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F
ocal segmental glomerulosclerosis accounts for approximately 

20% of cases of the nephrotic syndrome in children and 40% of such cases in 

adults, with an estimated incidence of 7 per 1 million.1 It is the most common 

primary glomerular disorder causing end-stage renal disease in the United States, 

with a prevalence of 4%.2 The cardinal feature is progressive glomerular scarring. 

Early in the disease course, glomerulosclerosis is both focal, involving a minority 

of glomeruli, and segmental, affecting a portion of the glomerular globe. With pro-

gression, more widespread and global glomerulosclerosis develops. Since the first 

clinical–pathological studies of the disease in the 1970s,3 there has been renewed 

interest because of the increasing incidence of the disease,4 better understanding of 

causation, and identification of the podocyte as the major cellular target.5 The dis-

covery that mutations in podocyte genes are associated with genetic focal segmen-

tal glomerulosclerosis has advanced the field of podocyte biology and stimulated new 

approaches to diagnosis and management.6

Clinic a l Fe at ur es

Proteinuria is a defining feature of focal segmental glomerulosclerosis, typically 

accompanied by hypoalbuminemia, hypercholesterolemia, and peripheral edema. 

The nephrotic syndrome in children is defined as proteinuria (>1 g of urine protein 

per square meter of body-surface area per day), hypoalbuminemia (<2.5 g of albumin 

per deciliter), hypercholesterolemia (>200 mg of total cholesterol per deciliter), and 

edema. In adults, the nephrotic syndrome is defined as a urine protein level of more 

than 3.5 g per day and an albumin level of less than 3.5 g per deciliter. Approxi-

mately 75 to 90% of children and 50 to 60% of adults with focal segmental glomeru-

losclerosis have the nephrotic syndrome at presentation.

Once considered a single disease, focal segmental glomerulosclerosis is now 

viewed as a group of clinical–pathologic syndromes sharing a common glomerular 

lesion and mediated by diverse insults directed to or inherent within the podocyte 

(Table 1). Despite the identification of many factors that lead to focal segmental 

glomerulosclerosis, approximately 80% of cases are primary (idiopathic). Focal seg-

mental glomerulosclerosis and a related disorder, minimal change disease, are quint-

essential podocyte diseases, or “podocytopathies.”7,8 In both conditions, podocyte 

injury leads to effacement of the podocyte foot processes, which is the major struc-

tural correlate of nephrotic proteinuria. This change in podocyte shape requires 

rearrangement of the actin cytoskeleton, a process that is typically reversible with 

glucocorticoid therapy in minimal change disease but irreversible and progressive 

in focal segmental glomerulosclerosis.



medical progress

n engl j med 365;25 nejm.org december 22, 2011 2399

Patho genesis

Loss of Filtration Barrier

Nephrotic proteinuria results from loss of integ-

rity of the glomerular filtration barrier, which reg-

ulates permselectivity through the intimate as-

sociation of three layers: fenestrated glomerular 

endothelial cells at the inner blood interface, the 

glomerular basement membrane in the center, and 

podocytes (also known as visceral epithelial cells) 

at the outer urinary interface (Fig. 1). Podocytes 

are highly differentiated, polarized epithelial cells 

resembling neurons in their large cell body and 

elongated cellular extensions, stabilized by a cen-

tral actin cytoskeleton core (Fig. 2). The foot pro-

cesses interdigitate along the outer aspect of the 

glomerular capillary wall, linked to their neigh-

bors by slit diaphragms, which are modified ad-

herens junctions aligned in a zipperlike array.9 

Podocytes provide structural support to the glo-

merular capillaries and synthesize the proteins 

of the slit diaphragm and many extracellular ma-

trix components of the glomerular basement mem-

brane. These terminally differentiated cells cannot 

repair by means of cell division, making podo-

cyte depletion through detachment, apoptosis, or 

necrosis a critical mediator of glomerulosclerosis.8 

In the past decade, new insights have derived both 

from animal models of podocyte depletion and 

genetic studies of human disease.

Podocyte Depletion in Experimental Toxin 

Models 

Experimental models have addressed whether de-

livery of a lethal toxin specifically and exclusively 

to the podocyte is sufficient to cause focal seg-

mental glomerulosclerosis. For example, the cre-

ation of a transgenic animal that expresses a toxin 

receptor under the control of a podocyte-specific 

promoter permits the targeting of a toxin exclu-

sively to podocytes.10,11 In such a model, inter-

nalization of diphtheria toxin or pseudomonas 

exotoxin A kills podocytes by the inhibition of pro-

tein synthesis. The degree of podocyte depletion 

after toxin exposure correlates closely with the se-

verity of disease in these models.11 Loss of more 

than 40% of podocytes leads to overt focal seg-

mental glomerulosclerosis with high-grade pro-

teinuria and renal insufficiency, indicating a dis-

ease threshold.11 Podocytes are shed into the urine 

for months after a brief toxin exposure, suggest-

ing a secondary autonomous phase of podocyte 

loss.12 In a chimeric model in which only a sub-

set of podocytes express toxin receptor, podocyte 

injury and dedifferentiation are observed to spread 

to neighboring toxin-resistant podocytes that es-

caped the initial insult.13 This chimeric model sug-

gests that injury can propagate locally from podo-

cyte to podocyte by a domino-like effect, which 

may explain the segmental nature of the lesions. 

