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Focal Inverse Distance Transform Maps for Crowd
Localization

Dingkang Liang, Wei Xu, Yingying Zhu�, and Yu Zhou�

Abstract—In this paper, we focus on the crowd localization
task, a crucial topic of crowd analysis. Most regression-based
methods utilize convolution neural networks (CNN) to regress
a density map, which can not accurately locate the instance in
the extremely dense scene, attributed to two crucial reasons:
1) the density map consists of a series of blurry Gaussian
blobs, 2) severe overlaps exist in the dense region of the density
map. To tackle this issue, we propose a novel Focal Inverse
Distance Transform (FIDT) map for the crowd localization task.
Compared with the density maps, the FIDT maps accurately
describe the persons’ locations without overlapping in dense
regions. Based on the FIDT maps, a Local-Maxima-Detection-
Strategy (LMDS) is derived to effectively extract the center point
for each individual. Furthermore, we introduce an Independent
SSIM (I-SSIM) loss to make the model tend to learn the
local structural information, better recognizing local maxima.
Extensive experiments demonstrate that the proposed method
reports state-of-the-art localization performance on six crowd
datasets and one vehicle dataset. Additionally, we find that the
proposed method shows superior robustness on the negative and
extremely dense scenes, which further verifies the effectiveness
of the FIDT maps. The code and model will be available at
https://github.com/dk-liang/FIDTM.

Index Terms—Crowd localization, Crowd counting, Crowd
analysis, Distance transform, FIDT map

I. Introduction

Crowd analysis contains many sub-tasks, such as crowd
detection [65], crowd counting [23], [19], and crowd local-
ization [11], [41]. Specifically, the crowd detection task is to
detect persons based on bounding boxes, an expensive way of
labeling. The crowd counting aims to estimate a density map
and give the total count of a crowd scene based on point-level
annotations. In this paper, we focus on crowd localization,
predicting a point for each person’s head only based on point-
level annotations, which is a more complex task compared
with crowd detection and crowd counting.

The deep-learning-based detectors [38], [13] predict the
bounding box for each instance, encountering difficulties
under highly congested scenes [51]. In general, annotating
the bounding box for each person in the dense crowd is
expensive and laborious, so most current crowd datasets [66],
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(a) Image (b) Annotation map

(c) Density map (d) FIDT map

Fig. 1: The localization advantages of the FIDT map. (a) Input
image, which has heavy occlusions and cluttered backgrounds.
(b) The image only provides point-level annotations. (c) A
series of Gaussian blobs represent the density map and usu-
ally accumulate density values in the dense region, making
the person’s location indistinguishable. (d) FIDT map uses
the nearest neighbor distance information to represent each
person’s location, and nearby heads remain distinguishable
even in dense regions.

[16] only provide point-level annotations (Fig. 1(b)), making
the detectors [38], [13] untrainable. Current regression-based
methods [66], [3], [23], [19] regress a density map and output
the count by integrating over the density map. However, these
regression-based methods can not provide individual location
and size, mainly because the Gaussian blobs of the widely
used density map overlap in dense regions, making the local
maxima unequal to the head locations. However, the location
and size information also play an essential role in many high-
level applications, such as pedestrian tracking [21] and crowd
analysis [22], [64]. To tackle the problem, PSDDN [32] and
LSC-CNN [41] utilize similar nearest-neighbor head distances
to initialize the pseudo ground truth (GT) bounding boxes in a
detection-like model. Essentially, both of them use bounding
boxes for the training phase, still applying a complex detection
framework (e.g., Faster R-CNN). Actually, the pseudo GT
boxes do not reflect the real head size well, leading to poor
performance.

Alternatively, some methods focus on designing an appro-
priate map to cope with crowd localization, such as binary-
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like maps [1], [25], [7] and segmentation-like maps [2], [57].
Among them, both trimap [2] and distance label map [57]
need to set the threshold of distance and number of the label
in handcraft, which is empirical. Topological maps [1] and
IIM [7] still apply box-level annotations in some challenge
datasets (e.g., JHU-Crowd++ and NWPU-Crowd), which lim-
its its application to the real world. During the testing phase,
these methods regard the connected components of predicted
maps as the head location. However, they easily fail in the
congested scenes because the adjacent connected components
may be linked together in dense regions. In other words, it is
possible to incorrectly predict many heads as one.

Different from the above methods, this paper proposes a
novel label named Focal Inverse Distance Transform (FIDT)
map for the localization task, which provides precise location
information for each person. It is well known that the widely
used density map is blurry and indistinguishable due to each
head annotation filtered with a Gaussian kernel, as shown in
Fig. 1(c). In contrast, the proposed FIDT map is discriminative
without any overlaps between nearby heads, even in extremely
dense crowds, as shown in Fig. 1(d). In the proposed FIDT
map, the closer pixels are to the head center, the higher
responses they will have, which means the local maxima are
equal to the head centers. Accordingly, the counting result is
equal to the number of local maxima.

In FIDT maps, a local maximum represents an individual
instance, so detailed local structural information can help
locate the FIDT maps’ local maxima. A straightforward way
is to utilize the SSIM loss to improve the similarity between
the predicted FIDT map and the ground truth map. However,
in the FIDT map, the background’s pixel value is close to 0,
without structure information. The traditional SSIM loss may
cause high responses for the background, which may produce
false local maxima. Thus, we introduce the Independent SSIM
(I-SSIM) loss to further improve the model’s ability to enhance
the structure information of local maxima and reduce the false
local maxima in background regions.

As we mentioned above, for a given FIDT map, we can
obtain the heads’ position by localizing the local maxima, so
the final key step is how to extract the local maxima of FIDT
maps. In this paper, we propose simple yet effective post-
processing named Local-Maxima-Detection-Strategy (LMDS),
implemented by a simple max-pooling layer with an adaptive
threshold. Furthermore, the proposed LMDS can help to clas-
sify the negative samples (e.g., Terra-Cotta Warriors images).

