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Abstract

Applying artificial intelligence techniques in medical

imaging is one of the most promising areas in medicine.

However, most of the recent success in this area highly re-

lies on large amounts of carefully annotated data, whereas

annotating medical images is a costly process. In this pa-

per, we propose a novel method, called FocalMix, which,

to the best of our knowledge, is the first to leverage re-

cent advances in semi-supervised learning (SSL) for 3D

medical image detection. We conducted extensive experi-

ments on two widely used datasets for lung nodule detec-

tion, LUNA16 and NLST. Results show that our proposed

SSL methods can achieve a substantial improvement of up to

17.3% over state-of-the-art supervised learning approaches

with 400 unlabeled CT scans.

1. Introduction

Medical imaging plays an essential part in modern med-

ical practice. One of the significant trends in this area is to

exploit advanced techniques in deep learning (DL) and arti-

ficial intelligence (AI) to achieve automatic medical image

analysis. Prior work has already demonstrated promising

results in various specific tasks, such as skin cancer classi-

fication [8], retinal fundus image analysis [12], with some

preliminary real-world applications, e.g., [5]. However, we

argue that the success should be attributed to not only recent

progress in deep learning techniques but also large volumes

of carefully annotated data.

On the one hand, annotating medical images is an expen-

sive and time-consuming process. This process requires ex-

perienced clinical experts to read examination reports, com-

bine them with other test results, and sometimes consult

with other experts. Furthermore, it is even more difficult

to manually annotate such 3D images as CT and MRI with
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substantially more information. On the other hand, there are

a large number of raw medical images stored in hospital in-

formation systems. The cost of retrieving them is negligible

relative to the high expenses of human annotation. There-

fore, it becomes a necessary research question whether we

can leverage these raw medical images with little annotation

to improve the diagnostic accuracy of deep learning models.

Meanwhile, semi-supervised learning (SSL) has at-

tracted a lot of research efforts in recent years. Most of

the latest SSL methods generally add an auxiliary loss term

defined on unlabeled data (e.g., consistency regularization

term [30]), or even linear interpolations of both labeled and

unlabeled data (i.e., MixUp augmentation [39]), into the

loss function for better generalization capacities and hence

better performances on the test set. Some of them have

achieved great success on image classification datasets such

as CIFAR [16], which fully demonstrates the potential value

of utilizing unlabeled data.

Applying recent advances of SSL to medical imaging

problems seems to be a tempting approach. However, since

people are more concerned with lesion detection tasks in

medical imaging as opposed to the widely studied classifi-

cation task in the existing SSL literature, many technical de-

tails remain unexplored. For instance, modern SSL frame-

works generally require the loss function to be able to deal

with soft labels (e.g., a smooth probability over classes),

whereas most one-stage lesion detection models use the fo-

cal loss [22], which has no such natural extension. Also,

state-of-the-art SSL methods use average ensembles to ob-

tain pseudo-labels for unlabeled data. Nonetheless, it is

hard to take the average over bounding boxes predicted by

detection models. Last but not least, very few researches

have touched on data augmentation for medical images,

which, however, is almost an indispensable component for

SSL approaches to achieve their recent success.

In this paper, we discuss a principled method, called Fo-

calMix, for tailoring modern SSL frameworks to overcome

the issues mentioned above. First, we propose a generic

generalization of the focal loss that allows the usage of soft-
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target training labels with skewed distributions (analogous

to class imbalance in discrete cases as encountered by most

detection models) in Sect. 3.1. Then, practical designs are

introduced to illustrate how we can extend essential com-

ponents in an SSL framework for 3D medical image detec-

tion. Specifically, we propose a target prediction strategy

that leverages anchor-level ensembles of augmented image

patches by rotation and flipping (Sect. 3.2). Furthermore,

the MixUp augmentation is adapted for medical image de-

tection tasks at both the image level and object level in light

of unique characteristics of the medical image detection

tasks (Sect. 3.3). Throughout this paper, we mostly take

a state-of-the-art SSL method, MixMatch [3], as a running

example to provide a more clear and approachable presen-

tation. The proposed method can be transferred to other

modern SSL frameworks (e.g., UDA [37]) with little effort.