Although the mediators are unknown, a second-

Table 1. Causes of Focal Segmental Glomerulosclerosis.

Type of Disease Cause

Primary (idiopathic) form Specific cause unknown; mediated by circulating permeability factors

Secondary forms

Familial or genetic Mutations in specific podocyte genes*

Virus-associated Human immunodeficiency virus type 1, parvovirus B19, simian virus 40, cytomegalovirus, Epstein–Barr virus

Drug-induced Heroin; interferons alfa, beta, and gamma; lithium; pamidronate; sirolimus; calcineurin-inhibitor nephrotoxicity; 
anabolic steroids

Adaptive† Conditions with reduced renal mass: oligomeganephronia, very low birth weight, unilateral renal agenesis, renal 
dysplasia, reflux nephropathy, sequela to cortical necrosis, surgical renal ablation, renal allograft, aging kid-
ney, any advanced renal disease with reduced functioning nephrons

Conditions with initially normal renal mass: systemic hypertension, acute or chronic vaso-occlusive processes 
(atheroembolization, thrombotic microangiopathy, renal-artery stenosis), elevated body-mass index (obesity, 
increased lean body mass [e.g., bodybuilding]), cyanotic congenital heart disease, sickle cell anemia

* For details regarding genetic mutations associated with focal segmental glomerulosclerosis, see the table in the Supplementary Appendix.
† The adaptive form is mediated by adaptive structural–functional responses to glomerular hypertension caused by elevated glomerular capil-

lary pressures and flows.
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ary wave of podocyte injury hypothetically might 

decrease podocyte survival factors that signal 

through nephrin and glutamate receptors14 or 

might increase noxious factors, such as shear 

stress, angiotensin II, or transforming growth fac-

tor β (TGFβ).13

An experimental model of focal segmental glo-

merulosclerosis that is induced by the anthracy-

cline doxorubicin (also called adriamycin) causes 

severe disease in BALB/c mice, whereas other 

mouse strains are protected. The strain depen-

dence went unexplained until the recent discov-

ery of the susceptibility gene as an ancestral mu-

tation in Prkdc (protein kinase, DNA-activated, 

catalytic polypeptide), which encodes a compo-

nent of the DNA double-strand break-repair ma-

chinery.15 In BALB/c mice, there is no nonhomolo-

gous end-joining DNA repair after intercalation 

of doxorubicin into podocyte DNA, leading to mi-

tochondrial DNA depletion.15 This murine model 

illustrates the importance of protective mecha-

nisms against genotoxic stress to enhance podo-

cyte longevity.

Genetic Susceptibility

Since the discovery of nephrin as the major com-

ponent of the slit diaphragm in 1998,16 the num-

ber of identified podocyte mutations in familial 

and sporadic focal segmental glomerulosclerosis 

has grown (Fig. 2, and the table in the Supple-

mentary Appendix, available with the full text of 

this article at NEJM.org). The genes encode di-

verse podocyte products located in the slit dia-

phragm,16-19 cell membrane,20-24 cytosol,25 actin 

cytoskeleton,26-29 nucleus,30,31 mitochondria,32-34 

and lysosomes.35 Mutations in nephrin and podo-

cin are the most frequent.36 Most mutations fol-

low an autosomal recessive transmission and man-

ifest early in life. Autosomal dominant forms (e.g., 

mutations in genes encoding α-actinin-4 and tran-

sient receptor potential cation channel 6) usually 

present in late adolescence or adulthood. Many of 

the genes that are involved were identified by po-

sitional cloning in affected families and later vali-

dated in global or podocyte-specific knockout 

models or in transgenic models that express the 

mutated genes. Genetic defects have been identi-

fied in up to two thirds of patients with focal 

segmental glomerulosclerosis who present in the 

first year of life, underscoring the importance of 

genetic testing in this age group.37 Genetic test-

ing is most likely to uncover a basis for focal seg-

mental glomerulosclerosis in infants, young chil-

dren, and patients with syndromic disease or a 

positive family history. A small but clinically im-

portant percentage of older children and adults 

with sporadic glucocorticoid-resistant disease may 

also harbor mutations.36

Podocyte genes encode diverse structural pro-

teins or enzymes that participate in signaling 

events that regulate podocyte growth, differentia-

tion, motility, and interactions between cells and 

between cells and matrix.38 These gene products 

are coupled to the actin cytoskeleton directly or 

indirectly through intermediary proteins (Fig. 2). 

Disruption or dysregulation of signaling through 

these proteins leads to rearrangement of the actin 

cytoskeleton and the generalized response of foot-

process effacement. The podocyte is a motile cell 

endowed with mechanosensors that respond to 

positional stimuli and shear stress.39 Factors that 

promote the development of a cytoskeleton that 

is either too rigid or too dynamic pose potential 

threats to podocyte survival. For example, disease-

causing mutations in α-actinin-4 produce a rigid 

cytoskeleton by exposing a buried actin-binding 

Figure 1 (facing page). Morphogenesis of Focal Seg-

mental Glomerulosclerosis (FSGS).