In summary, this work contributes to the following:
1) In order to effectively cope with the crowd localization

task in dense scenes, we propose the FIDT maps. The
local maxima of FIDT maps represent exact persons’
locations.

2) We introduce the I-SSIM loss to make the model focus
on the independent regions, enhancing the model’s abil-
ity to handle the local maxima and background regions.

3) Based on the FIDT map, we design a Local-Maxima-
Detection-Strategy, LMDS, which can effectively locate
the predicted local maxima (head centers).

4) Extensive experiments demonstrate that the proposed
method achieves state-of-the-art localization perfor-

mance. Additionally, our method is robust for the nega-
tive and extremely dense scenes.

II. RelatedWorks

A. Crowd analysis

Current crowd analysis methods mainly focus on the count-
ing task, which usually adopts CNN to regress the density
maps. And the total count is obtained by integrating the density
maps. Some methods work on multi-layer or multi-scale fea-
ture fusion [43], [17], [18] to improve the quality of predicted
density maps. Some methods [62], [63], [28] incorporate the
attention mechanism into the framework, which effectively
attends to the foreground regions. Multi-head layers [34] are
useful that can effectively aggregate features from the conv-
backbone. Using different density map representations [42],
[48] is also an essential procedure in the training phase,
which can promote the model’s ability. Some methods make
efforts to minimize the expensive labeling work in a semi-
supervised [35], [31], [59] or weakly-supervised [24], [61]
paradigm. Unfortunately, these counting methods only give
the total count or coarse density map, which can not provide
the precise position of each head, limiting the application in
the real-world.

Recently, crowd localization, aiming to predict the precise
position of each person’s head, has been a hot topic in crowd
analysis. The deep-learning-based detectors [38], [37], [29]
rely on bounding box annotations, which is impractical in
the dense crowd due to expensive labeling costs. To address
this problem, some approaches [32], [41], [53] attempt to
initialize the pseudo GT bounding boxes from the point-
level annotations, applying the two-stage detection framework.
However, the generated pseudo GT bounding boxes do not
reflect the actual head sizes well, leading to unsatisfactory
performance. CL [16] finds the local maxima of the predicted
density map with a small Gaussian kernel. Several methods
attempt to predict a location map as a binary-like [1], [25],
[7] or segmentation-like map [57], [20]. Specifically, Xu et
al. [57] propose the distance label map, which formulates the
problem as a segmentation task. Shahira et al. [1] generate the
binary mask by thresholding the topological map. A recent
work [7] proposes Independent Instance Maps (IIM), and a
differentiable Binarization Module is used to learn adaptive
thresholds for different heads. Both topological map [1] and
IIM [7] still need box-level annotations when facing chal-
lenging datasets (e.g., NWPU-Crowd [51]). In general, these
methods usually obtain the head position by detecting the
connected components of predicted maps. However, in dense
regions, the connected component may be linked together,
which is possible to incorrectly predict many heads as one.

Unlike the above localization methods, we propose a new
label named FIDT map. This non-overlap map utilizes the
local maxima to represent persons’ heads, i.e., the closer pixels
are to the head center, the higher responses they will have.

B. Loss function

Most crowd counting methods apply MSE as the loss
function. However, only using MSE loss will cause blur, and
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Fig. 2: The pipeline of our method. During the training phase, MSE loss and the proposed I-SSIM loss are adopted. During
the testing phase, each person’s location can be obtained by the LMDS, and the final count is equal to the number of local
maxima. Additionally, the bounding boxes can be obtained through the size estimation step.

lose the local structure information [4]. To this end, some
methods focus on designing an appropriate loss function to
promote the model’s ability. Specifically, BL [33] regards the
density map as a probability map, calculating the expected
count of pixels. SPANet [5] proposes Maximum Excess over
Pixels (MEP) loss by finding the pixel-level subregion with the
highest discrepancy with ground truth. DM-Count [49] uses
Optimal Transport (OT) to measure the similarity between the
normalized predicted density map and the normalized ground
truth density map. DSSINet [27] propose the DMS-SSIM loss
to measure the structural similarity between the multiscale
regions centered at the given pixel on an estimated density
map and the corresponding regions on ground-truth.

The above loss functions usually calculate the loss on the
global level. In contrast, the proposed loss focuses on the
structure information of local regions (instance level), which
benefits the model better detecting the local maxima (i.e., head
centers).

C. Distance transform

Distance transform [40] is a classical image processing
operator applied in many deep-learning-based algorithms re-
cently [12], [55], [56], [2]. Specifically, Hayder et al. [12]
introduce a novel segment representation based on the distance
transform. Wang et al. [55] present the Deep Distance Trans-
form (DDT) for accurate tubular structure segmentation. In the
crowd analysis, Arteta et al. [2] and Xu [57] et al. propose
semantic-like maps, discretizing a distance transform map by
setting distance thresholds and transforming the localization
task into a semantic task. To the best of our knowledge, we
are the first to leverage the local maxima of such distance
transform maps for regression-based crowd localization.

III. OurMethod

The overview of our method is shown in Fig. 2. At the
training stage, a regressor is used to generate the predicted
FIDT map. The MSE loss and the proposed I-SSIM loss are
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Fig. 3: (a) Original image. (b) The distance distribution of
IDT map and FIDT map. (c) IDT map shows faster response
decay from the head center and keeps high response in the
background. (d) FIDT map shows slower response decay from
the head center and keeps low response (close to 0) in the
background.

used to measure the difference between prediction results and
ground truth. At the testing stage, a predicted FIDT map is
generated, and the location map is obtained by the proposed
Local-Maxima-Detection-Strategy (LMDS). Furthermore, we
can obtain the bounding boxes for better visualization by a
simple KNN strategy.