Through extensive experiments on two widely-used

datasets for pulmonary nodule detection on CT scans, we

show that the proposed SSL method, FocalMix, can sub-

stantially outperform well-tuned state-of-the-art supervised

learning approaches (Sect. 4.2). Ablation study further

demonstrates the effectiveness of our proposed soft-target

loss function, ensemble method for target prediction, and

two levels of MixUp strategies (Sect. 4.3). In addition, the

results show that FocalMix can still boost the performance

of supervised learning when there is a reasonably large an-

notated dataset already available (Sect. 4.4).

To conclude, the main contributions of this paper are:

• We propose FocalMix, a novel semi-supervised learn-

ing framework for 3D medical image detection.

• To the best of our knowledge, our work is the first to in-

vestigate the problem of semi-supervised learning for

medical image detection.

• Through extensive experiments, we demonstrate that

the proposed semi-supervised approach can signifi-

cantly improve the performance of fully-supervised

learning approaches.

2. Background and Preliminaries

2.1. Object Detection in 3D Medical Images

This paper mainly focuses on the problem of 3D med-

ical image detection, which is an essential task in medi-

cal image analysis. In order to detect lesions of different

scales, most works adopted anchor-based detectors, such as

3D variants of feature pyramid networks (FPN) [21]. Mean-

while, the focal loss is widely used to overcome the extreme

foreground-background class imbalance [22]. This section

provides a brief introduction to these methods.

(a) (b)

p=0.9

p=0.9

   p=0.01

p=0.01

pred

flipflip

Figure 1: (a) is an example of assigning targets to anchors. The

dashed grids represent output feature maps where anchor boxes

are defined, and each bin in the grids corresponds to a point in the

feature map. The pink box is a ground-truth bounding box. The

orange box is a positive anchor and the blue boxes are negative an-

chors. (b) is an example of our augmentation method used for tar-

get prediction. We use flip augmentation for the image patch and

predict the probability for each anchor with the model. After that,

an inverse transformation is applied to the patch and anchors. We

only show two example anchors for illustration purposes and use

consistent coloring for each anchor. Note that anchors in 3D im-

ages are also three-dimensional, of which we only show 2D slices

for better visualization.

2.1.1 Anchor boxes

Anchor boxes are predefined bounding boxes densely tiling

on images to match targeted objects. Following [29], an-

chor boxes are set to have different scales and aspect ratios

in order to capture objects of different shapes. Each an-

chor corresponds to a pixel in the output feature map from

the detector and shares the same center with its receptive

field. Mini-networks implemented by convolutional layers

are used to make prediction for each anchor in a sliding-

window manner. During training, an anchor box is regarded

as a positive anchor that matches an object if and only if it

is highly overlapping with a certain ground-truth bounding

box in terms of intersection over union (IoU). Figure 1(a)

shows an example. During inference, the network predicts

an objectness score (a.k.a. confidence score) and coordi-

nate offsets for each anchor box as output. Feature Pyramid

Network [21] puts anchors on multi-scale feature maps to

enhance the detection performance of small objects.

2.1.2 Focal Loss

The anchor assignment method leads to very few posi-

tive anchors relative to negative ones, which is called the

foreground-background imbalance by Lin et al. [22]. To

mitigate this problem, they introduce the focal loss:

FL(pt) = −αt(1− pt)
γ log(pt) (1)

pt =

{

p if y = 1

1− p otherwise.
(2)
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where y ∈ {0, 1} is the ground-truth label for an anchor,

p is the model’s estimated probability of the anchor being a

positive example, while αt is a weighting factor for different

classes (namely, α0 and α1 for class 0 and 1, respectively)

to balance the importance for positive and negative exam-

ples, γ is the focusing parameter. The meaning of pt can be

considered as the prediction confidence so that the second

term in Eq. (1) is used to down-weight confident examples

to make the model focus on hard (less confident) ones.