The sequence of glomerular changes in the develop-

ment of FSGS is illustrated by parallel light-microscop-

ic and electron-microscopic images. The normal glo-

merular capillaries are widely patent and have intact 

foot processes (or pedicels) along their outer aspect. 

Podocytes that are targeted by cellular stresses, such 

as permeability factors (external causes) or disease-

causing mutations (intrinsic defects), respond by the 

reorganization of their actin cytoskeleton, leading to 

foot-process effacement. This change in cell shape 

forms a sheet of undifferentiated cytoplasm over the 

surface of the glomerular basement membrane. If the 

inciting injurious factors are long-standing or the podo-

cyte is exposed to second hits, a critical level of cell 

stress is reached and the injured or dying podocyte 

 detaches from the glomerular basement membrane. 

Because podocytes are unable to repair by cell division, 

attrition of a finite number of podocytes leads to scle-

rosis of the underlying glomerular capillaries, which 

become obliterated by matrix. At these sites, adhesions 

to Bowman’s capsule may form, and parietal cells often 

migrate onto the tuft, where they lay down loose matrix 

material. In the early stages, the sclerotic lesions are 

typically segmental, involving a portion of the glomeru-

lar tuft.



medical progress

n engl j med 365;25 nejm.org december 22, 2011 2401

Normal glomerulus with intact foot processes
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Podocyte detachment
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site that is independent of calcium regulation, 

leading to a gain of function.40 Once the actin cy-

toskeleton undergoes rearrangement, the loss of 

foot-process anchoring may weaken podocyte at-

tachments to the glomerular basement membrane, 

rendering them more vulnerable to detachment in 

response to filtration pressures. It is likely that 

the wear and tear from shear stress, stretch ten-

sion, oxidative stress, and DNA damage that ac-

crues over years may compound a genetic basis 

for this disease.41 Such accumulated second hits 

might explain the late onset of genetic focal seg-

mental glomerulosclerosis in adults with autoso-

mal dominant mutations.
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Genetic Basis in Patients of African Descent

Across age groups, the incidence of focal segmen-

tal glomerulosclerosis is higher and the rate of 

renal survival is worse among blacks than among 

whites. Mapping by means of admixture linkage 

disequilibrium in large populations identified ge-

netic risk factors for focal segmental glomerulo-

sclerosis and end-stage renal disease in blacks. 

Two genes in close linkage disequilibrium were 

identified on human chromosome 22. MYH9, en-

coding myosin heavy chain 9, a nonmuscle myosin 

IIA that is a component of the podocyte cytoskel-

eton, was identified first42 and was an attractive 

candidate because MYH9 mutations were known 

to cause a rare autosomal dominant form of focal 

segmental glomerulosclerosis in patients with Ep-

stein–Fechtner syndromes (renal disease, sensori-

neural deafness, and macrothrombocytopenia).27,43 

Genomewide scans identified three single-nucle-

otide polymorphisms in intron 23 of the MYH9 

gene as conferring risk for primary focal segmen-

tal glomerulosclerosis and hypertensive end-stage 

renal disease among blacks in an autosomal re-

cessive model.42,44 However, further probing of 

the genetic interval found two independent se-

quence variants (called G1 and G2) in the last 

exon of the neighboring gene encoding apolipo-

protein L1 (APOL1) that had a stronger association 

with focal segmental glomerulosclerosis, with a 

combined signal that was increased by a factor of 

35 over that of MYH9. Thus, APOL1 was implicat-

ed as the actual susceptibility gene.45

Selection tests in Europeans and Africans 

showed that the APOL1 G1 and G2 haplotypes 

were under strong selection only in Africa.45 Apo-

lipoprotein L1 is a plasma factor that can lyse 

Trypanosoma brucei brucei, the parasite that causes 

sleeping sickness. Two subspecies of trypanosoma 

that are resistant to lysis by apolipoprotein L1, 

T. brucei rhodesiense and T. brucei gambiense, evolved 

in sub-Saharan Africa. The G1 and G2 variants of 

APOL1 lyse T. brucei rhodesiense, but not T. brucei 

gambiense, a finding that explains how these vari-

ants could have risen to high frequency by natu-

ral selection. This scenario is analogous to sickle 

cell trait, in which a mutation in the hemoglobin 

A beta chain confers protection against malaria 

but at the risk of hemoglobinopathy. In both situ-

ations, the protection against parasitic infection is 

a dominant trait present in heterozygotes, whereas 

the development of host disease is a recessive 

trait, present in homozygotes. How the APOL1 G1 

and G2 variants act mechanistically on the podo-

cyte to cause focal segmental glomerulosclerosis 

has not been delineated.

Pathol o gic a l Defini tion

The histologic definition of focal segmental glo-

merulosclerosis is a segmental obliteration of 

Figure 2 (facing page). Normal Glomerulus and Glomerular Filtration Barrier.