A. Focal Inverse Distance Transform Map

Here, we illustrate the formulation of the Euclidean distance
transform map first, which is defined as:

P (x, y) = min
(x′ ,y′ )∈B

√
(x − x′ )2

+ (y − y′ )2, (1)
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where B represents the set of all annotations. For an arbitrary
pixel (x, y), Eq. 1 means that the pixel value P(x, y) represents
the distance between the pixel and its nearest head position
(annotation). It is difficult to directly regress the distance
transform map, mainly due to the large distance variations
(range from 0 to the length of the image). A way is to use
the inverse function to refrain from the distance variations.
Specifically, the Inverse Distance Transform (IDT) map is
generated, defined as:

I
′

=
1

P (x, y) + C
, (2)

where I′ is the IDT map, and C is an additional constant
(set C = 1) to avoid being divided by zero, as the range
of distance transform map is [0, +∞). The IDT map is a
special form of the iKNN map [36] (when the K is set as
1). It is noteworthy that [36] only uses the iKNN map for the
counting task instead of the localization task. Compared to
the widely used density map, the IDT (i1NN [36]) map can
accurately represent the individual locations, which correspond
to the local maxima. However, the IDT map presents a faster
response decay away from the head center and slower response
decay in the background, as shown in the distance distribution
curve in Fig. 3(b). Ideally, the decay should be slower away
from the head, and the response of the background should be
quickly close to 0, which means the model should focus on
the foregrounds (head regions). Thus, we propose the Focal
Inverse Distance Transform (FIDT) map, defined as:

I =
1

P (x, y)(α×P(x,y)+β) + C
, (3)

where I is the FIDT map we proposed, α and β set as 0.02 and
0.75, respectively. As shown in Fig. 3(b), the curve examples
of the IDT and FIDT map are illustrated. Compared with the
IDT map, the FIDT map shows slower response decay away
from the head center, and the response of background is close
to 0, as shown in Fig. 3(c) and Fig. 3(d). It is noteworthy that
the proposed FIDT map is totally different from the density
map that uses small Gaussian kernels. The latter still presents
overlap in extremely dense scenes, and a recent method [57]
has demonstrated that small Gaussian kernels can not report
satisfying localization and counting performance.

B. Localization framework

1) Regressor: To verify the effectiveness of the proposed
FIDT maps, we use a straightforward base network to regress
the FIDT maps. The corresponding individual center of the
FIDT map is equal to the local maximum, so high-resolution
representations are essential. Here, following IIM [7], we use
HRNET [50] as the base network, and we add one convolution
and two transposed convolution layers as the representation
head based on the HRNET [50]. Note that the regressor can
be replaced by any crowd regressor, such as CSRNET [23],
BL [33].

2) Local Maxima Detection Strategy: Given a predicted
FIDT map, we can obtain the persons’ positions by localizing
the local maxima. We call this process as Local-Maxima-
Detection-Strategy (LMDS), as illustrated in Algorithm 1.

Algorithm 1 Local Maxima Detection Strategy (LMDS)

1: Input: Predicted FIDT map
2: Output: The coordinates of the persons and the total count
3: function Extract Position(input)
4: pos ind = maxpooling(input, size = (3, 3))
5: pos ind = (pos ind == input)
6: matrix = pos ind × input
7: if max(matrix) < T f then
8: count = 0
9: coordinates = None

10: else
11: Ta = 100/255.0 × max(matrix)
12: matrix[matrix<Ta] = 0
13: matrix[matrix>0] = 1
14: count = sum(matrix)
15: coordinates = nonzeros(matrix)
16: end if
17: return count, coordinates
18: end function

Specifically, we first utilize a 3 × 3 max-pooling to obtain
all local maxima (candidate points). However, these candidate
points may contain some false positives from the background.
We observe that the pixel values of true positives are much
larger than the pixel values of false positives, which means a
local maximum is likely to be a person if its pixel value is
large enough. This inspires us to utilize an adaptive threshold
Ta to filter the false positives. Thus, given a series of candidate
points M, the final selected points are those whose values
are no less than Ta, which is equal to 100/255.0 times the
maximum of M. Recent dataset [51] provides some negative
samples, which consists of some scenes without persons and is
similar to crowd scenes. We can not judge whether the original
images contain persons based on the predicted density maps.
However, given a predicted FIDT map, if the maximum of M is
smaller than a tiny fixed threshold T f (set as 0.10), this means
the input image is a negative sample, and the LMDS will set
the counting result as 0. An example of obtained location map
is shown in Fig. 2.

Although the real individual sizes are not provided, we can
generate pseudo individual bounding boxes from the predicted
FIDT map. Here, the bounding box is a square surrounding a
head. Once we get the predicted FIDT map, we first extract
the coordinates of the head centers, which can be implemented
efficiently using the proposed LMDS. Then, we estimate the
instance size, using the K-nearest neighbours distance, which
is defined as:

s(x,y)∈P = min


d̄ = f × 1

k
∑k

1 dk
(x,y)

min (img w, img h) × 0.05
(4)

where s(x,y) means the size of the instance, which locate in
(x, y), and P is the set of predicted head positions. d̄ is
the average distance, which is calculated between point P(x,y)
and its K-nearest neighbours, and a scalar factor f is used
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TABLE I: Quantitative comparison of the localization performance on the NWPU-Crowd dataset. The results of other methods
are from the online benchmark website [51]. F, P, and R refer to the F-measure, precision and recall, respectively.

