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Abstract

Background: In this paper, a novel functional near-infrared spectroscopy (fNIRS)-based brain-computer interface

(BCI) framework for control of prosthetic legs and rehabilitation of patients suffering from locomotive disorders is

presented.

Methods: fNIRS signals are used to initiate and stop the gait cycle, while a nonlinear proportional derivative

computed torque controller (PD-CTC) with gravity compensation is used to control the torques of hip and knee

joints for minimization of position error. In the present study, the brain signals of walking intention and rest tasks

were acquired from the left hemisphere’s primary motor cortex for nine subjects. Thereafter, for removal of motion

artifacts and physiological noises, the performances of six different filters (i.e. Kalman, Wiener, Gaussian,

hemodynamic response filter (hrf), Band-pass, finite impulse response) were evaluated. Then, six different features

were extracted from oxygenated hemoglobin signals, and their different combinations were used for classification.

Also, the classification performances of five different classifiers (i.e. k-Nearest Neighbour, quadratic discriminant

analysis, linear discriminant analysis (LDA), Naïve Bayes, support vector machine (SVM)) were tested.

Results: The classification accuracies obtained from SVM using the hrf were significantly higher (p < 0.01) than

those of the other classifier/ filter combinations. Those accuracies were 77.5, 72.5, 68.3, 74.2, 73.3, 80.8, 65, 76.7, and

86.7% for the nine subjects, respectively.

Conclusion: The control commands generated using the classifiers initiated and stopped the gait cycle of the

prosthetic leg, the knee and hip torques of which were controlled using the PD-CTC to minimize the position error.

The proposed scheme can be effectively used for neurofeedback training and rehabilitation of lower-limb amputees

and paralyzed patients.

Keywords: Functional near-infrared spectroscopy, Brain-computer interface, Primary motor cortex, Hemodynamic

response filter, Linear discriminant analysis, Support vector machine, Computed torque controller

Background

Neurological disability due specifically to stroke or spinal

cord injury can profoundly affect the social life of para-

lyzed patients [1–3]. The resultant gait impairment is a

large contributor to ambulatory dysfunction [4]. In order

to regain complete functional independence, physical re-

habilitation remains the mainstay option, owing to the

significant expense of health care and the redundancy of

therapy sessions. Such devices are developed as alterna-

tives to traditional, expensive and time-consuming exercises

in busy daily life. In the past, similar training sessions on

treadmills performed using robotic mechanisms have shown

better functional outcomes [1, 2, 5–7]. However, these

devices have limitations particular to given research and

clinical settings. Therefore, wearable upper- and lower-limb

robotic devices have been developed [7, 8], which are used

to assist users by actuating joints to partial or complete

movement using brain intentions, according to individual-

patient needs.

To date, various noninvasive modalities including func-

tional magnetic resonance imaging (fMRI), electroenceph-

alography (EEG) and functional near-infrared spectroscopy

(fNIRS) have been used to acquire brain signals. fNIRS is a
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relatively new modality that detects brain intention with

reference to changes in hemodynamic response. Its fewer

artifacts, better spatial resolution and acceptable temporal

resolution make it the choice for comprehensive and

promising results in, for example, rehabilitation and mental

task applications [9–20]. The main brain-computer inter-

face (BCI) challenge in this regard is to extract useful infor-

mation from raw brain signals for control-command

generation [21–23]. Acquired signals are processed in the

following four stages: preprocessing, feature extraction,

classification, and command generation. In preprocessing,

physiological and instrumental artifacts and noises are

removed [24, 25]. After this filtration stage, feature extrac-

tion proceeds in order to gather useful information. Then,

the extracted features are classified using different classi-

fiers. Finally, the trained classifier is used to generate con-

trol commands based on a trained model [23]. Figure 1

shows a schematic of a BCI.

Previous studies on signal-acquisition techniques

have shown promising outcomes, but rehabilitation

applications require the best possible results [3, 4, 26].

In Eliana et al. [27], a treadmill was used to acquire

EEG-based walking brain signals for sensorimotor ap-

plications with 87% accuracy. In Andreea et al. [28],

EEG-based walking-intention signals were detected for

stroke patients with an accuracy of 82%. Their data in-

dicated that patients highly motivated for rehabilitation-

related tasks tended to have higher success rates. In

Naseer et al. [29], two-class motor imagery movements

were analyzed using an LDA classifier. With their

employed modality, fNIRS, the best features were found

to be signal mean (SM) and signal slope (SS). By reducing

the task period to between 2 and 7 s, the accuracies

were improved to 77.56 and 87.28%, respectively. In

Rea et al. [30], lower-limb movement for gait rehabili-

tation was detected based on fNIRS signals. They were

able to acquire fNIRS signals in their chronic stroke

patients during preparation for hip movement with

67.77 ± 11.35% accuracy. In Zhao et al. [31], a pros-

thetic controller was proposed for a bipedal robot. A

walking gait pattern was found for the robot mechan-

ism while an online optimized trans-femoral prosthesis

control method (i.e. control Lyapunov function (CLF)-

based quadratic programs (QPs) with variable imped-

ance control) was tested on the knee and ankle joints

of the prosthetic device. Azimi et al. [32] proposed

stable robust adaptive impedance control for a pros-

thetic limb. A regressor-based nonlinear robust model

was designed with reference to an adaptive impedance

controller. In Richter et al. [33], dynamic modeling and

simulation-based control of a prosthesis were performed,

focusing on two-degree-of-freedom robot modeling, para-

metric estimation and feedback control for mimicking of

hip motions. Perrey [34] explored neural gait control using

fNIRS, specifically looking at the relevant cortical areas. In

Venkatakrishnan [35], meanwhile, examined and discussed

a rehabilitation-based brain machine interface (BMI) appli-

cation for stoke patients.

The previous literature on the subject of rehabilitation

shows that classification accuracy in the online setting is

compromised by, among other problems, false triggering.

Therefore, we also present a method to ensure that a cor-

rect command is always sent to a prosthetic leg (details

are given in Section 3.1.1).

In this study, we acquired fNIRS walking signals of

healthy subjects. Raw signals might contain noises and

artifacts that can be removed using adaptive or band-

pass filtering [25, 36]. In order to avoid such noises, the

following six filters were compared for signal process-

ing: Kalman, Wiener, finite impulse response (FIR),

hemodynamic response (hrf ), Band-pass, and Gaussian.