In Panel A, each kidney contains approximately 1 million glomeruli, which comprise the filtering units of the kidney. The normal glomer-

ulus is composed of a specialized bundle of capillaries that originates from branchings of the afferent arteriole as it enters the hilus  

(or vascular pole). Between the afferent and efferent arterioles, bordered by the macula densa of the distal tubule, is the triangular juxta-

glomerular apparatus, an endocrine organ involved in renin production and tubuloglomerular feedback. The glomerular capillaries are 

supported by the mesangial cells, which are invested in matrix and are continuous with the smooth-muscle cells of the hilar arterioles. 

The glomerular endothelial-cell bodies are oriented toward the mesangium, whereas their fenestrated cytoplasm lines the inner aspect 

of the peripheral glomerular basement membrane. The glomerular basement membrane forms a scaffold for the glomerular capillaries 

and reflects over the mesangium. Along their outer aspect, the glomerular capillaries are supported by the podocytes, which reside in 

the urinary space and have interdigitating foot processes. The glomerular ultrafiltrate enters the urinary space and passes into the tubu-

lar pole (the origin of the proximal tubule), which lies opposite the vascular pole. In Panel B, the glomerular capillary wall and selected 

components of the filtration barrier are shown. On the urinary side, the interdigitating podocyte foot processes are aligned in regular ar-

rays separated by filtration slit diaphragms located above the glomerular basement membrane. The fenestrated glomerular endothelium 

is present at the blood interface. The inset diagrams show some of the molecules that make up the slit diaphragm (above) and the basal 

surface of the podocyte (below). Nephrin is the major component of the slit diaphragm. Pairs of nephrin molecules extending out into 

the center of the slit from adjacent podocyte foot processes form homophilic interactions as well as heterophilic interactions with 

NEPH. The slit diaphragm complex includes podocin, which forms a hairpin turn within the podocyte membrane. Through interaction 

with CD2-associated protein (CD2AP), the slit diaphragm molecules are linked to the actin cytoskeleton, which is regulated by 

α-actinin-4, inverted formin 2 (INF2), and myosin 1E (Myo1E). Calcium generated by phospholipase C epsilon 1 (PLCε1) through diacyl-

glycerol (DAG) and inositol triphosphate (IP3) and entering the cell through transient receptor potential cation channel 6 (TRPC6) regu-

lates actin polymerization. At the basal surface, adhesion molecules α3β1 integrin and α-dystroglycan are linked to laminin. Integrin is 

coupled to the actin cytoskeleton through a complex of talin, vinculin, and paxillin, whereas adhesion molecule α-dystroglycan links to 

actin through utrophin. Negatively charged molecules podocalyxin and glomerular epithelial protein 1 (GLEPP-1) are arrayed on the api-

cal-cell membrane.
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glomerular capillaries by extracellular matrix.7,46

Entrapment of plasma proteins as hyalinosis com-

monly accompanies the sclerosis. Because juxta-

medullary nephrons are often affected first, ad-

equate glomerular sampling is needed to identify 

the diagnostic lesions. Adhesions or synechiae may 

form between the sclerosing segment and Bow-

man’s capsule. On electron microscopy, the major 

finding is extensive effacement of the foot pro-

cesses without other abnormalities in the glomer-

ular basement membrane. Detachment of podo-

cytes from the glomerular basement membrane 

occurs in regions overlying the sclerotic lesions. 

At these sites, there is often accumulation of loose 

matrix material synthesized by parietal cells that 

migrate onto the tuft, producing a halolike effect. 

Granular immune-type electron-dense deposits are 

not present. Immunofluorescence typically reveals 

coarse segmental staining for IgM and C3 en-

trapped in areas of hyalinosis. As individual neph-

rons degenerate, tubular atrophy and interstitial 

fibrosis develop. Proximal tubular reabsorption 

droplets reflect heightened tubular trafficking of 

albumin and lipoproteins, a process that contrib-

utes to progressive tubulointerstitial injury.47

The pathologic diversity of glomerular le sions 

in focal segmental glomerulosclerosis is evi-

dent.7,46,48 Lesions differ anatomically in their 
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location with respect to the glomerular hilus 

(vascular pole) and the tubular pole and qualita-

tively with respect to glomerular hypercellularity 

and capillary collapse.46 A classification of his-

tologic variants recognizes not-otherwise-speci-

fied (NOS),46 perihilar,46,49-53 cellular,53,54 tip,46,55,56

and collapsing disease57-62 variants and is appli-

cable to both primary and secondary focal seg-

mental glomerulosclerosis (Fig. 3).

In the collapsing variant, podocytes have an 

Histologic
Subtype

NOS The  usual generic form of FSGS.
FSGS(NOS) does not meet defining

criteria for any other variant.  
Foot-process effacement is variable. 

Primary or secondary (including
genetic forms and other 
diverse secondary causes).

Cross-sectional studies suggest 
this is the most common
subtype. 

Other variants can evolve into
FSGS (NOS) over time.

May present with the
nephrotic syndrome
or subnephrotic
proteinuria.

Perihilar Perihilar hyalinosis and sclerosis
involving the majority of glomeruli
with segmental lesions.

Perihilar lesions are located at the
glomerular vascular pole.

