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FOCAL SETS AND REAL HYPERSURFACES
IN COMPLEX PROJECnVE SPACE1

BY

THOMAS E. CECIL AND PATRICK J. RYAN

Abstract. Let M be a real submanifold of CPm, and let J denote the complex
structure. We begin by finding a formula for the location of the focal points of M
in terms of its second fundamental form. This takes a particularly tractable form
when M is a complex submanifold or a real hypersurface on which J£ is a principal
vector for each unit normal £ to M. The rank of the focal map onto a sheet of the
focal set of M is also computed in terms of the second fundamental form. In the
case of a real hypersurface on which 7"{ is principal with corresponding principal
curvature ¡i, if the map onto a sheet of the focal set corresponding to p has
constant rank, then that sheet is a complex submanifold over which M is a tube of
constant radius (Theorem 1). The other sheets of the focal set of such a hyper-
surface are given a real manifold structure in Theorem 2. These results are then
employed as major tools in obtaining two classifications of real hypersurfaces in
CPm. First, there are no totally umbilic real hypersurfaces in CPm, but we show:

Theorem 3. Let M be a connected real hypersurface in CPm, m > 3, with at most
two distinct principal curvatures at each point. Then M is an open subset of a geodesic
hypersphere. Secondly, we show that there are no Einstein real hypersurfaces in
CPm and characterize the geodesic hyperspheres and two other classes of hyper-
surfaces in terms of a slightly less stringent requirement on the Ricci tensor in
Theorem 4.

One of the first results in the geometry of submanifolds is that an umbilic
hypersurface M in Euclidean space must be an open subset of a hyperplane or
sphere. The proof goes as follows: assume that the shape operator is a scalar
multiple of the identity, A = XI, and use the Codazzi equation to show that X is
constant. Then either X = 0, in which case M lies on a hyperplane, or the focal
points

/x(x) = x + (\/X)i,
£ the unit normal, all coincide, and M lies on the sphere of radius 1/X centered at
the unique focal point.

This simple idea suggests a plan of attack for classifying hypersurfaces in terms
of the nature of the principal curvatures. Under fairly general conditions, the set of
focal points corresponding to a principal curvature X can be given a differentiable
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482 T. E. CECIL AND P. J. RYAN

manifold structure with fx collapsing each leaf of the corresponding principal
distribution to a point [4]. This structure was used in an essential way in the
classifications of taut hypersurfaces in [2] and [5].

In general, the study of hypersurfaces of real space forms has been a fertile field
for differential geometers over the past decade. Much of the work has involved
finding sufficient conditions for a hypersurface to be one of the "standard exam-
ples" (see [17, p. 251]), characterized by the fact that they have one or two distinct
constant principal curvatures. The method of proof typically consists of algebrai-
cally determining the number of distinct principal curvatures, and then proving
they are constant by use of the Codazzi equation and whatever algebraic relation-
ships are available. Finally, one shows that the principal distributions are parallel,
so that the de Rham theorem can be applied. In recent years, several authors have
asked similar questions about real hypersurfaces in complex space forms. In this
paper, we will develop the manifold structure of the focal set for submanifolds of
CPm, and exploit it to obtain some classifications of real hypersurfaces.

Real hypersurfaces in complex space forms come equipped with a distinguished
tangent vector field J£ obtained by applying the complex structure / to the unit
normal field ¿. Whether or not /£ is a principal vector is often crucial in obtaining
classifications, and at times it has been assumed in order to obtain the desired
results. In Theorem 1, we have a geometric interpretation of the condition that J£
is principal, namely, the hypersurface M must lie on a tube of constant radius over
a complex submanifold of CPm. This turns out to be a rather powerful tool, since it
brings into play the more rigid structure of complex submanifolds.

Although there are no umbilic hypersurfaces in CPm (a fact first noted by
Tashiro and Tachibana [22]), one sheet of the focal set of a geodesic hypersphere is
precisely its center. We prove the following analogue of the classical theorem.

Theorem 3. Let M be a connected real hypersurface in CPm, m > 3, with at most
two distinct principal curvatures at each point. Then M is an open subset of a geodesic
hypersphere.

We first use the Codazzi equation to show that /£ is principal, and then use the
fact that M is a tube over a complex submanifold. A geodesic hypersphere in CPm
has two distinct constant principal curvatures of respective multiplicities 2m — 2
and 1, with /£ corresponding to the latter. R. Takagi [20] proved the conclusion of
Theorem 3 under the assumption of two constant principal curvatures. His proof is
quite different in spirit in that he first shows that the inverse image of M under the
projection ir: s2m+x —» CPm is a hypersurface with two constant principal curva-
tures in the sphere S2m+X, and then invokes Cartan's classification of such
hypersurfaces of the sphere to complete the proof.

A Riemannian manifold M is Einstein if its Ricci tensor is a scalar multiple of
the identity at each point. Einstein hypersurfaces of real space forms were classified
through the work of Cartan and Thomas [23] and Fialkow [8], while Einstein
complex hypersurfaces of complex space forms were classified by Smyth [19]. Two
important classes of real hypersurfaces in CPm which arise in this context are the
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tubes of constant radius over a totally geodesic CPk, 0 < k <m — 1, and tubes
over a complex quadric Qm~x. These were characterized by Takagi [21] as the only
complete real hypersurfaces in CPm with three distinct constant principal curva-
tures, although the description of them as tubes is new in this paper. We show that
there are no Einstein real hypersurfaces in CPm and characterize certain of these
examples in terms of a slightly less stringent restriction on the Ricci tensor as
follows. (Here g is the Fubini-Study metric of constant holomorphic sectional
curvature 4.)

Theorem 4. Let M be a connected real hypersurface in CPm, m > 3, whose Ricci
tensor S satisfies the identity

SX = aX + bg(X, J£)Ji
for some smooth functions a and b on M. Then M is an open subset of one of the
following:

(a) a geodesic hypersphere,
(b) a tube of radius r over a totally geodesic CPk, 0 < k < m — 1, where

0 < r < it/2 and cot2 r = k/(m - k - 1),
(c) a tube of radius r over a complex quadric Qm~x where 0 <r <tt/4 and

cot2 2r = m — 2.

The major part of the proof is to show that if M satisfies this restriction on S,
then M is an open subset of a geodesic hypersphere, or a tube over some CPk or
Qm~x. A direct computation then shows that the hypersurfaces listed in (b) and (c)
are the only such tubes which actually satisfy the requirement on the Ricci tensor.

