D., Diamond, S. G., Franceschini, M. A., and Boas, D.

A. (2006). A temporal comparison of BOLD, ASL, and NIRS hemodynamic

responses to motor stimuli in adult humans. Neuroimage 29, 368–382. doi:

10.1016/j.neuroimage.2005.08.065

Hwang, H.-J., Kim, S., Choi, S., and Im, C.-H. (2013). EEG-based brain-computer

interfaces: a thorough literature survey. Int. J. Hum. Comp. Int. 29, 814–826. doi:

10.1080/10447318.2013.780869

Hwang, H.-J., Lim, J.-H., Kim, D.-W., and Im, C.-H. (2014). Evaluation of

various mental task combinations for near-infrared spectroscopy-based brain-

computer interfaces. J. Biomed. Opt. 19:077005. doi: 10.1117/1.JBO.19.7.077005

Izzetoglu, M., Devaraj, A., Bunce, S., and Onaral, B. (2005). Motion artifact cancel-

lation in NIR spectroscopy using Wiener filtering. IEEE Trans. Biomed. Eng. 52,

934–938. doi: 10.1109/TBME.2005.845243

Jobsis, F. F. (1977). Noninvasive, infrared monitoring of cerebral and myocardial

oxygen sufficiency and circulatory parameters. Science 198, 1264–1267. doi:

10.1126/science.929199

Kaiser, V., Gauernfeind, G., Kreilinger, A., Kaufmann, T., Kubler, A., Neuper, C.,

et al. (2014). Cortical effects of user training in a motor imagery based brain-

computer interface measured by fNIRS and EEG. Neuroimage 85, 432–444. doi:

10.1016/j.neuroimage.2013.04.097

Kamran, M. A., and Hong, K.-S. (2013). Linear parameter-varying model and

adaptive filtering technique for detecting neuronal activities: an fNIRS study.

J. Neural Eng. 10:056002. doi: 10.1088/1741-2560/10/5/056002

Kamran, M. A., and Hong, K.-S. (2014). Reduction of physiological effects in fNIRS

waveforms for efficient brain-state decoding. Neurosci. Lett. 580, 130–136. doi:

10.1016/j.neulet.2014.07.058

Kato, T., Kamei, A., Takashima, S., and Ozaki, T. (1993). Human visual cortical

function during photic stimulation monitoring by means of near-infrared spec-

troscopy. J. Cereb. Blood Flow Metab. 13, 516–520. doi: 10.1038/jcbfm.1993.66

Khan, M. J., Hong, M. J., and Hong, K.-S. (2014). Decoding of four move-

ment directions using hybrid NIRS-EEG brain-computer interface. Front. Hum.

Neurosci. 8:244. doi: 10.3389/fnhum.2014.00244

Khoa, T. Q. D., and Nakagawa, M. (2008). Functional near-infrared spectroscope

for cognition brain tasks by wavelets analysis and neural networks. Int. J. Biol.

Life Sci. 4, 28–33. doi: 10.1186/1753-4631-2-3

Kim, J.-Y., Kang, H.-C., Cho, J.-H., Lee, J.-H., Kim, H.-D., and Im, C.-H. (2014).

Combined use of multiple computational intracranial EEG analysis techniques

for the localization of epileptogenic zones in Lennox-Gastaut syndrome. Clin.

EEG Neurosci. 45, 169–178. doi: 10.1177/1550059413495393

Kirilina, E., Jelzow, A., Heine, A., Niessing, M., Wabnitz, H., Brühl, R.,

et al. (2012). The physiological origin of task-evoked systemic artefacts

in functional near infrared spectroscopy. Neuroimage 61, 70–81. doi:

10.1016/j.neuroimage.2012.02.074

Kirilina, E., Yu, N., Jelzow, A., Wabnitz, H., Jacobs, A. M., and Tachtsidis, I. (2013).

Identifying and quantifying main components of physiological noise in func-

tional near infrared spectroscopy on the prefrontal cortex. Front. Hum. Neurosci.