In adaptive FSGS, there is usually 
glomerular hypertrophy (glomer-
ulomegaly).

Foot-process effacement is relatively
mild and focal, which probably
reflects the heterogeneous adap-
tive responses of glomeruli.

Common in adaptive FSGS
associated with obesity, ele-
vated lean body mass, reflux
nephropathy, hypertensive
nephrosclerosis, sickle cell
anemia, and renal agenesis.

Predisposition for vascular pole
is probably due to normally
increased filtration pressures
at the proximal afferent end
of glomerular capillary bed,
which are heightened under 
conditions of compensatory 
demand and vasodilatation 
of the afferent arteriole. 

In adaptive FSGS, patients
are more likely to pre-
sent with subnephrotic
proteinuria and normal
serum albumin levels. 

Cellular Expansile segmental lesion with
endocapillary hypercellularity,
often including foam cells and
infiltrating leukocytes, with
variable glomerular epithelial-
cell hyperplasia.

There is usually severe foot-process
 effacement.

Usually primary, but also seen
in a variety of secondary forms.

This is the least common variant.
It is thought to represent an early

stage in the evolution of 
sclerotic lesions. 

Usually presents with the
nephrotic syndrome.

Tip Segmental lesion involving the 
tubular pole, with either adhesion 
to tubular outlet or confluence 
of podocytes and tubular epithelial
cells. 

Compared with other variants, it 
has the least tubular atrophy 
and interstitial fibrosis. 

There is usually severe foot-process
effacement.

Usually primary.
Probably mediated by physical

stresses on the paratubular
segment owing to the conver-
gence of protein-rich filtrate
on the tubular pole, causing 
shear stress and possible
prolapse.

Usually presents with 
abrupt onset of the
nephrotic syndrome.

More common in white
race.

Best prognosis, with high-
est rate of responsivity 
to glucocorticoids and  
lowest risk of progres-
sion. 

Collapse Implosive glomerular-tuft collapse
with hypertrophy and hyperplasia
of the overlying visceral epithelial
cells.

Hyperplastic glomerular epithelial
cells may fill the urinary space,
resembling crescents. 

Severe tubular injury and tubular
microcysts are common.

There is usually severe foot-process
effacement.

Primary or secondary to
Viruses: HIV-1, parvovirus

B19, SV40, EBV, CMV, 
hemophagocytic syndrome

Drugs: pamidronate and
interferon

Vaso-occlusive disease: athero-
emboli, calcineurin inhibitor
nephrotoxicity, and chronic
allograft nephropathy

Most aggressive variant
of primary FSGS with
black racial predomi-
nance and severe
nephrotic syndrome.

Worst prognosis, with
poor responsivity to
glucocorticoids and
rapid course to renal
failure.

Glomerular Lesion Defining Features Associations Clinical Features

Figure 3. Histologic Variants of Focal Segmental Glomerulosclerosis (FSGS).

CMV denotes cy tomegalovirus, EBV Epstein–Barr virus, HIV-1 human immunodeficiency virus type 1, NOS not otherwise specified, and 

SV40 simian virus 40.
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immature, dysregulated phenotype.63,64 Because 

injured podocytes lose differentiation markers 

such as nephrin, the identity of the cells that pro-

liferate in Bowman’s space has been controver-

sial. Recent studies using parietal-cell markers 

suggest that most of these cells actually origi-

nate from the parietal layer.65-67 Moreover, pro-

genitor cells bearing stem-cell markers CD133 

and CD24 line Bowman’s capsule, possibly serv-

ing as a reservoir to replenish lost podocytes.68 

Although progenitor cells may be recruited to 

sites of podocyte denudation, it is not known 

whether they can differentiate into the mature 

podocytes that are needed to reconstitute a nor-

mal filtration barrier.

Pr im a r y (Idiopathic)  Dise a se

Primary focal segmental glomerulosclerosis has 

long been attributed to a putative circulating per-

meability factor. Indirect evidence for a circulat-

ing plasma factor includes the ability to modu-

late proteinuria by immunoadsorption, potential 

disease recurrence minutes after renal transplan-

tation, and therapeutic reduction in proteinuria 

by plasmapheresis.69 In addition, serum samples 

from patients with focal segmental glomerulo-

sclerosis cause increased permeability to albumin 

in isolated glomeruli and induce foot-process ef-

facement and proteinuria when injected into rats. 

Several candidate plasma factors have been pro-

posed. For example, cardiotrophin-like cytokine 1, 

a member of the interleukin-6 family, has perme-

ability activity in a plasma fraction with a molecu-

lar weight of less than 30 kD and can be enriched 

by means of galactose affinity chromatography.69 

Elevated serum levels of soluble urokinase recep-

tor (>3000 pg per milliliter) have been identified 

in up to two thirds of patients with primary focal 

segmental glomerulosclerosis but not in those 

with minimal change disease.70 Increased serum 

levels of soluble urokinase receptor before renal 

transplantation were associated with an increased 

risk of recurrent disease in the allograft.70 Circu-

lating soluble urokinase receptor induces foot-

process effacement through the activation of podo-

cyte β
3
 integrin, and its effect can be blocked in 

animal models by neutralizing antibodies target-

ing soluble urokinase receptor.70,71 The cellular 

source and stimulants of soluble urokinase recep-

tor in patients with focal segmental glomerulo-

sclerosis are unknown.