2.2. Semi­supervised Learning

Semi-supervised learning (SSL) aims to make use of

unlabeled data to improve model performances. In this

section, we briefly review an SSL framework called Mix-

Match [3], on which our work is mainly built. MixMatch is

not only one of the state-of-the-art SSL approaches, but also

a unified framework that integrates the spirits of most suc-

cessful attempts in this line of research (e.g., entropy min-

imization [11], consistency regularization [30] and MixUp

augmentation [39]). The central thesis of this work is to take

MixMatch as a typical example to show how, if feasible, to

tailor a general SSL approach for the medical imaging do-

main. In other words, our contribution is mostly orthogonal

to the progress being made in SSL.

MixMatch consists of two major components, target pre-

diction for unlabeled data and MixUp augmentation. The

first component requires to define a set of stochastic trans-

formations of a given datapoint (e.g., an image) in such a

way that its semantics (e.g., class label) barely change. In

the example of image classification, rotating and shearing

are two widely-used augmentations. MixMatch uses the av-

erage ensemble of predictions by the current model parame-

terized by θ on K augmented instances ûk of each unlabeled

training sample u as ”guesses” for their labels, formally,

ȳ =
1

K

K
∑

k=1

pModel(ûk; θ). (3)

Then, these guessed labels are further transformed by a

sharpening operator before used as training targets. The

sharpening operator (for the i-th of L classes) is defined by

Sharpen(ȳ, T )i = ȳ
1

T

i

/ L
∑

j=1

ȳ
1

T

j , (4)

where T , termed as temperature, controls the smoothness

of the output distribution (as T → 0, the output becomes

a one-hot vector). The sharpening operation implicitly en-

forces the model to output low-entropy predictions on un-

labeled data. Once training targets for unlabeled data are

available, MixMatch further utilizes the MixUp augmenta-

tion [39] for both labeled and unlabeled data. More specifi-

cally, given a labeled (or unlabeled) data point with its label

(or predicted target) namely (x, y), MixUp augmentation

produces a stochastic linear interpolation with another train-

ing example (x′, y′), either labeled or unlabeled, as follows

λ ∼ Beta(η, η), (5)

λ̃ = max(λ, 1− λ), (6)

x̂ = λ̃x+ (1− λ̃)x′, (7)

ŷ = λ̃y + (1− λ̃)y′. (8)

After the above procedures, we can get a collection of

augmented training examples with supervision signals from

both labeled and unlabeled data, and then use the supervised

objectives to train model parameters.

3. Methodology

In this paper, we attempt to leverage modern semi-

supervised learning methods in medical image detection.

To achieve such goal, two essential components in the

MixMatch framework introduced in Sect. 2.2 are tailored

specifically for lesion detection tasks: target prediction

and MixUp augmentation. Before that, we first propose a

generic generalization of the focal loss, which allows us

to train detection models with soft training targets that oc-

curred in most modern SSL frameworks. The overview of

our proposed method is shown in Figure 2.

3.1. Soft­target Focal Loss

Semi-supervised learning often involves soft training tar-

gets (e.g., ŷ in Eq. (8)). This has rarely been raised as an

issue in SSL literature because most current work focuses

on classification tasks, and the cross-entropy loss used in

classification can naturally deal with soft labels. However,

as introduced in Sect. 2.1, the state-of-the-art object detec-

tion approaches generally use the focal loss that adds two

weighting terms to the original cross-entropy loss, i.e., α(y)
and β(y, p) = (1−pt)

γ in Eq. (1). Both of the two terms are

dependent on class labels, which is emphasized by writing

them as functions of y, and, unfortunately, have no trivial

extension if y can take any continuous value between 0 and

1. This is one of the major factors that hinder us from di-

rectly utilizing the off-the-shelf SSL methods. Therefore,

our proposed approach generalizes these two terms to the

case of soft targets accordingly.

The first term is originally designed for class imbalance

and usually proportional to the inverse frequency of class

y. More specifically, α for the less frequent positive exam-

ples is larger than that for negative examples to prevent the

latter from dominating the total loss. In our case, this prob-

lem amounts to having a skewed distribution of soft labels.

