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Abstract. Fock space representations of affine Lie algebras are studied. Explicit
forms of correction terms adding to the currents F(z) are determined. It is proved
that the Sugawara energy-momentum tensor on the Fock spaces is quadratic
in free bosons. Furthermore, screening operators are constructed. This implies
the existence of generalized hypergeometric integrals satisfying the Knizhnik—
Zamolodchikov equation.
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Introduction

Studies of integral representations in conformal field theories are initiated in
[DF1,2]. Following the earlier paper [FeFul, 2], Dotsenko and Fateev found that
conformal blocks in the minimal models introduced in [BPZ] can be represented
by generalized hypergeometric integrals. (Throughout the present paper, conformal
blocks are those in genus 0.) The paper [TK1] is closely related to this result.
Recently, Felder [Fel] has constructed Fock space resolutions of irreducible
representations of the Virasoro algebra and made the physical argument in
[DF1,2] precise. His work is also based on the very deep results in [FeFul,2]
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on representations of the Virasoro algebra. The above studies start from the
existence of Fock space representations and screening operators for the Virasoro
algebra. In the Wess—Zumino—Witten models, the following problems are funda-
mental for integral representations:

(a) Construction of Fock space representations of affine Lie algebras.

(b) Realization, by free bosonic fields, of the Sugawara energy-momentum tensor
on the Fock spaces.

(c) Construction of screening operators.

(d) Construction of generalized hypergeometric integrals satisfying the Knizhnik—
Zamolodchikov equations.

In [KZ], the Knizhnik—-Zamolodchikov (KZ, for short) equations are obtained
by rewriting the Sugawara construction of an energy-momentum tensor in the
setting of conformal field theory. This is the reason why it is necessary to consider
the problem (b). It is widely known that appropriate solutions to the first three
problems lead to that of (d) by standard deduction. In the present paper, we solve
these problems for the affine Lie algebra attached to an arbitrary simple Lie
algebra.

We shall now briefly review some known results about integral representations
in the Wess—Zumino-Witten (WZW, for short) models. For the first time, in [CF],
Christe and Fliime succeeded in writing down certain integrals satisfying the s/,
KZ equations for four point functions. The integrals in [CF] are the special cases
of the generalized hypergeometric functions studied in the pioneering works (A1, 2]
and [VGZ]. This part has been recently generalized in [DJMM, Mat and SV].
The case for sl, N point functions has been obtained in [DJMM] and the case
for sl, N point functions in [Mat]. In [SV], Schechtman and Varchenko have
succeeded in constructing generalized hypergeometric integrals satisfying the KZ
equations attached to arbitrary Kac-Moody algebras as well as arbitrary simple
Lie algebras. These results are obtained without Fock space representations of
affine Lie algebras, which are treated in the following studies. Fock space represen-
tations of sl _were constructed by Wakimoto [W]. Constructing screenmg
operators for slz, Marshakov [Mar] has glven another proof of the results in
[CF1. Fock space representatlons of sp, 2 S04 as well as of sl are constructed in
[GMMOS]. Recently, in the remarkable papers [FeFrl,2], Felgm and Frenkel
have proved the existence of Fock space representations of arbitrary affine Lie
algebras. In particular, for sln, they have explicitly constructed Fock space
representations and screening operators. Note that, using this, we can also solve
the problem (b) for sl Hence the results in [Mar] and [FeFrl,2] imply those
in [DJMM] and [Mat] respectively. Fock space resolutions of irreducible repre-
sentations of affine Lie algebras are treated in [BF, FeFrl,2 and BMP]. These
are related to integral representations in higher genus Riemann surfaces and
quantum group structures in the conformal field theory. However, these parts are
not treated in the present paper.

As mentioned above, the problem (a) has been already solved in [FeFrl,2].
However, in order to solve the other problems (b), (¢} and (d), we need more precise
analysis of Fock space representations of affine Lie algebras. The most important
points are the following:
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(i) Explicit expressions of current operators by free bosons will be very complicated
in general. Avoid direct computations using them. Manipulate only general relations
obtained by general arguments.

(i) In all steps, treat not only an affine Lie algebra but also the Virasoro algebra
simultaneously.

Of course, (i) is important for finding what is essential. Under the treatment (ii),
we can also use the same method in [FeFrl, 2]. Thus we can construct Fock space
representations of the affine-Virasoro algebras attached to simple Lie algebras.
However (ii) is crucial for our argument. Because the Virasoro algebra is very
useful not only for solving the problems (b) and (c) but also for determining the
explicit expressions of correction terms for current operators.

In the present paper, for simplicity, if we say A is an algebra or a vector space,
then A4 is one over the field € of complex numbers. However, all the results,
in the present paper, except for those about integral representations also hold
over an arbitrary field of characteristic zero. We shall often use the notation
N={0,1,2,...} and Z={0,+1,+2,...}. We denote by U(a) the universal
enveloping algebra of a Lie algebra a.

0.1. First we shall prepare the notation of a simple Lie algebra and its represen-
tations. Let g be a finite dimensional simple Lie algebra, {H, E;, F;li=1,...,r} its
Chevalley generators, and {«,,...,a,} the set of simple roots of g. Let h,n, and
n_ denote the subalgebras of g generated by {H,}, {E;} and {F,}, respectively. Put
b, equal to the subalgebras h®n, of g. Let 1 be a Lie algebra homomorphism
from b_ to the 1-dimensional Abelian Lie algebra €. The set of all such 4’s can
be identified with the dual vector space h* of ). We identify b and h* by the Killing
form (|') of g. Denote by G the algebraic group corresponding to g and let B,
and N , be the subgroups of G corresponding to b, and n,, respectively. Denote by
F the flag manifold B_\G and put o=B_€F. Let A, ={f,,..., B,} be the set of
positive roots of g and {e,|ae A, } a root basis of n,.. Then we have the isomorphism
f{rom C° onto the open cell oN . in F defined by (z,),c 4, >0 €xp(zp,€p,) - €XP(25,€5,)-
Denote by x =(x,),.4, the coordinate system of oN, given by the inverse of f.
Thus the structure ring of oN , is identified with the polynomial algebra C[x].
Let R, be the left representation of g given by the right infinitesimal action of
g on oN, and the character A. We use the notation M¥* for the left g-module
(C[x], R,). (In the Sect. 1, we shall denote by v, the element 1 in M¥ = C[x]). We
remark that Fock space representations of affine Lie algebras will be defined as
an affinization of M*. It is easy to show that M¥ is isomorphic to the dual of the
right Verma module M| of g. Therefore, if we put A=A, + 4, for 4, 1,€h*, then
we have a canonical g-homomorphism from M¥ ® M% to M%. An affinization of
this homomorphism is nothing but the bosonic vertex operator. For Xeg, we
can represent R,(X) by a differential operator R(X;x,d,,4) of first order, where

d

we set 4, = (? . Then R(X;x,0,,4) is a polynomial in (A(H,));_,, as well as
xa aeA

in X, x and J,. We define a left action of N, on oN , by n-(0a) = ona for a,neN ,.

This action defines another left representation S of n, on C[x]. Similarly, for
Xen,, we can represent S(X) by a polynomial vector field S(X;x,d,) in x. We
shall define screening operators as affinizations of S(E;) fori=1,...,r.
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0.2. Next let us introduce free bosonic fields and Fock spaces. Fix a non-zero
complex number x. We shall introduce an algebra of = &/, as follows. Let of be
the algebra with generators

{x,[m],6,[m], p[m]|meZ,acA,,i=1,....r} 0.1
and the following commutation relations:

[0.[m], xg[n]]1 =0, 40m+n0, [Pilm] o011 = k(Hi | H)mb s 00, (0.2)

and other commutators are trivial. Define o/ as a certain Z-graded topological
algebra including o as a dense subalgebra. (For detail, see Sect. 2.} Formally we put

X(2):= ), 27"x,[m], O,(2):= ) 2771, [m],
meZ meZ (03)
pi2):= z z7" " p{m],

meZ

which are called bosonic free fields or free bosons. For Heb, writing H in the form

> a;H, for some a,eC, we put p(H;z):= Y a;p{(z) and define p[H;m] by the

i=1 i=1

expansion p(H;z)= Y z~ ™ 'p[H;m]. Let 4 be in h* The Fock space # is defined
meZ

as a left .«7-module generated by |1> with the following properties:

p[011A> =(AHH) A, pIm}lA>=0 for m>0 and i=1\,...,r,
x AImllA> =0, 4,[n]IA>=0 for m>0, n=0 and aed,. 0.4

These conditions uniquely determine %, up to isomorphisms. Furthermore .o/
naturally acts on %,.