Method Training
Labels

Validation set Test set

σl σs σl σs

F (%) P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%)

Faster RCNN [38] Box 7.3 96.4 3.8 6.8 90.0 3.5 6.7 95.8 3.5 6.3 89.4 3.3
TinyFaces [13] Box 59.8 54.3 66.6 55.3 50.2 61.7 56.7 52.9 61.1 52.6 49.1 56.6
TopoCount [1] Box - - - - - - 69.1 69.5 68.7 60.1 60.5 59.8

VGG+GPR [6] Point 56.3 61.0 52.2 46.0 49.9 42.7 52.5 55.8 49.6 42.6 45.3 40.2
RAZ Loc [25] Point 62.5 69.2 56.9 54.5 60.5 49.6 59.8 66.6 54.3 51.7 57.6 47.0

Crowd-SDNet [53] Point - - - - - - 63.7 65.1 62.4 - - -
AutoScale∗ [57] Point 66.8 70.1 63.8 60.0 62.9 57.3 62.0 67.3 57.4 54.4 59.1 50.4

GL [47] Point - - - - - - 66.0 80.0 56.2 - - -
SCALNet [54] Point 72.4 73.5 71.4 66.9 67.9 65.9 69.1 69.2 63.6 63.6 63.7 63.6

Ours Point 78.9 82.2 75.9 73.7 76.7 70.9 75.5 79.7 71.7 70.5 74.4 66.9

to restrain the size. In very sparse regions, the d̄ may be
bigger than the real size of persons, so we choose a threshold
related to image size to restrain the object size, as described
in Eq. 4. Note that Eq. 4 is only used in the testing phase
for visualizations, and the size of bounding boxes does not
influence the localization performance.

C. Independent SSIM Loss

Just using MSE loss to supervise the training phase will
cause some negative impacts, such as blur effect and losing
local structure information [4]. Some methods [4], [27] have
proved that SSIM loss can improve the quality of the predicted
map. SSIM is defined as:

S S IM(E,G) =
(2µEµG + λ1) (2σEG + λ2)(

µ2
E + µ2

G + λ1

) (
σ2

E + σ2
G + λ2

) , (5)

where E and G represent the estimated map and ground-truth
map, respectively. The µ and σ are the mean and variance. λ1
and λ2 are set to 0.0001 and 0.0009 to avoid being divided
by zero. The value range of S S IM is [-1,1], and S S IM = 1
means the estimated map is the same as the ground truth, so
the SSIM loss is defined as:

LS (E,G) = 1 − S S IM(E,G). (6)

In general, the SSIM loss utilizes a sliding window to scan
the whole predicted map without distinguishing the foreground
(head region) and background. However, for the localization
task, relying on detecting the local maxima, the model should
focus on local maxima. The global SSIM loss may generate
high responses, causing some false local maxima in the back-
ground. Thus, we propose the Independent SSIM (I-SSIM)
loss, defined as:

LI−S =
1
N

N∑
n=1

LS (En,Gn) , (7)

where N means the total number of persons, En and Gn

mean the estimated and ground truth for the n-th independent
instance region, and the region size of each instance is set
as 30 × 30 for all datasets, mainly because we observe that

TABLE II: Quantitative evaluation of localization-based meth-
ods on the UCF-QNRF dataset. We report the average pre-
cision, average Recall, and average F-measure at different
distance thresholds (1, 2, 3, . . . , 100).

Method Av.Precision Av.Recall F-measure

MCNN [66] 59.93% 63.50% 61.66%
CL [16] 75.80% 59.75% 66.82%

LCFCN [20] 77.89% 52.40% 62.65%
Method in [39] 75.46% 49.87% 60.05%
LSC-CNN[41] 74.62% 73.50% 74.06%

GL [47] 78.20% 74.80% 76.30%
TopoCount[1] 81.77% 78.96% 80.34%

Ours 84.49% 80.10% 82.23%

TABLE III: Quantitative evaluation of localization-based
methods on the JHU-Crowd++ dataset using Precision (P),
Recall (R), and F-measure (F).

Method σ = 4 σ = 8

P (%) R (%) F (%) P (%) R (%) F (%)

TopoCount [1] 31.5% 28.8% 30.1% 63.6% 58.3% 60.8%
Ours 38.9% 38.7% 38.8% 62.5% 62.4% 62.4%

this size can contain the entire head region without redundant
background for most independent instance. The final training
objective L is defined as below:

L = LMS E + LI−S , (8)

where LMS E and LI−S refer to the MSE loss and the proposed
I-SSIM loss, respectively.

IV. Implement details

We augment the training data using random cropping and
horizontal flipping. The crop size is 256 × 256 for Part A
and Part B and 512 × 512 for other datasets. We set k as 4
and f as 0.1 to generate the bounding boxes. The α and β set
as 0.02 and 0.75 respectively. We use Adam to optimize the
model with the learning rate of 1e-4, and the weight decay is
set as 5e-4. We set the size of the training batch to 16. We
resize the images to make sure that the longer side is smaller
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Fig. 4: Qualitative visualization of detected persons’ locations
by the proposed method. We use the proposed KNN strategy to
generate bounding boxes (green boxes), compared with LSC-
CNN [41].

than 2048 for NWPU-Crowd [51], JHU-Crowd++ [45], and
UCF-QNRF [16] datasets.

A. Evaluation metrics

Localization Metrics. Precision, Recall, and F-measure are
adopted to evaluate the performance on the NWPU-Crowd
dataset, defined by [51]. When the distance between the given
predicted point Pp and ground truth point Pg is less than a
distance threshold σ, it means the Pp and Pg are successfully
matched. The σ is related to the real head size (this dataset
provides box-level annotation). Specifically, Wang et al. [51]
give two thresholds:

σs = min(w, h)/2, (9)

σl =
√

w2 + h2/2, (10)

and the former is a stricter criterion than the latter. For the
UCF-QNRF dataset, similar to CL [16], we calculate the
Precision, Recall, and F-measure at various thresholds (1, 2,
3, . . . , 100 pixels). For JHU-Crowd++, ShanghaiTech Part
A, Part B, and UCF CC 50 datasets, we choose two fixed
thresholds (σ = 4, 8) for evaluation.

Counting Metrics. We use the Mean Absolute Error (MAE)
and Mean Square Error (MSE) as the counting metrics, defined
as:

MAE =
1
M

M∑
i=1

|Pi −Gi| , (11)

MS E =

√√√
1
M

M∑
i=1

|Pi −Gi|
2, (12)

where M is the number of testing images, Pi and Gi are
the predicted and ground truth count of the i-th image,
respectively.

B. Dataset

We evaluate our method on six challenging public datasets,
each being elaborated below.