Hence, α(y) should preferably be inversely proportional to

the probability density function of y. However, it is not very

computationally feasible to do density estimation along the

way of model training. Thus, we assume that the density

function of y decays in roughly the same rate as 1/y, and
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Figure 2: Overview of our proposed method FocalMix. For an input batch, the training targets of anchors in labeled images are assigned

according to annotated boxes, while the unlabeled are predicted with the current model as shown in the lower part of the figure. After

applying two levels of MixUp to the entire batch, we use the proposed soft-target focal loss to train the model. Throughout this paper, we

only show a slice of each 3D CT scan with 3D anchors on it for ease of presentation.

the density at 0 and 1 are treated as hyper-parameters to be

determined by cross-validation denoted by α0 and α1, re-

spectively. Under this assumption, we can derive the form

of α(y) for soft labels as α(y) = α0 + y(α1 − α0).
The second term (1 − pt)

γ is used to down-weight easy

examples (esp., background anchors) that are pervasive in

the training process of detection models. We can interpret

this term as the discrepancy between prediction “confidence

score” pt and its target value (i.e., 1), by which the hardness

of training examples can be measured to some extent. From

this perspective, we can naturally generalize this term to

soft-target labels by rewriting it as the γ-th power of the ab-

solute difference between model prediction p and its train-

ing target y, i.e., β(y, p) = |y − p|γ .

To sum up, the proposed soft-target focal loss for SSL is

SFL(p) = [α0 + y(α1 − α0)] · |y − p|γ · CE(y, p), (9)

where CE(y, p) = −y log p−(1−y) log(1−p) denotes the

cross-entropy loss. We can check that focal loss is a special

case of our proposed soft-target focal loss when y ∈ {0, 1}.

3.2. Anchor­level Target Prediction

Target prediction for unlabeled data is a widely used

component in both traditional and modern approaches for

SSL. However, how we can transfer existing target predic-

tion methods from classification to detection is not a trivial

question, because detection models output bounding boxes

for targeted objects as opposed to more structured class la-

bels. In FocalMix, we propose to approach this problem at

the anchor level.

Following the common practice in computer vision, we

sample patches of the same size (160 × 160 × 160 in our

experiments) from original images during training. We also

ensure that the edge length of image patches (e.g., 160) is

divisible by the maximum strides (e.g., 16) used in FPN.

Consequently, each anchor in an image patch can always

fall into the position of another anchor after rotating or flip-

ping. We define the augmentation for each patch as apply-

ing these two types of transformations on it. It is worthwhile

mentioning that there are richer combinations of rotation

and flipping in different directions for 3D medical images

than those in the 2D case (48 different combinations versus

eight). Then, we use the model to predict the probability

of each anchor matching an object in the transformed im-

age patch. After that, we can obtain a guessed target for

each anchor in the original patch by an inverse transforma-

tion (rotating or flipping backward). The reader can find an

intuitive example in Figure 1.

As shown in Figure 2, we repeat the data augmentation

procedure described above K times and generate K guessed

targets for each anchor in a patch. Then, we aggregate these

guessed targets for every anchor by the average ensemble.

Finally, we apply an anchor-wise sharpening operation as in

Eq. (4) to obtain a low-entropy predicted target for a given
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patch to be used in model training.

3.3. MixUp Augmentation for Detection

MixUp augmentation is an important component in the

MixMatch framework, which encourages the model to be-

have linearly in-between training examples for better gen-

eralization performance. The vanilla MixUp procedure is

designed for image classification settings where each im-

age is associated with one class label, while medical images

are annotated with bounding boxes for diagnosed lesions in

our task. Thus, the vanilla MixUp augmentation cannot be

utilized directly. In this paper, we introduce two adapted

MixUp approaches for lesion detection in medical images:

image-level MixUp and object-level MixUp (see Figure 4

for illustrative examples).

Image-level MixUp. The difficulty mainly lies in how to

mixup training targets as we mixup two images. Although

the actual labels for detection tasks in medical imaging are

bounding boxes, we cannot get something as meaningful as

soft classes in classification by taking the linear interpola-

tion of two sets of boxes. Instead, we propose to mixup

training signals at the anchor level. Formally, given two

medical images of the same size along with their training

targets (either annotated labels or predicted targets) for each

anchor, (x, {yi}) and (x′, {y′i}), we generate an augmented

sample (x̂, {ŷi}) as follows.

