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Abstract

Let H be a separable Hilbert space and T be a self-adjoint bounded linear operator on H⊗2

with norm ≤ 1, satisfying the Yang–Baxter equation. Bożejko and Speicher (1994) proved

that the operator T determines a T -deformed Fock space F(H) =
⊕∞

n=0Fn(H). We start

with reviewing and extending the known results about the structure of the n-particle spaces

Fn(H) and the commutation relations satisfied by the corresponding creation and annihilation

operators acting on F(H). We then choose H = L2(X → V ), the L2-space of V -valued

functions on X. Here X := R
d and V := C

m with m ≥ 2. Furthermore, we assume that

the operator T acting on H⊗2 = L2(X2 → V ⊗2) is given by (Tf (2))(x, y) = Cx,yf
(2)(y, x).

Here, for a.a. (x, y) ∈ X2, Cx,y is a linear operator on V ⊗2 with norm ≤ 1 that satisfies

C∗
x,y = Cy,x and the spectral quantum Yang–Baxter equation. The corresponding creation

and annihilation operators describe a multicomponent quantum system. A special choice

of the operator-valued function Cxy in the case d = 2 determines non-Abelian anyons (also

called plektons). For a multicomponent system, we describe its T -deformed Fock space and

the available commutation relations satisfied by the corresponding creation and annihilation

operators. Finally, we consider several examples of multicomponent quantum systems.

Keywords: Deformed commutation relations; deformed Fock space; multicompo-
nent quantum system; non-Abelian anyons (plektons)
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1 Introduction

This paper deals with the deformations of the canonical commutation/anticommutation
relations that describe multicomponent quantum systems.

The first rigorous construction of a deformation of the canonical (bosonic) com-
mutation relations (CCR) and the canonical (fermionic) anticommutation relations
(CAR) was given by Bożejko and Speicher [9], see also Fivel [13, 14], Greenberg [20],
Zagier [49]. Let H be a separable Hilbert space and let q ∈ (−1, 1). On a q-deformed
Fock space F(H) over H, Bożejko and Speicher [9] constructed creation and annihila-
tion operators a+(f) and a−(f) := (a+(f))∗, respectively, for f ∈ H, that satisfy the
q-commutation relations:

a−(f)a+(g) = qa+(g)a−(f) + (f, g)H , f, g ∈ H. (1)

Observe that the limiting values q = 1 and q = −1 correspond to the CCR and CAR,
respectively. In this case, one additionally has the creation-creation and annihilation-
annihilation commutation relations

a+(f)a+(g) = qa+(g)a+(f),

a−(f)a−(g) = qa−(g)a−(f), f, g ∈ H, q = ±1. (2)

respectively.
The operators a+(f), a−(f) (f ∈ H) from [9] form the Fock representation of the

commutation relation (1). This means that there exists a vacuum vector Ω ∈ F(H)
that is cyclic for the operators a+(f) (f ∈ H) and satisfies

a−(f)Ω = 0 for all f ∈ H. (3)

In fact, formulas (1) and (3) and the condition of cyclicity of Ω uniquely identify
the inner product on F(H). More precisely, the q-deformed Fock space has the form
F(H) =

⊕∞
n=0 Fn(H) and the inner product on each n-particle space Fn(H) is deter-

mined by a bounded linear operator Pn on H⊗n, depending on q. So one of the main
achievements of [9] was the proof of the positivity of the operators Pn on H⊗n. Unlike
the case of CCR and CAR, for q ∈ (−1, 1) the kernel of Pn contains only zero, and so
Fn(H) coincides as a set with H⊗n. This implies the absence of creation-creation and
annihilation-annihilation commutation relations, compare with (2). Note also that the
creation and annihilation operators are bounded in the case q ∈ [−1, 1).

For studies of the C∗-algebras generated by the q-commutation relations, see e.g.
[12,22,25]. The related von Neumann algebras were studied e.g. in [37,40,42,43]. The
case q = 0 corresponds to the creation and annihilation operators acting on the full
Fock space; these operators are particularly important for models of free probability,
see e.g. [2,5,35]. Various aspects of noncommutative probability related to the general
q-commutation relations (1) were discussed e.g. in [1, 4, 9, 11].
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An important generalization of the main result of [9] was obtained in [10]. Let T
be a self-adjoint bounded linear operator on H⊗2 with norm ≤ 1, and assume that T
satisfies the Yang–Baxter equation on H⊗3, see formula (13) below. Then, similarly
to the q case, Bożejko and Speicher [10] defined a T -deformed Fock space F(H) =⊕∞

n=0 Fn(H). To this end, they showed that, for each n ∈ N, the corresponding
operator Pn on H⊗n, depending on T , is positive. Furthermore, in the case ‖T‖ < 1,
the kernel of Pn contains only zero, and so Fn(H) coincides as a set with H⊗n. If the
operator T is given by Tf ⊗ g = qg⊗ f for f, g ∈ H, then one recovers the q-deformed
Fock space from [9].

By using the T -deformed Fock space, Bożejko and Speicher [10] constructed a Fock
representation of the following discrete commutation relations between creation oper-
ators ∂†i and annihilation operators ∂i:

∂i∂
†
j =

∑

k,l

T ik
jl ∂

†
k∂l + δi,j, i, j ∈ N. (4)

Here (T kl
ij )i,j,k,l is the matrix of the operator T in a fixed orthonormal basis1. In

particular, for complex qij with qij = qji and supi,j |qij| ≤ 1, one obtains the Fock
representation of the qij-commutation relations:

∂i∂
†
j = qij∂

†
j∂i + δij, (5)

see also [44].
Jørgensen, Schmitt and Werner [23] found sufficient conditions for the existence of

the Fock representation of the commutation relations (4) without requiring T to satisfy
the Yang–Baxter equation. For further results related to the commutation relations (4)
or (5), see e.g. [26, 27, 30, 33, 36]. In the case ‖T‖ = 1, Jørgensen, Proskurin, and
Samǒılenko [21] found, for n ≥ 2, the kernel of the operator Pn that determines the
inner product on Fn(H).

Liguori and Mintchev [29] constructed the Fock representation of quantum fields
with generalized statistics. Let H = L2(X), the complex L2-space on X := R

d. Fix a
function Q : X2 → C satisfying Q(x, y) = Q(y, x) and |Q(x, y)| = 1. Then the Fock
representation of the corresponding generalized statistics is the family of the creation
and annihilation operators on the T -deformed Fock space with the operator T on
H⊗2 = L2(X2) given by

(Tf (2))(x, y) = Q(x, y)f (2)(y, x), f (2) ∈ H⊗2. (6)

Let us formally define creation operators a+(x) and annihilation operators a−(x) at
points x ∈ X that satisfy

a+(f) =

∫

X

f(x)a+(x) dx, a−(f) =

∫

X

f(x) a−(x) dx, f ∈ H.

1Note, however, that the question of convergence of the series on the right-hand side of formula (4)
was not discussed in [10]. So formula (4) was rigorously proved in [10] only in the case where, for any
fixed i, j, only a finite number of T ik

jl are not equal to zero
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It is shown in [29] that these operators satisfy the Q-commutation relations

a−(x)a+(y) = Q(x, y)a+(y)a−(x) + δ(x− y) (7)

and

a+(x)a+(y) = Q(y, x)a+(y)a+(x), a−(x)a−(y) = Q(y, x)a−(y)a−(x) (x 6= y), (8)

the formulas making rigorous sense after smearing with a function f(x)g(y) ∈ H⊗2.
Note that, in this construction, the function Q may be defined only for a.a. (x, y) ∈ X2.

In physics, generalized (intermediate) statistics have been discussed since Leinass
and Myrheim [28] conjectured their existence. The first mathematically rigorous pre-
diction of intermediate statistics was done by Goldin, Menikoff and Sharp [16,17]. The
name anyon was given to such statistics by Wilczek [47, 48]. Anyon statistics were
used, in particular, to describe the quantum Hall effect, see e.g. [45].

Fix q ∈ C with |q| = 1. Define a function Q : X2 → C by

Q(x, y) :=

{
q if x1 < y1,

q̄, if x1 > y1,
(9)

where x1 denotes the first coordinate of x. As shown by Goldin and Sharp [19], Goldin
and Majid [15], Liguori and Mintchev [29], for d = 2, the corresponding commutation
relations (7), (8) describe anyons—particles associated with one-dimensional unitary
representations of the braid group.

Aspects of noncommutative probability related to anyons were discussed in [6, 7].
Lytvynov [31] constructed a class of non-Fock representations of the anyon commuta-
tion relations for which the corresponding vacuum state is gauge-invariant quasi-free.

Note that, for any generalized statistics, the operator T given by (6) is unitary. In
fact, for any operator T that is additionally unitary, the corresponding operator Pn

on H⊗n is a multiple of an orthogonal projection. See Bożejko [3] for a much weaker
condition on T that is sufficient for each operator Pn to be a multiple of an orthogonal
projection.

Bożejko, Lytvynov and Wysoczański [8] discussed Fock representations of the de-
formed commutation relations in the case where the operator T is given by formula (6)
in which the function Q satisfies Q(x, y) = Q(y, x) and |Q(x, y)| ≤ 1. In this work, the
n-particle subspaces Fn(H) were described explicitly, and it was proved that the cor-
responding creation and annihilation operators satisfy the commutation relation (7).
Moreover, the creation-creation and annihilation-annihilation commutation relations
(8) hold for x 6= y such that |Q(x, y)| = 1:

a+(x)a+(y) = Q(y, x)a+(y)a+(x),

a−(x)a−(y) = Q(y, x)a−(y)a−(x) if x 6= y and |Q(x, y)| = 1. (10)
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In the present paper, by a multicomponent quantum system we understand a family
of creation and annihilation operators a+(f), a−(f) on a T -deformed Fock space F(H),
where f belongs to H = L2(X → V ), the L2-space of V -valued functions on X.
Here V := C

m with m ≥ 2. Furthermore, we assume that the operator T acting on
H⊗2 = L2(X2 → V ⊗2) is given by

(Tf (2))(x, y) := Cx,yf
(2)(y, x), f (2) ∈ H⊗2. (11)

Here Cx,y is a linear operator on V
⊗2 with norm≤ 1, which is defined for a.a. (x, y) ∈ X2

and satisfies the symmetry relation C∗
x,y = Cy,x together with the spectral quantum

Yang–Baxter equation, see formula (48) below. Under the assumption that, for a.a.
(x, y) ∈ X2, Cx,y is a unitary operator on V ⊗2 (or, equivalently, T is a unitary operator
on H⊗2), the multicomponent quantum systems were discussed in [29], see also the
references therein.