NWPU-Crowd [51], a large-scale and challenging dataset,
consists of 5,109 images, elaborately annotating 2,133,375
instances. The dataset provides 351 negative samples, testing

the robustness of the model. The results are from an online
evaluation benchmark website.

JHU-CROWD++ [45] contains 2,722 training images, 500
validation images, and 1,600 test images, collected from
diverse scenarios. The total number of persons in each image
ranges from 0 to 25,791.

UCF-QNRF [16] contains 1,535 images and about one
million annotations. It has a count range of 49 to 12,865, with
an average count of 815.4.

ShanghaiTech [66] consists of Part A and Part B with a
total count of 1,198 images. In particular, Part A contains 300
training images and 182 testing images, and Part B consists
of 400 training images and 316 testing images.

UCF CC 50 [15] contains 50 gray images captured in
extremely congested scenes. The number of crowd counts
varies from 96 to 4,633. It is a challenging dataset due to the
heavy background noise and the limited number of images.

TRANCOS [10] contains 1,244 images captured in traffic
congestion situations with 46,796 annotations, providing a
region of interest (ROI) for each image.

V. Results and Analysis
A. Crowd localization

Tab. I, II, III, IV, and V compare the localization per-
formance of the proposed method against the state-of-the-art
methods. The results of other methods [41], [1], [57] are from
the official code and model, and we directly utilize their pre-
dicted coordinates for evaluation. The evaluated localization
code is provided by [51].

The results of the NWPU-Crowd dataset are from an online
benchmark website, making sure to evaluate the localization
performance fairly. As shown in Tab. I, we can observe that the
proposed method outperforms the popular detectors, including
Faster RCNN [38] and TinyFaces [13], by a significant margin.
Compared with SCALNet [54] and TopoCount [1], our method
outperforms them by at least 6.4% for σl (6.9% for σs) F-
measure. Note that TopoCount [1] still applies the box-level
annotations for training on the NWPU-Crowd dataset, while
our method just utilizes the point-level.

For the dense dataset UCF-QNRF, as shown in Tab. II,
the proposed method reports the highest Precision and Re-
call. For the JHU-Crowd++ dataset, as depicted in Tab. III,
the proposed method improves the state-of-the-art method
TopoCount [1] by 8.7% F-measure for the very strict setting
σ = 4.

For the two sparse datasets, ShanghaiTech Part A and Part
B, as depicted in Tab. IV, the proposed method improves the
TopoCount [1] by 17.5% F-measure for the stricter setting σ
= 4 on part A, and 1.5% F-measure on part B. It indicates
that the proposed method can effectively cope with dense and
sparse scenes.

For the gray images, UCF CC 50 dataset (Tab. V), our
method surpasses the other localization methods by a signif-
icant margin, i.e., more than 7% F-measure improvement on
the σ = 4. This impressive result demonstrates that our method
is robust to the degraded images.

Additionally, we qualitatively evaluate the proposed method
by visualizing the bounding boxes on the various crowd
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Image Ground Truth Predicted FIDT map Predicted point map Predicted bounding boxes

GT = 11 Pred = 11

GT = 1395 Pred = 1392

GT = 2167 Pred = 2002

GT = 228 Pred = 224

Fig. 5: Qualitative visualizations of our method. From left to right, there are testing images, ground truth maps, predicted FIDT
maps, predicted point maps, and predicted bounding boxes.

TABLE IV: Comparison of the localization performance on the ShanghaiTech Part A [66] and ShanghaiTech Part B [66]
datasets using Precision (P), Recall (R), and F-measure (F).

Method
Part A Part B

σ = 4 σ = 8 σ = 4 σ = 8

P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%)

LCFCN[20] 43.3% 26.0% 32.5% 75.1% 45.1% 56.3% - - - - - -
Method in [39] 34.9% 20.7% 25.9% 67.7% 44.8% 53.9% - - - - - -
LSC-CNN [41] 33.4% 31.9% 32.6% 63.9% 61.0% 62.4% 29.7% 29.2% 29.5% 57.5% 56.7% 57.0%
TopoCount [1] 41.7% 40.6% 41.1% 74.6% 72.7% 73.6% 63.4% 63.1% 63.2% 82.3% 81.8% 82.0%

Ours 59.1% 58.2% 58.6% 78.2% 77.0% 77.6% 64.9% 64.5% 64.7% 83.9% 83.2% 83.5%

TABLE V: Quantitative evaluation of localization-based meth-
ods on the UCF CC 50 dataset using Precision (P), Recall
(R), and F-measure (F). † represents that the networks are
trained by ourselves.

Method σ = 4 σ = 8

P (%) R (%) F (%) P (%) R (%) F (%)

LSC-CNN† [41] 37.7% 39.5% 38.6% 57.8% 61.1% 59.4%
AutoScale† [57] 37.8% 40.5% 39.1% 59.0% 62.3% 60.6%
TopoCount† [1] 39.5% 42.0% 40.7% 62.5% 66.9% 64.6%

Ours 46.5% 49.0% 47.7% 67.0% 70.6% 68.7%

scenes in Fig. 4 and Fig. 5. The proposed method gives
competitive bounding boxes compared with LSC-CNN [41]

and achieves impressive localization performance under var-
ious crowd scenes. It is noteworthy that the bounding boxes
are only used for visualizations during the testing phase, and
the size of bounding boxes does not affect the localization
performance.

B. Crowd counting
In this work, we mainly focus on the crowd localization

task, while the counting result can also be easily obtained
since the total count is equal to the number of local maxima.
Tab. VI, and Tab. VII show the quantitative counting results
of our method and state-of-the-art methods.

Compared with the localization-based methods, which
can provide the position information, our method significantly
outperforms the state-of-the-art localization-based method
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TABLE VI: Comparison of the counting performance on the NWPU-Crowd. S 0 ∼ S 4 respectively indicate five categories
according to the different number range: 0, (0, 100], (100, 500], (500, 5000], >5000. * means the localization-based methods,
which can provide the position information.