V irus-Induced Dise a se

Viruses can act on the podocyte either by direct 

infection or by the release of inflammatory cyto-

kines that interact with podocyte receptors. The 

best studied of such viruses is human immuno-

deficiency virus type 1 (HIV-1), which directly 

infects podocytes and tubular epithelial cells.72 

Evidence supports HIV-1 entry by transfer from 

infected T cells to tubular epithelial cells through 

virologic synapses formed during cell adhesion, 

independent of CD4.73 HIV-1 can persist in the 

kidney epithelium despite antiretroviral therapy 

and normalization of peripheral CD4 counts. 

HIV-1 gene expression by infected renal epithelium 

in turn induces dysregulation of host genes. The 

form of focal segmental glomerulosclerosis asso-

ciated with untreated HIV-1, called HIV-associated 

nephropathy (HIVAN), typically progresses rap-

idly and is associated with glomerular collapse.62 

In vivo and in vitro models have identified viral 

genes nef and vpr as particularly important in 

HIVAN pathogenesis.74,75 Nef, a virulence factor, 

contains a proline-rich motif that interacts with 

the SH3 domain of the Src family kinases. Through 

downstream activation of STAT3 and MAPK1/2, 

it promotes podocyte dedifferentiation and prolif-

eration, whereas interaction with diaphanous in-

teracting protein mediates the up-regulation of 

Rac1, reduction in RhoA, and dysregulation of ac-

tin cytoskeleton.76 Vpr, which is required for nu-

clear entry of the HIV-1 preintegration complex, 

mediates tubular epithelial G2 cell-cycle arrest 

and apoptosis.77,78 Parvovirus B19 is another vi-

rus that can infect podocytes and tubular cells, 

leading to collapsing focal segmental glomerulo-

sclerosis.60 Other viruses associated with this dis-

ease, such as simian virus 40, cytomegalovirus, and 

Epstein–Barr virus, are less well characterized.57,61

Drug -Induced Dise a se

Historically, the first drug associated with focal 

segmental glomerulosclerosis was heroin, though 

the incidence of this drug-induced disease (known 

as heroin nephropathy) has fallen sharply in par-

allel with the increasing purity of modern street 

heroin.79 The bisphosphonate pamidronate, an 

osteoclast inhibitor used to reduce bone resorp-

tion in patients with myeloma and metastatic can-

cers, has been linked to the development of focal 

segmental glomerulosclerosis.58 Proteinuria and 
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renal failure associated with pamidronate typically 

improve after withdrawal of the drug. Pamidro-

nate has direct toxic effects on osteoclasts, in-

cluding disruption of the actin cytoskeleton, sug-

gesting the possibility of a similar effect on the 

podocyte cytoskeleton.