A multicomponent counterpart of an anyon system was originally called plektons,
see e.g. [15]. The first publication pointing out the possibility of such a quantum system
was the comment by Menikoff, Sharp, and Goldin [18]. Plektons are quasiparticles in
dimension d = 2 that are associated with higher-dimensional (non-Abelian) unitary
representations of the braid group. In view of this, more recently these quasiparticles
have been mostly called non-Abelian anyons, the term that will be used in the present
paper. Non-Abelian anyons form a central tool in topological quantum computation,
see e.g. [38, 46].

According to [15], a non-Abelian anyon system is determined by a unitary operator
C on V ⊗2, which defines Cx,y in (11) via the formula

Cxy :=

{
C, if x1 < y1,

C∗, if x1 > y1,
(12)

compare with (9). The operator T satisfies the Yang–Baxter equation on H⊗3 if and
only if the operator C satisfies the Yang–Baxter equation on V ⊗3, see Lemma 4.4
below. In the latter case, the operator C determines, for each n ≥ 2, a (non-Abelian)
unitary representation of the braid group Bn.

The paper is organized as follows. In Section 2, we review and extend the results
of [10,21] regarding the general deformed commutation relations governed by a bounded
linear operator T satisfying the assumptions of the paper [10]. Our man results in this
section are as follows.

(i) In the case ‖T‖ = 1, we clarify the structure of the n-particle subspaces Fn(H) of
the T -deformed Fock space F(H) (Theorem 2.2 and Corollary 2.4). Furthermore,
we show that the orthogonal projection Pn of H⊗n onto its subspace Fn(H) can
be represented, for n ≥ 3, as (a multiple of) the parallel sum of two explicitly
given orthogonal projections, built with the help of P2 (Proposition 2.1).
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(ii) We find all possible commutation relations between the operators a±(f) and
a±(g) (Theorem 2.8).

Note that previously the commutation relations between two creation operators
and between two annihilation operators have only been found in the case where the
operator T is given by formula (6), see [8, 15, 29].

In Section 3, we consider the general multicomponent quantum systems. We apply
the results of Section 2 to the case where the operator T is given by formula (11). The
main results of this section—Theorems 3.3, 3.11 and Corollaries 3.13, 3.14—describe
the corresponding T -deformed Fock space and the available commutation relations
between the creation/annihilation operators. In particular, we find a multicomponent
counterpart of the commutation relations (7), (10).

Finally, in Section 4, we consider several examples of multicomponent quantum sys-
tems. These include examples when the operator-valued function Cx,y in formula (11)
is constant, i.e., Cx,y = C for all x, y, examples of non-Abelian anyon quantum systems
and other. In these examples, we give explicit description of the corresponding Fock
space F(H) and the orthogonal projection P2 of H⊗n onto F2(H), and calculate the
available commutation relations.

2 General T -deformed commutation relations

2.1 T -deformed tensor power of a Hilbert space

For a Hilbert space H, let L(H) denote the space of all bounded linear operators on H.
We will denote by 1H the identity operator on H. However, where the Hilbert space
in consideration is clear from the context, we will just use 1 for the identity operator
on this space.

Let H be a separable complex Hilbert space, and let T ∈ L(H⊗2). We assume that
T is self-adjoint, ‖T‖ ≤ 1, and T satisfies the Yang–Baxter equation on H⊗3:

(T ⊗ 1H)(1H ⊗ T )(T ⊗ 1H) = (1H ⊗ T )(T ⊗ 1H)(1H ⊗ T ). (13)

For i ∈ N, we denote by Ti the operator on H⊗n with n ≥ i+ 1 given by

Ti := 1H⊗(i−1) ⊗ T ⊗ 1H⊗(n−i−1) .

Let Sn denote the symmetric group of degree n. We represent a permutation σ ∈ Sn

as an arbitrary product of adjacent transpositions,

σ = σj1 · · · σjm , (14)

where σj := (j, j + 1) ∈ Sn for 1 ≤ j ≤ n − 1. A permutation σ ∈ Sn can be
represented (not in a unique way, in general) as a reduced product of a minimal number
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of adjacent transpositions, i.e., in the form (14) with a minimal m. Then the mapping
σk 7→ Tσk

:= Tk ∈ L(H⊗n) can be multiplicatively extended to Sn by setting

Sn ∋ σ 7→ Tσ := Tj1 · · ·Tjm . (15)

(For the identity permutation e ∈ Sn, Te := 1.) Although representation (14) of
σ ∈ Sn in a reduced form is not unique, formula (13) implies that the extension (15)
is well-defined, i.e., it does not depend on the representation of σ.

For each n ≥ 2, we define Pn ∈ L(H⊗n) by

Pn :=
∑

σ∈Sn

Tσ.

By [10], the operator Pn is positive, i.e., Pn ≥ 0, and in the case ‖T‖ < 1, it is strictly
positive. We denote

Fn(H) := ker(Pn)
⊥ = ran(Pn), (16)

i.e., the orthogonal compliment of the kernel of Pn in H⊗n, or equivalently the closure
of the range of Pn. As easily seen, the operator Pn is strictly positive on Fn(H), so
one can introduce a new inner product on Fn(H) by

(f (n), g(n))Fn(H) := (Pnf
(n), g(n))H⊗n , f (n), g(n) ∈ Fn(H),

which makes Fn(H) a Hilbert space. Note that, if T = 0, the Hilbert spaces Fn(H)
and H⊗n coincide. Thus, a non-zero operator T leads to a deformation of the Hilbert
space H⊗n.

Let Pn denote the orthogonal projection of the Hilbert space H⊗n onto its subspace
Fn(H).

Assume in addition that the operator T is unitary. Then mapping (15) determines
a unitary representation of Sn, hence in formula (15) σ should not necessarily be in a
reduced form. This implies the equality Pn = 1

n!
Pn, which does not hold in the general

case.
As already mentioned before, in the case ‖T‖ < 1, H⊗n and Fn(H) coincide as

sets. In the case where ‖T‖ = 1, the following result shown in [21] gives a description
of ker(Pn) = ker(Pn):

ker(Pn) =
n−1∑

i=1

ker(1+ Ti), (17)

i.e., the kernel of Pn is equal to the closure of the linear span of the subspaces ker(1+Ti),
i = 1, . . . , n− 1. Note that formula (17) remains true when ‖T‖ < 1, in which case it
gives ker(Pn) = {0}. Since ker(1+ Ti)

⊥ = ran(1+ Ti), formulas (16) and (17) imply

Fn(H) =
n−1⋂

i=1

ran(1+ Ti). (18)
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In view of formula (18), we can now give a representation of the orthogonal pro-
jection Pn onto Fn(H) by using the notion of a parallel sum of two projections, see
e.g. [34]. Let us first recall this notion. Let H be a complex Hilbert space, let H1 and
H2 be closed subspaces of H, and let P1 and P2 denote the orthogonal projections of
H onto H1 and H2, respectively. The parallel sum of P1 and P2, denoted by (P1 : P2),
is the self-adjoint bounded linear operator on H defined by its quadratic form

((P1 : P2)x, x)H = inf
y+z=x

(
(P1y, y)H + (P2z, z)H

)
, x ∈ H. (19)

The right-hand side of (19) is equal to 1
2
‖x‖2H for x ∈ H1 ∩ H2 and equal to zero for

x ∈ (H1 ∩ H2)
⊥. Hence, 2(P1 : P2) is the orthogonal projection of H onto H1 ∩ H2.

Observe that 2(P1 : P2) = P1P2 if and only if P1 and P2 commute, or equivalently
H1 ⊥ H2.

Denote P := P2 and analogously to operators Ti define operators Pi. Then, for
n ≥ i+ 1, Pi is the orthogonal projection of H⊗n onto ran(1+ Ti).

Proposition 2.1. Let n ≥ 3. Define operators Q1 and Q2 on H⊗n by

Q1 :=
∏

i≤n−1
i odd

Pi, Q2 :=
∏

i≤n−1
i even

Pi.

Then the operators Q1 and Q2 are orthogonal projections and Pn = 2(Q1 : Q2). Fur-
thermore, for each m ∈ N, 2 ≤ m ≤ n− 1,

Pn = Pn(Pm ⊗ 1H⊗(m−n)) = Pn(1H⊗(m−n) ⊗ Pm). (20)

Proof. Observe that the projections Pi with odd (respectively even) i mutually com-
mute. This implies that Q1 and Q2 are orthogonal projections onto

⋂

i≤n−1
i odd

ran(1+ Ti) and
⋂

i≤n−1
i even

ran(1+ Ti),

respectively. Formula (18) implies Pn = 2(Q1 : Q2).
Let us prove the first equality in (20), the second one being proved similarly. The

operator Pm ⊗ 1H⊗(m−n) is the orthogonal projection of H⊗n onto the subspace

m−1⋂

i=1

ran(1+ Ti).

But Fn(H) is a subspace of this space (see (19)), which implies the statement.

Theorem 2.2. For each n ≥ 2, we have

Fn(H) =
{
f (n) ∈ H⊗n | (1− Ti)f

(n) ∈ ran(1− T 2
i ), i = 1, 2, . . . , n− 1

}
. (21)

8



Proof. Note that, when ‖T‖ < 1, formula (21) just states the known equality Fn(H) =
H⊗n. So we only need to prove formula (21) in the case ‖T‖ = 1. We start with the
following lemma.

Lemma 2.3. The kernel of the operator 1+ T has the following representation:

ker(1+ T ) = (1− T ) ker(1− T 2). (22)

Proof. If f (2) ∈ ker(1−T 2), then (1−T )f (2) ∈ ker(1+T ), which implies the inclusion

(1− T ) ker(1− T 2) ⊂ ker(1+ T ).

To prove the converse inclusion, take any f (2) ∈ ker(1+ T ) (i.e., f (2) = −Tf (2)). Then
1
2
f (2) ∈ ker(1− T 2) and

(1− T )1
2
f (2) = 1

2
f (2) + 1

2
f (2) = f (2).

Thus, formula (22) is shown.