7:864. doi: 10.3389/fnhum.2013.00864

Kleih, S. C., and Kubler, A. (2013). Empathy, motivation, and P300-BCI perfor-

mance. Front. Hum. Neurosci. 7:642. doi: 10.3389/fnhum.2013.00642

Ko, K. E., and Sim, K. B. (2013). Harmony search-based hidden Markov model

optimization for online classification of single trial EEGs during motor imagery

tasks. Int. J. Control. Autom. 11, 608–613. doi: 10.1007/s12555-012-0035-z

Kober, S. E., Wood, G., Kurzmann, J., Friedrich, E. V., Stangl, M., Wippel, T., et al.

(2014). Near-infrared spectroscopy based neurofeedback training increases spe-

cific motor imagery related cortical activation compared to sham feedback. Biol.

Psychol. 95, 21–30. doi: 10.1016/j.biopsycho.2013.05.005

Kohno, S., Miyai, I., Seiyama, A., Oda, I., Ishikawa, A., Tsuneishi, S., et al. (2007).

Removal of the skin blood flow artifact in functional near-infrared spectro-

scopic imaging data through independent component analysis. J. Biomed. Opt.

12:062111. doi: 10.1117/1.2814249

Koo, B., Lee, H.-G., Nam, Y., Kang, H., Koh, C.-S., Shin, H.-C., et al. (2014). A

hybrid NIRS-EEG system for self-paced brain computer interface with online

motor imagery. J. Neurosci. Methods. doi: 10.1016/j.jneumeth.2014.04.016.

[Epub ahead of print].

LaConte, S. M. (2011). Decoding fMRI brain states in real-time. Neuroimage 56,

440–454. doi: 10.1016/j.neuroimage.2010.06.052

Liu, Y., Ayaz, H., Curtin, A., and Onarall, B. (2013). “Towards a hybrid P300-

based BCI using simultaneous fNIR and EEG,” in Foundations of Augmented

Cognition, eds D. Schmorrow and C. Fidopiastis (Heidelberg: Springer-Verlag),

335–344.

Lotte, F., Congedo, M., Lecuyer, A., Lamarche, F., and Arnaldi, B. (2007). A review

of classification algorithms for EEG-based brain-computer interfaces. J. Neural

Eng. 4:R1. doi: 10.1088/1741-2560/4/2/R01

Luu, S., and Chau, T. (2009). Decoding subjective preferences from single-trial

near-infrared spectroscopy signals. J. Neural Eng. 6:016003. doi: 10.1088/1741-

2560/6/1/016003

McCormick, P. W., Stewart, M., Lewis, G., Dujovny, M., and Ausman, J. I. (1992).

Intracerebral penetration of infrared light: technical note. J. Neurosurg. 76,

315–318. doi: 10.3171/jns.1992.76.2.0315

Mellinger, J., Schalk, G., Braun, C., Preissl, H., Rosenstiel, W., Birbaumer, N.,

et al. (2007). An MEG-based brain-computer interface (BCI). Neuroimage 36,

581–593. doi: 10.1016/j.neuroimage.2007.03.019

Mihara, M., Hattori, N., Hatakenaka, M., Yagura, H., and Kawano, T. (2013). Near-

infrared spectroscopy-mediated neurofeedback enhances efficacy of motor

imagery-based training in poststroke victims a pilot study. Stroke 44, 1091–1098.

doi: 10.1161/STROKEAHA.111.674507

Mihara, M., Miyai, I., Hattori, N., Hatakenaka, M., Yagura, H., Kawano,

T., et al. (2012). Neurofeedback using real-time near-infrared spectroscopy

enhances motor imagery related cortical activation. PLoS ONE 7:e32234. doi:

10.1371/journal.pone.0032234

Misawa, T., Takano, S., Shimokawa, T., and Hirobayashi, S. (2012). A brain-

computer interface for motor assist by the prefrontal cortex. Electron. Comm.

Jpn. 95, 1–8. doi: 10.1002/ecj.11426

Moghimi, S., Kushki, A., Power, S., Guerguerian, A. M., and Chau, T. (2012).