All forms of interferon therapy, including in-

terferon alfa (widely used to treat hepatitis C), 

interferon beta (indicated for multiple sclerosis), 

and interferon gamma (formerly used in idiopath-

ic pulmonary fibrosis and indicated for chronic 

granulomatous disease and malignant osteope-

trosis), have been reported to induce focal seg-

mental glomerulosclerosis.59 The podocyte has 

receptors for interferon alfa and interferon beta 

and expresses major histocompatibility complex 

class II antigen in response to interferon gamma, 

suggesting potential direct podocyte effects. In 

the transplanted kidney, toxic effects from calci-

neurin inhibitors are associated with collapsing 

focal segmental glomerulosclerosis and hyaline 

arteriolopathy, probably through acute ischemia 

from severe vasoconstriction.80,81 In addition, the 

mammalian target of rapamycin (mTOR) inhibi-

tor sirolimus (also known as rapamycin) can in-

duce focal segmental glomerulosclerosis by re-

ducing podocyte expression of critical proteins in 

the slit diaphragm and cytoskeleton, including 

nephrin.82

Dise a se Seconda r y t o 
Hemody na mic A da p tations

Another form of focal segmental glomeruloscle-

rosis, termed adaptive focal segmental glomeru-

losclerosis, is thought to result from structural 

and functional adaptations mediated by intrare-

nal vasodilatation, increased glomerular capillary 

pressures, and plasma flow rates.52 Such mal-

adaptive responses may arise through a reduction 

in the number of functioning nephrons (e.g., in 

unilateral renal agenesis, reflux nephropathy, or 

low nephron endowment owing to very low birth 

weight50) or through mechanisms that place he-

modynamic stress on an initially normal nephron 

population (e.g., in morbid obesity, cyanotic con-

genital heart disease, and sickle cell anemia) (Ta-

ble 1). Unlike primary focal segmental glomeru-

losclerosis, adaptive disease is often associated 

with normal serum albumin levels, despite ne-

phrotic-range proteinuria, and biopsy samples ob-

tained from such patients often show enlarged 

glomeruli, perihilar sclerosis, and relatively mild 

degrees of foot-process effacement.7,46

Animal models in which renal mass is mark-

edly reduced have elucidated the mechanistic bases 

for adaptive focal segmental glomerulosclerosis.83 

Reflex vasodilatation of both the afferent and ef-

ferent arterioles follows a marked reduction in 

renal mass, causing elevation in the flow rate in 

the glomerular capillaries. Because the reduction 

in vascular resistance is greater in the afferent 

arteriole than in the efferent arteriole, glomerular 

hydrostatic pressure rises, producing glomerular 

hypertension. These responses cause an eleva-

tion in the single-nephron glomerular filtration 

rate in proportion to the amount of kidney ex-

cised.52,83 Glomerular volume and surface area 

increase, placing mechanical strain on podocytes 

that stretch to cover the expanding tuft. Some 

hypertrophied podocytes detach, producing de-

nuded patches of glomerular basement mem-

brane. These sites become covered by parietal 

cells, leading to the formation of a synechia to 

Bowman’s capsule and a nidus for the develop-

ment of segmental sclerosis.84

Although this scenario is the initiating step in 

the adaptive forms of focal segmental glomeru-

losclerosis, it may supervene in the later stages of 

other forms of the disease. The loss of a critical 

number of nephrons promotes the activation of 

the renin–angiotensin system (RAS), exacerbat-

ing proteinuria and setting the stage for progres-

sive glomerulosclerosis regardless of the initial 

cause. Angiotensin II also has direct proapoptotic 

effects on podocytes.85 Excessive protein uptake 

by podocytes induces podocyte TGFβ,86 which 

promotes apoptosis and leads to endoplasmic 

reticulum stress, cytoskeletal reorganization, and 

dedifferentiation.87 Drugs that are aimed at the 

inhibition of RAS (such as angiotensin-convert-

ing–enzyme [ACE] inhibitors and angiotensin-

receptor blockers) lower intraglomerular filtration 

pressures through the inhibition of angiotensin 

II–mediated vasoconstriction of the efferent ar-

teriole. ACE inhibition also augments bradykinin, 

which contributes to efferent arteriolar dilatation. 

The resulting reduction in proteinuria exerts a 

protective effect on podocytes and tubular cells.

Pro gnos tic Fe at ur es

A variety of clinical and pathologic features pre-

dict outcome. Black race, increased degrees of pro-
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teinuria and renal insufficiency, and increased 

severity of interstitial fibrosis and tubular atro-

phy in biopsy specimens are associated with a 

worse outcome. Patients who have a partial or 

complete remission of proteinuria have better out-

comes than those who do not.88 The histologic 

variant also correlated with remission status and 

outcome in two large case series,53,54 in which 

rates of complete and partial remission were high-

est for the tip variant, were intermediate for the 

cellular, perihilar, and NOS variants, and were 

lowest for the collapsing variant. Renal survival 

was inversely related to remission status, with the 

best rates of renal survival in the tip variant and 

the worst rates in the collapsing variant.53,54 The 

prognosis in the adaptive form of the disease is 

typically much better than in the primary form, 

possibly as a consequence of an increased likeli-

hood of complete or partial remission with RAS 

inhibition in this population.

Ther a py

The goal of therapy is to induce a complete or 

partial remission of proteinuria and preserve re-

nal function. Even partial remission is associated 

with improved long-term survival.89,90 The treat-

ment of primary focal segmental glomeruloscle-

rosis is empiric and based on the rationale that 

the permeability factor derives from a dysregulat-

ed immune response. In addition, these therapies 

have beneficial effects directly on podocytes.91

Children with the nephrotic syndrome are 

treated empirically with oral prednisone (60 mg 

per square meter of body surface per day) for 4 to 

6 weeks, a regimen that is based on the statisti-

cal likelihood that most children (approximately 

80%) will have glucocorticoid-responsive minimal 

change disease. In most centers, usually only chil-

dren with glucocorticoid resistance are subjected 

to renal biopsy. In contrast, adults with the ne-

phrotic syndrome usually undergo renal biopsy 

before the initiation of therapy, since the possi-

ble causes are far more varied.

Once a diagnosis is established on biopsy, po-

tential secondary causes that require specific 

therapies should be ruled out before a patient is 

presumed to have primary focal segmental glo-

merulosclerosis. For example, the form of the 

disease that is caused by HIV-1 infection is treat-

ed with antiretroviral therapy, and drug-induced 

forms are managed by discontinuation of the in-

citing agent. Patients with focal segmental glo-

merulosclerosis receive RAS blockade and dietary 

sodium restriction as initial therapy. In the adap-

tive form of the disease, such therapy typically re-

sults in the diminution of proteinuria to less than 

1 g per day. There is no evidence to support glu-

cocorticoid therapy in adaptive or genetic forms 

of the disease. Some genetic forms may respond 

to empirical therapy with calcineurin inhibitors.

An algorithm for the treatment of primary 

focal segmental glomerulosclerosis is illustrated 

in Figure 4. High-dose glucocorticoid therapy can 

be given as 1 mg per kilogram of body weight 

daily or as 2 mg per kilogram on alternate days. 

In adults, a response to glucocorticoids may take 

up to 16 weeks,92 after which the drugs can be 

slowly tapered over a period of 3 to 6 months. 