Five classifiers, namely quadratic discriminant analysis

(QDA), linear discriminant analysis (LDA), support vec-

tor machine (SVM), k-Nearest Neighbour (KNN), and

Fig. 1 Schematic of BCI
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Naïve Bayes (NB), were analyzed for acquisition of

maximum classification accuracies. For offline BCI,

SVM showed greater statistical significance (p < 0.01) as

compared with the other classifiers; however, in consid-

eration of execution delay and minimum computation

cost, for online BCI, we used LDA with combinations

of six features: SS, SM, signal peak (SP), signal kur-

tosis (KR), signal skewness (SK), and signal variance

(SV). Walking intention was then used to initiate and

stop the gait cycle of the proposed prosthetic leg

model. For minimization of discomfort, a nonlinear

computed torque controller (CTC) with gravity com-

pensation was applied to two active joints in the hip

and knee and one passive joint in the ankle for pos-

ition control and reduction of error in waking patterns

[37–39]. Given its effective simulation of classical

limb-type and mobile robotics, the Peter Corke® robot-

ics tool box was used to minimize position error [40].

The proposed system is applicable not only to para-

lyzed patients but also, and with little modification, to

amputees and elderly people.

Method

Experimental protocol

In this study we used dynamic near-infrared optical

tomography (DYNOT; NIRx Medical Technologies,

NY, USA). DYNOT operates on two wavelengths, 760

and 830 nm. The machine sampling frequency used

for signal acquisition was 1.81 Hz. Prior to the experi-

mentation, verbal consent was obtained from all of the

subjects. Nine healthy male members having normal

or corrected-to-normal vision were recruited for the

study. All were right-handed and of 30 ± 3 median age.

As discussed in the literature, the best region in which

to acquire fNIRS-based BCI signals for self-paced

walking is the primary motor cortex (M1); thus, sig-

nals were acquired from the M1 in the left hemisphere

[34, 41–43]. The participants had no history of motor

disability or any visual, neurological disorder. All of

the experiments were performed in accordance with

latest Declaration of Helsinki.

Experimental paradigm

In accordance with the literature [22, 41], the subjects

were asked to take a rest for 30s in a quiet room before

the start of each experiment. The experimental paradigm

consisted of 10s walking on a treadmill followed by 20s

rest while standing on the treadmill. All of the subjects

started their walk with the right leg. For each subject, 10

trials were performed, and a 30s rest was given at the

end of each experiment for baseline correction of the

signals. Excluding the initial and final rest, the total

length of each experiment was 300 s for each subject.

Self-paced walking, which is to say, according to each

subject’s comfort level, was performed. Figure 2 shows

the experimental paradigm.

Experimental configuration

To acquire fNIRS-based walking brain signals, 9 optodes

were placed on the left hemisphere of the M1, among

which 4 were Near Infrared (NI) light detectors and 5

were sources. Twelve (12) channels were formed as per

the defined configuration, and a 3 cm distance was main-

tained between a source and a detector. The source/de-

tector configuration with channels is shown in Fig. 3.

Signal acquisition

The Modified Beer-Lambert Law (MBLL) was used

to convert raw optical density signals into oxy- and

deoxy-hemoglobin concentration changes (∆cHbO(t)

and ∆cHbR(t)) [18, 44].

ΔcHbO tð Þ

ΔcHbR tð Þ

� �

¼

αHbO λ1ð Þ αHbR λ1ð Þ
αHbO λ2ð Þ αHbR λ2ð Þ

� �−1
ΔA t; λ1ð Þ
ΔA t; λ2ð Þ

� �

d � l

ð1Þ

Where l is the source and detector distance, d is the

curved path length factor, A(t, λ1), A(t, λ2) is the absorp-

tion at two different instants, αHbR(λ), αHbO(λ) are the

extinction coefficient of HbO and HbR in [μM−1 cm−1],

and ΔcHbR(t), ΔcHbO(t) are the concentration changes of

HbR and HbO in [μM].

Signal processing

The brain signals acquired were filtered using different fil-

ters to attain maximum accuracy. To eliminate high- and

low-frequency physiological or instrumental noises such

as heartbeat (1-1.5 Hz), respiration (~ 0.5 Hz), artifacts,

blood pressure (Mayer waves), and others, signals were fil-

tered with a low-pass filter having cut-off frequency of

0.5 Hz and a high-pass filter having cut-off frequency of

Fig. 2 Experimental paradigm
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0.01 Hz, in accordance with the literature [23]. The

employed filters were Butterworth, Finite Impulse Re-

sponse (FIR), Kalman, Wiener, hemodynamic response

(hrf) and Gaussian. Butterworth and FIR filters were 4th

order. Kalman filter with a discrete model was imple-

mented [45], whereas time-varying Wiener filter, based on

short-time Fourier series was implemented as in [46].

Gaussian and hrf filters were applied using NIRS-SPM

toolbox developed by [17]. These filters consider Gaussian

kernel and canonical hemodynamic response function, re-

spectively, for smoothing of the time-series signal. Figure 4

shows the filtered HbO signals of channel 1 for subject 1

using all six filters.

Feature extraction

In this study, six different features were extracted using

spatial average of all 12 measured channel [47]. Six stat-

istical properties (SM, SK, KR, SS, SP, SV) of the aver-

aged signal were calculated for the entire task and rest

sessions. For SM, the calculation was as follows:

SM ¼
1

N

XN

i¼1
Zi ð2Þ

where N is the total number of observations and Zi rep-

resents the ΔcHbO(t) across each observation. SK was cal-

culated according to the asymmetry of the signal values

around the mean relative to a normal distribution:

skew Zð Þ ¼ E
Z−μ

σ

� �3
" #

ð3Þ

where σ is the standard deviation of Z and E is expected

value of Z. KR was calculated as:

Fig. 3 Optode placement with channel configuration on left

hemisphere of motor cortex [82]. T3, C3, and Cz are reference points in

the international 10-20 system

Fig. 4 The filtered HbO signals of channel 1 for subject 1 using all six filters
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kurt Zð Þ ¼ E
Z−μ

σ

� �4
" #

ð4Þ

SS was calculated by using the polyfit function in

MATLAB®, which fits a line to all data points. To cal-

culate SP, the max function in MATLAB® was used.

The features are rescaled between 0 and 1 using the

equation

x0 ¼
x− min xð Þ

max xð Þ− min xð Þ
ð5Þ

where x′ is the rescaled feature, x ∈ Rndenotes the ori-

ginal feature values, min x is the smallest value, and max

x is the largest value. Figure 5 provides the scatter plot

of subject 1 for all features.

Classification

SVM

SVM is used for offline BCI classification. Due to its

non-linear nature moreover, it is widely employed to

achieve high classification performance [48–51]. Thus,

by using SVM, high-dimensional data can be scaled

and errors can be explicitly controlled. In order to at-

tain the maximum classification accuracy, SVM creates

hyperplanes to maximize the margins between the

classes. The vectors known as hyperplanes are named

support vectors [23, 48–52].

The optimal solution r* is obtained by minimizing the

following cost function between a hyperplane and the

nearest training data points.

Minimize

1

2
wk k2 þ C

Xn

i¼1
ξi ð6Þ

Subject to

yi w
T xi þ b

� �3
≥1−ξi; ξi≥0 ð7Þ

where wT, xi ϵ R2and b ϵ R1, ‖w‖2 =wTw, C is the trade-

off parameter between the margin and the error, ξi is the

measured training data, and yi is the class label for the

ith sample. We used a third-degree polynomial kernel

function with C = 0.5. 10-fold cross-validation was then

applied for estimation of classification accuracies.