In the case n = 2, formula (21) states

F2(H) =
{
f (2) ∈ H⊗2 | (1− T )f (2) ∈ ran(1− T 2)

}
. (23)

Let us now prove this formula. Observe that

H⊗2 = ker(1+ T )⊕ ker(1− T )⊕ ran(1− T 2). (24)

Thus, each f (2) ∈ H⊗2 can be represented as f (2) = f
(2)
1 + f

(2)
2 + f

(2)
3 , where f

(2)
1 ∈

ker(1 + T ), f
(2)
2 ∈ ker(1 − T ), f

(2)
3 ∈ ran(1− T 2), and f (2) ∈ F2(H) if and only if

f
(2)
1 = 0. Note that the subspaces ker(1+T ), ker(1−T ), and ran(1− T 2) are invariant
for the operator T , hence also for the operator 1 − T . Therefore, for f (2) ∈ H⊗2, we
get

(1− T )f (2) = (1− T )f
(2)
1 + (1− T )f

(2)
3

with (1− T )f
(2)
1 ∈ ker(1− T ) and (1− T )f

(2)
3 ∈ ran(1− T 2). Hence, condition

(1− T )f (2) ∈ ran(1− T 2) (25)

is satisfied if and only if (1 − T )f
(2)
1 = 0. But since f

(2)
1 ∈ ker(1 + T ), we have

(1− T )f
(2)
1 = 0 if and only if f

(2)
1 = 0. Thus, formula (23) is proved.

For n ≥ 3, formula (21) follows from (18) and (23).

Corollary 2.4. Assume additionally that the operator T is unitary. Then, for each
n ≥ 2,

Fn(H) =
{
f (n) ∈ H⊗n | Tif (n) = f (n), i = 1, 2, . . . , n− 1

}
.
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Proof. Since T is both self-adjoint and unitary, we have T−1 = T . Hence,

ran(1− T 2) = {0}.

Now the statement follows from Theorem 2.2.

Remark 2.5. In view of Corollary 2.4, in the case where T is additionally unitary, we
can interpret Fn(H) as the nth T -symmetric tensor power of H.

2.2 Creation and annihilation operators on the full Fock space

We will now recall and extend the construction of creation and annihilation operators
acting on the full Fock space, compare with e.g. [35, Lecture 7].

Let HR be a real separable Hilbert space, and let H denote the complex Hilbert
space constructed as the complexification of HR. More precisely, elements of H are of
the form f1 + if2 with f1, f2 ∈ HR. For f = f1 + if2, g = g1 + ig2 ∈ H, we denote

〈f, g〉 := (f1, f2)HR
− (g1, g2)HR

+ i
(
(f1, g2)HR

+ (f2, g1)HR

)
,

i.e., 〈·, ·〉 is the extension of the inner product on HR by linearity to H ×H. Then the
inner product on H is given by (f, g)H := 〈f, Jg〉, where

Jg = J(g1 + ig2) := g1 − ig2 (26)

is the complex conjugation on the space H considered as the complexification of HR.
Let Γ(H) denote the full Fock space over H:

Γ(H) :=
∞⊕

n=0

H⊗n.

Here H0 := C. The vector Ω := (1, 0, 0, 0, . . . ) ∈ Γ(H) is called the vacuum.
For each f ∈ H, we denote by l+(f) the operator of left creation by f . This is the

bounded linear operator on Γ(H) satisfying l+(f)Ω = f and l+(f)g(n) = f ⊗ g(n) for
g(n) ∈ H⊗n, n ∈ N. Note that ‖l+(f)‖ = ‖f‖. The operator of left annihilation by f is
defined by

l−(f) := l+(Jf)∗.

This operator satisfies

l−(f)Ω = 0,

l−(f)g1 ⊗ g2 ⊗ · · · ⊗ gn = 〈f, g1〉g2 ⊗ · · · ⊗ gn, g1, g2, . . . , gn ∈ H, n ∈ N.

For f1, f2, g ∈ H, we denote 〈f1 ⊗ f2, g〉2 := 〈f2, g〉f1. As easily seen, 〈f1 ⊗ f2, ·〉2
determines a Hilbert–Schmidt operator on H. Extending this definition by linearity
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and continuity, we define, for an arbitrary f (2) ∈ H⊗2, a Hilbert–Schmidt operator
〈f (2), ·〉2 on H with Hilbert–Schmidt norm ‖f (2)‖H⊗2 .

For f1, f2 ∈ H and g(n) ∈ H⊗n, we have

l+(f1)l
−(f2)g

(n) =
(
〈f1 ⊗ f2, ·〉2

)
⊗ 1H⊗(n−1)g(n). (27)

Indeed, choosing g(n) = g1 ⊗ g2 ⊗ · · · ⊗ gn with g1, . . . , gn ∈ H, we get

l+(f1)l
−(f2)g

(n) = 〈f2, g1〉f1 ⊗ g2 ⊗ · · · ⊗ gn =
(
〈f1 ⊗ f2, g1〉2

)
⊗ g2 ⊗ · · · ⊗ gn,

which implies (27). In view of (27), for each f (2) ∈ H⊗2, we can define a bounded
linear operator l+−(f (2)) on Γ(H) by

l+−(f (2))Ω := 0,

l+−(f (2))g(n) :=
(
〈f (2), ·〉2

)
⊗ 1H⊗(n−1) , g(n) ∈ H⊗n, n ∈ N.

Let (ei)i≥1 be an orthonormal basis of HR, hence also an orthonormal basis of H.
Then, for each f (2) ∈ H⊗2, we easily see that

l+−(f (2)) =
∑

i,j

〈f (2), ei ⊗ ej〉l+(ei)l−(ej),

where the series converges in the operator norm. Here and below, for f (2), g(2) ∈
H⊗2, we use the notation 〈f (2), g(2)〉 := (f (2), Jg(2))H⊗2 , where J denotes the complex
conjugation on H⊗2, cf. (26).

Similarly, for each f (2) ∈ H⊗2, we define bonded linear operators l++(f (2)) and
l−−(f (2)) on Γ(H) that satisfy

l++(f (2)) =
∑

i,j

〈f (2), ei ⊗ ej〉l+(ei)l+(ej),

l−−(f (2)) =
∑

i,j

〈f (2), ei ⊗ ej〉l−(ei)l−(ej),

the series converging in the operator norm. Note that l++(f (2))∗ = l−−(Sf (2)), where
S denotes the continuous antilinear operator on H⊗2 satisfying

Sf ⊗ g := J(g ⊗ f), f, g ∈ H.

2.3 Creation and annihilation operators on the T -deformed
Fock space

Let an operator T and a Hilbert space H be as in Subsection 2.1 and 2.2, respectively.
We define the T -deformed Fock space over H by

F(H) :=
∞⊕

n=0

Fn(H).

11



Here F0(H) := C and the vector Ω = (1, 0, 0, 0, . . . ) is still called the vacuum. Note
that the full Fock space Γ(H) is the special case of F(H) for T = 0.

Let Ffin(H) denote the subspace of F(H) that consists of all finite sequences
f = (f (0), f (1), . . . , f (n), 0, 0, . . . ) with f (i) ∈ Fi(H). We equip Ffin(H) with the topol-
ogy of the topological direct sum of the F (n)(H) spaces. Thus, convergence of a se-
quence in Ffin(H) means uniform finiteness and coordinate-wise convergence of non-
zero coordinates. We denote by L(Ffin(H)) the space of all continuous linear operators
on Ffin(H).

For f ∈ H, we define a creation operator a+(f) as the linear operator on Ffin(H)
given by

a+(f)Ω := f,

a+(f)g(n) := Pn+1l
+(f)g(n) = Pn+1(f ⊗ g(n)), g(n) ∈ Fn(H), n ∈ N.

Note that formula (20) implies that

a+(f)Png
(n) = Pn+1l

+(f)g(n), g(n) ∈ H⊗n, n ≥ 2. (28)

Next, for f ∈ H, we define an annihilation operator a−(f) on Ffin(H) by

a−(f) := a+(Jf)∗ ↾ Ffin(H).

By [10], one has the following explicit formula for the action of a−(f):

a−(f)g(n) = Pn−1l
−(f)Tng

(n), g(n) ∈ Fn(H), (29)

where Tn ∈ L(H⊗n) is defined by

Tn := 1+ T1 + T1T2 + · · ·+ T1T2 · · ·Tn−1. (30)

Proposition 2.6. For each f ∈ H, a+(f), a−(f) ∈ L(Ffin(H)).

Proof. It is sufficient to prove that, for each n ∈ N, the operators a+(f) : Fn(H) →
Fn+1(H) and a−(f) : Fn+1(H) → Fn(H) are bounded. Since a−(Jf) is the adjoint of
a+(f), both operators a+(f) and a−(f) are closed. Now the statement follows from
the closed graph theorem.

By analogy with Subsection 2.2, we will now introduce, for each f (2) ∈ H⊗2,
operators a+−(f (2)), a++(f (2)), and a−−(f (2)) on Ffin(H). For any f1, f2 ∈ H and
g(n) ∈ Fn(H) with n ≥ 1, we get, by (28) and (29),

a+(f1)a
−(f2)g

(n) = Pnl
+−(f1 ⊗ f2)Tng

(n).

Hence, for each f (2) ∈ H⊗2, we define a linear operator a+−(f (2)) on Ffin(H) by setting

a+−(f (2))Ω := 0, a+−(f (2))g(n) := Pnl
+−(f (2))Tng

(n), g(n) ∈ Fn(H), n ∈ N.
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Note that, for a fixed G ∈ Ffin(H), the mapping

H⊗2 ∋ f (2) 7→ a+−(f (2))G ∈ F(H) (31)

is continuous.
Let a sequence (An)

∞
n=1 and an operator A be from L(Ffin(H)). As usual, we will

say that An strongly converges to A on Ffin(H) if for each fixed G ∈ Ffin(H), we have
limn→∞AnG = AG in the topology of Ffin(H).

Then the continuity of the mapping (31) implies the decomposition

a+−(f (2)) =
∑

i,j

〈f (2), ei ⊗ ej〉a+(ei)a−(ej),

where the series strongly converges on Ffin(H). This also immediately implies

a+−(f (2))∗ = a+−(Sf (2)). (32)

Similarly, for each f (2) ∈ H⊗2, we define a linear operator a++(f (2)) on Ffin(H) by

a++(f (2))Ω := P2f
(2), a++(f (2))g(n) = Pn+2(l

++(f (2))g(n)), g(n) ∈ Fn(H), n ∈ N.