Kon [10] proved Theorem 4 under the additional assumption that a and b are
constant. Using that hypothesis, he shows that M must have two or three constant
principal curvatures and then invokes the results of Takagi. On the other hand, by
also considering the structure of the focal set, we are able to obtain the more
general result without appealing to Takagi's theorems. Finally, Maeda [11] also
obtained partial results in the direction of Theorem 4. By use of Theorems 1 and 3,
we are able to handle the cases which Maeda had left unresolved.

1. Preliminaries. We begin by recalling the construction of the Fubini-Study
metric on CPm (see [9, Vol. II, pp. 273-278] and [13, pp. 514-515], for more detail).
Let

m
(z, w) =  2 zk™k

k = 0

be the natural Hermitian inner product on Cm+1. The Euclidean metric on Cm+X is
given by <z, w> = Re(z, w). The unit sphere s2m+x in Cm+X is a principal fibre
bundle over CPm with structure group Sx and projection map it. The tangent space
toS2m+\ at a point z is

T2S2m+x = {wG Cm+X\(z, w) = 0}.

Let
r; = {w g cm+x\(z, w) = (iz, w> = o}.
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484 T. E. CECIL AND P. J. RYAN

The distribution T'z defines a connection in the principal fibre bundle
S2m+x(CPm, Sx) in that T'z is complementary to the subspace {iz} tangent to the
fibre through z, and T'z is invariant by the action of S1. The projection ti induces a
linear isomorphism 77 „ of T'z onto T^z)CPm. The Fubini-Study metic g of constant
holomorphic sectional curvature c is defined by g(A, Y) = (c/4)(X\ Y'}, where
A, Y G TpCPm and A', Y' are their respective horizontal lifts at z, where tt(z) = p.
For convenience, we will take c = 4. The complex structure on T' defined by
multiplication by /' induces the canonical complex structure J on CPm through trt.

Given a vector field A on CPm, there is a corresponding basic vector field X' on
S2m+X (in the terminology of O'Neill [14, p. 460]) such that at z G S2m+X, X'z G T'z
and (tt^)zXz = X^zy If A, Y are vector fields on CPm, the Kählerian covariant
derivative takes the form

where A', Y' are the basic vector fields corresponding to X, Y and V is the
Levi-Civita connection on S2m+X.

2. Location of the focal points. For this local calculation, assume that M is an
embedded real «-dimensional C^-submanifold of CPm. Let NM denote the normal
bundle of M with projection P onto M. For £ G NM, let F(£) be the point in CPm
reached by traversing a distance |£| along the geodesic in CPm originating at
x = P(¿) with initial tangent vector |. A point p G CPm is called a focal point of
multiplicity v > 0of(M,x)iîp = F(!j,) and the Jacobian of F has nullity v at |.

Assume now that £ is a unit normal to M at the point x. Let w G 52m+1 with
•n(w) = x, and let £' be the horizontal lift of £ to T¿,. The geodesic in CPm with
initial tangent vector £ is given by

y(r) = 7r(cos rw + sin r£').

Of course, this is independent of the choice of w. Noting that y(r) = y(r + it) and
by using -£ instead of £, if necessary, we need consider only r G [0, tt/2] in
computing (FJrç. A simple computation shows that if r = 0, then Ft is the identity
transformation, and so no focal point occurs. Thus we now assume 0 < r < tt/2.

Let {£„..., ¿O be an orthonormal basis for the normal space T¿~M with
£, = £. Let U be a sufficiently small normal coordinate neighborhood of x, as
defined in [9, Vol. I, p. 148]. Extend £,, . . . , 4 to orthonormal normal vector fields
on U by parallel translation with respect to the normal connection Va- along
geodesies in M. For any u G U,r\G T^M, we can write

r, = MM 1 - £/,?)    C + frfa+...+/*&).

where 0 < p, 0 < \t\ < 1 for ally and S*_2 tf < 1. That is, p = |tj| and the i, are
the direction cosines of tj. The tangent space at this point r\ in NM can be
considered as

(1) TUM X span{9/9p, d/dt2, . . . , 9/07*}.
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We now begin to locate the focal points by computing (FJr((d/dtj). Let
z = cos rw + sin /■£' as before. Then F(r£) = tt(z) and (/V,)rí(9/9í,) = (tt*)z V,
where V is the initial tangent vector to the curve,

7](t) = cos rw + sin r(cos i£', + sin /£,'),

and £',, % are the respective horizontal lifts of £,(x), i-j(x) to !T¿. One computes that
V = sin ri¡¡. To find the component of Kin T'z, one must subtract (V, /zytz to get

{Fjß/dtj) = (^+)z(sin r(|J - sin r<Ç, /£»),

where the vector on the right is in T'z.
A similar routine calculation shows that

(F,)  (9/9p) = (*m) (-sin rw + cos rÇ).

Let A E TXM, we now compute (F¿)rí(X, 0), where we are using the formula-
tion in (1) for the tangent space to NM at r£ Let /?(/) be a curve in M with initial
tangent vector ß(0) = X. Let a(t) be the horizontal lift of ß to S2m+X with
a(0) = w, a(0) = A¿. Then F(r£x(ß(t))) is the image under it of the curve

-q(t) = cos ra(t) + sin r£',(a(i)),

and thus

(2) (Fm) (A,0) = K)W0)).
Considering -q(t) as a curve in Cm+\ we find

(3) 7,(0) = cos rA¿ + sin rDx,^x,

where £> is the Euclidean covariant derivative in Cm+X. Since <A¿, £',) = 0, we
have Dx£\ = V^£',. Moreover,

\ ' w-~ w

since £', is a horizontal vector field and X'w G T'w. By definition,

Vxix - -^tlA + v¿{,.
Recall that V^£, = 0 by construction of the field £,. Hence, if we let (y^A)^
denote the horizontal lift of A^X to T'w, we have

(4) V^|', = - (AèX)'w + <V^Ci, hv>ñv,

where, of course, (w^O'hO = 0. Differentiating the equation (gx(a(t)), ia(t)} = 0
and evaluating at / = 0, one obtains

(5) <Vi.fi, iw) = -<|', iX:).
Using (2)-(5) and noting that <£', /A¿> = -<A¿, i|'>, we have

{F,)r((X, 0) = K)/cos rA; - sin r{(AtX)'„ - <X if >/w)),

where the vector on the right is not necessarily in T'z. In order to avoid an extremely
cumbersome formula, we will not write the horizontal component of this vector
now. We summarize the data necessary to locate the focal points as follows:
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486 T. E. CECIL AND P. J. RYAN

Proposition 2.1. With the local trivialization of N M given above and for 0 < r <
■n/2,

(a) (FJ^/dtj) = K)zsin r(% - sin r{%, igyiz).
(b) (¿Ut(3/3p) = (^*)z(-sin nv + cos rf).
(c) (F,)r((X, 0) = (tt,)z(cos rA; - sin r((A(X)'w - <A¿, iff >hv)),

w«ere /«e vector on the right is in T'z in cases (a) a«t/ (b), owí «oí necessarily in (c).