λ ∼ Beta(η, η), (10)

λ̃ = max(λ, 1− λ), (11)

x̂ = λ̃x+ (1− λ̃)x′, (12)

ŷi = λ̃yi + (1− λ̃)y′i, ∀i. (13)

The image-level MixUp has a more intuitive interpre-

tation in lesion detection tasks, the goal of which is to

discriminate lesion from background textures. Anchor-to-

anchor mixup requires the model to be able to detect lesions

that are mixed with stronger background noises than usual,

analogous to the idea of “altitude training”.

Object-level MixUp. In medical imaging tasks, objects

(i.e., lesions) contain much more information than back-

ground textures, but the number of objects is often limited

(only one lesion per medical image in most of the time).

Therefore, we propose to generate extra object instances

by mixing up different lesion patterns within each training

batch. In other words, for each object within each image in a

training batch, we randomly sample another object from the

current batch, re-scale it to the same size, and then mixup

the two objects in the same manner as in Eq. (10-12). Note

that objects are simply the annotated boxes for labeled im-

ages, while, for unlabeled ones, predicted boxes with high

prediction confidence are treated as detected objects. Since

all of these objects have quite consistent targets (with high

probabilities being a positive example), we no longer mixup

training targets for simplicity.

4. Experiments

We evaluate our proposed semi-supervised framework

FocalMix on the pulmonary nodule detection task. Experi-

ments are conducted on the LUNA16 dataset, which is the

most widely used one in pulmonary nodule detection litera-

ture. We also use the NLST dataset as an additional source

of unlabeled data for further evaluation.

LUNA16 [31] is a high quality subset of the LIDC-IDRI

dataset [2]. It consists of 888 thoracic CT scans in total,

with 1186 annotated nodules larger than 3mm. All the an-

notations are agreed by at least three (out of four) radiolo-

gists. Other confusing nodules and non-nodules are marked

as “irrelevant findings”, which are counted as neither false

positive nor true positive during evaluation.

NLST [35] (National Lung Screening Trial) was origi-

nally built to compare the effectiveness of thoracic CT and

chest X-ray for detecting lung cancer. There are about

75,000 CT scans in the NLST dataset with the character-

istics of participants, scanning test results, diagnostic pro-

cedures, etc. Since such annotations as nodule locations

are not available in this dataset, we only use it as an extra

unlabeled dataset after a selection process as described in

Sect. 4.4.

Evaluation. Following [31], we use Free-Response Re-

ceiver Operating Characteristic (FROC) and Competition

Performance Metric (CPM) to measure detection perfor-

mance. The overall score of CPM is defined as the average

recalls when false positive rates are 1/8, 1/4, 1/2, 1, 2, 4, and

8 FPs per scan. Although some relevant literature uses 10-

fold cross-validation on the LUNA16 dataset to calculate

evaluation metrics, it is not very convenient in the semi-

supervised setting where the numbers of labeled and unla-

beled data might constantly change over different experi-

ments. Instead, we resplit this dataset into 533 CT scans for

training (60%) and 355 for testing (40%). All the labeled

data and unlabeled data used in semi-supervised learning

are sampled from the training set in our experiments.

4.1. Experimental setup

Detection Model. Following the recommendations in

[26], we use exactly the same model, a 3D variant of

FPN [21], as both the fully-supervised baseline and the base

model for FocalMix. Since the codes used in prior work

(e.g., [23]) are currently not available, we use our in-house

implementation throughout the experiments. In our imple-

mentation, the backbone network is a modified 3D resid-

ual network [13] with 20 basic residual blocks. The 3D

FPN outputs four levels of features with stride {2, 4, 8, 16}
pixels with respect to the input image, and the base anchor
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Labeled Unlabeled
Recall(%) @ FPs

CPM(%) Improv.
0.125 0.25 0.5 1 2 4 8

25 - 46.7 54.0 60.6 68.6 74.4 79.1 82.4 66.6
11.5 (17.3%)

25 400 57.6 64.5 74.6 80.5 87.0 90.1 92.1 78.1

50 - 57.2 65.7 71.4 77.9 82.6 85.6 87.2 75.4
6.6 (8.8%)