Method
Output

Position
Information

validation set Test set

Overall Overall Scene Level (only MAE)

MAE MSE MAE MSE Avg. S 0 ∼ S 4

C3F-VGG [8] 7 105.79 504.39 127.0 439.6 666.9 140.9/26.5/58.0/307.1/2801.8
CSRNet [23] 7 104.89 433.48 121.3 387.8 522.7 176.0/35.8/59.8/285.8/2055.8

CAN [30] 7 93.58 489.90 106.3 386.5 612.2 82.6/14.7/46.6/269.7/2647.0
SCAR [9] 7 81.57 397.92 110.0 495.3 718.3 122.9/16.7/46.0/241.7/3164.3
BL [33] 7 93.64 470.38 105.4 454.2 750.5 66.5/8.7/41.2/249.9/3386.4

SFCN [52] 7 95.46 608.32 105.7 424.1 712.7 54.2/14.8/44.4/249.6/3200.5
KDMG [48] 7 - - 100.5 415.5 632.7 77.3/10.3/38.5/259.4/2777.9

NoisyCC [46] 7 - - 96.9 534.2 608.1 218.7/10.7/35.2/203.2/2572.8
DM-Count [49] 7 70.5 357.6 88.4 388.6 498.0 146.6/7.6/31.2/228.7/2075.8

RAZ loc* [25] 4 128.7 665.4 151.4 634.6 1166.0 60.6/17.1/48.3/364.7/5339.0
AutoScale* [57] 4 97.3 571.2 123.9 515.5 871.0 42.3/18.8/46.1/301.7/3947.0
TopoCount* [1] 4 - - 107.8 438.5 - -
SCALNet* [54] 4 64.4 251.1 86.8 339.9 429.5 92.0/11.2/41.1/227.7/1775.3

Ours* 4 51.4 107.6 86.0 312.5 390.6 21.6/13.7/55.6/217.1/1645.4

TABLE VII: Comparison of the counting performance on the JHU-Crowd++, UCF-QNRF, ShanghaiTech Part A, Part B and
UCF CC 50 datasets. * means the localization-based methods, which can provide the position information.

Method
Output

Position
Information

JHU QNRF Part A Part B UCF CC 50

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

CSRNet [23] 7 85.9 309.2 - - 68.2 115.0 10.6 16.0 266.1 397.5
SFCN [52] 7 77.5 297.6 102.0 171.4 64.8 107.5 7.6 13.0 214.2 318.2
L2SM [58] 7 - - 104.7 173.6 64.2 98.4 7.2 11.1 188.4 315.3
CG-DRCN [44] 7 82.3 328.0 112.2 176.3 64.0 98.4 8.5 14.4 - -
MUD-iKNN [36] 7 - - 104.0 172.0 68.0 117.7 13.4 21.4 237.7 305.7
DSSI-Net [27] 7 133.5 416.5 99.1 159.2 60.6 96.0 6.9 10.3 216.9 302.4
MBTTBF [43] 7 81.8 299.1 97.5 165.2 60.2 94.1 8.0 15.5 233.1 300.9
BL [33] 7 75.0 299.9 88.7 154.8 62.8 101.8 7.7 12.7 229.3 308.2
RPNet [60] 7 - - - - 61.2 96.9 8.1 11.6 - -
ASNet [18] 7 - - 91.6 159.7 57.8 90.1 - - 174.8 251.6
AMSNet [14] 7 - - 101.8 163.2 56.7 93.4 6.7 10.2 208.6 296.3
LibraNet [26] 7 - - 88.1 143.7 55.9 97.1 7.3 11.3 181.2 262.2
KDMG [48] 7 69.7 268.3 99.5 173.0 63.8 99.2 7.8 12.7 - -
NoisyCC [46] 7 67.7 258.5 85.8 150.6 61.9 99.6 7.4 11.3 - -
DM-Count [49] 7 - - 85.6 148.3 59.7 95.7 7.4 11.8 211.0 291.5

RAZ loc+* [25] 4 - - 118.0 198.0 71.6 120.1 9.9 15.6 - -
PSDDN* [32] 4 - - - - 65.9 112.3 9.1 14.2 359.4 514.8
LSC-CNN* [41] 4 112.7 454.4 120.5 218.2 66.4 117.0 8.1 12.7 225.6 302.7
Crowd-SDNet* [53] 4 - - - - 65.1 104.4 7.8 12.6 - -
AutoScale* [57] 4 85.6 356.1 104.4 174.2 65.8 112.1 8.6 13.9 210.5 287.4
TopoCount* [1] 4 60.9 267.4 89.0 159.0 61.2 104.6 7.8 13.7 184.1 258.3
Ours* 4 66.6 253.6 89.0 153.5 57.0 103.4 6.9 11.8 171.4 233.1

SCALNet [54] on the NWPU-Crowd (test set) by a significant
margin of 27.4 MSE. Our method also obtains the best
performance on UCF-QNRF, ShanghaiTech Part A, Part B,
and UCF CC 50 datasets. For the JHU-Crowd++ dataset,
the proposed method achieves SOTA performance in MSE
and comparable performance in MAE. It indicates that the
proposed method can cope with both sparse crowd scenes and
dense crowd scenes.