It seems that one must make further restrictions on the submanifold M to find a
neat formula for locating the focal points. The two cases which we will treat are
when J£ is normal (e.g. M is a complex submanifold) or when J£ is a principal
vector of Aé, as is the case in many important real hypersurfaces in CPm.

In the case where /£ is normal, Proposition 2.1(a) reduces to a form which will
be important for later considerations.

Proposition 2.2. Suppose £2 = /£ is normal to M at x. Then

(F*)  (9/3/2) = (w„) \(sin 2r)(-sin riw + cos rig),

where the vector on the right is in T'z.

The location of the focal points in this case can now be made explicit. Here Tx
denotes the eigenspace corresponding to an eigenvalue X of Ac.

Proposition 2.3. Suppose £2 = /£ is normal to M at x. Then
(a) (FM)ri(X, 0) = 0 ifX = cot r is an eigenvalue of A^ and X G 7\.
(b) For r = tt/2, (FJ^d/dQ = 0.
(c) (FAri(A, V) =£ 0 except as determined by (a) and (b).

In the case where J£ is principal, Proposition 2.1(c) reduces to a formula which
occurs sufficiently often that we state it explicitly below.

Proposition 2.4. Suppose J£ is an eigenvector of A^ with corresponding eigenvalue
p. Then

(Ft) (/£, 0) = (tt+) (cos 2r — /¿(sin 2r/2))(-sin riw + cos rig),

where the vector on the right is in T'z.

Thus the location of the focal points in this case is given by the following.

Proposition 2.5. Suppose J£ is an eigenvector of A¿ with corresponding eigenvalue
p. Then

(a) (E*)rç(X, 0) = 0 // X = cot r is an eigenvalue of A( and X is a vector in Tx
orthogonal to /£.

(b) (F¿ré(JÍ=, 0) = 0 ifp = 2 cot 2r.
(c) (F^)ri(X, V) ¥= 0 except as determined by (a) and (b).

Note that since cot 2(r — tt/2) = cot 2r, there are two focal points at a distance
77/2 from each other corresponding to the principal curvature p along each normal
geodesic.
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3. Shape operators for tubes. In dealing with submanifolds of real space forms,
one can give a natural manifold structure to the focal set of a hypersurface [4].
Reckziegel [16] noted that the key to obtaining an analogous structure for submani-
folds of higher codimension is that the focal set of a tube of constant radius over a
submanifold M is the union of the focal set of M with M itself. One can then apply
the results in codimension one to the tube.

We have computed the shape operator of a tube over a submanifold M of CPm.
As one might expect, we have not found a natural diagonalizing basis of eigenvec-
tors of /lf except in the special cases where J£ is normal or /£ is principal. We
briefly outline the computation below, and then state the results in the two cases.

Let M be a real «-dimensional submanifold of CPm and let BM denote the
bundle of unit normal vectors to M. The tube of radius r over M is defined by the
map <br: BM —> CPm given by <i>r(£) = F(r£), for F as in §2. For sufficiently small
values of r at least, <$>r determines a real hypersurface of CPm.

In the case where M is a real hypersurface, it is customary to consider §r:
M —» CPm. Let i be a local field of unit normals, then <¡>r(x) = F(r£(x)). For values
of r such that <?>r is an immersion, $rM is called the parallel hypersurface at oriented
distance r from M. In the remainder of this section, the reader is asked to supply
the appropriate changes of notation for the case of a real hypersurface.

We wish to compute the shape operator Ar for <}>r at the point £ G BM. Using the
same local trivialization of AM as before, one has that T^BM is isomorphic to
TXM X span{9/9f2, . . . , 3/3r*}. The computations of ($r)Jd/dtj) and (<t>r)+(X, 0)
are identical with the calculations of (Fm)r( of the same vectors, and thus the results
are given in Propositions 2.1, 2.2 and 2.4.

The vector r, = (7rt)z(-sin rw + cos rg), which is tangent at tt(z) to the geodesic
in CPm from x in the direction £, is a unit normal to </>r at tt(z). By definition, for
(A, V) in T(BM, one has

(4>,)m(MX, V)) = -V^^n,

where t, has been extended to a field of unit normals to <f>r.
In the two special cases, we know (^„.(A, V) quite explicitly from §2. The

required computation is thus quite similar to those of the last section. Care must be
taken in obtaining the correct basic vector fields on 52m+1 before differentiating,
and at times the formulas of O'Neill [14, p. 461] are useful. We will merely state the
results here.

Proposition 3.1. Suppose £2 = J£ is normal to M at x. Let A„ . . ., Xn be a basis
of principal vectors of Ai with corresponding principal curvatures X¡ = cot 0, 0 < B,
< it. Then the shape operator Ar of the tube <$>r is given in terms of its principal vectors
by

(a) ¿,(9/3*2) = -2 cot 2r(3/3f2).
(b)A,(d/dtj) = -cot r(d/dtj), 3 < j < k.
(c) Ar(Xp 0) = coMflj - r)(Xp 0), 1 < j < n.
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Note that in this case, Proposition 2.2 states that (<i>r)»(3/3r2) is a multiple of Jr\
at tt(z), where 17 is the unit normal to <¡>rM. Hence, we have the following result.

Corollary 3.2. Let V be a real hypersurface in CPm which lies on a tube of
constant radius over a complex submanifold of CPm. Let i\ be a unit normal vector to
V. Then Jt\ is a principal vector of the shape operator A .

This corollary enables us to locate the focal points of a complex submanifold M.
Choose a value r so that V = <f>rM is a hypersurface (this can always be done for
local considerations); then Jr¡ is principal on V. Thus the focal points of V can be
located by Proposition 2.5. Comparing this with the formula for locating the focal
points of M (Proposition 2.3), we find that study of the focal sets of real
hypersurfaces contains complete information on focal sets of complex submani-
folds as follows:

Corollary 3.3. Let M be a complex submanifold of CPm and r a real number
such that $rM is a real hypersurface. The focal set of <$>rM consists of the union of the
focal set of M with M itself.