LDA

LDA is the most common classifier used for pattern

recognition in BCI offline and online systems, due to

its low computational cost and high-speed perform-

ance. To separate classes from each other, LDA finds

the projection to a line so that the two classes are well

separated [47, 53]. LDA’s main objective is to perform

dimensionality reduction, for which it minimizes the

variance within each projected class and maximizes the

distance between the means of projected classes.

This is done by maximizing the Fisher’s criterion given

below:

J vð Þ ¼
vTSbv

vTSwv
ð8Þ

where Sb and Sw are the between-class and within-class

scatter matrices defined as

Fig. 5 Scatter plot of features for subject 1
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Sb ¼ m1−m2ð Þ m1−m2ð ÞT;

Sw ¼ ∑xn∊1 xn−m1ð Þ xn−m2ð ÞT þ ∑xn∊2 xn−m1ð Þ xn−m2ð ÞT

ð9Þ

where m1 and m2 represent the group means of classes

C1 and C2, respectively, and xn denotes the samples. A

vector v that satisfies (9) can be reformulated, as a

generalized eigenvalue problem, as.

S−1w Sbv ¼ λv ð10Þ

The optimal v is the eigenvector corresponding to the

largest eigenvalue of S−1w Sb, or it can be written as.

v ¼ S−1w m1−m2ð Þ ð11Þ

provided that Sw is non-singular. The 10-fold cross-

validation was applied for estimation of classification

performance.

KNN

KNN predicts the test sample’s category in accordance

with the k training samples that are nearest neighbors to

test sample and classifies it based upon largest category

probability [54]. Assume there are j training categories

as (C1,C2,…,Cj), class Y is the feature vector of all train-

ing samples, Ei is one of the neighbor in the training set,

X(Ei,Cj) ∈ {0, 1} indicate whether Ei belongs to class Cj,

and Sim(Y, Ei) is the similarity function for feature data

Y and Ei, then the probability density function P(Y,Cj)

for Y and Cj is given as [54]:

P Y ;C j

� �

¼ ∑Ei∈KNN Sim Y ; Eið Þ � X Ei;C j

� �

ð12Þ

where, Sim(Y, Ei) was calculated using the Euclidean dis-

tance methods. For closest training data of class, the par-

ameter k was considered 1 while 10-fold cross-validation

was performed for estimation of accuracies.

QDA

QDA maximizes and minimizes ratio of between-class

and within-class variance, provided observations are nor-

mally distributed for each class i, the ratio test can be

performed by [54]:

f i Xð Þ

f j Xð Þ
¼

1

2π
P

i

�

�

�

�

1
	

2
exp −1

2
X−μið ÞT

P

−1

i
X−μið Þ


 �

1

2π
P

j

�

�

�

�

�

�

1
	

2
exp

−1
2
X−μ jð Þ

TP−1

j
X−μ jð Þ

h i < t

ð13Þ

for some threshold t. Where, X is the feature vector,

μi, μj are the normally distributed mean and ∑i, ∑j are

the covariance matrix of class i, j. After rearrangement

the separating quadratic surface between classes can

be obtained.

NB

NB is considered among commonly used classifiers for

classification that is based on probabilistic approach.

The model used for NB is as follows [55]:

P kjyð Þ ¼
P yjkð Þ P kð Þ

P yð Þ
ð14Þ

where P(k| y) is the class feature probability for a speci-

fied feature, P(y| k) is the given class probability of fea-

ture, P(y) is the feature prior probability and P(k) is the

class prior probability.

Kinematic model of prosthetic leg

A human leg includes hip, knee and ankle joints. The most

efficient joint is the knee, which has to bear the entire

body’s weight [56]. The knee and hip joints are the key

joints used in locomotion; therefore, the proposed model

is kept simple by considering only the hip and knee joints

for articulation and the ankle joint as fixed. Therefore, only

2 degrees of freedom (DOF) were considered: 1 DOF for

the hip joint and 1 for the knee [39, 57–62]. Moreover, the

base was assumed fixed, making it two serial-link manipu-

lators in which one manipulator is moved 180° out of

phase with the other one [61–64]. The average thigh clear-

ance given in the literature for a man is 0.78 in, and for

women, 0.90 in [65, 66]. The end-effector position and

orientation were derived from the Denavit-Hartenberg (D-

H) notation [57, 59, 67, 68]. The front view of the pro-

posed model is shown in Fig. 6, and the leg parameters are

listed in Table 1.

Prosthetic leg parameters

The length parameters of the prosthetic leg are provided

in Table 2.

Dynamic model of prosthetic leg

The dynamics of an n-link robotic leg can be expressed

by the following set of n equations [68]

M€q þ b _q þ g ¼ τ ð15Þ

where q is an n-dimensional vector describing the joint

positions of the robot, τ is the vector of input torques, g

is the gravitational torque, b represents the Coriolis and

centripetal forces caused by the motion of the link, and

M is the nxn inertia matrix of the robot.

The coordinates for the hip and knee joints become [69]

x1 ¼ xa þ r1 sinθ1 ð16Þ
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y1 ¼ ya−r1 cosθ1 ð17Þ

x2 ¼ xa þ L1 sinθ1 þ r2 sinθ2 ð18Þ

y2 ¼ ya−L1 cosθ1−r2 cosθ2 ð19Þ

Considering the kinetic and potential energy of the

entire system, the Langrangian becomes [69]

L ¼
1

2
m1 _x21 þ _y21

� �

þ
1

2
I1 _θ

2

1 þ
1

2
m2 _x22 þ _y22

� �

þ
1

2
I2 _θ

2

2−m1y1g−m2y2g

ð20Þ

Substituting the joint coordinates and solving the Jacobian

matrix, which is the differential relationship between the

joint displacements and the end-effecter position, we obtain

the hip and knee joint torques [69, 70] as

τ1 ¼ m1r1 r1€θ1 þ €xa cosθ1 þ €ya sinθ1 þ gsinθ1

h i

þm2L1 L1€θ1 þ €xa cosθ1 þ €ya sinθ1 þ gsinθ1

h i

þm2r2½−r2€θ2 þ gsinθ2 þ €xa cosθ2 þ €ya sinθ2

þL1 €θ1 þ €θ2

� 


cos θ1−θ2ð Þ þ L1 _θ
2

1 þ
€θ2

� 


sin θ1−θ2ð Þ�

þI2€θ2 þ I1€θ1−L2F1 cosθ2−L1F1 cosθ1−L2F2 sinθ2−L1F2 sinθ1

ð21Þ

τ2 ¼ m2r2½r2€θ2 þ €xa cosθ2 þ €ya sinθ2 þ gsinθ2

þL1€θ1 cos θ1−θ2ð Þ−L1 _θ
2

1 sin θ1 þ θ2ð Þ�

þI2€θ2−L2F1 cosθ2−L2F2 sinθ2

ð22Þ

Human gait analysis

The performance parameters of a prosthetic leg can be

judged on the basis of how well it mimics the normal hu-

man leg. For that purpose, robotic-leg gait patterns can be

compared with those of humans taken as a reference. In

other words, rehabilitation effectiveness can be measured

based on how precisely the amputee can reproduce the

kinematics of a healthy person. For modeling purposes,

kinematic parameters obtained through gait analysis

are necessary.