Automatic detection of a prefrontal cortical response to emotionally rated music

using multi-channel near-infrared spectroscopy. J. Neural Eng. 9:026022. doi:

10.1088/1741-2560/9/2/026022

Nagaoka, T., Sakatani, K., Awano, T., Yokose, N., Hoshino, T., Murata, Y., et al.

(2010). “Development of a new rehabilitation system based on a brain-

computer interface using near-infrared spectroscopy,” in Experimental Medicine

and Biology, Oxygen Transport in Tissue XXXI, eds E. Takashi and D. F. Bruley

(New York, NY: Springer), 497–503.

Naito, M., Michioka, Y., Ozawa, K., Ito, Y., Kiguchi, M., and Kanazawa, T. (2007).

A communication means for totally locked-in ALS patients based on changes

in cerebral blood volume measured with near-infrared light. IEICE T. Inf. Syst.

E90D, 1028–1037. doi: 10.1093/ietisy/e90-d.7.1028

Naseer, N., and Hong, K.-S. (2013). Classification of functional near-infrared spec-

troscopy signals corresponding to the right- and left-wrist motor imagery for

development of a brain-computer interface. Neurosci. Lett. 553, 84–49. doi:

10.1016/j.neulet.2013.08.021

Frontiers in Human Neuroscience www.frontiersin.org January 2015 | Volume 9 | Article 3 | 13

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Naseer and Hong A review of fNIRS-BCIs

Naseer, N., Hong, M. J., and Hong, K.-S. (2014). Online binary decision decoding

using functional near-infrared spectroscopy for the development of brain-

computer interface. Exp. Brain Res. 232, 555–564. doi: 10.1007/s00221-013-

3764-1

Nicolas-Alonso, L. F., and Gomez-Gil, J. (2012). Brain computer interfaces, a

review. Sensors 2, 1211–1279. doi: 10.3390/s120201211

Pernkopf, F., and O’Leary, P. (2001). “Feature selection for classification using

genetic algorithms with a novel encoding,” in Computer Analysis of Images and

Patterns, ed W. Skarbek (Heidelberg: Springer-Verlag), 161–168.

Plichta, M., Herrmann, M., Baehne, C., Ehlis, A.-C., Richter, M., Pauli,

P., et al. (2006). Event-related functional near-infrared spectroscopy

(fNIRS): are the measurements reliable? Neuroimage 31, 116–124. doi:

10.1016/j.neuroimage.2005.12.008

Power, S., and Chau, T. (2013). Automatic single-trial classification of prefrontal

hemodynamic activity in an individual with Duchenne muscular dystrophy.

Dev. Neurorehabil. 16, 67–72. doi: 10.3109/17518423.2012.718293

Power, S. D., Falk, T. H., and Chau, T. (2010). Classification of prefrontal activ-

ity due to mental arithmetic and music imagery using hidden Markov models

and frequency domain near-infrared spectroscopy. J. Neural Eng. 7:026002. doi:

10.1088/1741-2560/7/2/026002

Power, S. D., Khushki, A., and Chau, T. (2012a). Automatic single trial discrimi-

nation of mental arithmetic, mental singing and the no-control state from the

prefrontal activity: towards a three-state NIRS-BCI. BMC Res. Notes 5:141. doi:

10.1186/1756-0500-5-141

Power, S. D., Kushki, A., and Chau, T. (2011). Towards a system-paced near-infrared

spectroscopy brain-computer interface: differentiating prefrontal activity due to

mental arithmetic and mental singing from the no-control state. J. Neural Eng.

8:066004. doi: 10.1088/1741-2560/8/6/066004

Power, S. D., Kushki, A., and Chau, T. (2012b). Intersession consistency of single-

trial classification of the prefrontal response to mental arithmetic and the no-

control state by NIRS. PLoS ONE 7:e37791. doi: 10.1371/journal.pone.0037791

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected

applications in speech recognition. Proc. IEEE 77, 257–286. doi: 10.1109/5.