0.3. Under the above preparation, let us construct Fock space representations of
affine Lie algebras. In general, we denote by La the loop Lie algebra attached to
a Lie algebra a defined by La:=a® C[t,t™']. We denote by d the Lie algebra

d
C[t,t“l]a of polynomial vector fields on the circle. Then we have the natural

semi-direct product La @D as a Lie algebra. We define the affine-Virasoro algebra
§ @ Vir attached to g as the central extension of Lg®d by CK @ CC with the
following relations:

[X®fY®gl=[X,Y]I® fg+(X|Y)Res(f'gdn)K, (0.5-1)
d d , ) i i 5 -

[fa’gg]‘(fg—gf)dﬁ - Res(/"gd0)C, (0.5-2)

[f%’X@"]:O for X,Yeg, and fgeCltt™'],  (0.5-3)

where the prime ’ denotes the derivation with respect to t. An eigenvalue of K
(respectively C) on a representation space is called a level (respectively a central
charge). Now we shall define current operators and an energy-momentum tensor.
Roughly speaking, the current operator attached to X eg shall be defined by a
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substitution of x(z) = (X4(2))yea.» 0(2) = (04(2))sea, and p(z) = (p(2));-, for x,0, and
A in R(X;x, 0, A). Denote by {A,;}7_, the dual basis of {H;};_,. Put 2p:= Y «

xeA +
For brevity, we often denote by JA(z) the derivation of A(z) with respect to z.
Formally we put

X(z):='R(X;x(2),0(z), p(z)). for X=H,E;, and i=1,...,r,  (0.6)
Fi(z):=.R(F;x(2),0(z), p(2)). + 7:0x,(2) for i=1,...,r, 0.7)

T(z)= ) 10,(2)0x,(2).+ 1 {Z p(H;;2) (Ai;Z)I—ap(2p;Z)}, (0.8)
acd +

where . denotes a certain normal product (see Sect. 2) and {y;}i_, is a set of

constants which will be fixed in the following theorem. For X = H, E,, F;, the

operator X(z) is called the current operator attached to X and T(z) is called the

energy-momentum tensor written by free bosons. Then we can define X [m]ed

for X=H ,,El,F and L, esd by the following formal expansions:

=Y z"'X[m] and T()= Y z " ’L, 0.9

meZ meZ

Theorem A (Theorem 4.1, Proposition 4.2). There is a unique set {y:}i=, of constants
such that the Lie algebra homomorphism from §@® Vir to of can be defined by the
following:

d
X@tm—X[m], "' -+ —L

dt ™

0.10

kdimg 019
Ki»k=k—g* Crc= ,
k+g*

where X = H, E,, F,,meZ, and g* denotes the dual Coxeter number of §. Moreover
the vector [))edq satisfies the highest weight condition for § @ Vir:

H[0]14) = (AH)AD, LolAy = 4,145, E;[0]14) =0,
X[m]|A>=L,A>=0 for X=H,E,F, and m>0,
where A:=(2x) '(A|A+2p). O

0.11)

Denote by 7 the Lie algebra homomorphism given by this theorem. Then we have
a family {(%;,7)} . of left §@® Vir-modules, which are called the Fock space
representations of the affine-Virasoro algebra. (Explicit expressions of the constants
{y:}7=, will be given in Remark 4.3.) As mentioned earlier, the existence of Fock
space representations of § has been already obtained in [FeFr1,2]. However, in
[Feli r1,2], the explicit expressions of the current operators are described only for

= sl,. In order to determine the correction terms for F(z) by y,0x, (z), we shall
use the Virasoro operators {L,,},,.z (se¢ the proof of Proposition 4 2) Let O be
the closed subalgebra of .7 topologically generated by {x, [m]laed,,meZ}. For
the proof of Theorem A, we shall need certain results about the Lie algebra
cohomology of Lg@d with coefficients in @ in order to follow the method in
[FeFrl,2]. However, in the present paper, we shall not deal with the result Lie
algebra cohomology itself. Instead we shall introduce a certain subcomplex of the
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standard complex so that the homotopy operator # in the proof of Lemma 3.2
will be well-defined.

0.4. A solution to the problem (b) is stated as follows. For any X eg, put X[m]:=

X ®t") and X(z):= ), z~ " 'X[m]. Let {J?}$" be an orthonormal basis of g
meZ

with respect to the Killing form. The Sugawara energy-momentum tensor T5V¢(z)
is defined by

dimg

T5YS(z):= i Z oJP(z)JP(2)2, (0.12)

where . { denotes a normal product for currents (see Subsect. 4.4). We write the
expansion of this in the form T5Y6(z) = 27"~ 2LSYS Then L3VC is well-defined as

meZ

an operator acting on the Fock spaces.

Theorem B (Theorem 4.5). The energy-momentum tensor T(z) written by free bosons
is equal to the Sugawara one on the Fock spaces:

L,=LC on %, for Aeb* and meZ. [ 0.13)

This is deduced from Theorem A and the fact that, for generic Ach*, the Verma
module of § with highest weight 1 is irreducible and isomorphic to &,.

0.5. We can construct screening operators as follows. Let 4 and p be in h* =b.
There is a unique linear isomorphism ¢*¥ from %, onto &, , with properties

WAy =|A+u), [p[H;m],e"™] =6, o(A|H)et™,
[x,[m], e = [8,[m],e!™] =0,

for Heb,aeA, and meZ. For brevity, put p{i;m]:=« " *p[i;m] for meZ. The
bosonic vertex operator V(4;z) is defined by

(0.14)

V(4; z): —exp{ ZO ;p[l m]}e"“]z”“ 0l exp{ Z‘o ;p[i m]} (0.15)

Fori=1,...,r, put
S{2):=.S(E; x(2),0(z)). and s,(z):=S(2)V(~ «;2). (0.16)

If 5,(2) is formally expanded in the form ¢ Y s,[m]z~™* P40 then each s;[m]
is well-defined as an element of /. meZ

Theorem C (Theorem5.1). Fori=1,...,r,the operator s,(z) satisfies the following:
[L,.5:2)] =§z{z'"“si(z)} (0.17-1)
[X[m],si(z)]=0 for Xeb,, (0.17-2)
[F;[m],si{2)]= — K5U% {z"V(~a;2)} for j=1,...,r, (0.17-3)

where meZ. [
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We call {s,(z) }]_, the set of screening operators. The first two properties immediately
follow from Theorem A. The last property can be deduced from Theorem A and
the first two properties.