Secondly, we turn to the case where J£ is a principal vector of Aé. Note that in
this case, (<t>r)^J£ is a multiple of /rj (Proposition 2.4).

Proposition 3.4. Suppose /| is an eigenvector of A( with corresponding eigenvalue
2 cot 29, 0 < 9 < tt/2. Suppose Jg X2, . . . , X„ is a basis of principal vectors of A^
with AçXj = cot 9jXj, 2 < j < n, 0 < 9j < it. Then the shape operator Ar of the tube
<br is given in terms of its principal vectors by

(a) Ar(d/dtj) = -cot r(d/dtj), 2 < j < k.
(b) Ar(Xp 0) = cot(0, - r)(A,, 0), 2 < j < «.
(c) Ar(Jt, 0) = 2 cot(2(0 - r))(Jg 0).

4. The manifold structure of the sheets of the focal set. The purpose of this section
is to exhibit the components of the focal set of a real hypersurface M in CPm as
submanifolds themselves under certain restrictions. The first restriction, necessi-
tated by the formula for locating focal points, is that /£ be a principal vector. Note
that this is satisfied by any tube over a complex submanifold by Corollary 3.2.

The second restriction is that the principal curvature, corresponding to the sheet
of the focal set in question, has constant multiplicity. This assumption was
necessary even for submanifolds of real space forms; for without it, one cannot
guarantee that the principal curvature itself (and hence the focal set) is differentia-
ble.

Let M be an orientable real hypersurface in CPm with field of unit normals g
Assume that /£ is a principal vector field with corresponding principal curvature
function p. Maeda proved the following basic fact [11, p. 533].

Proposition 4.1 (Maeda). If J£ is principal, then the corresponding principal
curvature p is locally constant.

Hence, we may write p = 2 cot 2r for some constant 0 < r < tt/2 when making
local computations. Recall that for a real hypersurface with a field of unit normals
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g we consider $r: M -^ CPm by <f>r(x) = F(r£(x)). From Proposition 2.5(b), we see
that there are two sets of focal points corresponding to p. One sheet is <f>rM, the
other is <¡>r_„/2M, the set of points at a distance tt/2 — r from M in the opposite
direction. In the next theorem, we will refer only to <i>rM although everything
applies equally well to <j>r_n/2-

From Proposition 2.5, we see that <j>r has constant rank 2m — 2 on any open set
U where the other principal curvatures of M do not assume the value cot r. If some
X = cot r on an open set U, then (/>, will have constant rank 2m — 2 — v where v is
the multiplicity of À.

Assume now that <¡>r has constant rank q on M. A standard application of the
inverse function theorem (see, for example, Boothby [1, pp. 70-80]) implies that for
each point x G M there is a coordinate neighborhood U of x with local coordi-
nates ux, . . . , u2m~x with origin at x such that <f>r is an embedding of the slice
uq+x = • • • = u2m~x = 0 into CPm. In this way, <j>rM is a ^-dimensional real
submanifold in a neighborhood of <i>r(x). Moreover, the distribution T0(x) = {A G
TxM\(<br)^X = 0} is integrable with (2w — 1 - ^-dimensional leaves on M. The
following local result shows that </>rM is locally a complex submanifold of CPm.
Hence, we have a local converse to Corollary 3.2 under the assumption that </>r has
constant rank. If we also assume that M is compact, then we can give <f>r M a global
structure as an immersed complex submanifold (see Theorem 1 (global version)
below).

Theorem 1 (Local version). Let M be a connected, orientable real hypersurface
of CPm on which J£ is a principal vector with corresponding constant principal
curvature p = 2 cot 2r. Suppose the map <j>r has constant rank q on M. Then:

(a) q is even and every point x0 G M has a neighborhood U such that </>r U is an
embedded complex (q/2)-dimensional submanifold of CPm.

(b) For each point x in such a neighborhood U, the leaf of the foliation T0 through x
intersects U in an open subset of a geodesic hypersphere in the totally geodesic
Qpm-q/2 ortnog0nai ¡o Tp(<j>rU) at p = <br(x). Thus U lies on the tube of radius r over
<í>rí/.

Proof. Given x0, assume that U is a sufficiently small neighborhood of x0 in M
so that V = <br U is an embedded real ^-dimensional submanifold, as given by the
inverse function theorem. The proof of (a) is accomplished by showing that for
eachp G V, the normal space T^V is invariant under J.

The crucial step is to construct a basis for T^V consisting entirely of vectors of
the form

i?(x) = (7r#)z(-sin rw + cos rgj

where x G U, £ is the unit normal to M at x and w, z and g are related to x and £
as in §3. (Note that different choices of £ G T^V will require different choices of
x G <¡>~x(p).) It is then an easy application of the formulas in Propositions 2.1 and
2.4 to show that /£ = Jt)(x) is orthogonal to (<í>r),(7; U) and thus to Tp V.
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To show that such a basis exists, we first observe that the mapping r/ sends U
into the bundle BV of unit normals to V. On the other hand, if we let \¡/r:
BV —> CPm denote the map onto the tube of radius r over V, we see that
\¡/r(-r¡(x)) = x for all x G U. Consequently, r/ is a diffeomorphism onto an open set
■q(U) in BV. Furthermore, if Bp denotes the fibre of BV atp, i)(U) D Bp is open in
Bp and hence contains a basis for T^ V as required.

We have thus shown that TpLV is invariant by /. Since V is an embedded
submanifold, this is sufficient to make V a complex submanifold with complex
structure induced from/ (see, for example, [9, Vol. II, p. 171]).