Uniformity in hip, knee and ankle joint angles has been

noted in further analyses of gait cycles at selected walking

paces [71, 72]. Fig. 7 represents the mean joint angles for

one complete stride. As there is no major variation from

person to person, the mean values can be used as a stand-

ard for the input joint-angle trajectory [72, 73].

Control strategy

The selected joints torque requires effective control in

order to synchronize it with the natural joint-angle trajec-

tory [62, 74–77]. To mimic the natural leg, prosthetic-leg

position-error minimization by the proportional derivative

computed torque controller (PD-CTC) with gravity com-

pensation has been proposed [40, 78].

This is also known as inverse dynamic control, in

which the system is cascaded with its inverse to take the

overall system gain to unity. Usually, the inverse is incor-

porated with errors, and so a feedback loop is added for

compensation [40, 59, 79].

Table 1 Prosthetic-leg D-H notations [68]

Link no. αi − 1 αi − 1 di θi

1. 0 L1 0 θ1

2. 0 L2 0 θ2

3. 0 L3 0 θ3

Table 2 Prosthetic leg parameters [95]

Parameters Link Length (m)

L1 Thigh 0.2

L2 Shank 0.2

L3 Pelvic 0.03

Fig. 6 Front view of biped robot
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The computed torque controller (CTC) is given by

Q ¼ M qð Þ K v €q� þ _q� þ _qð Þ þ Kp q�−qð Þ
� �

þb q; _qð Þ þ F _qð Þ þ g qð Þ

ð23Þ

¼ D q; _q; €q� þ K vð _q
�
− _qð Þ þ Kp q�−qð Þ

� �

Þ ð24Þ

where Kv and Kp are damping matrices or velocity and

position gains, and D(.) is the inverse dynamics function.

The inverse dynamics are evaluated at each servo inter-

val. However, the coefficients matrices M, b and g can be

evaluated at a lower rate, as the manipulator configuration

changes relatively slowly. Assuming ideal parameterization,

the error dynamics of the system are modeled as

€eþ K v _eþ Kpe ¼ 0 ð25Þ

where e = q∗ − q. The joint errors are uncoupled; there-

fore, their dynamics are independent of manipulator

configuration.

In the present study, prosthetic leg simulations were

performed with different stride lengths given by the Na-

tional Center for Health Statistics [65, 66]. Figure 8 shows

a simulation plot of the biped robot at different instants.

The complete processing pipeline of entire methodology

from signal acquisition to control scheme for minimization

of position error is given in Fig. 9. After signal acquisition

signals are preprocessed using six filters. Then six statis-

tical features are spatially extracted across 12 channels.

Later this data is classified using five different classifiers

for comparative analysis of accuracies. Afterwards control

Fig. 7 Joint angles in lower extremities during walking

Fig. 8 Side view of biped robot at mid stance (a), terminal stance (b) and mid swing (c)
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commands based on brain intention were generated to

move biped robot according to desired gait patterns with

minimization of position error.

Results

As discussed earlier, in order to achieve optimal accuracy,

we compared six filters and five classifiers. The classifica-

tion accuracies were obtained for two-, three- and six-

extracted-feature combinations using ∆cHbO(t) against all

filters and classifiers for the nine subjects. The classification

accuracies for the two- and three-feature combinations

are shown in Tables 3 and 4, while the six-feature-

combination classification accuracies for 6 filters are

shown in Table 5. After analyzing Table 5, it was ob-

served that using FIR, Gaussian, Kalman, Wiener and

Butterworth processed signals accuracies were below

acceptable benchmark for BCI [21]. Moreover, consist-

ent best accuracies were 77.5, 72.5, 68.3, 74.2, 73.3,

80.8, 65, 76.7, and 86.7% for the nine subjects, respect-

ively, as obtained using the SVM classifier with hrf

processed signals. The statistically significant p-values

of the classifiers for the HbO signals shown in Table 6

verify the greater statistical significance of the SVM

over all of the other above-noted classifiers. The confi-

dence interval was adjusted to 0.01 after applying

Bonferroni correction of multiple comparisons. The results

also demonstrate the significant effect of selection of

filtering technique on classification accuracies. The below

acceptable benchmark accuracies obtained using FIR, But-

terworth, Kalman, Gaussian and Wiener filters, for this spe-

cific task, does not imply their futility for BCI studies.

These filters have been shown to work well for several

other tasks, for example, motor imagery, mental arithmetic

etc. in previous studies [20, 23, 29, 47, 55, 80–84].

Online BCI

In online BCI, we require minimum computation so as

to reduce execution delay for control-command gener-

ation. Most of the previous fNIRS-BCI studies have

used LDA for online classification, because it provides

a balance between time of execution and classification

accuracy [23]. Thus, in our study, we used LDA with

six-feature combinations. For real-time BCI, we di-

vided the total of 10 trials into two sections: one sec-

tion of 9 training trials and the other of 1 testing trial.

The classifier was first trained offline using 9 trials

having 10 runs with ten-fold cross-validation. The one-

time-trained classifier was then used to classify the one

unknown testing trial in online BCI. To avoid a false

trigger of a control command, the testing trial was ran-

domly divided into 10 indices having observations ap-

proximately equal to 10 disjoint subsets. Each subset

was then classified to make a binary decision. Based on

Fig. 9 Processing pipeline of the complete system
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Table 3 Classification accuracies of 9-subjects across 6-filters using 2-feature combination for 6-classifiers

Feature Accuracy (%)