(33)
Finally, to construct an operator a−−(f (2)), we proceed as follows. For f1, f2 ∈ H

and g(n) ∈ Fn(N), n ≥ 2, we get

a−(f1)a
−(f2)g

(n) = a−(f1)Pn−1l
−(f2)Tng

(n)

= a−(f1)(l
−(f2) ↾H ⊗Pn−1)Tng

(n)

= Pn−2l
−(f1)Tn−1(l

−(f2) ↾H ⊗Pn−1)Tng
(n)

= Pn−2l
−(f1)(l

−(f2) ↾H ⊗(Tn−1Pn−1))Tng
(n)

= Pn−2l
−(f1)l

−(f2)(1H ⊗ (Tn−1Pn−1))Tng
(n)

= Pn−2l
−−(f1 ⊗ f2)(1H ⊗ (Tn−1Pn−1))Tng

(n).

Thus, for f (2) ∈ H⊗2, we define a linear operator a−−(f (2)) by

a−−(f (2))Ω := 0, a−−(f (2))g := 0, g ∈ H,

a−−(f (2))g(n) := Pn−2l
−−(f (2))(1H ⊗ (Tn−1Pn−1))Tng

(n), g(n) ∈ Fn(H), n ≥ 2.

We easily see that the above statements related to the operator a+−(f (2)) remain true
(with obvious changes) for a++(f (2)) and a−−(f (2)). In particular,

a++(f (2)) =
∑

i,j

〈f (2), ei ⊗ ej〉a+(ei)a+(ej),
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a−−(f (2)) =
∑

i,j

〈f (2), ei ⊗ ej〉a−(ei)a−(ej),

where the series strongly converge on Ffin(H). Hence,

a++(f (2))∗ = a−−(Sf (2)), f (2) ∈ H⊗2. (34)

By using formulas (32) and (34), analogously to the proof of Proposition 2.6, we
conclude the following proposition.

Proposition 2.7. For each f (2) ∈ H⊗2, we have

a+−(f (2)), a++(f (2)), a−−(f (2)) ∈ L(Ffin(H)).

Assume that there exists an operator T̃ ∈ L(H⊗2) that satisfies the following iden-
tity:

〈Tf1 ⊗ f2, f3 ⊗ f4〉 = 〈T̃ f3 ⊗ f1, f4 ⊗ f2〉, f1, f2, f3, f4 ∈ H. (35)

Observe that identity (35) does not necessarily identify a bounded linear operator T̃ ,

but in all known examples T̃ indeed exists. Note also that if T̃ exists, then it is
obviously unique.

The following theorem states the commutation relations that the creation and an-
nihilation operators satisfy on the T -deformed Fock space.

Theorem 2.8. For any f, g ∈ H,

a−(f)a+(g) = a+−(T̃ f ⊗ g) + 〈f, g〉. (36)

Further let f (2) ∈ H⊗2. Then

a++(f (2)) = 0 ⇔ f (2) ∈ ker(1+ T ) (37)

and
a−−(f (2)) = 0 ⇔ Sf (2) ∈ ker(1+ T ). (38)

Moreover, if f (2) ∈ ker(1− T 2), then

a++(f (2)) = a++(Tf (2)), (39)

and if Sf (2) ∈ ker(1− T 2), then

a−−(f (2)) = a−−(T̂ f (2)), (40)

where
T̂ := STS. (41)
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Proof. Formula (36) follows from [10] (where it is written through an orthonormal basis

in H⊗2), see also [27] for the definition of the operator T̃ in the basis-free form.
By (20) and (33), we have

a++(f (2)) = a++(P2f
(2)).

Hence, if f (2) ∈ ker(1 + T ) = ker(P2), then a++(f (2)) = 0, and if f (2) 6∈ ker(1 + T ),
then (33) implies a++(f (2))Ω 6= 0. Thus, (37) holds. Formula (38) follows from (34)
and (37).

Formula (39) follows from (37) and (22). Finally, by (22) and (41),

S ker(1+ T ) =
{
f (2) − T̂ f (2) | Sf (2) ∈ ker(1− T 2)

}
.

Hence, formula (40) follows from (38).

Remark 2.9. In view of (22) and (37), formulas (39) and (40) describe all possible
commutation relations between two creation operators or two annihilation operators,
respectively.

Remark 2.10. If the operator T is unitary, then ker(1 − T 2) = H⊗2, hence equalities
(39), (40) hold for all f (2) ∈ H⊗2, in particular, for all f (2) ∈ F2(H).

For A ∈ L(H⊗2), we write

Akl
ij := 〈Aei ⊗ ej, ek ⊗ el〉. (42)

Note that
T̃ kl
ij = T ik

jl , T̂ kl
ij = T lk

ji . (43)

The following corollary in immediate.

Corollary 2.11. We have

a−(ei)a
+(ej) =

∑

k,l

T̃ kl
ij a

+(ek)a
−(el) + δij, (44)

where δij is the Kronecker delta. Furthermore, if ei ⊗ ej ∈ ker(1− T 2), then

a+(ei)a
+(ej) =

∑

k,l

T kl
ij a

+(ek)a
+(el), (45)

a−(ej)a
−(ei) =

∑

k,l

T̂ kl
ji a

−(ek)a
−(el). (46)

In formulas (44)–(46), the series converge strongly on Ffin(H).
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2.4 Wick algebras

We finish this section with a short discussion of Wick algebras. Assume that the
operator T̃ has the following property: for any i, j, only a finite number of T̃ kl

ij are not

equal to zero. (We will say that the operator T̃ has a finite matrix.) Let A denote the
complex algebra generated by the operators a+(ei), a

−(ej) (i, j ≥ 1) and the identity
operator. Then the commutation relation (44) implies that each element of this algebra
can be represented as a linear combination of the identity operator and products of
creation and annihilation operators in the Wick form:

a+(ei1) · · · a+(eik)a−(ej1) · · · a−(ejl), k, l ≥ 0, k + l ≥ 1,

i.e., all creation operators are on the right and all annihilation operators are on the
left. This is why one calls A a Wick algebra, see e.g. [21, 23, 26,27].

In the case where the matrix of the operator T̃ is not finite, one can proceed as
follows. First, let us recall that if H1 and H2 are Hilbert spaces, then L(H1,H2),
the space of all bounded linear operators from H1 into H2, is complete with respect
to the strong convergence of bounded linear operators. Furthermore, an immediate
consequence of the uniform boundedness principle states that, if (An)

∞
n=1 and (Bn)

∞
n=1

are sequences in L(H1,H2) and limn→∞An = A, limn→∞Bn = B, then limn→∞AnBn =
AB (all limits being understood in the strong sense.) These statements immediately
imply the following lemma.

Lemma 2.12. Let A ⊂ L(Ffin(H)). Let A denote the closure of A with respect to the
strong convergence on Ffin(H). Then A ⊂ L(Ffin(H)). Furthermore, if A is an algebra
(with respect to addition and product of operators), then A is also an algebra.

Define the algebra A just as in the case where T̃ had a finite matrix. Let W
denote the subset of A that consists of all elements of A that can be represented as a
linear combination of the identity operator and products of creation and annihilation
operators in the Wick form. (Note that W is not anymore an algebra.) Let A and W
denote the closures of A and W with respect to the strong convergence on Ffin(H).
Then, by Lemma 2.12, A ⊂ L(Ffin(H)) and A is an algebra. By formula (44), we get
A = W. Hence, in this case we may also think of A as a Wick algebra.

3 Multicomponent quantum systems

We will now discuss the commutation relations for multicomponent quantum systems,
in particular, for non-Abelian anyons.

Let X := R
d (d ∈ N) and let V := C

m, where m ∈ N, m ≥ 2. We choose
H = L2(X → V ), the L2-space of V -valued functions on X. Here, as a reference
measure, we chose the Lebesgue measure dx on the Borel σ-algebra of X. Note that the
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space H is the complexification of L2(X → R
m), the L2-space of Rm-valued functions

on X. Note also that H can be naturally identified with the tensor product L2(X)⊗V ,
where L2(X) is the L2-space of complex-valued functions on X.

Let
X(2) := {(x, y) ∈ X2 | x1 6= y1}, (47)

where xi denotes the ith coordinate of x. Note that X2\X(2) = {(x, y) ∈ X2 | x1 = y1}
is a set of zero dx dy-measure. Hence,

H⊗2 = L2(X(2) → V ⊗2) = L2(X(2))⊗ V ⊗2.

Similarly, for n ≥ 3, we have

H⊗n = L2(X(n) → V ⊗n) = L2(X(n))⊗ V ⊗n,

where X(n) := {(x1, . . . , xn) ∈ Xn | x1i 6= x1j if i 6= j}.
Below, for (x, y) ∈ X(2), we will write x < y or x > y if x1 < y1 or x1 > y1,

respectively.
Consider L(V ⊗2), the space of linear operators on V ⊗2, equivalently m2 ×m2 ma-

trices with complex entries. Consider a measurable mapping

X(2) ∋ (x, y) 7→ Cx,y ∈ L(V ⊗2)

that satisfies the following assumptions: for each (x, y) ∈ X(2), ‖Cx,y‖ ≤ 1 and C∗
x,y =

Cy,x. Define a linear operator T on H⊗2 by (11). As easily seen, the operator T is
bounded with ‖T‖ ≤ 1 and self-adjoint.

Lemma 3.1. The operator T satisfies the Yang–Baxter equation (13) if and only if
the following equation holds on V ⊗3 for a.a. (x, y, z) ∈ X(3):

C1,2
x,yC

2,3
x,zC

1,2
y,z = C2,3

y,zC
1,2
x,zC

2,3
x,y (48)

Here Ck,k+1
v,w , k = 1, 2, denotes the operator Cv,w acting on the kth and (k + 1)th

components of the tensor product V ⊗3.

Remark 3.2. Equation (48) is a spectral quantum Young–Baxter equation, see e.g. [29,
Section 6] and the references therein.

Proof of Lemma 3.1. For the reader’s convenience, we will prove this rather obvious
lemma. For g ∈ L2(X(3)) and v ∈ V ⊗3, we have

(T ⊗ 1H)(g ⊗ v)(x, y, z) = g(y, x, z)C1,2
x,yv,

(1H ⊗ T )(T ⊗ 1H)(g ⊗ v)(x, y, z) = C2,3
y,z (T ⊗ 1H)(g ⊗ v)(x, z, y) = g(z, x, y)C2,3

y,zC
1,2
x,zv,

(T ⊗ 1H)(1⊗ T )(T ⊗ 1H)(g ⊗ v)(x, y, z) = C1,2
x,y(1H ⊗ T )(T ⊗ 1H)(g ⊗ v)(y, x, z)

= g(z, y, x)C1,2
x,yC

2,3
x,zC

1,2
y,zv,

and analogously

(1H ⊗ T )(T ⊗ 1H)(1H ⊗ T )(g ⊗ v)(x, y, z) = g(z, y, x)C1,2
x,yC

2,3
x,zC

1,2
y,zv.