18626

Rea, M., Rana, M., Lugato, N., Terekhin, P., Gizzi, L., Brotz, D., et al. (2014).

Lower limb movement preparation in chronic stroke: a pilot study toward an

fNIRS-BCI for gait rehabilitation. Neurorehabil. Neural Repair 28, 564–575. doi:

10.1177/1545968313520410

Saager, R. B., and Berger, A. J. (2005). Direct characterization and removal of inter-

fering absorption trends in two-layer turbid media. J. Opt. Soc. Am. A Opt. Image

Sci. Vis. 22, 1874–1882. doi: 10.1364/JOSAA.22.001874

Saager, R. B., Telleri, N. L., and Berger, A. J. (2011). Two-detector corrected near

infrared spectroscopy (C-NIRS) detects hemodynamic activation responses

more robustly than single-detector NIRS. Neuroimage 55, 1679–1685. doi:

10.1016/j.neuroimage.2011.01.043

Sagara, K., and Kido, K. (2012). Evaluation of a 2-channel NIRS-based optical brain

switch for motor disabilities’ communication tools. IEICE T. Inf. Syst. E95D,

829–834. doi: 10.1587/transinf.E95.D.829

Santosa, H., Hong, M. J., and Hong, K.-S. (2014). Lateralization of music process-

ing with noises in the auditory cortex: an fNIRS study. Front. Behav. Neurosci.

8:418. doi: 10.3389/fnbeh.2014.00418

Santosa, H., Hong, M. J., Kim, S.-P., and Hong, K.-S. (2013). Noise reduction

in functional near-infrared spectroscopy signals by independent component

analysis. Rev. Sci. Instrum. 84:073106. doi: 10.1063/1.4812785

Sardouie, S. H., and Shamsollahi, M. B. (2012). Selection of efficient features for

discrimination of hand movements from MEG using a BCI competition IV data

set. Front. Neurosci. 6:42. doi: 10.3389/fnins.2012.00042

Sato, H., Tanaka, N., Uchida, M., Hirabayashi, Y., Kanai, M., Ashida, T., et al.

(2006). Wavelet analysis for detecting body-movement artifacts in optical

topography signals. Neuroimage 33, 580–587. doi: 10.1016/j.neuroimage.2006.

06.028

Sato, H., Yahata, N., Funane, T., Takizawa, R., Katura, T., Atsumori, H., et al.

(2013). A NIRS-fMRI investigation of prefrontal cortex activity during a work-

ing memory task. Neuroimage 83C, 158–173. doi: 10.1016/j.neuroimage.2013.

06.043

Schudlo, L. C., and Chau, T. (2014). Dynamic topographical pattern classi-

fication of multichannel prefrontal NIRS signals: II. Online differentiation

of mental arithmetic and rest. J. Neural Eng. 11:016003. doi: 10.1088/1741-

2560/11/1/016003

Seo, Y., Lee, S., Koh, D., and Kim, B.-M. (2012). Partial least squares-discriminant

analysis for the prediction of hemodynamic changes using near-infrared spec-

troscopy. J. Opt. Soc. Korea 16, 57–62. doi: 10.3807/JOSK.2012.16.1.057

Shin, J., and Jeong, J. (2014). Multiclass classification of hemodynamic

responses for performance improvement of functional near-infrared

spectroscopy-based brain-computer interface. J. Biomed. Opt. 19:067009.

doi: 10.1117/1.JBO.19.6.067009

Sitaram, R., Zhang, H. H., Guan, C. T., Thulasidas, M., Hoshi, Y., Ishikawa, A., et al.

(2007). Temporal classification of multichannel near-infrared spectroscopy sig-

nals of motor imagery for developing a brain-computer interface. Neuroimage

34, 1416–1427. doi: 10.1016/j.neuroimage.2006.11.005

Soekadar, S. R., Witkowski, M., Cossio, E. G., Birbaumer, N., and Cohen, L.

G. (2014). Learned EEG-based brain self-regulation of motor-related oscil-

lations during application of transcranial electric brain stimulation: feasi-

bility and limitations. Front. Behav. Neurosci. 8:93. doi: 10.3389/fnbeh.2014.