The proof of (b) is now almost immediate. Given x G U, let y be any point on
the leaf of T0 through x. Since t}(y) G Bp (as the previous construction shows), y
lies at a distance r fromp along a geodesic of CPm normal to <j>rM. Thus, the leaf is
a submanifold of the geodesic hypersphere of center p and radius r in the totally
geodesic CPm~q/2 determined by Tp-^(<§>rU). Since the leaf has the same dimension
as the hypersphere, it is an open submanifold.   □

To obtain a global version of the theorem, we note the following. Since CPm is
simply connected, a compact embedded real hypersurface M must be orientable.
Suppose M also satisfies the remaining hypotheses of Theorem 1. Since the leaves
of T0 are (by definition) connected, it follows from Theorem 1(b) that each leaf is
an open subset of a certain geodesic (2m — q — l)-dimensional sphere in CPm.
Consequently, the foliation is regular in the sense of Palais [15]. This, in turn,
implies that the leaves of T0 are closed subsets of M [15, p. 18] and are thus
compact. So, each leaf is, in fact, a geodesic (2m — q — l)-dimensional sphere in
CPm. Further, it follows from Palais that the space of leaves M/ T0 is a Hausdorff
real ^-dimensional manifold and <¡>r factors through an immersion or of M/ T0 into
CPm. Finally, M/T0 is given a complex structure by pulling back the local
complex structure on or(M/T0) given by Theorem 1(a). Hence, we have

Theorem 1 (Global version). Let M be a connected, compact real hypersurface
embedded in CPm on which J£ is a principal vector with corresponding constant
principal curvature p = 2 cot 2r. Suppose the map <j>r has constant rank q on M. Then
<pr factors through a holomorphic immersion of the complex (q/'2)-dimensional mani-
fold M/T0 into CPm.

We now turn to the other sheets of the focal set in the case where the
hypersurface lies on the tube of radius r over a complex submanifold M. Specifi-
cally, let M = 4>rU where U is open in BM. As noted in Corollary 3.3, in handling
this case, we are also giving a manifold structure to the sheets of the focal set of M
as well.

Suppose X = cot 9 is a principal curvature of constant multiplicity v on U.
Corresponding to À is a principal curvature X = cot(9 — r) of M with the same
multiplicity (Proposition 3.1). Recall that the principal curvatures of a complex
submanifold M occur in pairs, i.e., if a is a principal curvature of Aß(ß normal to
M) with principal vector A, then -a is the principal curvature corresponding to the
principal vector JX. Thus, if X has constant multiplicity on U, either X never equals
0 or X is identically 0.
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If X is identically 0, then X = cou>/2 - r) on M. The set of focal points
determined by X is simply <t>„/2-rM by Proposition 2.5, and this is one of the sheets
determined by p = -2 cot 2r (Proposition 3.1) discussed in Theorem 1.

Therefore, we now assume that X > 0 on Í/ with constant multiplicity v.

Proposition 4.2. Suppose the real hypersurface M in CPm lies on the tube of
radius r over the complex submanifold M; specifically, M = 4>rU, where U is open in
BM. Suppose X is a principal curvature of constant multiplicity v > 1 on M arising
from a principal curvature function X > 0 on U. Then:

(a) The v-dimensional distribution Tx is integrable.
(b) X is constant along the leaves of Tx.
(c) The leaves of Tx are umbilic submanifolds of CPm.

Proof. This result is proven for hypersurfaces of real space forms (see [18] for (a)
and (b) and [4] for (c)) by the use of the Codazzi equation

RT(X, Y)£=(VYA)X-(VXA)Y,

where the notation on the left means the tangential component of the submanifold
of the Riemannian curvature tensor R of the ambient space. For real space forms
R T(X, Y)£ is always zero. The proof for submanifolds of CPm is simply to show
that under the hypotheses of the theorem the Codazzi equation reduces to the form
it took in the real case.

Using the known Riemann curvature tensor for CPm, the Codazzi equation for a
real hypersurface M reduces to (see, for example, [11, p. 531])

(6)        (VXA) Y-(VYA)X = g(X, W)<bY - g( Y, W)<I>X + 2g(X, <bY) W,
where W = -/£ and <¡> is the restriction of / to M defined by

JX = <¡>X + g(X, W)g
To prove (a) and (b) suppose A, Y are in Tx. We must show that the right-hand

side of (6) is zero. Since A, Y are in Tx, g(X, W) = 0 =j(Y, W). Next, one
deduces_ that g(X, <i>Y) = 0 as follows. Suppose A = (</>r)„(Ä, 0), Y = (<t>r)*(Y, 0)
for A, Y in TXM, as in the notation of Proposition 3.4. Then JY is in T_x, and thus
g(A, JY) = 0. Then by Proposition 2.1(c) (with <br instead of F), g(X, JY) = 0.
Thus, g(A, <j>Y) also vanishes. One now applies the known proof [18, p. 371] for
submanifolds of real space forms to complete the proof of (a) and (b).

To prove (c), one again shows that the Codazzi equation reduces to the
Euclidean case. In [4], the proof that a leaf V of Tx is umbilic is obtained
by examining the Codazzi equation for A G Tx, Y G Txx and taking the Tx-
component of the whole equation. In the situation at hand, the Tx-component of
the left-hand side gives exactly what was present in the Euclidean situation. Hence,
to complete the proof, one only needs to show that the Tx-component of the
right-hand side of (6) is zero for X G Tx, Y G Txx. Since g(A, W) = 0 and
W G Tx, the only term to check is g(Y, W)$X. But by the very same argument
used above, <¡>X is orthogonal to Tx, and the proof is finished.

Remark 4.3. Chen and Ogiue [7] showed that an umbilic submanifold of CPm is
either totally geodesic or is a totally real extrinsic sphere (umbilic with nonzero
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parallel mean curvature vector). Another result of Chen [6] then states that a
^-dimensional extrinsic sphere in CPm must, in fact, lie in a totally geodesic RP*+1
as an extrinsic sphere. Consequently, the foliation Tx in Proposition 4.1 is easily
seen to be regular in the sense of Palais [15], and therefore the space of leaves
M/ Tx is a (possibly non-Hausdorff) manifold. If one assumes that M is complete,
then the leaves must be compact, and M/ Tx is Hausdorff.    □

Finally, we exhibit the sheet of the focal set corresponding to À as a real
submanifold in CPm. Suppose X = cot 9, 0 < 9 < tt, on M. The focal point fx(x) of
(M, x) corresponding to X is tt(z) with z = cos 9(x)w + sin 9(x)gw, where tt(w) = x
and g is the horizontal lift of g to T^. We now compute (/x),A for a principal
vector A G TXM. Assume AX = pX for a principal curvature p of M at x. Let ß(t)
be a curve in M with ß(0) = x and ß(0) = A. Let a(t) be the horizontal lift of ß(t)
to 5'2m+1 with a(0) = w, and let 9(t) denote 9(ß(t)). Then fx(ß(t)) is the image
under tt of the curve

y(/) = cos 9(t)a(t) + sin 9(t)g(a(t)),
and (/x)*A = (tt^)z V, where V is the initial tangent vector to y(r). A computation
very similar to that leading to Proposition 2.1(c) (except with 9 variable) yields
(7) y = (A0)tj + (cos 9(x) - p sin 9(x))X¿ - sin 9(x)(X^, igw)iw,

where 17 = -sin 9(x)w + cos 9(x)g. Note that tj G T'z. Since X = cot 9, one com-
putes AA = -(1 + A2)A0. If g(A, Jg) = 0, then A¿ G T'z, and from (7) we obtain

(8) (A),A = (tt.){[- (AA)r,/ (1 + X2) + (cos 9(x) - p sin 9(x))X¿),

where the vector on the right is in T'z. If A = Jg the right-hand side of (7) reduces
as in Proposition 2.4, and we have

(9) (AUJO = K)z(-./É(A)r,/ (1 + X2) + (cos 29(x) - I sin 20(x))/r,),
where the vector on the right is in T'z, and we have written p instead of p for the
principal curvature corresponding to Jg

From these formulas, we will now deduce the following result giving a manifold
structure to the sheet of the focal set/x(A7).