S1/S2/S3 S4/S5/S6 S7/S8/S9

KNN LDA QDA NB SVM KNN LDA QDA NB SVM KNN LDA QDA NB SVM

SP, SK 56.7 49.2 51.7 62.5 41.7 64.6 56.3 62.1 64.6 62.5 60.4 60.4 69.2 66.3 58.3

SM, SK 57.5 52.1 57.1 62.9 59.2 62.5 66.3 62.1 66.3 65.0 60.4 60.8 60.8 63.8 61.7

SS, SK 57.1 51.7 62.9 66.7 66.7 60.8 57.9 59.2 61.3 52.5 60.8 57.9 60.0 62.5 57.5

KR, SK 57.9 54.6 41.3 62.1 55.0 63.3 61.7 57.9 62.5 63.3 67.1 60.4 60.4 61.7 52.5

VR, SK 57.1 48.3 50.0 62.5 47.5 60.0 53.3 63.3 67.5 62.5 60.8 61.3 67.9 65.0 63.3

SP, KR 52.1 45.4 54.2 62.1 54.2 54.2 66.3 60.0 62.5 74.2 65.0 58.3 61.3 64.2 60.0

SM, KR 52.5 57.1 62.1 63.8 59.2 54.6 68.3 63.3 63.3 70.8 65.0 58.8 59.2 63.8 55.0

SS, KR 52.9 54.6 65.8 67.5 68.3 55.4 63.3 55.4 64.2 68.3 65.0 58.3 63.3 62.9 59.2

VR, KR 52.9 42.5 47.1 62.1 53.3 55.8 62.5 63.8 67.5 74.2 65.0 65.4 62.5 64.6 65.0

SM, SP 57.9 52.1 59.2 62.5 51.7 63.8 64.2 59.2 62.9 72.5 57.9 60.4 60.0 62.9 57.5

SM, VR 61.3 51.7 54.2 61.3 55.8 61.3 60.8 63.8 69.6 71.7 57.1 60.0 59.2 65.0 60.0

SS, SP 60.0 55.4 67.9 66.7 70.0 65.0 43.3 56.3 60.4 62.5 58.8 61.7 62.9 65.0 58.3

SS, VR 57.1 52.9 63.3 66.3 72.5 62.9 40.8 63.8 70.4 65.8 62.1 65.4 64.2 64.6 60.0

VR, SP 52.5 51.3 51.7 62.5 40.0 59.2 50.0 61.3 63.3 67.5 49.6 60.8 67.1 65.0 62.5

SM, SS 61.3 54.6 64.6 68.3 66.7 72.5 56.7 53.8 59.2 61.7 58.8 60.8 59.6 63.3 60.0

SP, SK 58.3 51.7 62.5 63.3 59.2 54.2 47.9 52.1 63.8 65.0 52.5 43.3 40.8 60.8 48.3

SM, SK 58.3 55.4 64.2 67.1 69.2 56.3 45.4 56.3 64.2 60.8 50.0 50.8 46.3 59.2 61.7

SS, SK 57.9 64.2 55.4 68.3 70.8 57.1 62.5 58.8 62.5 64.2 51.3 66.3 65.8 62.9 70.0

KR, SK 67.1 63.3 71.3 62.9 67.5 60.0 57.1 57.1 61.7 55.8 51.3 57.1 58.3 62.1 59.2

VR, SK 57.9 51.3 61.3 63.8 60.8 56.7 50.4 55.4 60.0 63.3 51.7 54.6 58.8 62.1 65.0

SP, KR 55.4 53.3 62.9 62.5 57.5 55.0 50.4 56.7 62.1 55.8 52.1 55.0 59.2 60.8 59.2

SM, KR 54.2 57.5 62.9 68.3 65.8 55.0 51.7 59.6 60.0 63.3 52.1 56.3 56.7 60.8 58.3

SS, KR 54.2 62.1 48.8 63.3 65.8 53.3 59.6 65.0 60.4 69.2 52.9 71.3 68.3 62.1 68.3

VR, KR 54.2 43.8 51.7 61.3 53.3 52.9 56.3 51.3 60.8 59.2 52.9 56.7 62.9 62.1 65.0

SM, SP 67.9 56.7 72.9 64.6 66.7 64.2 42.9 58.8 63.3 61.7 60.8 47.9 59.6 59.2 53.3

SM, VR 65.8 55.8 72.1 65.0 68.3 59.6 44.6 64.2 61.7 65.8 55.4 47.9 62.1 62.9 65.0

SS, SP 53.8 62.1 56.7 64.2 61.7 69.2 57.9 59.2 64.6 63.3 66.7 67.5 67.9 62.5 62.5

SS, VR 59.6 61.7 55.4 62.9 61.7 57.5 62.1 60.8 63.3 64.2 59.6 66.3 67.1 64.6 65.0

VR, SP 49.2 55.0 64.6 62.1 59.2 59.6 53.3 60.8 60.8 62.5 54.6 55.0 65.0 62.9 69.2

SM, SS 60.8 62.9 63.8 66.7 65.8 75.0 58.3 59.2 67.1 67.5 75.0 68.3 68.8 63.3 75.8

SP, SK 59.6 58.8 59.6 61.3 59.2 47.1 57.5 55.8 55.8 52.5 64.2 63.8 71.3 70.4 76.7

SM, SK 59.6 62.1 62.9 64.6 59.2 47.5 53.8 51.7 57.9 50.8 65.8 65.8 72.5 72.9 76.7

SS, SK 59.6 56.7 59.6 63.8 63.3 47.5 55.4 57.1 63.8 63.3 65.8 67.1 73.8 75.8 80.0

KR, SK 62.1 48.3 49.6 62.5 51.7 54.2 52.5 46.3 62.5 50.0 77.5 67.5 65.8 72.1 78.3

VR, SK 59.6 59.6 57.1 60.0 60.8 47.5 60.8 58.8 62.9 55.8 65.8 63.8 75.0 70.4 75.8

SP, KR 56.7 39.6 54.2 62.5 56.7 57.9 58.8 57.9 59.2 56.7 71.3 67.5 74.2 69.2 74.2

SM, KR 55.8 43.8 60.4 60.0 58.3 58.8 53.3 53.8 62.5 55.8 71.3 66.3 74.2 72.9 80.0

SS, KR 55.4 44.2 49.2 62.5 50.0 58.3 56.3 63.8 65.0 62.5 71.3 71.7 73.8 71.3 79.2

VR, KR 55.4 50.8 47.5 51.7 50.8 58.3 60.8 65.4 62.9 54.2 71.3 66.7 73.8 68.8 72.5

SM, SP 57.1 38.3 57.1 58.3 57.5 57.1 55.8 57.1 59.6 53.3 73.8 59.6 67.5 62.1 70.8

SM, VR 64.2 49.2 63.8 56.7 57.5 60.4 58.8 60.0 64.6 57.5 61.7 56.3 63.8 62.1 70.8
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the ten-fold classified data, an average threshold of

“90% true” was set for accurate triggering.

Error plots

The trigger command generated based on brain intention

is used to generate gait cycles of a prosthetic leg through

given human joint-angle trajectories, while the PD-CTC

controller minimizes joint angle and position error.

Joint-angle and position-error plots for reference input

trajectories of the left and right leg are provided in

Figs. 10 and 11, respectively.

Figure 12 provides a brain intention versus joint-angle

plot. When the rest intention is transmitted, the pros-

thetic leg retains its previous joint angles while updating

the next input joint angles for the walk intention.