00093

Stangl, M., Bauernfeind, G., Kurzmann, J., Scerer, R., and Neuper, C. (2013).

A hemodynamic brain-computer interface based on real-time classifica-

tion of near infrared spectroscopy signals during motor imagery and

mental arithmetic. J. Near Infrared Spectrosc. 21, 157–171. doi: 10.1255/

jnirs.1048

Tachtsidis, I., Koh, P. H., Stubbs, C., and Elwell, C. E. (2010). “Functional optical

topography analysis using statistical parametric mapping (SPM) methodology

with and without physiological confounds,” in Oxygen Transport to Tissue XXXI,

eds E. Takahashi and D. F. Bruley (Boston, MA, Springer), 237–243

Tai, K., and Chau, T. (2009). Single-trial classification of NIRS signals during

emotional induction tasks: towards a corporeal machine interface. J. Neuroeng.

Rehabil. 6:39. doi: 10.1186/1743-0003-6-39

Takahashi, T., Takikawa, Y., Kawagoe, R., Shibuya, S., Iwano, T., and Kitazawa, S.

(2011). Influence of skin blood flow on near-infrared spectroscopy signals mea-

sured on the forehead during a verbal fluency task. Neuroimage 57, 991–1002.

doi: 10.1016/j.neuroimage.2011.05.012

Tanaka, H., and Katura, T. (2011). Classification of change detection and change

blindness from near-infrared spectroscopy signals. J. Biomed. Opt. 16:087001.

doi: 10.1117/1.3606494

Tomita, Y., Vialatte, F. B., Dreyfus, G., Mitsukura, Y., Bakardjian, H., and Cichocki,

A. (2014). Bimodal BCI using simultaneously NIRS and EEG. IEEE Trans.

Biomed. Eng. 61, 1274–1284. doi: 10.1109/TBME.2014.2300492

Turnip, A., and Hong, K.-S. (2012). Classifying mental activities from EEG-P300

signals using adaptive neural network. Int. J. Innovat. Comput. Inform. Control

8, 6429–6443

Turnip, A., Hong, K.-S., and Jeong, M.-Y. (2011). Real-time feature extraction

of EEG-based P300 using adaptive nonlinear principal component analysis.

Biomed. Eng. Online 10:83. doi: 10.1186/1475-925X-10-83

Utsugi, K., Obata, A., Sato, H., Aoki, R., Maki, A., Koizumi, H., et al. (2008).

GO-STOP control using optical brain-computer interface during calcula-

tion task. IEICE T. Commun. E91B, 2133–2141. doi: 10.1093/ietcom/e91-b.

7.2133

van der Heiden, L., Liberati, G., Sitaram, R., Kim, S., Jaœkowski, P., Raffone,

A., et al. (2014). Insula and inferior frontal triangularis activations distin-

guish between conditioned brain responses using emotional sounds for basic

BCI communication. Front. Behav. Neurosci. 8:247. doi: 10.3389/fnbeh.2014.

00247

Villringer, A., and Chance, B. (1997). Non-invasive optical spectroscopy and imag-

ing of human brain function. Trends Neurosci. 20, 435–442. doi: 10.1016/S0166-

2236(97)01132-6

Villringer, A., Planck, J., Hock, C., Schleinkofer, L., and Dirnagl, U. (1993). Near

infrared spectroscopy (NIRS): a new tool to study hemodynamic changes dur-

ing activation of brain function in human adults. Neurosci. Lett. 154, 101–104.

doi: 10.1016/0304-3940(93)90181-J

Wang, D., Miao, D., and Blohm, G. (2012). Multi-class motor imagery

EEG decoding for brain-computer interfaces. Front. Neurosci. 6:151. doi:

10.3389/fnins.2012.00151

Weiskopf, N. (2012). Real-time fMRI and its application to neurofeedback.