Theorem 2. Suppose the real hypersurface M in CPm lies on the tube of radius_r
over the complex submanifold M; specifically, M = <¡>rU, where U is open in BM.
Suppose X is a principal curvature of constant multiplicity v on M arising from a
principal curvature function X > 0 on U.

(a) If v = 1 and XX ^ 0 on M for some vector field X G Tx, then fx: M -+ CPm is
an immersion.

(b) If v = 1 and XX = 0 on M for all X G Tx, then fx factors through an
immersion of the (2m — 2)-dimensional space of leaves M/Tx.

(c)Ifv > 1, then fx factors through an immersion of the (2m — 1 — v)-dimensional
space of leaves M/ Tx.

Proof, (a) For a unit vector A G Tx with AA ^ 0, since cos 9(x) - X sin 9(x) =
0, (8) becomes

(fx)^ = (TT,)(-XX)r1/(l+X2)
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and (7t+)zt( is in the range of (A)„. For a principal vector Y G Txx and orthogonal
to Jg we see that by subtracting a suitable multiple of (w»)zr/ from (fx)t Y in (8)
that (tt,)z Y'k is in the range of (fx)+. Similarly, in reference to (9), by recalling that
p = -2 cot 2r, we get cos 29(x) — ( p/2)sin 29(x) J= 0 from the assumption that
X > 0 on U. Again, by subtracting a multiple of (tt^)zt], we have that (tt+)z(ít¡) is in
the range of (/x)„. The range of (/x)* is thus the (2«i — l)-dimensional space which
is the image under (tt^)z of the space spanned by rj, ir¡, and the set of vectors Y'w,
where y is a principal vector orthogonal to Tx and to Jg

(b) and (c) Since r/ is orthogonal to rn and to Y¿ such that Y G Txx and
g(/£, Y) = 0, we see from (8) and (9) that (/x)„ is injective on the (2m — I — v)-
dimensional subspace Txx at each x G M. On the other hand, using AA = 0 for all
X G Tx (which follows from Proposition 4.2 in case (c)), we see from (8) that
(fx)t = 0 on Tx. Thus (fx)t has constant rank 2m — 1 — v, and by a basic result of
Palais [15, p. 25], fx factors through an immersion of the space of leaves M/Tx of
the regular foliation Tx.

Examples. 1. Geodesic hypersphere. Let M be the set of points at a fixed distance
r < tt/2 from a point p G CPm. By considering M as a tube of radius r over the
O-dimensional manifold {p}, one computes from Proposition 3.1 that M has two
constant principal curvatures: A = cot r of multiplicity 2m — 2 and p = 2 cot 2r of
multiplicity 1 at each point (with the proper choice of unit normal to M, of course).
Alternatively, let CPm~x be the dual hyperplane at distance tt/2 from p. It is
geometrically obvious that M is also the tube of radius tt/2 — r over CPm~x, and
the principal curvatures of M can likewise be computed using this fact. From
Proposition 2.5, one finds that the focal set of M consists of {p} u CPm~x. The
point p is naturally a focal point of multiplicity 2m — 1 of (M, x) for each x G M.
On the other hand, for each q G CPm~x, there is a circle of radius tt/2 — r of
points in M having q as a focal point of multiplicity one. This circle is a leaf of the
foliation T = span{/£}, and it is the intersection of M with the totally geodesic
CP ' through q orthogonal to CPm~ ' at q.

2. Tube over totally geodesic CPk (1 < k < m — 2). For an integer k, 1 < k < m
- 2, and for 0 < r < tt/2, let M'(2m, k, r) in S2m+1 be defined by

k m

(10) 2|z/ = cos2r, 2    k/= sin2 r.
7=0 j-k+\

M'(2m, k, r) is a standard product S2k + X X S2I+X, I = m — k — 1. The projection
tt submerses M'(2m, k, r) onto a real hypersurface in CPm which we denote
M(2m — 1, k, r). Substituting r = 0 in (10), one obtains a totally geodesic S2k+X in
S2m+X whose image under tt is a totally geodesic CPk. One can easily check that
M(2m — 1, k, r) is the tube of radius r over CPk. From Proposition 3.1, one sees
that M(2m — 1, k, r) has three constant principal curvatures: A, = cot r, A2 =
cot(r — tt/2) and p = 2 cot 2r with respective multiplicities 21, 2k, 1. As in the
first example, M(2m - 1, k, r) is also a tube of radius tt/2 - r over the totally
geodesic CP1 obtained by substituting tt/2 into (10) and projecting into CPm. (In
fact, Example 1 is obtained by this construction with k = 0.) The focal set of
M(2m - 1, k, r) is CPk u CP1. The foliation T0 for the focal map </>r is Tx 0 7^,
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and for <pr_„/2, T0 = TXj © 7^. In each case, the leaves of T0 are geodesic spheres
of the appropriate dimensions.