0.6. Now we have the solutions to the problems (a), (b) and (c). Hence we can
obtain certain integrals satisfying the KZ equations. First let us define the KZ
equations. Recall that M% denotes the dual of the right Verma module M. Let

I =(A1,...,Ay) be in (h*)". Put M1:= @MT and M1:= @M* Denote by ¢|>

a=1

the natural pairing of M} and M%. For Xeg and a= 1,...,N put
AX) =10 RIRX®1Q - ®1eU(®)®", (0.18)

N

where X is placed at the a'® component. Put A(X):= Z A(X) for Xeg. Let 4,
be in h*. We define the weight subspaces of M5 ! and M + with weight 4, by
M}, = {v'eM], |v'A(H)=v"(A,|H) for Heb}, (0.19-1)
M3, :={veM}, |A(Hp=(i,|H) for Heb}. (0.19-2)

Then M3 ;"2 is finite dimensional and identified with the dual vector space of M,

Note that M; . does not vanish if and only if there exists an m = (m,)]_ , eIN" such
that

N r
= A Y ma. (0.20)
a=1 i=1

Thus we suppose this in the followmg We define the space of singular vectors (or
highest weight vectors) in M by

SIw(M;):z {vleM}, |v'A(n_)=0}. (0.21)
For a,b=1,...,N, the operator Q2 b is defined by
1 dimg
Q, = > AIDALIP). (0.22)
Kp=1

Note that each Q,, preserves the subspace St (MT) of M~ The Knizhnik-
Zamolodchikov equatlon of type (4,1,) is wrltten in the followmg form;

FoQ,,

1SbsN 25— 2
b#*a

iF(z)::

for a=1,...,N, (0.23)
0z

a

where z denotes (z,,...,zy) and F is a function of z with values in S} (M;).
r

0.7. Next we refer to integration of certain multivalued functions. Put M:= Y m,
and t:=(t,...,t). Define 1 =(z(1),...,7(M)) by =1

o=01,...,1,..,r...,7). 0.24)
[

mytimes m, times
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For brevity, we use the following abbreviations:
W=Wg,...,w ) =2, =(21,-- e, Zys b1y -5 Eag)s (0.25)

=g )= (A Ay — 1y oo — By 0.26)

where we put L:= N + M. In general, for any nelN, put U":= {({,...,{,)eT"|
¢, #(,if a # b}. We define the projection p from U" onto U¥ by w = (z,t)z. The
multivalued function I(w) = I(z,t) in U* is defined by

Iwy =1z, 0= [] (wg— wy) kel 0.27)

1<a<bslL

Let & be the 1-dimensional local system on U~ defined by I(w) and ., its restriction
on the fiber p~1(z) at zeU¥. Denote by O(U*) the space of rational functions of
w = (z,t) regular in UL, For short, we put dt:=dt, A --- A dt,,. For zeU", let I'(z)
be an M-cycle in p~ *(z) with coefficients in the dual local system £ * of .. Then,
for ze U™ and a rational function f(¢) regular in p~ !(z), the integral | I(z,8)f(r)dt
is defined and satisfies the following: 'z

fi(l(z,t)f(t))dt=0 for a=1,...,M. (0.28)

I'(z) Uty

We suppose that, for every rational function f(z,f) regular in U%L, the integral

F(z)= [ ((z,t)f(z t)dt is a multivalued holomorphic function of z and satisfies
I'(z)
the following:

0 0

—F(@)= | —Uz0)f(z,0))dt for a=1,...,N. (0.29)
aza I'(z) aza

Note that, in general, for the existence of a non-trivial global family {I'(z)}, we

have to admit I'(z) to be multivalued in z.

0.8. Now, under the above notation, a solution to problem (d) can be stated as
follows. Recall that, for each Aeh*, we identify M¥ with the polynomial algebra
C[x] as vector spaces. Thus, for I, = (I,(2)), 4, eIN4+, we can regard x'* as a vector

in M%, where we use the notation xle= T] xl«® of multi-indices. For
acd

N
I=(L))_e(N*)", put v":= (X) x'*e M7} . Then the weight subspace M7, has the
basis given by a=t

B}, = {v’

Define the M%Aw-valued function P(z,t) by

N

DY Ia(a)=§ mirxl}- (0.30)

a=1 acAy

N

P )I0"yi= Ol T] [T xifz)™® [T Suw(n)l0> for v'eBE, . (031)
b=1

a=1acdy

where we use the notation of correlation functions of free bosons (for details, see
Sect. 5). Then {P(z,t){v'> is a rational function regular in U~
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Theorem D (Theorem 5.9). Under the above notation, define the M}Jm-valued
function F(z) by

CF@wy= [ lz,0<PE)|v)ydt for veM3, . (0.32)

I(z)

Then F(z) is valued in SL(M%) and satisfies the KZ equation of type (A,4,). O

Before finishing this section, we should mention some remarks.

1. There are more essential objects than solutions of the KZ equations. They are
conformal blocks for the Fock spaces, the restrictions of which give solutions of
the KZ equations. The above theorem is obtained as a corollary of the existence
of integral representations of conformal blocks for the Fock spaces. See Theorem 5.6
and Lemma 5.7.

2. The origin of the multivalued function /(w)=I(z,t) consists in the following
formula for the bosonic vertex operators:

L
ol [T Vs w0y =[]  (w,— w,)##’* up to phase factor, (0.33)
a=1

1ZasbhslL

L
where 1= Y. u,
a=1
3.N Denote by L} the simple right g-module with highest weight ieh*. Put ij-::

&) L] . Then LY is naturally a quotient ®"-module of M?*. We can consider the
a=1

KZ-equation for the space of singular vectors in L}. Let G(z) be the projection of
F(z) in L}, where F(z) is defined by (0.32). Thus we obtain a solution G(z) of the

KZ equation for the simple g-modules.

1. Representations of Simple Lie Algebras

1.1. The notation follows 0.1 in Introduction. For example, g, b, A, = {B,,..., B},
and etc. denote a simple Lie algebra, its Cartan subalgebra, the set of positive
roots of g, and etc. In addition, we suppose that the Killing form (-|-) is normalized
by (6]6) = 2, where 6 denotes the highest root of g (see [Kac, Chapter 7]). Denote
by A the set of roots of g in h*. For aeA4, let ¢, be a root vector attached to «.
We assume, for simplicity, that e, = E; fori=1,...,r.

1.2. Let us define x =(x,),.,,, R; and S. For iebh*, let K1 be the right ideal of
U(g) generated by n_ and {H — A(H) 1| Heb}. Define the right Verma module M?
of g with highest weight A by M}:= U(g)/K| and put v]:=1mod K{eM]. By R/,
we denote the right representation of g on M :{:

vR,(X)=vX for Xeg and veM]. (1.1

Since M I is canonically isomorphic to U(n,) as right n,-modules, we can define
the right representation " of n, on M! by

vinS'(X):= —~vlXn for Xen, and neUmn,). (1.2)
A A



520 G. Kuroki

Putting M L= {verlvH—(MH)v for Heb.} for peb*, we obtain the weight
space decomposmon M] =@ M} . Define the dual M} of M} by

ueh*

= @ Homg(M] ,, @), (1.3)

neb*

and denote by (|} the natural pairing of M :{ and M*%. Then we can define the left
representation R; of g on M¥ by

CulRH(XW) = uRY(X)v) for ueM!, veM* and Xeg, (1.4)

and the left representation S of n, on M7 by

LulS(Yy) =<uS'(Y)jv)> for ueML veM} and Yen,. (L.5)
We have the basis {v} E’|IeIN*} of M*, where we use the following abbreviation:
El'=eftel e /(I 1! 1) for I=(I;);_,eN" (1.6)
Denote by {xv,{IcIN*} the dual basis of {v]E!|IeN*}:
ClENXxTv,>=6,, for I,JeN- (1.7)

Then the natural g-homomorphism from M}, , to M]® M/ induces a g-homo-
morphlsm from M%® M to M%, . Thus we obtain the natural algebra structure

in M*= (—D M*, whlch is characterlzed by
Aeh*

x'oyxlv, =x" v, for LJeIN® and 4 peb*. (1.8)

In other words, the algebra M* is identified with the tensor product of the
polynomial algebra in (x,),.,, and the group algebra attached to h*. Hence we
can write M¥ = C{x]v;.

1.3. In this subsection, we shall summarize some results on the forms of the
operators R,(X) for Xeg and S(Y) for Yen,. Under the above identification,
R,;(X) and S(Y) can be written in the following forms:

R(X)= Y Ra(X;x)éi——}—ipi(X;x)(MH,-) for Xeg and Aieb*, (1.9)

asd « i=1
G,
S(Y)y= 3 S,(Y;x)— for Yen, (1.10)
asAy 6X‘z

where R (X;x), p/(X;x) and S,(Y;x) and polynomials in x =(x,),.,,. Note that
R (X;x), p{X;x)and S, (Y;x) do not depend on 4. When R (X x) and p/{X; x) are
written in the forms

R(X;x)= Y a(X)x', where a/(X)eC, (1.11-1)
IeNs

pX;x)= Y byX)x!, where b, (X)eC, (1.11-2)
IeNs

the coefficients a,;(X) and b,(X) are computed by
ar(X) = (O} E' | Ro(X; X)X,00 ), (L.12-1)
b,(X)=<vt,l_E’|RAI(X)vAI>. (1.12-2)
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The coefficients in S,(X) are also determined by the similar formulas. Using them,
we can prove the following lemmas.