50 400 64.1 71.0 78.7 85.2 89.3 92.3 93.5 82.0

100 - 64.9 73.8 79.7 85.2 89.0 92.3 94.5 82.8
4.4 (5.3%)

100 400 73.4 80.9 84.8 88.6 92.3 94.7 96.1 87.2

Table 1: Main results on the LUNA16 dataset. We evaluate FocalMix with {25, 50, 100} labeled CT scans, respectively. Improv. denotes

the improvements in CPM over the fully-supervised baseline (relative improvements shown in parentheses).

sizes are set to be {4, 8, 16, 32}, respectively. During train-

ing, we first resize the input volume to spacing= 1mm, and

then randomly crop a 3D patch of size 160 × 160 × 160
as the input of 3D FPN. For fully-supervised training, we

use the focal loss for objectness classification and smooth

L1 loss for 3D bounding box regression as in [22]. We set

α0 = 0.05, α1 = 0.95 and γ = 2.0 for the focal loss. An-

chors that have an IoU with ground-truth box higher than

0.3 and smaller than 0.1 are set to be positive and negative,

respectively, while others are neglected during training. The

model is trained end-to-end using the ADAM optimizer [15]

with batch size 8. We start the learning rate from 0.001 and

use cosine annealing strategy [24]. If not specified other-

wise, we train the model for 800 epochs.

Semi-supervised Learning. In the SSL setting, we use

the same amount (more specifically, eight) of labeled data

and unlabeled data in a batch of input. We apply soft-

target focal loss on unlabeled data. We set α0 = 0.05
and α1 = 0.95 in order to be consistent with those in the

supervised loss. The other settings remain the same as in

the supervised version. For MixUp augmentation, image-

level MixUp is first applied and then followed by object-

level MixUp. We use η = 0.2 for MixUp and T = 0.7 for

sharpening throughout the experiments.

Fully-Supervised Baseline Performance. As suggested

in [26], newly proposed SSL frameworks should be com-

pared with and also built upon well-tuned strong fully-

supervised baselines for fair evaluation. Therefore, before

presenting the main results in our experiments, we first

compare the performance of our base model (i.e., an in-

house implementation of 3D FPN) with the state-of-the-art

results reported by other researchers on this dataset by using

exactly the same 10-fold cross-validation protocol. The re-

sults are shown in Table 2. Since we only focus on detection

model itself, post-processing methods, such as lung seg-

mentation to reduce false positives, are not used in our im-

plementation, which can further improve the CPM scores.

We can conclude from the table that our base model can

achieve a comparable performance to various strong state-

of-the-art single-stage detection methods. We also report

its performance on our own data spilt, which is used as the

Figure 3: Performance with different amounts of unlabeled

data on LUNA16. We use 100 labeled images.

fully-supervised baseline in the experiment with an addi-

tional external source of unlabeled data (Sect. 4.4).

Method Data Split CPM(%)

DeepLung [41] 10-fold 84.2

DeepSeed [19] 10-fold 86.2

S4ND [14] 10-fold 89.7

3D FPN [23] 10-fold 91.9

Our base model 10-fold 91.2

Our base model 533/355 89.2

Table 2: Performance of the base model used in our experi-

ments. Our re-implemented 3D FPN is comparable with state-of-

the-art single-stage nodule detection models.

4.2. Main Results

Table 1 shows the performances of FocalMix on the

LUNA16 dataset with different amounts of labeled data.

Recalls at seven false positive rates along with the overall

CPM score are reported. Note that, for a fair comparison,

we use the same subset of labeled data for a fixed amount

of labeled data and the same set of unlabeled data for all

cases, both sampled from the training set. We can con-

clude that FocalMix can consistently outperform the fully-

supervised baseline with 25, 50 and 100 annotated CT im-

ages as labeled data, respectively, by leveraging 400 unla-

beled raw images. When we have 25 labeled images, the

fully-supervised model can only obtain a CPM score of

66.6%, whereas FocalMix boosts it to 78.1% with a 17.3%

relative improvement. On the other hand, with 100 la-
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(a) Loss function.