Compared with the regression-based methods. Al-
though it is not fair to compare localization-based count-

ing methods and density-map regression-based counting
methods, our method still outperforms all density map
regression-based methods on NWPU-Crowd, JHU-Crowd++,
and UCF CC 50 datasets. Meanwhile, the proposed method
achieves comparable performance on UCF-QNRF, Shang-
haiTech Part A, and Part B datasets. To intuitively demonstrate
the difference between FIDT maps and density maps, we pro-
vide the predicted FIDT maps and density maps visualization
(the density maps are trained with the same network), as shown
in Fig. 6 (row 1 and row 2). We can see that the predicted
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Ground truth Predicted FIDT map Predicted density map

Visualization from KDMG Visualization from BL Visualization from DM-Count Visualization from ours

5944 5808 5675

1018 1052 1061

Image

Fig. 6: Row 1 and row 2, from left to right, there are images, ground truth, predicted FIDT maps, and predicted density
maps (trained with the same network). It can be seen that the heads of the predicted FIDT maps are distinguishable, and
the predicted density maps show severe overlaps. Row 3 and row 4 compare the predicted visualizations from KDMG [48],
BL [33], DM-Count [49], and ours. Our method provides precise location information in the dense region (red box).

density maps lose the position information and show severe
overlaps in dense regions. However, the predicted FIDT maps
provide an almost accurate location for each individual, even
in the extremely dense scene. On row 3 and row 4 of Fig. 6,
it compares the predicted visualizations from KDMG [48],
BL [33], DM-Count [49], and ours. We can see that the DM-
Count [49] and our method provide clear position information
in the sparse region, while only our method can provide precise
location information in the dense region (red box).

C. Evaluation on vehicle dataset

A robustness algorithm should easily generalize to similar
tasks (e.g., vehicle localization and counting). Thus, follow-
ing previous localization methods [32], [41], we evaluate
the generalization capability of the proposed method on the
TRANCOS [10] dataset for vehicle counting. We adopt the
Grid Average Mean Absolute Error (GAME) [10] as the
evaluation metric for vehicle counting, defined as:

GAME(L) =
1
N

N∑
i=1

 4L∑
l=1

∣∣∣Pl
i −Gl

i

∣∣∣ , (13)

which splits an input image into 4L non-overlapping sub-
regions. N is the number of the testing images, Pi and Gi

are the predicted and ground truth count of the i-th image,
respectively. Tab. VIII compares the GAME metric of the
proposed method and the state-of-the-art localization-based
methods. Specifically, the proposed method achieves the best

performance on GAME(0), GAME(1), and GAME(2) and ob-
tains comparable performance on GAME(3). It means that the
proposed method not only achieves accurate global predictions
but also has well localization performance.

D. Ablation Study

Analysis of the FIDT map. To understand the FIDT map
better, we analyze the distribution of the FIDT map by using
different α and β. Only changing the α (resp. β), as shown
in Fig. 7, as α (resp. β) increasing (resp. decreasing), the
response of FIDT map shows faster (resp. slower) decay in
both foreground and background. As discussed in Sec. III-A,
the decay should be slower away from the head, and the
response of the background should quickly close to 0. Thus,
we set α = 0.02 and β = 0.75 in all experiments, and we also
report the various α and β settings experiments in Tab. IX. The
following ablation study will provide experiments of choosing
0.02 and 0.75 in Eq. 3.

Effectiveness of I-SSIM loss. In this section, we explore
the advantage of the proposed I-SSIM loss. Based on Tab. X,
we make the following observations: (1) Adding the traditional
global SSIM loss can bring improvement. (2) The proposed
I-SSIM loss achieves further improvement in terms of localiza-
tion and counting, mainly because the I-SSIM loss can further
optimize the structure information of the predicted FIDT map
to find local maxima better and repress the false local maxima
in the background.
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TABLE VIII: Quantitative comparison of vehicles counting on
the TRANCOS [10] dataset. † represents that the networks are
trained by ourselves.

Method GAME(0) GAME(1) GAME(2) GAME(3)

PSDDN [32] 4.79 5.43 6.68 8.40
LSC-CNN [41] 4.60 5.40 6.90 8.30
AutoScale [57] 2.88 4.97 6.64 9.73
Crowd-SDNet† [53] 3.82 5.27 7.72 10.11
TopoCount† [1] 3.42 4.76 6.51 8.55
Ours 2.25 3.91 5.66 8.36

TABLE IX: The results of different α and β setting on Part A.
It is noteworthy that IDT map (Eq. 2) means the α = 0 and β
= 1.

Method α β
Localization (σ = 8) Counting

P(%) R(%) F(%) MAE MSE

IDT 0.00 1.00 75.6% 74.6% 75.1% 61.8 109.6
FIDT 0.01 0.65 76.6% 76.0% 76.3% 60.5 107.4
FIDT 0.02 0.75 78.2% 77.0% 77.6% 57.0 103.4
FIDT 0.03 0.85 77.0% 76.8% 76.9% 58.3 106.6

We further ablate the influence of the independent instance
region sizes of I-SSIM loss, as shown in Tab. XI. Larger
region sizes may contain too much background (without
structure information), leading to excess false local maxima
in the background. Smaller region sizes may not involve the
entire independent head, which can not effectively enhance
the structure information of the local maxima (head region).
Based on the experiments, we use 30 × 30 as the region size
for all datasets, and it works well.

Analysis of Ta. On the proposed post-processing, LMDS,
the Ta is used to choose the positive points. Its value is
adaptive, which is set to 100

255 × max(M), where max(M) is
the max value of the predicted FIDT map. As shown in
Tab. XII, using fixed thresholds is worse than the adaptive
threshold since the local-maxima pixel values of different
predicted FIDT maps are not the same. This inspires us to

TABLE X: The effectiveness of the proposed I-SSIM loss on
Part A.

Method Localization (σ = 8) Counting

P(%) R(%) F(%) MAE MSE

L2 73.5% 76.3% 74.9% 62.1 108.8
L2 + SSIM 76.8% 76.6% 76.7% 59.3 106.5

L2 + I-SSIM (ours) 78.2% 77.0% 77.6% 57.0 103.4

TABLE XI: The influence of the independent instance region
size of I-SSIM loss on Part A dataset.

Region Size Localization (σ = 8) Counting

P(%) R(%) F(%) MAE MSE

20 × 20 78.0% 76.4% 77.2% 58.1 104.4
30 × 30 78.2% 77.0% 77.6% 57.0 103.4
40 × 40 77.4% 76.4% 76.9% 58.6 105.9
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Fig. 7: The effect of changing α and β on the distribution of
FIDT map.