Lemma 1.1. For Xen, and acA ., the following results hold on the form of R,(X)
and S(X):
(1) pdX;x)=0 fori=1,...,r
(2) R(X;x) and S,(X;x) are polynomials in {xz|feA, and o« > B}, where a>f
means that o # f§ and a— =Y m; for some my,...,m,eN.

i=1
(3) R,le;x) = —S,(e;x)= 1.
4) R, (e;x)=S,(e,;x) =0 unless x=¢;. [
Lemma 1.2. For i,j=1,...,r and acA,, we have R (H;x)= —(x|H)x, and
pj(Hi;x) = 51‘,;’3

RyH)=—Y (a|H)x,ai+u[H) for Aeh* and Hebh. O (1.13)

ach Xy

Lemma 1.3. For i,j=1,...,r, we have p;(F;;x) =0, (A|H)x,,. [

Lemma 1.4. For Aeb*, we have the following commutation relations:
[R(X),8(Y)]=0 for X,Yen,, (1.14-1)
[R,;(H),S(e,)] = (a| H)S(e,) for acdA, and Heb, (1.14-2)
[RA(F), S(Ej)] =6, ;(AlH) + (;| H)x, S(E)  for ij=1,....,r. O (1.14-3)

2. Bosonic Free Fields and the Wick Theorem

2.1. Let .« be an algebra with generators (0.1) and relations (0.2). We define the
subsets A, and 4, of & by

Ao:={p[0]li=1,...,r}, 2.1-1)
A= {x,[m].o,[n], p[mllacd, , m>0,n=20,i=1,...,r}, (2.1-2)
A_={x,[m],d,[n], pi[n]loeA,,m<0,n<0,i=1,...,r}. (2.1-3)

Let &7, and &/, be the subalgebras of .« generated by A, and 4., respectively.
The normal product | | is the linear isomorphism from .&/_ &® o/, ® o7, onto .o/
defined by

a-®ay®a,i=a_apga, for ajesl, and a,eHd,. (2.2)
From now on, we omit ® in the left-hand side of this.

2.2. Now let us define a topological Z-graded algebra o including </ as a dense
subalgebra. Let D be the derivation of &/ with the following property:

Da[m] =ma[m] for afm]=x,[m],d,[m],p,[m] 2.3)
For meZ, putting
Am]:={acd|\Da=ma} and ,[m]:=s,A[m)], 24
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we obtain the decompositions o = (P o/[m] and o, = P &, [ + m]. Further-

more we obtain meZ mz0
Lm] =P o _[m—iledyol  [i] for meZ. (2.5)
icZ
We introduce the decreasing filtration {«/"[m]},.z of «/[m] by
L' [m]i=P A _[m—ildyd [{] for meZ and nelN. (2.6)

Let </ [m] denote the completion of «/[m] with respect to this filtration:

o [m]:=projlim o [m]/s/"[m] for meZ. 2.7)
Define the vector space o/ by
A= @ m]. (2.8)
meZ

Since &/"'[m,].o/"[m,] is included in «&/"[m, +m,] with n=max{n, + m,,n,},
the multiplication map from «/[m, ] x &/{m,] to o/ [m, + m,] is continuous under
the topologies given by the filtrations. Thus we can obtain the topological Z-graded
algebra structure of . Recall that, for Aebh*, the Fock space %, has been defined
in 0.2. The natural representation of &/ on &, is induced by that of &/ on %,.

2.3. We shall recall the Wick theorem for free bosons. We have defined, by (0.3),
the following free bosonic fields:

x,(2),0,(2), pi(z), where acd, and i=1,...,r. (2.9)
Let each of a(2), b(z),a,,(z) and b,(2) be one of the operator in (2.9). Put
M N
A@)=.]] a.2);. and B(w):=:]] b.(2).. (2.10)
m=1 n=1

When A(z) is expanded in the form Y z~™7"4,, each 4, is well-defined as an
meZ

element of <. Set (h,d,,d_)=(0,1,0),(1,0, ~1) or (1,1,—1) according as
a(z) = x,(z), 8,(z) or p{z) for some acA, ori=1,...,r. Expanding a(z) in the form

Y z7™ *a[m], we define the annihilation part a(z), and the creation part a(z)_
meZ

of a(z) by
a(@),:= Y, z ™ "a[m] and a(z)_:= Y z ™ "a[m] (2.11)
mzd. msd.
The contraction <{a(z)b(w)) of a(z) and b(w) is defined by
a(z)b(w)):=[a(z)+, b(w)_]. (2.12)

Note that {a(z)b(w)) is a formal series with coefficients in €. In fact, we have the
following formulas:

(B 2)xg(W)> =8, 5[z — w171, (2.13-1)
xo(2)0p(W)D> = — 0, 5[z — W]~ 1 (2.13-2)
{pi(2)p;(w))> = k(H;|H})[z —w] 2, (2.13-3)
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where we put formally

ey @ _— i+1 1 0 i ®© N ]
[z—w]""h={ > z7" 'w" = - z " Iwm for ielN. (2.14)
m=0 aZ m=0

Note that [z—w]—i‘l #(— 1)i+1[w,_z]~i——1.

Lemma 2.1 (the Wick theorem). Under the above situation, we have
M

A(Z)Bw) = T] aul2): H b (w):

=1
v)

H minggye 11 aw@ 1 bu2), (2.15)

lsms<M 1SngN
mé¢l n¢J

(v)
where we put {mny:= {a,(2)b,(w)) and the sum Z runs over the following data:

u[\/]g 5

I={my,....m} with 1<m < <m M,

J={ny,....,n,} with 1Zn,<---<n, <N, (2.16)

6e€, = {permutations of 1,...,v}. [0
The proof is straightforward. Roughly speaking, the Wick theorem says that the
product of the two normal products of free fields can be calculated by summing
all contributions from the possible combinations of contractions. It is found by
(2.13) that the expression for B(w)A(z) is obtained by replacing [z —w] "' in
(215 by (=) w—z] "L,

2.4, Let us explain operator product expansions. Let C(z,w) be a formal Laurent
series of (z,w) with coefficients in .o/ such that, for iclN, the expression

[(;) Clz, w)} is well-defined as a formal series of w with coefficients in /.
Z ¥4 w

M N
For example, it is the case for C(z,w) = H a,(z) 1‘[ b,(w) under the notation in
2.3. Formally we put m=1 n=1
d 1/
Res CEW4z [<4 >C(z, W) for ieN. .17
Z:W(Z_W)l+1 az s

Let A(z), B(w) and Ci(z, w) be formal Laurent series in z, w and (z, w) with coefficients
in .&7. Suppose that each Ci(z, w) has the same property of C(z, w). Expand A4(z) in
the form Y z7™ "4, If we have

melZ
N m+h—1c d

(4, BW]= Y Res™  CloWd 0 g (2.18)

j=Q ZTW (Z — W)l

then we write .