Loss Function CPM(%)

Supervised 82.8

SFL w/o soft α, β Fail

SFL w/o soft α 84.4

SFL w/o soft β 83.7

SFL 85.2

(b) Augmentation times (K).

K CPM(%)

1 85.9

2 86.3

4 87.2

8 87.1

(c) MixUp method.

MixUp Level
CPM(%)

Image Object

- - 85.2

X - 86.7

X X 87.2

Table 3: Ablation study. Models are trained with 100 labeled scans and 400 unlabeled ones. Fail denotes a divergent result.

beled data, even though the fully-supervised model already

achieves a CPM of 82.8%, FocalMix can still substantially

enhance its performance by a 4.4% absolute improvement.

We can also observe from Table 1 that, by utilizing 400

unlabeled CT scans, FocalMix can achieve a comparable

result with the fully-supervised baseline that uses twice the

amount of labeled data. In other words, merely collecting

400 raw CT scans from databases has roughly the same ef-

fect of having 50 carefully annotated ones. Furthermore,

it is interesting to see that our proposed SSL approach Fo-

calMix can get a reasonably close CPM score (87.2%) with

100 labeled as well as 400 unlabeled scans to the fully-

supervised learning result (89.2%) with 533 labeled scans.

Figure 3 shows the performance with varying numbers

of unlabeled CT scans. We can observe that, the CPM

score consistently grows as the amount of unlabeled data in-

creases, which proves the effectiveness of using unlabeled

data in FocalMix.

4.3. Ablation Study

In this section, we investigate the effectiveness of dif-

ferent components (viz., loss function, target prediction

method, MixUp augmentation strategy) in our proposed

semi-supervised approach through ablation studies on the

LUNA16 dataset. Since too little labeled training data can

lead to unstable results, we use 100 labeled images for all

the following experiments.

Loss Function. Our proposed soft-target focal loss gen-

eralizes the focal loss by adapting each of its term to accom-

modate soft targets. Since the cross-entropy loss can natu-

rally deal with soft labels, only the first two terms, namely

α(y) and β(y, p), are modified. To study the contributions

of our extension to each of these two terms respectively, we

compare the proposed loss with its degenerated version by

using “pseudo-hard targets”. That is, we regard soft targets

with probability greater than 0.5 as positive examples, and

the others as negative examples. In this way, we can use the

α and β terms in the original focal loss in our SSL frame-

work. As shown in Table 3(a), we can see that it hurts the

detection performance by using either α or β in their de-

generated version with pseudo-hard targets (even diverged

when excluding both), which demonstrates the contribution

of our designed soft-target generalization to the focal loss.

Targets Prediction. During the target prediction stage,

we first make predictions on K different augmentations and

ensemble the predictions by taking averaging at the anchor-

level. To demonstrate the contribution of this ensemble pro-

cess, we report the CPM scores of FocalMix over different

K in Table 3(b). We see that it can only get a CPM score of

85.9% when using a single augmentation for target predic-

tion, while the CPM score improves by 1.3% as the number

of augmentations K increases to 4, which validates the ef-

fectiveness of our ensemble strategy. However, we can also

notice that the performance starts to saturate when K = 4.

Thus, we choose K = 4 throughout the experiments.

MixUp Augmentation. In FocalMix, two MixUp strate-

gies are designed for medical images: image-level MixUp

and object-level MixUp. As shown in table 3, the image-

level MixUp can boost the CPM score from 0.852 to 0.867,

and the object-level MixUp further improves the result to

0.872. We also illustrate some examples of MixUp in Fig-

ure 4. Intuitively, the goal of image-level MixUp is to en-

courage models to perform linearly between foreground and

background, while object-level MixUp encourages models

to detect lesions with richer patterns.

4.4. SSL with More Labeled and Unlabeled Data

In previous sections, we analyze the performance of Fo-

calMix with relatively small amounts of labeled data. Al-

though this is arguably the most common scenario in real-

world applications, it is also an interesting research question

whether SSL can still boost the performance of supervised

learning when a large training set is available. In addition,

there is usually a mismatch between data distributions of

labeled data and unlabeled data. Therefore, we also evalu-

ate our proposed SSL framework by using all the 533 CT

scans from LUNA16 as labeled data and using an external

database NLST (with potentially different data distribution

to that of LUNA16) to sample unlabeled data.