Discussion

In past studies, researchers have endeavored to im-

prove classification accuracies by using different fea-

ture combinations or by making changes to machine-

learning algorithms. The frequently used features are

signal mean (SM) [20, 29, 48, 83, 85–88], signal slope

(SS) [20, 29, 52, 83, 89], signal variance (SV) [52, 86],

slope kurtosis (KR) [86], signal peak (SP) [52, 86, 90]

and signal skewness (SK) [52, 86]. To avoid false trig-

gers in rehabilitation, the consistently best accuracies

achieved using six- dimensional feature combinations

have been considered compulsory, as reported in [55];

however, in the present study, for the 2-feature com-

bination SM/SS, the best average accuracy, 67%, was

achieved, while for the three-feature combination SM/

SP/SS, an optimal average accuracy of 71% was ob-

tained. Similar 2-feature combinations have been re-

ported for two-class imagery movement by Naseer et

al. [29], who, using time windows of SS and SM for

right- and left-wrist motor imageries, increased accur-

acies from 83 to 87.28%. Due to individual-participant

differences, these classification accuracies varied. The

differences might have been due to scalp-cortex distance

and head shape, both of which can cause major variation,

as reported in [29]. The low classification accuracies might

have been due to the fact that the hemodynamic responses

of people with motor impairment due to tetraplegia or

multiple sclerosis differ as compared with healthy

persons, as discussed in [91]. Moreover, an optimal

classifier also plays a vital role in enhancing perform-

ance accuracies, as reported in [55], where five classi-

fiers were compared to obtain the maximum accuracy.

For the present study, the proposed classifiers were

LDA and SVM, as also reported in [23, 48, 49, 53, 55,

92].

For an online interface, we proposed a novel method-

ology in which the testing trial is divided into 10 indices

and each subsection is separately classified. The trigger-

ing command was generated based on a 90% average

true benchmark of classified subsections. A similar real-

time interface was reported in [23], but it used a separ-

ate framework for binary decoding. Furthermore, for a

normal walk task reported in [22] based on the use of an

online interface, a separate methodology also was used,

in that case to synchronize the triggers of fNIRS signals

and the gait system.

In the second part of this study a proposed nonlin-

ear position control for a prosthetic leg was studied

for gait-rehabilitation purposes. An independent, self-

sufficient mechanism was developed that can mimic

the normal human gait pattern based on PD-CTC. It

is evident from Fig. 9 that the controller minimized

the position error in less than 2.5 s. The same strategy

was seen in [33], which minimized joint error using a

sliding-mode control, but a steady-state error was ob-

served. Similarly, when adaptive control was applied

in a previous study [32], a constant error was seen

across hip movement in the reported results. More-

over, consistent error was observed across knee and

ankle angles in [77], which reported that error in-

creases with increaing torque bounds.

fNIRS is an indirect optical measurement technique

that measures hemodynamic changes instead of neural

activity. Accordingly, there is always a delay between an

activity performed and a detected response; thus, in such

decoding tasks, classification accuracy is compromised.

With advanced filtering techniques [11, 93, 94], different

feature combinations [81] and various classification

techniques [55, 80], accuracies can be increased. One

additional limitation of this study is that it generates the

control command based on the walk intention whereas

during the rest intention it holds the lower limb to its

Table 3 Classification accuracies of 9-subjects across 6-filters using 2-feature combination for 6-classifiers (Continued)

Feature Accuracy (%)

S1/S2/S3 S4/S5/S6 S7/S8/S9

KNN LDA QDA NB SVM KNN LDA QDA NB SVM KNN LDA QDA NB SVM

SS, SP 52.5 41.7 47.9 61.3 57.5 65.8 62.1 63.3 65.8 63.3 66.3 60.4 72.5 70.8 74.2

SS, VR 62.5 52.1 54.2 52.5 55.8 65.4 63.8 62.1 65.8 70.8 66.3 57.9 68.8 73.3 70.0

VR, SP 54.6 57.5 55.0 48.3 57.5 53.3 62.5 65.0 62.5 52.5 57.9 62.9 74.6 65.4 75.8

SM, SS 66.7 47.5 61.3 58.3 57.5 73.8 57.1 54.6 65.0 63.3 77.5 60.4 77.1 78.8 85.8
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Table 4 Classification accuracies of 9-subjects across 6-filters using 3-feature combination for 6-classifiers

Feature Accuracy (%)