C

A(z) B(w) ~ Z {2, )WZI 2.19)
i= — W

and say that the operator product expansion (OPE, for short} of A(z)B(w) is equal
to the right-hand side of this.
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Lemma 2.2. Under the notation in 2.3, if A(z) and B(w) is defined by (2.10), then
there is an OPE of A(z)B{w). [

This is easily deduced from the Wick theorem. In fact, an OPE of A(z)B(w) can

be calculated by substituting [z —w] ™'~ in (2.15) for (
z—w

Example. Fora, feA, and m,nelN, put A(z):=x,(2)"64(z). and B(w).=x4(w)"d,(w)..
Then, using the Wick theorem (Lemma 2.1), we obtain
A(2)B(w) = x,(2)"04(2) x4(W)"0 (W), + n{z —w]~ ! X (2)"xy Hw)d (w):

—mlz—w] " ix, (20" o p(2)xp (W) — mnlz —w] T 2 ix, ()" Ixpwy T

)i+1'

(2.20)
Hence the OPE of A4(z) and B(w) is written in the following form:
. mon—~1 . e m—1 5 e
A(z)B(w)N"-xa(Z) X5 HW)O, (W), — mx, ()" 1B 4(2)x (W)
Z—w
N m-— 1 n-— 1
_muix(z)" T x,(w) - oo

(z—wy

2.5. Let @ be the closed subalgebra of o7 topologically generated by {x,[m]|acd,,
meZ}. The Lie algebra Lg@®Dd has been defined in 0.3. We shall introduce an
action of Lg @ b on @ and certain 2-cocycles of Lg @ d with coefficients in @. Put

Rep= T RXKx@E T pXix@)p@) for Xeg, @22
acd + i=1
where we use the notation x(z):= (x,(2)),e4 .. Define the energy-momentum tensor
T(z) by (0.8).
Lemma 2.3. We have the following OPFE’s:

—
@) Ty~ o YIW) | 2u(X, Yoz w) for X, Yeg, 2.23)

zZ—w (z —w)?

aii(w) X Q,(X;
w + (W) _+_ 2( sW)

T(z)X (W) ~ o oo o for Xeq, (2.24)

ai T(w)

T T~y 2T 2

z—w  (z—w)? (z—w)?* (225)
where we put
0 0
QX Y;z,w)i=— ) a—Ra(X ;x(z ))ﬁRﬂ(Y;x(W)):
a,pear OXg xu
+ Z Hi|H)pX; x(2))p( Y ; x(wW)), (2.26)

Lj=1
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a r
Q,(X;wy= ), ITRa(X;x(W))Z+2 Y pAX;x(w)), (2.27)
acd+ @ j=1
c:=dimg— 12(p|p)/x. O (2.28)

The proof is straightforward by the Wick theorem (Lemma 2.1). We remark that
¢ = (x — g*) dim g/k because of the strange formula g* dim g = 12(p|p), where g*
is the dual Coexter number of §.

The linear map 7% from Lg®Dd to o is defined by the following expansions:

=Y "X ®) for Xeg, (2.29)
meZ
—m—-2z= m+1 d
Tiz)= ) z fl — ™) (2.30)
meZ dt
Owing to the Wick theorem, we can define the representation of Lg@® d on O by
a f:=[#(a), f1 for aecLg®d and [el. (2.31)
We define the linear map w from AZ(Lb, @b) to & by
w(a, b):=[#(a), #(b)] — #([a,b]) for a,beLg®Dd. (2.32)

By definition, w satisfies the cocycle condition. Since £, and 2, are formal series
with coefficients in @, the 2- cocycle w is valued in 0. Thus we obtain the 2-cocycle
w of Lg® d with coefficients in 0. In addition, we define the standard 2-cocycle ¢,
of Lg@®b with coefficients in € = @ by the following:

(X ®f, Y ®g)=kRes(f'gds)

d d ¢
—g— _"R 1 dt
Cz<fdt gdt> 12 e gd,

d
c2<f;1—t,X®g>=0 for X,Yeg and f,geC[t,t™ '],

where we put k:= k — g*. The standard 2-cocycle c, is nothing but the 2-cocycle
given by the level k affine Lie algebra and the Sugawara construction of the
Virasoro operators. In Sect. 4, we shall prove that w and ¢, give the same cohomology
class.

2.6. Let us summarize some results on  immediately following from Lemma 2.3.

Lemma 2.4. The restriction of w on A*(Lb, @) coincides with that of c,.

Proof. Tt follows from (2.25) that w = ¢, on A?b. Applications of Lemmas 1.1 and
1.2 to (2.23) show that w = ¢, on A2Ln,. It is deduced from Lemma 1.1 and (2.24)
thatw =c,ond A Ln,. By Lemma 1.2 and (2.26), we obtain that, fori, j=1,...,r,

Q(H, Hyzw)=~ Y (@ H)BIH)+ k(HH) =~ g")H[H). (234)

a,BeA

This means that @ =c¢, on AZL}. By Lemma 1.2 and (2.27), we obtain that, for
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Q,Hzw)= =Y (a|H)+2=—2(p|H)+2=0. (2.35)

acA+

Thus w=c,ondA Ly O

Lemma 2.5. For every Xeg and Hely, the formal series Q,(H, X;z,w) does not
contain the formal variable z. [

This is immediately deduced from Lemmas 1.2 and 2.3.

3. Lie Algebra Cohomologies

3.1. In this section, we shall introduce a certain cohomology H'(Z,V) of a
Z-graded Lie algebra & with coefficients in a Z-graded #-module V. We'shall
define H?(Z,V) as the p™ cohomology group of a certain subcomplex of the
standard one. We define the Z-gradation of Lg&®d by

(Lg@b)[m]:=g®t'"®(]3t'"“% for melZ, (3.1

and the Z-gradation of @ by
O[m]:= @ruzf[m] for meZ. (3.2}
We shall mainly deal with H'(Lg@®d, O).

3.2. Let us recall the definition of the usual Lie algebra cohomology. For a Lie
algebra Z and an Z-module V, the group of p-cochains is defined by

CP=CP(&,V):=Homg(A? £, V) for p=0. (3.3)
We put CP:= 0 for p < 0in convention. The differential d: C* — C?** is defined by

@)= Y (=gl er))

1<igp+1

+ Z (_1)i+jf([lislj]’ll3'--aEs‘~-az;'»~~-alp+1) (34)

1<i<jsp+1

for feC? and ;€ ¥, where the hats denote the eliminations of the arguments. The
group of p-cocycles and that of p-coboundaries are defined by

Z7:=Ker(d:C? > CP*') and BF:=Im(d:C’ ! -CP). (3.5)

The p'* cohomology group of ¥ with coefficients in V is defined by
HY(#,V):=Z"/B". (3.6)
3.3. Now let us introduce a cohomology H'(Z,V). Assume that & = @ Flm]
is a Z-graded Lie algebra and V= V[m] is a Z-graded iﬂ-mo’:ief]e. Let

meZ
M= M[m] and N = (P N[m] be Z-graded vector spaces. Then a linear map

meZ meZ
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f from M to N can be uniquely represented in the following form:

=Y flml, where f[m}(M[n])c N[m+n]. 3.7

meZ
In this notation, we put
ﬁ:mC(M, N):= {feHom¢(M, N)| f[m] # 0 only for finitely many m’s}. (3.8)
We define the Z-gradation of AP.¥ by
(AP [m}:= Y LImI A AL[m,] for mel. (3.9

mit-tmp=m

The subgroup C? of C? is defined by

C? = CP( L, V):= Homg(A? 2, V). (3.10)

Since (df)[m] = d(f[m]) for f€CP, the direct sum C? is closed under the action
of d. Thus we can define the cohomology H'(Z, ;E)Zby

HY(L, VY= Z (¥, V)/BY (L, V) for pel, (3.11)

where we put
Z7(#,Vy:=Ker(d:C?- CP*Y) and BP(Z,V):=Im@d:C*"'>C?. (3.12)
Lemma 3.1. The 2-cocycle o defined by (2.32) belongs to Z*(Lg® b, 0). ]

For the proof, it suffices to see that w belongs to C3*(Lg@®, @). But then this is
obvious by Lemma 2.3.
Regarding € as a Z-graded vector space by

C[0]:=C and C[m]:=0 for m#0. (3.13)

we obtain the following.

Lemma 3.2, Let & be a Z-graded subalgebra of Lb_@®Db. Put ¥:=In, @ &.
Suppose that £ is a subalgebra of Lg@®D. Then there is a canonical isomorphism
from H'(Z,0) onto H'(¥,C). (In the proof, we can find the explicit form of this
isomorphism.)