Neuroimage 62, 682–692. doi: 10.1016/j.neuroimage.2011.10.009

Weiskopf, N., Mathiak, K., Bock, S. W., Scharnowski, F., Veit, R., Grodd, W.,

et al. (2004). Principles of a brain-computer interface (BCI) based on real-time

functional magnetic resonance imaging (fMRI). IEEE Trans. Biomed. Eng. 51,

966–970. doi: 10.1109/TBME.2004.827063

Frontiers in Human Neuroscience www.frontiersin.org January 2015 | Volume 9 | Article 3 | 14

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Naseer and Hong A review of fNIRS-BCIs

Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., and Vaughan,

T. M. (2002). Brain-computer interfaces for communication and control. Clin.

Neurophysiol. 113, 767–791. doi: 10.1016/S1388-2457(02)00057-3

Yoshino, K., and Kato, T. (2012). Vector-based phase classification of initial

dips during word listening using near-infrared spectroscopy. Neuroreport 23,

947–951. doi: 10.1097/WNR.0b013e328359833b

Zhang, Q., Brown, E. N., and Strangman, G. E. (2007). Adaptive filtering to reduce

global interference in evoked brain activity detection: a human subject case

study. J. Biomed. Opt. 12:064009. doi: 10.1117/1.2804706

Zhang, Q., Strangman, G. E., and Ganis, G. (2009). Adaptive filtering to

reduce global interference in non-invasive NIRS measures of brain acti-

vation: how well and when does it work?. Neuroimage 45, 788–794. doi:

10.1016/j.neuroimage.2008.12.048

Zhang, Y., Brooks, D., Franceschini, M., and Boas, D. (2005). Eigenvector-based

spatial filtering for reduction of physiological interference in diffuse optical

imaging. J. Biomed. Opt. 10:011014. doi: 10.1117/1.1852552

Zimmermann, R., Marchal-Crespo, L., Edelmann, J., Lambercy, O., Fluet, M.-

C., Riener, R., et al. (2013). Detection of motor execution using hybrid

fNIRS-biosignal BCI: a feasibility study. J. Neuroeng. Rehabil. 10:4. doi:

10.1186/1743-0003-10-4

Conflict of Interest Statement: The authors declare that the research was con-

ducted in the absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Received: 27 October 2014; accepted: 02 January 2015; published online: 28 January

2015.

Citation: Naseer N and Hong K-S (2015) fNIRS-based brain-computer interfaces: a

review. Front. Hum. Neurosci. 9:3. doi: 10.3389/fnhum.2015.00003

This article was submitted to the journal Frontiers in Human Neuroscience.

Copyright © 2015 Naseer and Hong. This is an open-access article distributed under

the terms of the Creative Commons Attribution License (CC BY). The use, distribu-

tion or reproduction in other forums is permitted, provided the original author(s)

or licensor are credited and that the original publication in this journal is cited, in

accordance with accepted academic practice. No use, distribution or reproduction is

permitted which does not comply with these terms.

Frontiers in Human Neuroscience www.frontiersin.org January 2015 | Volume 9 | Article 3 | 15

http://dx.doi.org/10.3389/fnhum.2015.00003
http://dx.doi.org/10.3389/fnhum.2015.00003
http://dx.doi.org/10.3389/fnhum.2015.00003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

	fNIRS-based brain-computer interfaces: a review
	Introduction
	Brain-Signal Acquisition
	Motor Cortex Activities
	Motor execution
	Motor imagery

	Prefrontal Cortex Activities
	Mental arithmetic
	Music imagery
	Other prefrontal activities


	Preprocessing
	Removal of Instrumental Noise
	Removal of Experimental Errors

	Physiological Noise
	Band-Pass Filtering
	Advanced Filtering Methods
	ICA and PCA

	Feature Extraction/Selection
	Heuristic Methods
	Filter Coefficients
	Genetic Algorithms

	Classification Techniques
	LDA
	SVM
	ANN
	HMM

	fNIRS-BCI Applications
	Neuro-Rehabilitation
	Communication
	Motor Restoration/Rehabilitation
	Other Applications

	Future Prospects of fNIRS-BCI
	Conclusions
	Acknowledgments
	References