S1/S2/S3 S4/S5/S6 S7/S8/S9

KNN LDA QDA NB SVM KNN LDA QDA NB SVM KNN LDA QDA NB SVM

SM, SP, SS 60.4 58.8 71.7 67.5 74.2 70.8 63.8 58.3 63.3 73.3 58.8 61.7 65.8 63.3 60.0

SM, SP, KR 52.5 52.9 60.0 62.1 65.8 54.2 68.8 64.2 63.3 75.0 65.0 58.8 59.2 65.4 51.7

SM, SP, SK 56.7 54.6 55.4 61.3 58.3 64.6 65.8 63.8 62.1 69.2 60.4 59.2 63.8 62.9 60.8

SM, SP, VR 57.9 50.0 57.1 57.5 60.8 63.8 66.7 66.3 65.8 73.3 57.9 59.6 62.5 62.9 56.7

SS, SP, SK 56.7 55.4 57.5 66.7 75.0 64.6 55.8 62.9 64.6 64.2 60.4 62.1 63.3 67.1 64.2

SP, KR, VR 52.1 52.5 56.7 60.4 55.8 54.2 67.1 62.9 66.3 75.8 65.0 64.6 66.7 67.5 63.3

SP, SS, VR 60.0 55.8 61.3 66.3 72.5 65.0 44.6 58.3 64.6 71.7 58.8 60.4 66.3 64.2 57.5

VR, SS, KR 52.9 50.4 60.8 67.5 69.2 55.4 62.1 60.4 66.3 77.5 65.0 64.6 65.0 66.7 63.3

VR, SS, SM 61.7 60.8 69.2 66.3 73.3 72.5 58.3 64.6 70.0 71.7 58.8 62.9 60.8 64.6 62.5

VR, SM, SK 57.5 53.3 54.2 56.7 60.0 62.5 65.8 66.7 67.5 68.3 60.4 57.9 67.5 65.4 61.7

VR, SM, KR 52.5 52.5 56.3 58.8 60.8 54.6 67.5 67.1 70.0 80.0 65.0 60.8 62.9 67.1 57.5

KR, SP, SS 52.1 54.2 65.0 67.5 68.3 54.2 65.8 59.6 62.5 73.3 65.0 61.3 63.3 63.3 61.7

KR, SM, SK 57.9 52.1 59.6 61.7 65.0 63.3 67.9 63.3 64.2 69.2 67.1 63.3 59.2 62.5 55.0

SS, SM, SK 57.5 55.4 64.6 68.3 67.5 63.3 65.8 61.3 65.0 63.3 60.4 59.6 61.7 63.3 60.8

SS, SK, KR 57.9 56.7 48.8 66.7 73.3 63.3 61.3 57.5 62.5 70.0 67.1 58.8 64.2 59.6 56.7

SS, SM, KR 52.5 55.8 68.8 67.1 68.3 54.6 68.3 63.8 64.2 67.5 65.0 64.6 65.4 66.3 59.2

SS, SK, VR 57.1 55.8 54.6 68.3 75.0 60.8 54.2 62.1 68.8 62.5 60.8 63.3 66.3 65.0 69.2

SK, VR, KR 57.9 51.3 47.1 60.0 49.2 63.3 62.1 58.8 64.6 68.3 67.1 64.2 65.0 64.6 68.3

SK, SP, KR 57.9 50.8 46.7 61.3 48.3 63.3 67.1 62.1 62.1 71.7 67.1 60.4 65.4 63.3 55.8

SK, VR, SP 56.7 50.8 54.2 55.8 45.8 64.6 56.7 62.5 67.9 70.8 60.4 62.1 64.2 67.1 59.2

SM, SP, SS 70.4 57.5 73.8 65.4 74.2 81.3 57.9 60.4 62.9 70.8 73.3 67.5 70.8 61.7 72.5

SM, SP, KR 55.8 55.0 70.8 65.8 71.7 56.7 50.8 65.8 62.1 63.3 53.3 60.0 59.6 59.2 64.2

SM, SP, SK 58.3 53.8 70.0 66.3 70.0 54.2 44.2 61.3 62.5 62.5 51.3 48.3 53.8 57.9 50.8

SM, SP, VR 67.9 54.2 72.5 62.1 76.7 64.2 47.1 62.9 60.0 65.0 60.8 54.6 58.8 61.3 66.7

SS, SP, SK 58.3 62.1 56.3 67.9 70.0 54.2 59.2 59.2 62.5 65.8 52.5 65.4 65.0 60.8 72.5

SP, KR, VR 55.4 54.2 62.5 60.8 60.0 55.0 53.3 57.1 60.4 55.8 52.1 57.9 62.5 61.7 62.5

SP, SS, VR 53.8 60.0 62.9 65.0 69.2 69.2 57.9 63.8 64.6 63.3 66.7 69.2 70.8 62.5 70.0

VR, SS, KR 54.2 60.8 50.0 65.8 64.2 53.3 59.2 58.8 61.3 68.3 52.9 72.5 68.8 65.4 67.5

VR, SS, SM 61.7 57.9 69.6 64.6 72.5 75.0 59.6 65.4 65.0 73.3 75.0 67.1 72.5 63.3 69.2

VR, SM, SK 58.3 54.6 70.4 65.4 71.7 56.3 46.3 62.5 60.0 65.8 50.0 49.6 60.8 60.8 65.8

VR, SM, KR 54.2 53.8 72.1 66.3 68.3 55.0 54.6 66.7 58.3 66.7 52.1 59.2 65.0 61.3 68.3

KR, SP, SS 55.4 60.8 51.3 63.8 64.2 54.6 55.4 57.9 62.9 68.3 52.1 70.4 70.0 60.4 70.8

KR, SM, SK 67.1 62.9 75.0 66.3 70.8 60.0 53.3 57.1 61.3 57.5 51.3 55.0 54.6 60.4 60.8

SS, SM, SK 58.3 62.1 63.8 70.0 70.0 56.3 59.6 59.2 64.2 67.5 50.0 68.3 70.0 62.9 73.3

SS, SK, KR 67.1 61.7 66.7 69.2 76.7 60.0 59.6 63.8 58.8 68.3 51.3 72.5 70.0 62.5 69.2

SS, SM, KR 54.2 60.0 59.2 65.8 70.0 55.0 59.2 63.8 61.3 70.8 52.1 69.2 71.7 63.8 78.3

SS, SK, VR 57.9 62.1 56.3 69.2 72.5 57.1 62.9 59.6 61.3 68.3 51.3 66.3 65.0 64.2 62.5

SK, VR, KR 67.1 57.1 73.3 62.9 68.3 60.0 55.4 56.7 59.6 60.0 51.3 54.2 61.3 62.1 67.5

SK, SP, KR 67.1 58.8 74.6 62.5 70.0 60.0 50.0 54.2 61.7 55.0 51.7 55.4 57.9 61.3 53.3

SK, VR, SP 58.3 51.7 56.7 60.4 59.2 54.2 53.3 61.7 61.3 61.7 52.5 51.3 61.7 61.3 60.8

SM, SP, SS 61.7 43.8 57.1 55.8 55.8 68.8 60.4 71.7 62.5 75.0 80.4 60.8 76.3 76.3 83.3

SM, SP, KR 56.7 38.8 56.3 56.7 61.7 57.5 56.3 57.9 56.3 55.0 71.3 65.4 65.4 74.6 80.0

SM, SP, SK 59.6 60.4 64.2 59.6 60.0 47.1 57.1 58.3 57.1 54.2 64.2 62.5 66.7 72.9 81.7
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Table 4 Classification accuracies of 9-subjects across 6-filters using 3-feature combination for 6-classifiers (Continued)

Feature Accuracy (%)