Proof. Step 1. In order to apply the theory of spectral sequences to the complex
C'(#, 0), we shall introduce certain filtrations as follows. Define the increasing
filtration of A% by

F A" =NLRANTFc AP for a=0,1,...,n (3.14)
Put Gr (A" &L):=(F, N"L)(F .- N".¥). Then we have
Gr (A" L)Y AYL/L)R A"T°F for a=0,1,...,n (3.15)

Define the Z-gradation and the decreasing fiitration of @ by

G“(9:=< y ¥ (I:xa[m]>ac(9, (3.16)

acdy meZ

FO:=@ G0 for aeN. (3.17)

iza
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Then we have F°0 = 0 and F°0 = G*O £ F**' 0. Put
G*0:=(G*0), F'0:=(F°0), and Gr@:=F*0/F** 0, (3.18)
rlvhere ( )*denotes the closure in (. Then we have F°0 = @ and F°0 = G*0 @ F*+' 0,
ence

Gr'0 =G0 as topological vector spaces. (3.19)

In the following, we identify Gr*@ with G*0. We remark that Gr°0 ~ G°0 = C.
We define the decreasing filtration of C"(.Z, ©) by

Frn=p:= FPC"( &, 0)
= {feCL,0)| f(F,N\"L) = FP~0 for a=0,1,...,n}.  (320)
It is obvious that this filtration is compatible with the differential: dFP" P FP"* 172,

Step 2. Let us consider the spectral sequence E?*? attached to the filtration
FP4 The E, terms shall be determined as follows. Putting

E2"?(a):= Homg(Gr,(A"%), Gr?~*d), (3.21)
we obtain )
Ef=P = FPrp/FrrinTrolx () ER"(a). (3.22)
a=0

By definition of & and &, we have
L FrOcFr ' and & -FP~°0c Fr Q. (3.23)
Thus we obtain the following induced maps:
o_(:GrP O -Grr~ 710 for le, (3.24)
0o(s):Gr* 0> GrP~*0  for se¥. (3.25)
For le %, let T denote the class in ¥/ represented by . Then o_, (/) depends

only on [e £/ . In the above notation, the induced differential d% of EZ is written
in the following form:

dgf(_l_la"w_l_msh""Sn+1—a)

= S (=)o ) @ T T S1s s Sur 1 —a)
1

ifa

1A
A

+ ('— l)iﬁlao(si)f(l_lr"’—l—asla' "’§i"'°’sn+1~a)
1<isn+1-a

~

+ Y (=T s B T e TSt S Sar )

1ZiZa
1£jEn+1-a

+ Y 8V ASALTY (VORI T R PUSUUIY NN U SR §

1gi<jsn+1-a

(3.26)
where feEP" P l,e ¥ and s5;e¥.
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Step 3. Let us calculate the E, terms. The group E?”" 7 is the n™ cohomology
group of the complex (E§°77,d?). As a special case of the results in Step 1, we

have obtained ES" =~ Homg(A"Y, ) = C"(&, €). This implies that
E%"= A"(¥,C) for nel. (3.27)

In the following, we shall show that E2"=0 if p #0. For this purpose, we
introduce the linear map # from E5" "7 to EZ"~17F by

rlf( ) ERURE) a 1751’ . Sn~a):: Z X [m]f(e ®t " ll’ la 1,819 n—a)’ (328)

acd +
meZ

where feEf" 7, l,e ¥ and s;€4. In order to check the well-definedness of 1, we
have to prove that the right-hand side of (3.28) converges in Gr? ~**1 O =Gra*1g.

Because of the definition of Hom, we can suppose that f = fI[M] and I; A - A
Loy ASy A AS,_&€(A" P #)[N] for some M and N. Putting
am _f(e ®t " ll’ la 15815+ n—a)’ (329)
u(my:=max{m,M + N —m}, (3.30)
we obtain o
X, [m]X , €GP 1O N L™ [M + N]. (3.31)

The subspace G?~ a*1@ is closed in .o/. Hence, by the definition of A[M + N7, it
follows that the right-hand side of (3.28) converges in G ~** 1.
From Lemma 1.1 and the definition of %, we can write

0
— for aecA, and meZ. (3.32)

J—l(ea®t_m): ax [m]

Furthermore, we find that
[o_iD,00(s))=0_,([l,5s]) for le¥ and se&. (3.23)
We can deduce from (3.32) and (3.33) that, for se %,

Y {[oo(s) x.[m]1®(e,®t™™) + x,[m]®[s5,6,®1 "]} =0.  (3.34)
med

Tedious calculations using (3.32) and (3.34) show that
ndf +din=pid on Ef "7 (3.35)

Thus, if p # 0, then p~ ' is a homotopy operator joining the identity map of E?*~7
with the zero map. Consequently we find that

EFP=0 for p#0 and neZ {(3.36)
Step 4. We obtain from (3.27) and (3.36) that
AL, 0)= E%" = E9" = A"(¥,C) for neZ. [ (3.37)

Lemma 3.3. HY(Lb, ©b,0)=0.
Proof. Applying Lemma 3.2 to the case & = Lb@b we obtain

HYLb, @b, 0)= H\(¥,C) = Z\(&, D). (3.38)
But it is obvious that [, ¥] = &, hence VA (<, =0 O
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Lemma 34. Ho(Ln,,0)=C. [
Proof. An application of Lemma 3.2 to the case & = 0 yields that
A°(Ln,,d) = A°0,€) = Hom(C, T) = C. (3.39)
But then it is easy to see that H(Ln,,®)= H(Ln,, ). O
3.4. In the next section, we shall need the following lemma.

Lemma 3.5. The inclusion map from Lh @D into Lb_ @ d induces the isomorphism
from H"(Lb @b, C) onto H(Lh @D, ). O

This is the special case of the following lemma.

Lemma 3.6. Let # be a Z-graded Lie algebra and h an element of #. Suppose that
the adjoint action of h on £ is diagonalizable. Put & ;= {le Z\[h,1] = al} for acC.
Define the C-gradation of A?¥ and that of CP = C"(,S,” Q) by

(NZL)y= Y Lun AL, (3.40)
(CP)i= {feCPlf(NP L)) =0 for b#a} for aeC. (3.41)

Then (6'),, isa subcom~plex of C'. Furthermore H*(%,C) is isomorphic to the p'®
cohomology group of (C),.

Proof. Since the first assertion is obvious, it suffices to show the second assertion.
We can define the linear map i(h) from C” to C*~! by

EMNHU. W)=, 1,_y) for LeZ. (3.42)

Then i(h)(C?), = (C”~ B, for aeC. Moreover a stra1ghtforward computation shows
that i(h)d + di(h) = aid on( "), for ae@. Hence, if a # 0, then a ™ 'i(h) is a homotopy
operator joining the identity mapping of ((~I')a with the zero map. It follows that
H"((C"),,) =0 for a # 0. Hence we conclude that

AY(Z,€)=HV(C) = 62 H((C),) = H?((C)p). O (3.43)

4. Fock Space Representations of Affine Lie Algebras

4.1. The results of the previous section allow us to prove the following theorem,
which is a starting point of the theory of Fock space representations of the affine
algebras.

Theorem 4.1. There is a unique element I' of 51(Lg@b, 0) satisfying the following
properties: N .
al =c¢, — o in B3 (La®D,0), 4.1)

=0 on Lb, @Dd. 4.2)

Proof. Existence. From Lemma 2.4 and 3.1, it follows that w and c, define the
same cohomology class in H?*(Lh @D, T). On the other hand, Lemmas 3.2 and 3.5
yield the following isomorphisms:

HX(Lg®d,0) = H*(Lb_ ®d,C) =~ H2(Lh®d, T). (4.3)
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Hence there is an element I of C! (Lg @D, @)such thatdI” = c,—win B*(Lg @D, (5)

Because of Lemma 2.4, it is found that dfF =0on /\Z(Lb @ D). Thus, by Lemma 3.3,

it is possible to find ae® = CO(Lb, @b, T) so that I' =da on Lb, ®b. Put
I=I—daeCY(Lg®D, (9). (4.4)

Then it is obvious that I” satisfies (4.1) and (4.2).