17



Theorem 3.3. Let n ≥ 2 and let f (n) ∈ H⊗n. Then f (n) ∈ Fn(H) if and only if, for
each i ∈ {1, . . . , n− 1} and a.a. (x1, . . . , xn) ∈ X(n), we have

f (n)(x1, . . . , xn)− C i,i+1
xi,xi+1

f (n)(x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xn)

∈ V ⊗(i−1) ⊗ ran(1V ⊗2 − Cxi,xi+1
C∗

xi,xi+1
)⊗ V ⊗(n−i−1). (49)

Furthermore, if condition (49) is satisfied for some i ∈ {1, . . . , n−1} and (x1, . . . , xn) ∈
X(n), then it is automatically satisfied for this i and (x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xn) ∈
X(n).

Remark 3.4. In view of the last statement of Theorem 3.3, in oder to check whether
a given f (n) ∈ H⊗n belongs to Fn(H), it is sufficient to check condition (49) for all
i = 1, . . . , n− 1 and a.a. (x1, . . . , xn) ∈ X(n) with x1 < x2 < · · · < xn.

In order to prove Theorem 3.3, we will need the following two lemmas.

Lemma 3.5. Let C ∈ L(V ⊗2) and let w ∈ V ⊗2. Then w ∈ ker(1 − CC∗) if and only
if C∗w ∈ ker(1− C∗C). Moreover, the mappings

C∗ : ker(1− CC∗) → ker(1− C∗C), C : ker(1− C∗C) → ker(1− CC∗)

are bijective and inverse of each other.

Proof. Let w ∈ ker(1−CC∗), w 6= 0. Then w = CC∗w, hence C∗w 6= 0. Furthermore,
C∗w = C∗CC∗w, hence C∗w ∈ ker(1− C∗C). Therefore,

C∗ : ker(1− CC∗) → ker(1− C∗C) (50)

is an injective mapping. Swapping C and C∗, we conclude that

C : ker(1− C∗C) → ker(1− CC∗) (51)

is an injective mapping. Finally, for w ∈ ker(1 − CC∗), we have w = CC∗w and
for v ∈ ker(1 − C∗C), we have v = C∗Cv. Hence, both mappings (50) and (51) are
bijective and inverse of each other.

Lemma 3.6. Let the conditions of Lemma 3.5 be satisfied. Then, for any u, v ∈ V ⊗2,
we have u− Cv ∈ ran(1− CC∗) if and only if v − C∗u ∈ ran(1− C∗C).

Proof. Assume u− Cv ∈ ran(1− CC∗). Then,

(u, w)− (Cv,w) = (u− Cv,w) = 0 for all w ∈ ker(1− CC∗).

Since w = CC∗w, we conclude:

0 = (u, CC∗w)− (Cv,w) = (C∗u− v, C∗w) for all w ∈ ker(1− CC∗).

Hence, by Lemma 3.5,

(C∗u− v, w) = 0 for all w ∈ ker(1− C∗C),

which implies C∗u− v ∈ ran(1− C∗C). The converse implication is obvious.
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We can now proceed with the proof of Theorem 3.3.

Proof of Theorem 3.3. In view of Theorem 2.2, it is sufficient to prove the result for
n = 2. By the definition of T , we have, for each f (2) ∈ H⊗2,

(
(1− T 2)f (2)

)
(x, y) = f (2)(x, y)− Cx,yCy,xf

(2)(x, y) = (1− Cx,yC
∗
x,y)f

(2)(x, y).

From here we easily conclude that

ran(1− T 2) =
{
f (2) ∈ H⊗2 | f(x, y) ∈ ran(1− Cx,yC

∗
x,y) for a.a. (x, y) ∈ X(2)

}
.

Theorem 2.2 now implies that, for each f (2) ∈ H⊗2, we have f (2) ∈ F2(H) if and only
if

f(x, y)− Cx,yf(y, x) ∈ ran(1− Cx,yC
∗
x,y) for a.a. (x, y) ∈ X(2), (52)

It follows from Lemma 3.6 that if condition (52) is satisfied for some (x, y) ∈ X(2),
then it is automatically satisfied for the point (y, x) ∈ X(2).

The following immediate corollary gives an explicit form of P, the orthogonal pro-
jection of H⊗2 onto F2(H) (compare with Proposition 2.1).

Corollary 3.7. For (x, y) ∈ X(2), x < y, denote by Px,y the orthogonal projection of
the space V ⊗2 ⊕ V ⊗2 onto the subspace

{
(u, v) ∈ V ⊗2 ⊕ V ⊗2 | u− Cx,yv ∈ ran(1− Cx,yC

∗
x,y)

}
.

Further for Px,y(u, v) = (w1, w2), with w1, w2 ∈ V ⊗2, we denote P 1
x,y(u, v) := w1 and

P 2
x,y(u, v) := w2, i.e., P

1
x,y(u, v) and P

2
x,y(u, v) are the first and second V ⊗2-coordinates

of the vector Px,y(u, v). Then P, the orthogonal projection of H⊗2 onto F2(H), has the
following form: for (x, y) ∈ X(2) with x < y,

(Pf (2))(x, y) = P 1
x,y

(
f (2)(x, y), f (2)(y, x)

)
, (Pf (2))(y, x) = P 2

x,y

(
f (2)(x, y), f (2)(y, x)

)
.

Let us now describe ker(1+ T ) = ker(P).

Proposition 3.8. We have

ker(1+ T ) =
{
f (2) − Tf (2) | f (2) ∈ H⊗2 and f (2)(x, y) ∈ ker(1− Cx,yC

∗
x,y)

for a.a. (x, y) ∈ X(2)
}

(53)

=
{
f (2) ∈ H⊗2 | f (2)(x, y) ∈ ker(1− Cx,yC

∗
x,y) if x < y

and f (2)(x, y) = −Cx,yf
(2)(y, x) if x > y for a.a. (x, y) ∈ X(2)

}
. (54)

Formula (54) remains true if we swap the conditions x < y and x > y.
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Remark 3.9. Formula (54) can be interpreted as follows: ker(1 + T ) consists of all
functions of the form f (2)−Tf (2), where f (2) ∈ H⊗2 satisfies the following assumption:
for a.a. (x, y) ∈ X(2), f (2)(x, y) ∈ ker(1−Cx,yC

∗
x,y) if x < y and f (2)(x, y) = 0 if x > y.

Proof of Proposition 3.8. Formula (53) follows immediately from (22) and the equality
(1− T 2)f (2)(x, y) = (1− Cx,yC

∗
x,y)f

(2)(x, y).
Due to the inclusion ker(1+ T ) ⊂ ker(1− T 2), we get

ker(1+ T ) = ker(1+ T ) ∩ ker(1− T 2),

or equivalently

ker(1+ T ) =
{
f (2) ∈ H⊗2 | f (2)(x, y) ∈ ker(1− Cx,yC

∗
x,y)

and f (2)(x, y) = −Cx,yf
(2)(y, x), for a.a. (x, y) ∈ X(2)

}
. (55)

By Lemma 3.5, if the relation

f (2)(x, y) = Cx,yC
∗
x,yf

(2)(x, y), f (2)(y, x) = −C∗
x,yf

(2)(x, y).

holds for x < y, then it also holds for x > y. Hence, formula (54) follows from (55).

According to the general considerations in Subsection 2.3, we can now construct
creation and annihilation operators in the T -deformed Fock space F(H). It should
be noticed that the operator Tn given by formula (30) (and used for the annihilation
operators in formula (29)) has now the following form:

(Tnf
(n))(x1, . . . , xn) = f (n)(x1, . . . , xn)

+
n∑

k=2

C1,2
x1,x2

C2,3
x1,x3

· · ·Ck−1,k
x1,xk

f (n)(x2, x3, . . . , xk, x1, xk+1, . . . , xn), f (n) ∈ H⊗n.

Recall that, in Subsection 2.3, for the given operator T ∈ L(H⊗2), we defined the

operator T̃ through equality (35) and the operator T̂ by (41). Similarly, for a linear

operator C ∈ L(V ⊗2), we define linear operators C̃, Ĉ ∈ L(V ⊗2). (Note that, in the

finite-dimensional setting, the operator C̃ always exists.)

Lemma 3.10. For f (2) ∈ H⊗2, we have

(T̃ f (2))(x, y) = C̃y,xf
(2)(y, x), (56)

(T̂ f (2))(x, y) = Ĉy,xf
(2)(y, x). (57)

Proof. For i = 1, 2, 3, 4, let fi(x) = ϕi(x)ui, where ϕi ∈ L2(X) and ui ∈ V . Then

〈Tf1 ⊗ f2, f3 ⊗ f4〉 =
∫

X

f1(y)f2(x)f3(x)f4(y)〈Cx,yu1 ⊗ u2, u3,⊗u4〉 dx dy

20



=

∫

X

f1(y)f2(x)f3(x)f4(y)〈C̃x,yu3 ⊗ u1, u4,⊗u2〉 dx dy

=

∫

X

f1(x)f2(y)f3(y)f4(x)〈C̃y,xu3 ⊗ u1, u4,⊗u2〉 dx dy

=

∫

X

(f3 ⊗ f1)(y, x)(f4 ⊗ f2)(x, y)〈C̃y,xu3 ⊗ u1, u4,⊗u2〉 dx dy,

which proves (56).
To prove (57), we proceed as follows:

(Sf1 ⊗ f2)(x, y) = ϕ1(y)ϕ2(x) J(u2 ⊗ u1),

(TSf1 ⊗ f2)(x, y) = ϕ1(x)ϕ2(y)Cx,yJ(u2 ⊗ u1),

(STSf1 ⊗ f2)(x, y) = ϕ1(y)ϕ2(x)Ĉy,xu1 ⊗ u2,

which implies (57).

To specialize the result of Theorem 2.8 to our current setting, it will be convenient
for us to introduce formal operators of creation and annihilation at point x ∈ X. Let
f ∈ H = L2(X → V ). Then

f(x) = (ϕ1(x), ϕ2(x), . . . , ϕm(x)), (58)

where ϕ1, ϕ2, . . . , ϕm ∈ L2(X). For i = 1, 2, . . . ,m and ϕ ∈ L2(X), we denote

a+i (ϕ) := a+(0, . . . , 0, ϕ︸︷︷︸
ith place

, 0, . . . , 0).