3. Tube over totally geodesic RPm and over complex quadric Qm~x. Let V'(2m, r)
be the real hypersurface in S2m+X given by the equation

i2

(11) 2*,2 = cos2 2r,       0 < r < -^,4I/-0
As Nomizu [12, p. 197] demonstrates, V'(2m, r) has four distinct constant principal
curvatures. The projection tt submerses V'(2m, r) onto a real hypersurface in CPm
which we denote V(2m — 1, r). Setting r = 0 in (11), one obtains a solution set
fi = {e'ez\zj is real, 0 < j < m}, and tt(ü) is well known to be a totally geodesic
R7"" in CPm. V(2m - 1, r) is the tube of radius r over RPm. For every normal tj to
R7"", Jr¡ is a principal vector of Av. Hence by Proposition 3.4, one finds that
V(2m — 1, r) has three distinct constant principal curvatures: A, = -cot r and
A2 = coU>/2 - r), both of multiplicity m - I, and p = 2 cot 2(7r/4 - r) of multi-
plicity 1, whose principal vector is Jg where £ is the unit normal to V(2m — 1, r).
Clearly RPm is the focal set of K(2«i — 1, r) corresponding to A„ and the leaves of
7^ are (m — l)-dimensional extrinsic spheres. Note that when one traverses a
distance tt/2 along a normal geodesic to RPm, one reaches another point of RPm.
Thus RPm is also the sheet of the focal set corresponding to A2 = cot(w/2 — r).
Finally, by setting r = tt/4 in (11), one obtains the equation z2 + • • • + z„ = 0
whose image under tt is the complex quadric Qm~x. For a fixed V(2m — 1, r),
0 < r < tt/4, the two focal points along each normal geodesic determined by p are
at a distance tt/2 apart, and they both lie on Qm~x. Hence V(2m — 1, r) is a tube
of radius tt/4 — r over Qm~x and also a tube of radius tt/4 + r over Qm~x. Note
that we have also shown that the focal set of Qm~x is RPm, as was first pointed out
by Cecil [3, p. 28]. Finally, by taking t = tt/4 — r, our formulas for the principal
curvatures can be made to agree with those of Takagi's example B [20, p. 47].

Remark 4.3. Takagi showed that the geodesic hypersphere is the only real
hypersurface in CPm with two constant principal curvatures [20], and that the
M(2m — 1, k, r) and V(2m — 1, r) of Examples 2 and 3 are the only real hyper-
surfaces with three distinct constant principal curvatures [21]. Moreover, /£ is
principal in all of the examples of homogeneous real hypersurfaces in CPm with
constant principal curvatures in Takagi [20, p. 47]. Thus, these are all tubes over
complex submanifolds. Weinstein [24] showed that certain geodesic hyperspheres in
CPm are Berger spheres which provide counterexamples to the extension of
Klingenberg's result on the length of closed geodesies to odd-dimensional mani-
folds. Little seems to be known about the Riemannian geometry of Examples 2 and
3 as well as the other examples of Takagi, and a study of them from this point of
view would seem to be worthwhile.

5. Classifications of real hypersurfaces. Let M be an embedded real hypersurface
in CPm. Let £ be a local field of unit normals to M and let W = -/£. As noted
earlier, the Codazzi equation has the form

(6)        (VXA)Y - (VYA)X = g(X, W)<t>Y - g(Y, W)$X + 2g(A, <bY)W,
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where JX = <¡>X + g(X, W)£. We first prove

Theorem 3. Let M be a connected real hypersurface in CPm, m > 3, with at most
two distinct principal curvatures at each point. Then M is an open subset of a geodesic
hypersphere.

The proof is broken into three steps, and we separate the first two off as
propositions.

Proposition 5.1 (Tashiro and Tachibana [22]). There is no umbilic real hyper-
surface in CPm.

Proof. Suppose AX = XX for all A tangent to M. Take A and Y orthogonal to
W and note that the Codazzi equation reduces to (AA) Y - ( YX)X = 2g(X, <¡>Y) W.
Thus g(A, $Y) = 0 for all A, Y orthogonal to W, which is contradicted when
X = <¡>Y.

The following is the key step in proving Theorem 3.

Proposition 5.2. Suppose a real hypersurface M in CPm, m > 3, has exactly two
distinct principal curvatures at each point. Then /£ is a principal vector.

Proof. Let A and p denote the two principal curvature functions, and suppose

(12) J£ = aX + bV,
for nonzero functions a and b, where X G Tx and V G T are unit vector fields on
some open subset of M where /£ is not principal. Since dimension M > 5, at least
one of Tx and T has dimension at least 3, say Tx. Let

2 = {FG rA|g(F,A) = 0},       V={ZG Tll\g(Z, V)=0).
Choose Y, Z mutually orthonormal in 2. Then from (12) we see that Y and Z are
orthogonal to W = -/£, and the Codazzi equation becomes

(VZA) Y - (VYA)Z = 2g(Z, $Y)W.
Some standard algebra further reduces this to

(ZX)Y - (YX)Z + (XI - A)[Z, Y] = 2g(Z, <f>F)W.
Since W and (A7 — A)[Z, Y] are orthogonal to Y and Z, we conclude that YX = 0
for all Y G 2. Moreover, the left-hand side then has no Tx-component; this forces
g(Z, <j>Y) = 0. Therefore, <f>Y is orthogonal to 2. Now consider the Codazzi equation
for Y in 2 and the particular vector field A. Since A, Y are in Tx and g(A, W) =
-a, this reduces to

(AA)y - (YX)X + (XI - A)[X, Y] = -a<¡>Y + 2g(X, <¡>Y)W.
We have shown that FA = 0, and we now conclude that AA = 0, since all the other
terms are orthogonal to 2. Thus

(A7 - A)[X, Y] = -a<j>Y + 2g(X, <t>Y)W.
The left side is orthogonal to A G Tx, so taking the inner product with A and
recalling g(A, W) = -a, we obtain -3ag(X, <¡>Y) = 0. Since <$>Y is orthogonal to 2
and to A, we conclude <¡>Y G T. However, g(<¡>Y, aX + bV) = g(JY, /£) = 0.
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Thus bg(<pY, V) = 0, and 4>Y is orthogonal to V. We have thus shown that
<£(2) c ß. Since <¡>Y = JY for all Y G 2, <£ is injective on 2. Thus dimension
ß > dimension 2 > 3. Consequently, we may reverse the roles of A and p above to
show that <¡>(Q) c 2. Hence, 2 and ñ have the same dimension, and taking into
account A and V, we have dimension M = 2(dimension 2) + 2, i.e. M is even
dimensional. This is a contradiction, and we conclude that a or b is identically
zero, and /£ is principal.

Remark. This result and proof hold equally well in complex hyperbolic space,
the complex space form with constant holomorphic sectional curvature -1.

Proof of Theorem 3. Let x be any nonumbilic. Fix a choice of unit normal £
near x and write p = 2 cot 2r, 0 < r < tt/2, for the principal curvature with
eigenvector /£. If the other principal curvature A is not equal to cot r at x, then </>,
has rank 2m — 2 at x (Propositions 2.1 and 2.4). Otherwise, <j>r has rank 0 there.