Uniqueness. Suppose that I is an element of C! (Lg®D, (9) satisfying the condltlons

similar to (4.1) and (4.2). Put u:=I""—T". Then du=0 in BXLg@®b, O) and u=

on Lb, @d. By Lemma 3.3, it is possible to choose be@ sothatu=dbon Lb, ® b
Hence, from Lemma 3.4, it follows that bis in €. Thus u=db=0. J

Definition. In the notation in Theorem 4.1, we can define the Lie algebra homo-
morphism . from the affine-Virasoro algebra §® Vir to of by

X®)=AXRQf )+ N"X®f) for Xeg and [eC[t,t™!], (4.6)

n(f £>:=ﬁ<f d> for feClt,t '], 4.7
dt dt
a(K)y=k=x—g* and =n(C):=c=kdimg/k. 4.8)

We call T" the correction for currents. (For the definition of 7, see (2.21) and
(2.22).) Recall that .o/ acts on the Fock space Z,, where Aeh*. Thus we obtain a
representation of § @ Vir on &, which is called the Fock space representation of
the affine-Virasoro algebra.

It is easy to see that the vector |A)e &, satisfies the highest weight condition
(0.11) for & Vir. For Xeg and meZ, put X[m]:=n(X ® t™) and L,,,:=7r<—t"'+1 i)
Formally we define the current operator X(z) for Xeg by (0.9). dt

4.2. Let us determine the explicit form of I'. The condition (4.1) is equivalent to
the following:

'l L) =ol, L) —clLL)+ 1 Tl)— 1L, T(y) for 1,l,eLg®d. (4.9)
Hence, because of (4.2), the correction I is uniquely determined from the set
{Ir'F,®@tMli=1,...,r and meZ}.

Proposition 4.2. There is a unique set {y;};_, of complex numbers such that
I(F,®t")= —ymx,[m] for i=1,..,r and mel. (4.10)
Equivalently we have
Flz)=F2) +y,0x,(2) for i=1,...,r (4.11)

Proof. We fix i= ,r in the followmg Put I;[m]:= I'(F;®t™) for meZ and

Izy= )Y z7™~ 1I"[m] Let H be in h. Then Lemmas 2.3 and 2.5 imply the
meZ

following OPE:
— oy H)T(w) + a(w)
z—w (z—w)?

H(z)I(z)~

4.12)
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where a(w)is some formal Laurent series with coefficients in @. This implies that
[H[0], [[n]l]= —(«;|H)I;[n] for Heb and neZ. 4.13)

In addition, Lemma 2.3 admits us to obtain the following OPE:

oryw)y  Ty(w) b(w)

TE @)~ z—w  (z—w)? (z—w)?¥

4.14)

where we put b(w):= Q,(F;w). Denote the expansion of b(w) by Y. z~"b,,. Then
(4.13) is equivalent to the following commutation relations: meZ

[Lm,ri[[n]]=—nr,.[m+n]+(i"i21)—mbm+,, for mneZ.  (4.15)

As a special case of this, we obtain

[Lo, Ii[n]1= —nl;[n] for neZ. (4.16)
From (4.13)and (4.16), it is found that I"[n] can be written in the following form:
I[n]=a,x,[n] for neZ, 4.17)

where {a,},.z is some set of complex numbers. Using this, rewrite (4.15) in the
following form:

(m+ Um

2
Substituting m = — 1 into (4.18), we obtain (n — 1)a, = na,_, for neZ. Hence the
case for m=1 implies b,,, =0 for neZ. Furthermore, by the case for m= —2

and n=1, we obtain a;, = —a_,. Thus we conclude that a,= —na_, for neZ.
Putting y,:=a_,, we finish the proof. []

bpin=Ma,:,—(m+na,)x, [m+n) for mneZ. (4.18)

Remark 4.3. Fori=1,...,r, the constant y; can be determined by the OPE of E;(z)
and Fi(z). The result is the following. Define the constants {N, ;} by

[eses]=N,ge,.45 wherea fand a+ f arein A 4.19)

For convenience, we put N, ;:=0 unless o, f and « + § are roots of g. Recall that
positive roots have been numbered by a fixed order: 4, = {B,,...,,}. We define
the total order < in A4, by

Bi<Br<--<B, (4.20)
In this notation, fori = 1,...,r, the constant y, can be written in the following form:
2k
’Yi= + Z sz,aiNa+<z;,—ai' D (421)
(w;lo)  sean
a>ai

4.3. For Aeb*, the Fock space &, decomposes into the weight subspaces. Putting,
for delN and pebh?*,

Fildl:={veF,|Lov=(4, + d)v}, (4.22-1)
F,ld, u]:= {veF,[d]|H[0]v = (u|H)v for Heb}, (4.22-2)
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we obtain #, = @ F,1d] and 7,[d] = @ Z,[d,u]. We remark that Z,[d, 1]

neb*
is finite dlmenswnal. Define the dual Fock space | by

Fl=03P F11d], (4.23)
d=0
where we put
F {[d, u]:= Hom(#,[d, 1], €©), F[[d]l:= P F{[d,p]. (4.24)
pneb*

Then & I possesses the natural right § @ Vir-module structure. Denote by (| ) the
natural pairing of #! and #,. Note that #,[0] is a g-submodule of %, and

spanned by { 11 x,,[O]"’\(Iﬂ)ﬂeA+eNA*}. Using this and the definition of 7, we

Ped
can prove the following.

Proposition 4.4. As g-modules, #,{0] and F [0] are isomorphic to M* and M,
respectively. [

44. Let {J ”}d"“g be an orthonormal basis of g with respect to the Killing form.
For p=1,...,dimg and m,neZ, put

JP[m)JP[n] if m<n,
JP[n]JP[m] if m>n.

The Sugawara energy-momentum tensor T5V6(z) is defined by (0.12). Then,

expanding T°YC(z) in the form ) z™ ™ 2L5YC, we obtain a set {L$VC} . of
meZ

operators acting on the Fock spaces. Let n' be the linear map from §® Vir to

Endy &, given by

ZJ"[m]J"[n]i:{ 4.25)

X®@t"—X[m], t"‘“%u——»—Lf"UG, K—kid, Crscid, (4.26)

where Xeg and meZ. Then 7 is a representation of §@® Vir on % ;. The vector
[A>eF, satisfies

3912y = A,14) and LSUS|A)=0 for m>0. 4.27)
Theorem 4.5. For every k #0, Aebh* and meZ, we have
=I5V a5 operators acting on F,. (4.28)

Proof. For Jeh*, the algebra automorphism 7, of & is uniquely characterized by
the conditions

T(pilm]):= p,[m] + (1| H})6,, 0,

tﬁxa[nﬂ):zxa["ﬂ’ TdéaDn])::éaDnl
where meZ, acA, and i =1,...,r. Then the representation of §@ Vir on %, given
by the composition 7,°n is isomorphic to that on &, given by n. For m,neZ and

a, fe A, the operator m,(e, ® t™) polynomially depends on A as a linear map from
Foln Bl to Fo[—m+n,a+ 1. Similarly, for m,neZ and aeA, the operator

(4.29)
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d
7r,1<t"'“$> polynomially depends on 4 as a linear map from %,[n,a] to

Fol—m+n,a]. Hence, for the proof of the theorem, it suffices to show (4.28) for
generic A’s. It is easy to see that the character of &, is equal to that of the Verma
module .#, , of § with level k = k — g* and highest weight A. Hence, for a generic
Aeh*, the Verma module .4, ; is irreducible and isomorphic to . It suffices to
prove the theorem for such a 1. It is obvious that [L,, — LSVC, X[n]] =0 for X eg
and m,neZ. By the definition of L3S, it follows that [L,, — L3C, L>V9] =0 for
m,neZ. This implies that [L, — L>YS, L, — LSY9] = [L,, L,] — [L3%, L34 for
m,neZ. Hence the representation of Vir on &, with central charge 0 can be defined

d
by —t"'“aHLm—Lf”UG for meZ. But the Schur lemma implies that

L, — L3YC =q,id as operators acting on &, for some a,eC. Thus, a bit com-
putation shows that L, — LSY9 =0 for meZ. [

5. Screening Operators and Integral Representations

5.1. In the previous section, we have defined the Fock space representations of
the affine-Virasoro algebra and determined the explicit form of the correction for
currents. Additionally, we have proved that the energy-momentum tensor written
by free bosons are equal to the Sugawara one on the Fock spaces. In this section,
we shall construct screening operators. Consequently, we shall obtain integral
representations of correlation functions in the WZW model.