GT = 0
(negative sample)

GT = 202
(positive sample)

Pred =0
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Max value = 0.0028

Pred = 16
Max value = 0.0029

Max value = 0.018

Max value = 0.78 Pred = 203

Input image Predicted density map Predicted FIDT map

LMDS

LMDS

Fig. 8: Row 1 and row 2 are negative and positive samples,
respectively. In the density maps, the max pixel value between
positive and negative samples is very similar. In the FIDT
maps, the negative and positive samples present a significant
difference in max pixel value.

utilize adaptive threshold. Using large adaptive thresholds will
filter out the true-positive points, and small will reserve some
false-positive points. Hence, we choose the 100

255 × max(M) as
an adaptive threshold for all datasets.

Robustness on negative and dense scenes. The S0 of
NWPU-Crowd consists of some “dense fake humans” (e.g.,
Terra-Cotta Warriors), called negative samples. In contrast,
S4 means the extremely dense crowd scenes, containing more
than 5,000 persons. Thus, the S0 and S4 are usually adopted
to evaluate the model’s robustness [51]. Tab. XIII lists the
results of some popular methods on the NWPU-Crowd’s

TABLE XII: The ablation study on the threshold Ta.

Threshold value Adaptive MAE MSE

50/255 7 95.6 169.9
70/255 7 92.1 167.0
90/255 7 80.6 152.3
100/255 7 115.3 206.4
110/255 7 122.6 233.5

90/255 × max(M) 4 60.4 105.3
100/255 × max(M) 4 57.0 103.4
110/255 × max(M) 4 58.1 107.1

TABLE XIII: The results of S0 and S4 on NWPU-Crowd test
set.

Method S0-level S4-level

MAE MSE MAE MSE

KDMG [48] 77.3 303.0 2777.9 3521.8
DM-Count [49] 146.7 736.1 2075.8 2895.2
NoisyCC [46] 218.7 1415.6 2572.5 3414.9
SCALNet [54] 92.0 479.3 1775.3 2676.4

Ours 21.6 129.3 1645.4 2288.2
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Fig. 9: The max pixel-value distribution of predicted FIDT
maps (NWPU-Crowd validation set).

TABLE XIV: The results of different regressors on the NWPU-
Crowd [51] (validation set) dataset.

Method

Density map
(counting by integration)

FIDT map
(counting by localization)

MAE MSE MAE MSE P(%) R(%) F(%)

CSRNET [23] 104.9 433.5 100.6 464.3 68.8% 66.2% 67.5%
CSRNET [23] + FPN 95.5 450.8 70.6 369.7 73.9% 69.8% 71.8%
BL [33] 93.6 470.4 89.7 446.6 69.9% 68.9% 69.4%
BL [33] + FPN 85.4 412.9 65.7 259.2 77.8% 70.0% 73.7%

negative samples and extremely dense scenes. As expected, the
proposed method achieves the lowest counting error, reporting
superior robustness. As shown in Fig. 8, the maximum pixel
value between negative and positive samples is similar for
density maps while it is distinct for the FIDT maps. Given a
predicted FIDT map, if its maximum pixel value is smaller
than threshold T f , the LMDS will regard the input as a
negative sample and set the counting result as 0, as illustrated
in Algorithm 1.

We set the T f as 0.1 according to the statistics. Specifically,
we give the max pixel-value of each predicted FIDT map based
on NWPU-Crowd (validation set, including 500 images), as
shown in Fig. 9. We can observe that all positive samples’
value is much bigger than 0.1, and most negative samples
are smaller than 0.1. Thus, the threshold T f set as 0.1 is
reasonable.

Generalization on different regressors. In this section, to
demonstrate the proposed FIDT map can be generalized to
different regressors, we implement the CSRNET [23], BL [33]
with the FIDT maps on the NWPU-Crowd dataset (validation
set). Besides, we add a FPN into the CSRNET [23] and
BL [33] to capture rich spatial context. The quantitative results
are listed in Tab. XIV, where we can observe that using the
FIDT map can realize the localization task, and the counting
performance is competitive compared with the density map.
Notability, the experiments of FIDT maps only adopt the L2
loss, and the image scaling strategy is the same as [51]. The
results indicate that the FIDT map is suitable for the crowd
localization task.

E. Limitation

The main limitation is that the proposed method inference
will be slower than some real-time methods [47]. As shown
in Tab. XV, we report the Multiply-Accumulate Operations

1We try our best to calculate the MACs of Crowd-SDNet, but the official
code relies on the old version Keras, which is hard to obtain the MACs.

TABLE XV: The comparisons of complexity. The F-measure
is from the NWPU-Crowd benchmark (test set).

Method MACs (G) Inference speed F-measure

LSC-CNN [41] 1244.3 2.6 FPS -
AutoScale [57] 1074.6 5.7 FPS 62.0%

Crowd-SDNet1 [53] - 0.8 FPS 63.7%
GL [47] 324.6 20.3 FPS 66.0%

TopoCount [49] 797.2 9.4 FPS 69.1%
Ours 426.7 7.1 FPS 75.5%

(MACs) and Frames Per Second (FPS) to analyze the com-
plexity. All methods are evaluated on the official code with a
size of 768 × 1024 image, and the GPU device is NVIDIA
RTX 3090. Although our method achieves the second MACs
and the third FPS, there is still a lot of room for improvement.
In the future, we are interested in extending our method for
real-time.

VI. Conclusion

In this paper, we present a novel label named FIDT
map, designed to cope with the crowd localization task. The
proposed FIDT map is a non-overlap map, which utilizes
local maxima to represent the head‘s center. To extract the
corresponding individual center, a Local-Maxima-Detection-
Strategy (LMDS) is proposed. Besides, we introduce a novel
I-SSIM loss to make the model tend to focus on the foreground
regions, improving the structure information of local maxima.
By performing experiments on six publicly available datasets,
we demonstrate that the proposed method achieves state-of-
the-art localization performance and shows superior robustness
for the negative samples and extreme scenes. We hope the
community switches from the density map regression to FIDT
map regression for more practical.
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