There is little evidence to recommend glucocor-

ticoid therapy in patients with the primary form 

of the disease that is not accompanied by the 

nephrotic syndrome. Therapy for glucocorticoid-

resistant focal segmental glomerulosclerosis is a 

calcineurin inhibitor, either cyclosporine93 or tac-

rolimus. In some patients, such as those with 

diabetes, a psychiatric disorder, or severe osteo-

porosis, concern about the side effects of gluco-

corticoid therapy may prompt the selection of a 

calcineurin inhibitor alone as first-line therapy. 

Cyclosporine can be given in divided doses of 3 to 

5 mg per kilogram per day for 4 to 6 months to 

induce remission. Patients are more likely to re-

main in remission if calcineurin inhibitor therapy 

is continued for at least 12 months before slowly 

tapering. In addition to the systemic immunosup-

pressive properties of glucocorticoids and calci-

neurin inhibitors, these drugs exert direct effects 

on the podocyte that enhance prosurvival path-

ways and stabilize the actin cytoskeleton.91,94 The 

control of blood pressure and hyperlipidemia is 

also a critical element of supportive care.

A randomized trial was conducted in glucocor-

ticoid-resistant children and adults up to 40 years 

of age comparing a 12-month course of cyclo-

sporine therapy with a combination of oral pulse 

dexamethasone and mycophenolate mofetil.95 Par-

tial or complete remission occurred in 46% of the 

cyclosporine group versus 33% of the group re-

ceiving dexamethasone–mycophenolate mofetil, 

a difference that was not statistically significant. 

Although somewhat underpowered, this study 

suggests that these regimens have limited addi-

tional benefit in glucocorticoid-resistant patients 
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and shows the potential for toxicity from large 

doses of glucocorticoids.

Glucocorticoid and calcineurin inhibitor ther-

apies are successful in approximately 50% of pa-

tients. Other therapies have been tried, including 

alkylating agents, plasmapheresis, and even the 

anti–B-cell monoclonal antibody rituximab, which 

also stabilizes the podocyte actin cytoskeleton,96 

but none of these therapies have been shown to 

be effective. Sirolimus has been associated with 

adverse events, including acute renal failure.97

Most patients with progressive focal segmen-

tal glomerulosclerosis have persistent nephrotic-

range proteinuria. Although patients with non-

nephrotic proteinuria are at a reduced risk for 

progression to end-stage renal disease, sustained 

non-nephrotic proteinuria is associated with an 

increased risk of death and complications from 

cardiovascular causes.98 Thus, the control of hy-

pertension, hyperlipidemia, and edema is impor-

tant in risk management.

R ecur r ence a f ter K idne y 
Tr a nspl a n tation

In approximately 40% of patients with primary 

focal segmental glomerulosclerosis with end-stage 

renal disease who undergo kidney transplantation, 

recurrent disease develops in the allograft. Risk 

factors for recurrence include younger age (espe-

cially in children 6 to 15 years of age), nonblack 

race, a rapid course to end-stage renal disease 

(<3 years) in the native kidney, heavy proteinuria 

in the period before transplantation, and the loss 

of previous allografts to recurrence.99 Early re-

current focal segmental glomerulosclerosis resem-

bles minimal change disease with extensive foot-

process effacement, but repeat biopsy samples 

show evolution to lesions associated with focal 

segmental glomerulosclerosis over time. In such 

cases, the histologic subtype is the same as that 

in the native kidney in approximately 80% of pa-

tients, supporting the persistence of a similar 

FSGS

Primary FSGS
with subnephrotic

proteinuria

Secondary FSGS
(e.g., viral, drug-induced)

RAS inhibition and dietary
sodium restriction

Treatment of underlying cause
whenever possible

No response or worsening
disease

Adaptive FSGS

RAS inhibition and dietary
sodium restriction

Primary FSGS with the 
nephrotic syndrome or

nephrotic-range proteinuria

Glucocorticoids daily or alternate
day and RAS inhibition

Calcineurin inhibition

Glucocorticoid-resistant FSGS
Calcineurin inhibition

(if glucocorticoid intolerance,
osteoporosis, other contra-

indications to glucocorticoids)

Children,
4–6 wk of
treatment

Adults,
16 wk of

treatment
or

Figure 4. Treatment Algorithm for Focal Segmental Glomerulosclerosis (FSGS).

RAS denotes renin–angiotensin system.
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pathogenesis.100 Plasmapheresis to remove the pu-

tative permeability factor is most beneficial early 

in the course of recurrence and is reported to lead 

to remission after 8 to 12 treatments.99

Conclusions

Focal segmental glomerulosclerosis is a common 

pattern of glomerular disease comprising diverse 

clinical and pathologic syndromes. All forms of 

the disease share podocyte injury and depletion 

as central mediators of the pathology. Great 

progress has been made in unraveling the patho-

genesis of genetic and secondary forms. Advanc-

es in identification of the permeability factors 

causing the common primary form hold promise 

for the design of more targeted therapies.
No potential conflict of interest relevant to this article was 

reported.

Disclosure forms provided by the authors are available with 
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