Data Selection. The NLST dataset contains ∼75,000

CT scans, a large number of which do not contain nodule

findings. Thus, we attempt to filter out these irrelevant im-

ages without nodules. Specifically, we first train a 3D FPN

using LUNA16, make predictions on a random subset of

NLST, and then pick out the CT scans that have at least

one predicted nodule with high confidence (the threshold

for positive nodules is set to 0.8). After selection, we leave

∼3,000 scans as unlabeled training data.
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Patch A Patch B λ=0.8 λ=0.6 Nodule A Nodule B λ=0.8 λ=0.6

Image-level MixUp Object-level MixUp

Figure 4: Illustrative examples for two MixUp methods. The left figure shows the image-level MixUp, where red arrows point to nodules

in the original image. The right figure demonstrates the object-level MixUp, where we zoom in on the nodules and locate them in the center

of each image patch for better visualization.

Model CPM(%)

Fully-supervised 89.2

Fully-supervised w/ MixUp 90.0

FocalMix 90.7

Table 4: FocalMix with larger scale labeled and unlabeled data.

We use all the labeled data in LUNA16 and unlabeled data selected

from NLST.

Results. The results are shown in Table 4. We train all

the models for 400 epochs. When using all the 533 anno-

tated CT scans, our proposed MixUp strategies (i.e., anchor-

level and object-level MixUp) alone can improve the CPM

score of the fully-supervised learning approach from 89.2%

to 90.0%. FocalMix further improves this result to 90.7%

by leveraging around 3,000 images without annotation.

5. Related Work

Detection in 3D Medical Images. Due to limited space,

we primarily review lung nodule detection methods, which

is the most mature field in 3D medical images due to pub-

licly available datasets. Earlier lung nodule detectors use

machine learning techniques with hand-craft features such

as spherical filter [36, 38, 4, 1]. Recent prosperity of deep

learning brings the success of modern object detection to

the area of medical image detection. Ding et al. [7] propose

to use 2D Faster R-CNN and 3D CNN for more accurate

nodule detection. Another line of research [20, 41, 14, 19]

uses 3D region proposal networks [29] or feature pyramid

network [21] to detect nodule directly. Pezenshk et al. [27]

and Liu et al. [23] further propose to use another network

followed by 3D FPN to reduce false positives.

Semi-Supervised Learning. Most of recent studies fo-

cus on how to apply a loss term onto the unlabeled data for

better generalization. Pseudo-label [18] uses the predicted

classes with the highest confidence as the training labels for

unlabeled data. Π-Model [17] and Γ-Model [28] use con-

sistency regularization terms to penalize inconsistent pre-

dictions. Tarvainen and Valpola [34] propose to regularize

models with a “mean teacher” using moving average of his-

torical parameters. MixMatch [3] and UDA [37] integrate

consistency regularization and modern data augmentation

techniques into a unified framework, achieving a large im-

provement. There are also some works focusing on improv-

ing detection model by using extra images with image-level

annotations [33, 10].

SSL in Medical Image Processing. Due to the difficulty

of data annotation, SSL is widely used in medical imaging

processing. Su et al. [32] propose a semi-supervised nu-

clei classification method by using local and global consis-

tency regularization. Ganaye et al. [9] and Chen et al. [6]

also propose SSL approaches to get better segmentation re-

sults in brain images. Zhou et al. [40] improve the perfor-

mance of disease grading and lesion segmentation by semi-

supervised learning. ASDNet [25] uses an attention-based

semi-supervised learning method to boost the performance

of medical image segmentation. These previous works are

also limited to classification and segmentation, while this

paper focuses on a more important and more complicated

task in medical imaging, lesion detection.

6. Conclusion

This paper discusses a novel semi-supervised learning

framework, FocalMix, which utilizes raw medical images

without annotation to boost the performance of supervised

lesion detection models. Extensive experiments show that

FocalMix can substantially improve the performance of

fully-supervised learning baselines. Our work demonstrates

the feasibility of leveraging modern SSL approaches in 3D

medical detection tasks.
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