Then, for f ∈ L2(X → V ) of the form (58), we get

a+(f) =
m∑

i=1

a+i (ϕi). (59)

For i = 1, 2, . . . ,m and x ∈ X, we formally define a creation operator a+i (x) that
satisfies

a+i (ϕ) =

∫

X

ϕ(x)a+i (x) dx for all ϕ ∈ L2(X). (60)

Thus, a+i (x) can be formally interpreted as an operator-valued distribution. Next, we
define a vector a+(x) of operator-valued distributions by

a+(x) := (a+1 (x), a
+
2 (x), . . . , a

+
m(x)).

In other words, a+(x) has n components, each of which is an operator-valued distribu-
tion.
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We will formally operate with a+(x) as a usual vector from V . So, for a vector
v = (v1, . . . , vm) ∈ V , the 〈·, ·〉 product of v and a+(x) is given by

〈v, a+(x)〉 =
m∑

i=1

via
+
i (x).

Hence, for a fixed x ∈ X and a function f(x) of the form (58), we have

〈f(x), a(x)〉 =
m∑

i=1

ϕi(x)a
+
i (x). (61)

In view of formulas (59)–(61), we get

a+(f) =

∫

X

〈f(x), a+(x)〉 dx.

We similarly define a−(x) satisfying

a−(f) =

∫

X

〈f(x), a−(x)〉 dx.

Next, for x, y ∈ X, we may formally use the tensor product of the ‘vectors’ a+(x)
and a−(y):

a+(x)⊗ a−(y) =
(
a+i (x)a

−
j (y)

)
i,j=1,...,m

.

Hence, for f ∈ L2(X → V ) of the form (58) and g ∈ L2(X → V ) of the form

g(y) = (ψ1(y), ψ2(y), . . . , ψm(y)),

we get
∫

X2

〈
(f ⊗ g)(x, y), a+(x)⊗ a−(y)

〉
dx dy

=
m∑

i,j=1

∫

X2

ϕi(x)ψj(y)a
+
i (x)a

−
j (y) dx dy

=
m∑

i,j=1

∫

X

ϕi(x)a
+
i (x) dx

∫

X

ψj(y)a
−
j (y) dy

=
m∑

i,j=1

a+i (ϕi)a
−
j (ψj) = a+(f)a−(g).

Hence, for an arbitrary f (2) ∈ H⊗2, we will write

a+−(f (2)) =

∫

X2

〈
f (2)(x, y), a+(x)⊗ a−(y)

〉
dx dy.
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We will use similar notations for a++(f (2)), a−−(f (2)), and for a product a−(f)a+(g)
with f, g ∈ H.

Let
X(2) ∋ (x, y) 7→Mx,y ∈ L(V ⊗2)

be a measurable mapping with ‖Mx,y‖ ≤ 1. Then, we will write, for f (2) ∈ H⊗2,

∫

X2

〈
Mx,yf

(2)(x, y), a+(x)⊗ a−(y)
〉
dx dy =

∫

X2

〈
f (2)(x, y),MT

x,ya
+(x)⊗ a−(y)

〉
dx dy,

where AT denotes the transpose of a matrix A.

Theorem 3.11. For any f, g ∈ H, we have
∫

X2

〈
(f ⊗ g)(x, y), a−(x)⊗ a+(y)

〉
dx dy

=

∫

X2

〈
(f ⊗ g)(x, y), C̃ T

x,ya
+(y)⊗ a−(x)

〉
dx dy +

∫

X

〈f(x), g(x)〉 dx. (62)

Further assume that ker(1+ T ) 6= {0} and let f (2) ∈ H⊗2. If for a.a. (x, y) ∈ X(2),
f (2)(x, y) ∈ ker(1− Cx,yC

∗
x,y), then

∫

X2

〈
f (2)(x, y), a+(x)⊗ a+(y)

〉
dx dy =

∫

X2

〈
f (2)(x, y), CT

y,xa
+(y)⊗ a+(x)

〉
dx dy, (63)

and if for a.a. (x, y) ∈ X(2), (Sf (2))(x, y) ∈ ker(1− Cx,yC
∗
x,y), then

∫

X2

〈
f (2)(x, y), a−(x)⊗ a−(y)

〉
dx dy =

∫

X2

〈
f (2)(x, y), Ĉ T

x,ya
−(y)⊗ a−(x)

〉
dx dy. (64)

Proof. The statement follows immediately from Theorem 2.8, formula (53) from Propo-
sition 3.8 and Lemma 3.10.

Remark 3.12. Let A be a measurable subset of X2 and assume that a function f (2) ∈
H⊗2 vanishes outside the set A. Then it is natural to write

a++(f (2)) =

∫

A

f (2)(x, y)a+(x)a+(y), a−−(f (2)) =

∫

A

f (2)(x, y)a+(x)a+(y).

In view of (54) (see also Remark 3.9), formulas (63) and (64) can be equivalently written
as follows. Let f (2) ∈ H⊗2 be such that f (2)(x, y) = 0 for all (x, y) ∈ X(2) with x > y.
If for a.a. (x, y) ∈ X(2) with x < y, we have f (2)(x, y) ∈ ker(1− Cx,yC

∗
x,y), then

∫

{x<y}

〈
f (2)(x, y), a+(x)⊗ a+(y)

〉
dx dy =

∫

{x<y}

〈
f (2)(x, y), CT

y,xa
+(y)⊗ a+(x)

〉
dx dy,

(65)
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and if for a.a (x, y) ∈ X(2) with x > y, we have Sf (2)(x, y) ∈ ker(1− Cx,yC
∗
x,y), then

∫

{x<y}

〈
f (2)(x, y), a−(x)⊗ a−(y)

〉
dx dy =

∫

{x<y}

〈
f (2)(x, y), Ĉ T

x,ya
−(y)⊗ a−(x)

〉
dx dy.

(66)
If we swap the conditions x < y and x > y, the above results will remain true.

Theorem 3.11 (and formulas (65), and (66)) can be easily understood by using
formal commutation relations between the creation and annihilation operators at point.

Corollary 3.13. The following formal commutation relations hold.
(i) For all (x, y) ∈ X(2), we have

a−(x)⊗ a+(y) = C̃ T
x,ya

+(y)⊗ a−(x) + δ(x− y)∆.

Here ∆ := (δij)i,j=1,...,m with δij being the Kronecker delta, so that for any f, g ∈ H,

∫

X2

〈
(f ⊗ g)(x, y), δ(x− y)∆

〉
dx dy =

∫

X

〈f(x), g(x)〉 dx.

(ii) For each (x, y) ∈ X(2) and a vector v ∈ ker(1− Cx,yC
∗
x,y), we have

〈v, a+(x)⊗ a+(y)〉 = 〈Cy,xv, a
+(y)⊗ a+(x)

〉
= 〈v, CT

y,xa
+(y)⊗ a+(x)

〉
,

and for each (x, y) ∈ X(2) and a vector v ∈ V ⊗2 such that Sv ∈ ker(1 − Cx,yC
∗
x,y), we

have

〈v, a−(x)⊗ a−(y)〉 = 〈Ĉx,yv, a
−(y)⊗ a−(x)

〉
= 〈v, Ĉ T

x,ya
−(y)⊗ a−(x)

〉
.

Here S acts on the space V ⊗2.

In the case where the operator T is unitary, formulas (63), (64) hold for all f (2) ∈
H⊗2. Thus, the commutation relations take the following form.

Corollary 3.14. Let T be unitary. Then, for all (x, y) ∈ X(2), we formally have:

a−(x)⊗ a+(y) = C̃ T
x,ya

+(y)⊗ a−(x) + δ(x− y)∆,

a+(x)⊗ a+(y) = CT
y,xa

+(y)⊗ a+(x),

a−(x)⊗ a−(y) = Ĉ T
x,ya

−(y)⊗ a−(x).
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4 Examples

In this section, we will consider several particular examples of the operator T associated
with a multicomponent quantum system and explicitly compute the corresponding Fock
space and commutation relations between creation and annihilation operators. In all
but the very last example, the operator T will be constructed through a single linear
operator C on V ⊗2 which satisfies the (constant) Yang–Baxter equation on V ⊗3:

C1,2C2,3C1,2 = C2,3C1,2C2,3. (67)

We restrict ourselves to V = C
2, in which case all solutions of the (equivalent form of

the) Yang–Baxter equation are classified in [24], see also the earlier PhD thesis [32].
We will denote by (e1, e2) the standard orthonormal basis of V = C

2, and by
(e11, e12, e21, e22), with eij := ei ⊗ ej, the corresponding orthonormal basis of V ⊗2. In
this basis, we will identify linear operators on V ⊗ V with matrices acting on column
vectors. By (43), if

if C =




c1111 c1211 c2111 c2211
c1112 c1212 c2112 c2212
c1121 c1221 c2121 c2221
c1122 c1222 c2122 c2222


 , then C̃ =




c1111 c1112 c1211 c1212
c1121 c1122 c1221 c1222
c2111 c2112 c2211 c2212
c2121 c2122 c2221 c2222


 . (68)

For a function f (n) ∈ H⊗n, we will denote by f
(n)
i1i2...in

∈ L2(X(n)) the ei1⊗ei2⊗· · ·⊗ein
coordinate of f (n), where i1, i2, . . . , in ∈ {1, 2}.

4.1 Spatially constant C

We start with the case where Cxy is independent of spatial variables x, y, i.e., Cxy = C

for a fixed matrix C = C∗, ‖C‖ ≤ 1. Then the operator T satisfies equation (13) if
and only if the matrix C satisfies requation (67).

Example 4.1. Let us consider the operator C given by the matrix

C =




k 0 0 0
0 0 q 0
0 q̄ 0 0
0 0 0 k


 .

Here k ∈ (−1, 1) and q ∈ C, |q| = 1. Then

1− C2 =




1− k2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1− k2


 ,
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which implies

ran(1− C2) = l. s.{e11, e22}, (69)

ker(1− C2) = l. s.{e12, e21}. (70)

Here l. s. denotes the linear span. For f (2) ∈ H⊗2,

f (2)(x, y)− Cf (2)(y, x) =
(
f
(2)
11 (x, y)− kf

(2)
11 (y, x)

)
e11 +

(
f
(2)
12 (x, y)− q̄f

(2)
21 (y, x)

)
e12

+
(
f
(2)
21 (x, y)− qf

(2)
12 (y, x)

)
e21 +

(
f
(2)
22 (x, y)− kf

(2)
221(y, x)

)
e22.