If <¡>r has rank 2m - 2 at x, the same condition holds in some umbilic-free
neighborhood U of x. By the local version of Theorem 1, U may be chosen so that
A = <¡>rU is an embedded complex submanifold of complex codimension 1 in CPm.
Moreover, U lies on a tube of radius r over A. The formulas for the shape
operators of such tubes (Proposition 3.1) yield that all eigenvalues of each shape
operator of A must be equal. But for complex submanifolds, the eigenvalues occur
in pairs which are negatives of each other, and hence they are all zero in this case.
This makes A totally geodesic, an open subset of a complex projective hyperplane
in CPm. According to Proposition 3.1 the principal curvatures of U are -2 cot 2r
= cot(2(7r/2 — r)) and cot(ir/2 — r) or, by reversing the normal, p = 2 cot 2r,
A = cot(r — tt/2). Using the fact that the principal curvatures are locally constant
near nonumbilics where <j>r has rank 2«t — 2, one can show that they are also
locally constant near nonumbilics where <j>r has rank 0 simply by considering
"ÍV-ir/2- From this, one shows rather easily that every point of M is nonumbilic.
This allows £ to be defined globally, say by insisting that the principal curvature A
of multiplicity 2m — 2 be positive (it does not equal zero). Thus, we can write
A = cot f, 0 < / < tt/2, where / is either the value r mentioned above or tt/2 — r.
In either case, p = 2 cot 2t, and <j>, has rank 0 on all of M. Hence, <¡>,M is a single
point, and M is an open subset of a geodesic hypersphere centered at this point.
D

Finally, we turn to the question of real Einstein hypersurfaces in CPm. Suppose
that the Ricci tensor 5 of M satisfies

(13) SX = aX + bg(X, W)W
for some smooth functions a and b on M. Of course, if b = 0, then M is Einstein.
We will show that (13) implies that M is an open subset of one of the examples of
§4 with 2 or 3 constant principal curvatures. A straightforward calculation shows
that b 7^= 0 for these examples, and hence there are no Einstein real hypersurfaces
in CPm.

From the Gauss equation, one computes (see, for example, [11, p. 532]) that the
Ricci tensor of an arbitrary real hypersurface in CPm has the form

SX = (2m + 1)A - 3g(A, W) W + hAX - A2X,
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where « = trace A. If (13) is also satisfied, one obtains

(14) (A2- hA + p)X = ag(X, W)W,
where the functions p = a — 2m — 1 and o = -(3 + b). The next proposition was
first proven by Maeda [11, p. 536].

Proposition 5.3. If o =£ 0 on an open set U, then /£ is principal, and there are at
most three distinct principal curvatures at each point of U.

Proof. Let K be the symmetric tensor A2 — hA. From (14) we see that KW =
(o — p) W, so W is an eigenvector of K. If A is any eigenvector of K orthogonal to W,
KX = -pX. Hence if o =/= 0, o — p is an eigenvalue of multiplicity one of K. On the
other hand, if A is an eigenvector of A, then clearly A is an eigenvector of K. If
{A,, . . . , X2m_x} is an orthonormal basis of eigenvectors of A, then it is also a
basis of eigenvectors for K. There must be a unique A, so that KX¡ = (o — p)X¡,
and so A, = ±W, and W is an eigenvector for A.

Let A0 be the restriction of A to the orthogonal complement W± of W. Since W
is principal, A0 leaves Wx invariant and, by (14), A2, — hA0 + p = 0. Thus A0 has
at most two distinct eigenvalues, and M has at most three distinct principal
curvatures.    □

In the case a = 0 (b = -3), one cannot use the same argument to show that /£ is
principal, and this case was excluded by Maeda. However, we do have

Proposition 5.4. If o = 0 on an open set U, then there exist at most two distinct
principal curvatures at each point of U.

Proof. With o = 0, (14) becomes (A2 - hA + p)X = 0 for all A tangent to M.
Thus at most two eigenvalues of A can be distinct.

We will now invoke Theorem 3, which Maeda did not have, to show that when
o = 0, U is an open subset of a geodesic hypersphere. This leads to a proof of

Theorem 4. Let M be a connected real hypersurface in CPm, m > 3, whose Ricci
tensor S satisfies the identity SX = aX + bg(X, /£)/£ for some smooth functions a
and b on M. Then M is an open subset of one of the following:

(a) a geodesic hypersphere,
(b) a tube of radius r over a totally geodesic CPk, 0 < k < m — 1, where

0 < r < tt/2 and cot2 r = k/(m - k - 1),
(c) a tube of radius r over a complex quadric Qm~x where 0 <r <tt/4 and

cot2 2r = m — 2.

Proof. By Propositions 5.3 and 5.4, there exist at most three distinct principal
curvatures at each point of M. If there are less than three distinct principal
curvatures at every point, then M is an open subset of a geodesic hypersphere by
Theorem 3. If not, the set 2 on which there are three distinct principal curvatures is
open. Let £ be a local field of unit normals near x G 2. By Proposition 5.3, /£ is
principal near x with corresponding locally constant principal curvature p =
2 cot 2r, 0 < r < tt/2. Locally, there are two focal maps <f>r and <¡>f _„/2 arising from
p, and one can compute the rank of each by Proposition 2.1. Let / be the
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maximum rank attained by either of the two focal maps on 2. The set Í2 c 2 on
which at least one of the focal maps has rank j is then open in M. Let x G Ü and
choose the local field of normals so that §r has rank/ near x. By Theorem 1, there
is a neighborhood U of x such that A = <j>r U is an embedded complex submani-
fold, and U lies on the tube of radius r over A. By examining Proposition 3.1, we
see that there are precisely two ways in which there could be three distinct
principal curvatures at each point of U. First A could have complex codimension 1
with Av having exactly two eigenvalues for each normal r/ to A. By a result of
Nomizu and Smyth [13, p. 58], A is an open subset of a complex quadric Qm~x.
The second possibility is that A is an open subset of a totally geodesic CPk,
0 < k < m - 1. In either case, the three principal curvatures are constant on U,
and hence they are locally constant on fi. Now, as in the proof of Theorem 3, one
shows that S2 is also closed, and so there are three constant principal curvatures on
M. Another connectedness argument shows that the focal map <¡>r maps M into a
subset of a particular Qm~x or CPk, as the case may be. Finally, a direct
calculation shows that among such tubes, only those listed in (b) and (c) actually
satisfy the requirement on the Ricci tensor.

Since the three hypersurfaces in Theorem 4 are not Einstein, we have

Corollary 5.5. There are no Einstein real hypersurfaces in CPm.
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