S1/S2/S3 S4/S5/S6 S7/S8/S9

KNN LDA QDA NB SVM KNN LDA QDA NB SVM KNN LDA QDA NB SVM

SM, SP, VR 57.1 62.9 64.2 55.0 58.3 57.1 62.1 64.6 62.1 53.3 73.8 62.9 63.8 63.8 77.5

SS, SP, SK 59.6 60.4 59.6 60.4 58.3 47.1 63.8 64.6 64.6 63.3 64.2 63.8 73.3 76.3 79.2

SP, KR, VR 56.7 56.3 56.3 49.6 59.2 57.9 62.9 65.0 62.1 53.3 71.3 65.8 69.6 67.9 77.5

SP, SS, VR 52.5 57.1 55.4 47.5 55.0 65.8 64.6 67.9 63.8 65.0 66.3 62.5 76.3 72.5 82.5

VR, SS, KR 55.4 56.7 53.8 51.3 58.3 58.3 62.5 67.5 65.4 80.0 71.3 66.3 72.1 70.8 77.5

VR, SS, SM 66.7 50.8 64.6 55.8 58.3 74.2 62.9 66.3 62.9 68.3 77.9 60.4 73.3 75.4 83.3

VR, SM, SK 59.6 62.1 65.4 58.8 60.8 47.5 58.8 58.8 62.1 56.7 65.8 63.3 67.9 72.1 82.5

VR, SM, KR 55.8 47.5 61.7 55.4 60.8 58.8 63.3 62.5 62.1 57.5 71.3 65.4 65.8 68.3 81.7

KR, SP, SS 56.7 42.1 54.2 60.4 58.3 57.9 60.4 65.4 66.7 69.2 71.3 67.1 72.1 72.9 80.8

KR, SM, SK 62.1 62.5 60.8 62.9 64.2 54.2 53.8 57.1 55.8 55.0 77.5 66.3 70.4 74.6 75.8

SS, SM, SK 59.6 60.0 66.7 59.6 60.8 47.5 57.1 51.7 61.7 65.0 65.8 66.3 68.3 78.3 85.8

SS, SK, KR 62.1 55.0 55.0 63.8 48.3 54.2 55.0 57.9 65.0 67.5 77.5 71.3 73.8 73.8 80.8

SS, SM, KR 55.8 46.7 62.9 58.3 56.7 58.8 56.7 64.6 64.2 65.0 71.3 70.8 70.4 77.1 86.7

SS, SK, VR 59.6 58.8 59.2 58.8 58.3 47.5 64.2 68.3 63.8 64.2 65.8 64.2 74.2 74.2 80.0

SK, VR, KR 62.1 59.2 58.3 58.3 64.2 54.2 60.4 65.0 61.3 60.0 77.5 68.8 70.8 70.4 77.5

SK, SP, KR 62.1 60.0 59.2 63.8 62.5 54.2 59.2 60.0 50.0 58.3 77.5 67.9 72.9 73.3 75.8

SK, VR, SP 59.6 57.5 53.3 57.1 60.8 47.1 59.6 62.9 62.1 52.5 64.2 60.4 67.9 71.3 80.0

Table 5 Classification accuracies of 9-subjects across 6-filters using 6-feature combination for 6-classifiers

Filter Accuracy (%)

S1
S2
S3

S4
S5
S6

S7
S8
S9

KNN LDA QDA NB SVM KNN LDA QDA NB SVM KNN LDA QDA NB SVM

FIR 56.7 60.8 61.3 64.6 55.0 55.0 59.2 66.3 62.9 59.2 59.6 57.5 60.0 59.6 64.2

65.0 50.4 67.9 57.5 63.3 56.7 62.1 62.5 62.5 58.3 50.4 61.7 63.3 63.8 53.3

59.2 60.8 52.1 53.8 62.5 61.7 60.0 58.3 52.5 50.0 56.7 69.2 74.2 71.3 67.5

hrf 57.9 62.2 69.2 68.3 77.5 63.3 65.8 63.3 64.2 74.2 67.1 61.3 64.6 65.0 65.0

67.1 60.4 75.8 70.8 72.5 60.0 61.2 67.1 60.8 73.3 51.7 72.1 72.9 62.9 76.7

62.1 63.8 67.5 55.8 68.3 54.2 60.4 71.7 59.2 80.8 77.5 68.8 80.0 73.3 86.7

Gaussian 56.7 59.2 53.8 62.5 65.0 54.2 52.1 55.0 57.9 55.8 57.1 53.8 48.3 57.5 54.2

50.0 55.8 52.5 61.7 58.3 52.1 50.0 52.1 58.8 60.0 55.8 55.0 53.3 60.4 55.0

52.1 59.6 50.8 54.2 57.5 55.4 60.0 64.2 57.1 54.2 48.8 57.5 59.2 61.7 61.7

Kalman 51.3 57.1 52.5 64.2 65.0 53.8 53.3 52.9 54.2 51.7 47.1 56.7 55.0 57.9 60.8

53.3 46.7 55.0 60.4 54.2 52.5 48.8 49.6 59.2 47.5 51.3 60.0 57.1 60.0 51.7

55.4 57.9 47.9 52.1 55.0 60.4 57.1 62.5 57.5 50.0 56.7 57.5 64.6 61.3 57.5

Wiener 60.0 52.9 57.9 63.8 65.8 57.9 55.4 60.0 57.1 65.0 55.4 57.5 63.3 62.9 70.8

59.2 62.5 70.8 63.3 68.3 51.3 55.8 59.6 56.7 70.0 54.6 62.9 65.0 64.6 72.5

52.9 59.6 56.7 58.8 65.0 55.0 57.5 59.6 63.3 60.8 62.1 60.4 70.0 70.0 78.3

Butterworth 55.4 60.8 60.0 62.9 65.0 49.2 55.4 63.3 59.6 53.3 56.3 56.7 60.4 62.5 55.8

60.0 57.5 67.1 65.0 63.3 54.2 55.4 64.2 59.6 65.0 52.9 60.0 61.7 62.9 63.3

48.8 59.2 56.3 52.1 57.5 43.8 60.0 64.2 67.1 55.8 62.1 63.8 63.8 60.8 63.3
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last updated position. In order to return the lower limb

to its initial state with the rest intention, a methodology

that incurs shorter computation and execution time

needs to be developed.

Conclusion

The aims of this study were to use an optimal filter and

classifier to obtain the maximum accuracy for given data

and to implement a gait control scheme for a lower

limb. To those ends, fNIRS signals were acquired from

the primary motor cortex (M1) in the left hemisphere of

the brain. For removal of physiological and instrumental

noises, six filters (i.e. Kalman, Wiener, Gaussian,

hemodynamic response (hrf ), Band-pass, finite impulse

response (FIR)) were used with the five classifiers QDA,

LDA, SVM, KNN and NB. Brain intention was used to

generate trigger commands, while the computed torque

controller (CTC) was used to reduce position error. For

brain-signal classification, six-feature (i.e. SS, SP, SM,

KR, SV, SK) combinations were used. An average accur-

acy of 75% was obtained using the SVM offline classifier

with hrf. For rehabilitation purposes, online classification

was performed using LDA. To avoid false triggering, the

testing trial was divided into 10 further subsections, and

each subsection was separately classified. The triggering

command was generated based on a 90% average accur-

acy benchmark for classified sections. In the second part

of this study, a proposed prosthetic leg model was de-

rived that is non-linear in nature; thus, it was deter-

mined that the nonlinear characteristics of the system

could not be ignored. Therefore, instead of applying

linearization to solve this problem approximately, we

utilized the PD-CTC with guaranteed global asymptotic

stability. The proposed prosthetic leg model was more

deeply explored using the Euler Lagrange approach. A

Fig. 11 Tool tip position-error plot of left leg (a) and right leg (b)

Fig. 10 Joint-angle error plot of left leg (a) and right leg (b)

Table 6 Statistical significances of classifiers

Classifiers p-values

KNN vs. LDA/QDA/NB/SVM 0.158, 0.016, 0.158, 0.009

LDA vs. QDA/NB/SVM 0.009, 0.369, 0.001

QDA vs. NB/SVM 0.047, 0.009

NB vs. SVM 0.002
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simple PD-CTC independent joint controller was utilized

for the hip and knee joints so that the manipulator

retained its nonlinear characteristics. The simulation re-

sults confirmed that the asymptotic stability of the system

can be reached in a finite time, as the determined position

accuracy was satisfactory. Possible extension of this work

would entail increasing the number of BCI classes for ex-

ploration of the gait patterns of persons of different age

groups. Another interesting aspect could be exploring the

relevance of individual channels with the task. Using fea-

tures from more relevant channels for classification might

also increase the classification accuracy.
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