Hence, by (69), the condition f (2)(x, y)− Cf (2)(y, x) ∈ ran(1− C2) is equivalent to

f
(2)
21 (x, y) = qf

(2)
12 (y, x). (71)

By Theorem 3.3, we now get the following explicit description of Fn(H). Define

Q(1, 2) := q̄, Q(2, 1) := q. (72)

Then for n ≥ 2, Fn(H) consists of all functions f (n) ∈ H⊗n that satisfy a.e. the
following symmetry condition:

f
(n)
i1...in

(x1, . . . , xn) = Q(ik, ik+1)f
(n)
i1...ik−1ik+1ikik+2...in

(x1, . . . , xk−1, xk+1, xk, xk+2, . . . , xn)
(73)

for k ∈ {1, . . . , n− 1} and i1, . . . , in ∈ {1, 2} with ik 6= ik+1. In particular, the function

f (n) ∈ Fn(H) is completely identified by its coordinates f
(n)
i1...in

with i1 ≤ i2 ≤ · · · ≤ in.
By using Corollary 3.7 and (69), one can easily calculate P, the orthogonal projec-

tion of H⊗2 onto F2(H):

(Pf (2))(x, y) = f
(2)
11 (x, y)e11 + f

(2)
22 (x, y)e22 +

1

2

(
f
(2)
12 (x, y) + q̄f

(2)
21 (y, x)

)
e12

+
1

2

(
f
(2)
21 (x, y) + qf

(2)
12 (y, x)

)
e21. (74)

To obtain the commutation relations between creation and annihilation operators,
we use Theorem 3.11 and (70). Additionally to (72), set also

Q(1, 1) = Q(2, 2) := k.

By (68), we get C̃ = C∗. Hence, for all ϕ, ψ ∈ L2(X),

a−i (ϕ)a
+
i (ψ) = Q(i, j)a+i (ψ)a

−
i (ϕ) + δij〈ϕ, ψ〉, i, j ∈ {1, 2},

a+i (ϕ)a
+
i (ψ) = Q(j, i)a+i (ψ)a

+
i (ϕ), i 6= j,

a−i (ϕ)a
−
i (ψ) = Q(j, i)a−i (ψ)a

−
i (ϕ), i 6= j. (75)
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It can be shown that in this case there exists the universal C∗-algebra A generated
by a+i (ϕ), a

−
i (ϕ), i = 1, 2, ϕ ∈ L2(X). Let also A1, A2 be the C∗-subalgebras of A

generated by a+1 (ϕ), a
−
1 (ϕ) and a

+
2 (ϕ), a

−
2 (ϕ), respectively. Note that eachAi (i=1,2) is

the C∗-algebras generated by the k-deformed commutation relations with k ∈ (−1, 1),
see [9].

One can construct the tensor product A1⊗A2 and consider its Rieffel deformation,
denoted by A1 ⊗q A2, see [41]. Then it turns out that the Fock representation of A
can be realized as the composition of the canonical surjection Φ: A → A1 ⊗q A2 and
the Fock representation of A1 ⊗q A2. This approach will give us a deeper insight into
the structure of the Fock representation of A.

Below we will use the fact that any irreducible representation of A that possesses
a vacuum vector annihilated by a−i (ϕ), i = 1, 2, ϕ ∈ L2(X), is unitarily equivalent to
the Fock representation, see [23].

Let K := L2(X). Construct the Fock space F(K) =
⊕∞

n=0 Fn(K) corresponding
to the Fock representation of the k-deformed commutation relations, and denote by
Ψ the vacuum vector in F(K), see [9] for details. Let a+(ϕ), a−(ϕ) (ϕ ∈ K) be the
corresponding creation and annihilation operators on F(K). We construct a unitary
operator U : F(K) → F(K) by

UΨ = Ψ, Uϕ(n) = qnϕ(n), ϕ(n) ∈ Fn(K), n ∈ N.

Obviously,
Ua+(ϕ) = qa+(ϕ)U, Ua−(ϕ) = q̄a−(ϕ)U.

Define the space F := F(K) ⊗ F(K) and bounded linear operators operators a+i (ϕ),
a−i (ϕ) (ϕ ∈ K) on F by

a+1 (ϕ) := a+(ϕ)⊗ 1F(K), a+2 (ϕ) := U ⊗ a+(ϕ),

a−1 (ϕ) := a−(ϕ)⊗ 1F(K), a−2 (ϕ) := U∗ ⊗ a−(ϕ). (76)

It is easy to verify that these operators satisfy the commutation relation (75). The
family

(
a+(ϕ), a−(ϕ)

)
ϕ∈K is irreducible on F(K), see [23]. Then the Schur Lemma

implies that the family
(
a+i (ϕ), a

−
i (ϕ)

)
ϕ∈K, i=1,2

is irreducible on F . Evidently, for

Ω = Ψ ⊗ Ψ, we have a−i (ϕ)Ω = 0 for all ϕ ∈ K and i = 1, 2. Thus, as noted above,
the operators defined by (76) determine the Fock representation of the commutation
relations (75).

As a corollary of our description we get the boundedness of the Fock representation
of (75). Indeed, as follows from [9], for each ϕ ∈ K, the operator a+(ϕ) is bounded

and ‖a+(ϕ)‖ = ‖f‖√
1−k

. Hence,

‖a+i (ϕ)‖ =
‖ϕ‖√
1− k

, i = 1, 2.
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Example 4.2. Consider the following operator C related to the Pusz–Woronowicz twisted
canonical commutation relations [39] (see also [3]),

C =




µ2 0 0 0
0 0 µ 0
0 µ µ2 − 1 0
0 0 0 µ2


 , µ ∈ (0, 1). (77)

We then get

1− C2 =




1− µ4 0 0 0
0 1− µ2 −µ(µ2 − 1) 0
0 −µ(µ2 − 1) 1− µ2 − (µ2 − 1)2 0
0 0 0 1− µ4


 .

An easy calculation then shows that

ker(1− C2) = l. s.{−µe12 + e21}, (78)

ran(1− C2) = l. s.
{
e11, e22, e12 + µe21

}
. (79)

By (79), for a function f (2) ∈ H⊗2, we have

f (2)(x, y)− Cf (2)(y, x) ∈ ran(1− C2)

if and only if µf̃
(2)
12 = f̃

(2)
21 . Here,

f̃
(2)
ij (x, y) :=

1

2

(
f
(2)
ij (x, y) + f

(2)
ij (y, x)

)
.

Hence, by Theorem 3.3, for n ≥ 2, Fn(H) consists of all functions f (n) ∈ H⊗n that
satisfy a.e. the following symmetry condition:

µS
(n)
k f

(n)
i1...ik−112ik+2...in

= S
(n)
k f

(n)
i1...ik−121ik+2...in

for k ∈ {1, . . . , n − 1} and i1, . . . , ik−1, ik+2, . . . , in ∈ {1, 2}. Here, for f (n) ∈ H⊗n and
i1, . . . , in ∈ {1, 2},

(S
(n)
k f

(n)
i1,...,in

)(x1, . . . , xn)

:=
1

2

(
f
(n)
i1,...,in

(x1, . . . , xn) + f
(n)
i1,...,in

(x1, . . . , xk−1, xk+1, xk, xk+2, . . . , xn)
)
.

By using Corollary 3.7 and (79), we get, for f (2) ∈ H⊗2

Pf (2) = f
(2)
11 e11 + f

(2)
22 e22 +

(
f
(2)
12 + µ

1+µ2 (−µf̃ (2)
12 + f̃

(2)
21 )

)
e12
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+
(
f
(2)
21 − 1

1+µ2 (−µf̃ (2)
12 + f̃21)

)
e21.

By (68) and (77),

C̃ =




µ2 0 0 0
0 0 µ 0
0 µ 0 0

µ2 − 1 0 0 µ2


 .

Hence, by Theorem 3.11 and (78), we have, for all ϕ, ψ ∈ L2(X),

a−1 (ϕ)a
+
1 (ψ) = µ2a+1 (ψ)a

−
1 (ϕ) + 〈ϕ, ψ〉,

a−2 (ϕ)a
+
2 (ψ) = (µ2 − 1)a+1 (ψ)a

−
1 (ϕ) + µ2a+2 (ψ)a

−
2 (ϕ) + 〈ϕ, ψ〉,

a−1 (ϕ)a
+
2 (ψ) = µa+2 (ψ)a

−
1 (ϕ),

a−2 (ϕ)a
+
1 (ψ) = µa+1 (ψ)a

−
2 (ϕ),

a+2 (ϕ)a
+
1 (ψ) + a+2 (ψ)a

+
1 (ϕ) = µ

(
a+1 (ϕ)a

+
2 (ψ) + a+1 (ψ)a

+
2 (ϕ)

)
,

a−1 (ϕ)a
−
2 (ψ) + a−1 (ψ)a

−
2 (ϕ) = µ

(
a−2 (ϕ)a

−
1 (ψ) + a−2 (ψ)a

−
1 (ϕ)

)
.

Example 4.3. Consider the operator C given by the matrix

C =




0 0 0 q

0 k 0 0
0 0 k 0
q̄ 0 0 0




where q ∈ C, |q| = 1 and k ∈ [−1, 1]. Then

1− C2 =




0 0 0 0
0 1− k2 0 0
0 0 1− k2 0
0 0 0 0


 .

First assume |k| < 1. Then

ran(1− C2) = l. s.{e12, e21}, (80)

ker(1− C2) = l. s.{e11, e22}. (81)

Just as in Example 4.1, let Q(1, 2) := q̄ and Q(2, 1) := q. By Theorem 3.3 and (80),
Fn(H) consists of all functions f (n) ∈ H⊗n that satisfy a.e. the following symmetry
condition:

f
(n)
i1...ik−1ikikik+2...in

(x1, . . . , xn)

= Q(ik, jk)f
(n)
i1...ik−1jkjkik+2...in

(x1, . . . , xk−1, xk+1, xk, xk+2, . . . , xn) (82)
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for k ∈ {1, . . . , n−1} and i1, . . . , ik−1, ik, jk, ik+2, . . . , in ∈ {1, 2}, ik 6= jk, compare with
(73). Similarly to (74), we can easily find the explicit form of P.

Furthermore, by (68),

C̃ =




0 0 0 k

0 q̄ 0 0
0 0 q 0
k 0 0 0


 ,

which, by Theorem 3.11 and (81), implies the commutation relations, for any ϕ, ψ ∈
L2(X),

a−1 (ϕ)a
+
1 (ψ) = ka+2 (ψ)a

−
2 (ϕ) + 〈ϕ, ψ〉,

a−2 (ϕ)a
+
2 (ψ) = ka+1 (ψ)a

−
1 (ϕ) + 〈ϕ, ψ〉,

a−1 (ϕ)a
+
2 (ψ) = q̄a+1 (ψ)a

−
2 (ϕ),

a−2 (ϕ)a
+
1 (ψ) = qa+2 (ψ)a

−
1 (ϕ),

a+1 (ϕ)a
+
1 (ψ) = qa+2 (ψ)a

+
2 (ϕ),

a−1 (ϕ)a
−
1 (ψ) = q̄a−2 (ψ)a

−
2 (ϕ). (83)

Note that the commutation relations (83) have a more complex structure than the
commutation relations (75).

In the case k = ±1, the matrix C is unitary, and so 1−C2 = 0. To describe Fn(H),
in addition to (82), the following symmetry condition must be satisfied:

f
(n)
i1...in

(x1, . . . , xn) = kf
(n)
i1...ik−1ik+1ikik+2...in

(x1, . . . , xk−1, xk+1, xk, xk+2, . . . , xn)

for k ∈ {1, . . . , n−1} and i1, . . . , in ∈ {1, 2} with ik 6= ik+1. Recall also that Pn = 1
n!
Pn

in this case. Additionally to the commutation relations (83), it also holds that

a+1 (ϕ)a
+
2 (ψ) = ka+2 (ψ)a

+
1 (ϕ),

a−1 (ϕ)a
−
2 (ψ) = ka−2 (ψ)a

−
1 (ϕ).

4.2 Non-Abelian anyon quantum systems

In this section, we will discuss the case where the operator C depends on spatial
variables (x, y) ∈ X(2) in a special way and determines a non-Abelian anyon quantum
system when d = 2, see [15].

Recall (47). For x, y ∈ X(2), we will write x < y and x > y if x1 < y1 and x1 > y1,
respectively. Let C be a unitary operator on V ⊗V and we define Cx,y by formula (12).
By (11), we get T 2 = 1, hence T is a unitary operator.

Lemma 4.4. The operator T satisfies the Yang–Baxter equation (13) on H⊗3 if and
only if the operator C satisfies the Yang–Baxter equation (67) on V ⊗3.
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Proof. Recall Lemma 3.1. In view of (12), for x < y < z, formula (48) becomes (67).
If x < z < y, (12) obtains the form

C1,2C2,3(C1,2)∗ = (C2,3)∗C1,2C2,3. (84)

Multiplying equality (84) by C23 from the left and by C12 from the right, we arrive at
(67). The other remaining cases are similar.

Remark 4.5.

The next statement is Corollary 2.4 applied to our case.

Proposition 4.6. For each n ≥ 2, the space Fn(H) consists of all functions f (n) ∈ H⊗n

that satisfy a.e. the following symmetry condition:

f (n)(x1, . . . , xn) = Ck,k+1
xk,xk+1

f(x1, . . . , xk−1, xk+1, xk, xk+2, . . . , xn) (85)

for each k ∈ {1, . . . , n− 1}.

Also recall that, in this case, the orthogonal projection of H⊗n onto Fn(H) satisfies
Pn = 1

n!
Pn.

Example 4.7. Consider C of the form

C =




q1 0 0 0
0 0 q3 0
0 q2 0 0
0 0 0 q4


 , (86)

where q1, q2, q3, q4 ∈ C are of modulus 1. Define a complex-valued function Q a.e. on
({1, 2} ×X)2 by

Q(1, x, 1, y) :=

{
q1, if x < y,

q̄1, if x > y,
Q(2, x, 2, y) :=

{
q4, if x < y,

q̄4, if x > y,

Q(1, x, 2, y) :=

{
q3, if x < y,

q̄2, if x > y,
Q(2, x, 1, y) :=

{
q2, if x < y,

q̄3, if x > y.

Note that the function Q Hermitian:

Q(i, x, j, y) = Q(j, y, i, y).

Then, by Proposition 4.6 and (86), for each n ≥ 2, the space Fn(H) consists of all
functions f (n) ∈ H⊗n that satisfy a.e. the following symmetry condition:

f
(n)
i1...in

(x1, . . . , xn)
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= Q(ik, xk, ik+1, xk+1)f
(n)
i1...ik−1ik+1ikik+2...in

(x1, . . . , xk−1, xk+1, xk, xk+2, . . . , xn)

for all i1, . . . , in ∈ {1, 2} and k ∈ {1, . . . , n− 1}.
By (68) and (86), we get C = C̃T and C∗ =

(
C̃∗)T . Hence, by Corollary 3.14, we

obtain the following formal commutation relations:

a−i (x)a
+
j (y) = Q(i, x, j, y)a+j (y)a

−
i (x) + δ(x− y)δij,

a+i (x)a
+
j (y) = Q(j, y, i, x)a+j (y)a

+
i (x),

a−i (x)a
−
j (y) = Q(j, y, i, x)a−j (y)a

−
i (x).

Remark 4.8. Note that the commutation relations in Examples 4.1 and 4.7 are gov-
erned by a single Hermitian function, Q(i, j) in Example 4.1 and Q(i, x, j, y) in Exam-
ple 4.7. Therefore, to construct these examples, one could use the theory of commuta-
tion relations deformed with a Hermitian, complex-valued function Q, whose modulus
is bounded by 1, see [8].

Another example of a non-Abelian anyon quantum system will be discussed below
as a special case of Example 4.9.

4.3 General spatial dependence

We will now consider an example of a matrix Cx,y with somewhat more complicated
dependence on spatial variables x, y ∈ X.

Example 4.9. Let Q1, Q2 : X
(2) → C satisfy

Qi(x, y) = Qi(y, x), i = 1, 2, |Q1(x, y)| ≤ 1, |Q2(x, y)| = 1, (x, y) ∈ X2.

Let matrix Cx,y have the form

Cx,y =




0 0 0 Q1(x, y)
0 Q2(x, y) 0 0
0 0 Q2(x, y) 0

Q1(x, y) 0 0 0


 .

Note that Cx,y = C∗
y,x. A direct calculation shows that Cx,y satisfies the Yang–Baxter

equation (48). For x, y ∈ X(2), we have

1− Cx,yC
∗
x,y =




1− |Q1(x, y)|2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1− |Q1(x, y)|2


 .

We denote

Y :=
{
(x, y) ∈ X2 | Q1(x, y)|2 = 1}, Z := {(x, y) ∈ X2 | Q1(x, y)|2 < 1

}
.
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Then, for (x, y) ∈ Y , 1− Cx,yC
∗
x,y = 0, and for all (x, y) ∈ Z,

ker(1− Cx,yC
∗
x,y) = l. s.{e12, e21}, ran(1− Cx,yC

∗
x,y) = l. s.{e11, e22}.

Hence, by Theorem 3.3, for n ≥ 2, Fn(H) consists of all functions f (n) ∈ H⊗n that
satisfy a.e. the following symmetry conditions:

f
(n)
i1...ik−111ik+2...in

(x1, . . . , xn)

= Q1(xk, xk+1)f
(n)
i1...ik−122ik+2...in

(x1, . . . , xk−1, xk+1, xk, xk+2, . . . , xn) if (xk, xk+1) ∈ Y,

f
(n)
i1...ik−112ik+2...in

(x1, . . . , xn)

= Q2(xk, xk+1)f
(n)
i1...ik−112ik+2...in

(x1, . . . , xk−1, xk+1, xk, xk+2, . . . , xn),

f
(n)
i1...ik−121ik+2...in

(x1, . . . , xn)

= Q2(xk, xk+1)f
(n)
i1...ik−121ik+2...in

(x1, . . . , xk−1, xk+1, xk, xk+2, . . . , xn),

for all i1, . . . , ik−1, ik+2, . . . , in ∈ {1, 2} and k ∈ {1, . . . , n− 1}.
In the case where the set Z is empty (or of zero measure), the corresponding operator

T is unitary, hence Pn = 1
n!
Pn. If the set Z is of positive measure, the form (Pf (2))(x, y)

will depend on whether (x, y) is a point of Y or Z. In both cases, the explicit form of
(Pf (2))(x, y) can be easily calculated by using Corollary 3.7. We leave the details to
the interested reader.

By (68), we get

C̃x,y =




0 0 0 Q2(x, y)
0 Q1(x, y) 0 0
0 0 Q1(x, y) 0

Q2(x, y) 0 0 0


 .

Hence, by Corollary 3.13, we get the following formal commutation relations:

a−1 (x)a
+
1 (y) = Q2(x, y)a

+
2 (y)a

−
2 (x) + δ(x− y),

a−2 (x)a
+
2 (y) = Q2(x, y)a

+
1 (y)a

−
1 (x) + δ(x− y),

a−1 (x)a
+
2 (y) = Q1(x, y)a

+
1 (y)a

−
2 (x),

a−2 (x)a
+
1 (y) = Q1(x, y)a

+
2 (y)a

−
1 (x),

a+1 (x)a
+
2 (y) = Q2(x, y)a

+
1 (y)a

+
2 (x),

a+2 (x)a
+
1 (y) = Q2(x, y)a

+
2 (y)a

+
1 (x),

a+1 (x)a
+
1 (y) = Q1(x, y)a

+
2 (y)a

+
2 (x) if (x, y) ∈ Y,

a−1 (x)a
−
2 (y) = Q2(x, y)a

−
1 (y)a

−
2 (x),

a−2 (x)a
−
1 (y) = Q2(x, y)a

−
2 (y)a

−
1 (x),

a−1 (x)a
−
1 (y) = Q1(x, y)a

−
2 (y)a

−
2 (x) if (x, y) ∈ Y. (87)
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Let us consider a special case of such a construction. Fix any q1, q2 ∈ C with
|q1| = |q2| = 1 and define

Qi(x, y) =

{
qi, if x < y,

q̄i, if x > y,
i = 1, 2.

With such a choice of functions Q1, Q2 and d = 2, the above construction gives an
example of a non-Abelian anyon quantum system with the operator

C =




0 0 0 q1
0 q2 0 0
0 0 q2 0
q1 0 0 0


 .

Note that, in this case, the commutation relations (87) hold for all (x, y) ∈ X(2).
Further examples of such a construction can be achieved by choosing

Q1(x, y) = keiα(x−y), Q2(x, y) = eiβ(x−y),

where k ∈ [−1, 1] and α, β ∈ R.
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