5.2. Let 4 and p be in h*. The linear isomorphism ¢** from &, onto &, , is
uniquely characterized by the condition (0.14). Formally we put z?#:%y = zafm,
for ve#, and Hel). We extend the normal product ; . to them by

ra_etMgpliOlg g =g _etlMpPli0g 1 for apjesl, and a.eof,. (5.1)

Then the bosonic vertex operator V(4;z) defined by (0.15) is formally written in
the form

V(d2)=e"%?., (5.2)
where we put
1 z7 "
q(4;2):=q[4] +—{PU~;0] logz+ ) ——P[l;Z]}- (5.3)
K m#o —M
We have the following OPE’s:
p(H; 2) V(4 w) ~ (M—H) V(i,w) for Heb, (5.4)
zZ—w
TRV (W~ W) | AV V:) . (5.5)
z—w (z—w)

Recall that, for Yen, and aeA,, the polynomial S,(Y;x) in x =(x,),.4, has been
defined by (1.10). For i=1,...,r, put

Si2)= Y. SE;x(2)d,(2)., (5.6)

acd,
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Viz):=V(—o0;2) =173, (5.7)
si(2):= S{(2)Vi(2), (5.8)

where we use the notation x(z) = (X,(2)),e 4, - We remark that §,(z) commutes with
Viw). If we expand s,(z) in the form ¢ Y s,[m]z~™* P40 then s,[m] is well-
defined as an element of <. meZ

Theorem 5.1. For i=1,...,r, the operator s(z) satisfies the following OPE’s:

Tmmm~3{ﬂﬂ} (5.9-1)

wlz—w

X(2)s{w)~0 for Xeb,, (5.9-2)

Fj(Z)Si(W) ~ — Kéi'j‘a— {M} for j =1,...,r. (59-3)
owlz—w

(These OPE’s are equivalent to the commutation relations (0.17).)
Definition. We call {s,(z)}i_, the set of screening operators.

ov;
Proof of Theorem 5.1. Since A, =0, it follows from (5.5) that T(z)V(z) ~ —‘91)
Lemma 1.1 and the Wick theorem (Lemma 2.1) yield that -
08,(w) Si(w)

T(Z)SI(W) ~ m + (Z _ w)2 .

(5.10)

Therefore we obtain (5.9-1).
For X en ., the OPE (5.9-2) follows from Lemmas 1.1, 1.4 and the Wick theorem.
Let H be in §. Using Lemmas 1.1, 1.2, 1.4 and the Wick theorem, we can obtain

H(z)S,(w) ~ M Lemma 1.2 and the OPE (5.4) imply that
Z -_—
H@V.o) ~ p(H: 1) Vi) ~ — 24DV, (5.11)
Z—w

Thus we obtain the OPE (5.9-2) for X = H.
Using Lemma 1.4 and the Wick theorem, we can show the following OPE:

_GupWViw) i+ Aw)Viw) . B(w)V(w)

F(2)s;
j(z)s (W) z—w (Z . W)2
_ —K0,,;0Vi(w) + AW)Vi(w) + B(w) Vi(:})’ (5.12)
Z—w (z—w)
where A(z)= Y z7™A,, and B(z)= ¥ z ™B,, for some A,,B,,c0. This is equi-

meZ meZ
valent to the following commutation relations:

[F;[m], sdw)] = — k6, w"OVi(w) + w" A(W)Vi(w) + mw™ "1 Bw)V(w),  (5.13)

for meZ. Take an element E of n, and an integer n. Then E{n] commutes with
s(w) by (5.9-2). Hence, calculations of the commutators of E{n] and both sides of
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(5.13) show that
wr[E[n], Aw)] + mw™ [E[n], B(w)] =0. (5.14)

The case of m = 0 implies [E[n], A(w)] = 0. Hence we also obtain [ E[n], B(w)] =0.
Thus it follows from Lemma 3.4 that

A,eC and B,eC for meZ. (5.15)

Compute the commutators of L, and the both sides of (5.14). Then, owing to (5.9-1)
and (5.15), we find
w9 A(w) + (n + Dw™ " A(w) + mw™ T "0B(w) = 0. (5.16)

Considering the special cases for (m,n)=(0, —1), (0,0) and (1, — 1) in order, we
successively obtain 04(w) =0, A(w) =0 and dB(w) = 0. Thus (5.13) is rewritten in
the form

[F;[n],s{w)] = — kb, ;w"oV(w) + Bomw™ ™ ' Vy(w). (5.17)
Let H be in b. Then (5.11) implies that
[H[n], Viw)]= — (o;] H)w"Vi(w). (5.18)

Using (5.15) and (5.18), compute the commutators of H[n] and the both sides of
(5.17). Then we obtain

Bo(oy | Hynw" ™™t = — k4, j(o;| Hynw" ™1, (5.19)
Since we can assume (o;| H) # 0, we obtain B, = — 4, ;. Therefore (5.17) becomes
0
[F;[m],sw)]= — Ké,-_j(,T {w"Vw)} for meZ, (5.20)
w

which is equivalent to the OPE (5.9-3). (O

Definition. Expand S(z) in the form Y. z7"~'8,[m], where S,.[m]eai. Fori=1,...,r,
define the vector s; in F_, by meZ

= 8L — 13| — o) = [s4(2)[0) ). =0 (.21

We call {s;}7_, the set of screening vectors.

Corollary 5.2. For i=1,...,r, the screening vector s; has the following properties:

Los;=s;, and L,s;=0 for m>0, (5.22-1)
X[mls;=0 for Xeb, and mz=0, (5.22-2)
Fj[o]si = Kéi,jL— 1=, Fj[l]si = - Kéi,jl — 0, (5.22-3)

Fimls;=0 for mz2 and j=1,...,r. [
From L_,}0> =0 and Theorem 5.1, we can easily find the proof of this.

5.3. Till now, we have regarded z and w as formal variables. But, in the following,
we have to consider z and w as complex parameters. Let V be a vector space
and A in b* For m=(m,,...,my)eZ”, let A,, be a linear map from V to Z,.
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Put A(z):= Z z~™A,,, where we use the notations z:=(zq,...,2zy) and z"™:=
meZN
z;™---zy™. We say that A(z) converges at zeC¥, if the following infinite sum

converges at z for every ue % ]; and vel:

ulA@wy:= Y, z7™(u|A,v). (5.23)
meZN
Then A(z) is regarded as a linear functional on #® V. Of course, the operators
introduced in the present paper converge in € = {zeC|z # 0}, for example,

Xa(Z), 51(2), pi(z)’ X(Z)’ T(Z)v V(i’ Z), Si(z), Si(z)’ CtC., (524)

where acd,, Xeg, Aeh* and i=1,...,r. However we should pay attention to the
fact that V(4;z) and s{z) are multivalued in z. Put w:=(w,,...,w;) and
Ul:= {weClw;w;if i#j}. Fori=1,...,L, let 4(z) be one of the operators in
(5.24). Then the composition A,(w,)--- A, (w,) converges in {{w,| > --- > |wy| > 0}
and iLs analytically prolongable to w in U*. We denote the result of this prolongation

by [] Aiw,). Furthermore, if {4,(z)}{~, contains neither V(4;z) nor s(z), then
i=1

L

[] A4i(w,) is single-valued in w and independent of the order of the composition.

i=1 L

On the other hand, if {A4,(z)}}-, contains V(4;z) or si(z), then [] Aiw)) is, in
i=1

general, multivalued in w and is independent of the order of the composition if

we ignore its phase factor.

5.4. Let us define conformal blocks, which is the most fundamental objects in
conformal field theories.

N
Definition. Let 1,,...,4y and A, be in bh* and @ a linear map from F| ® X) F,,
a=1
to the space of multivalued regular functions on U". Then @ is called a conformal
N
block (of the WZW model on P!) for 97200® X) Z,,, if it satisfies the following
conditions: ast

(B1) Let A({) be one of the operators T(() and X({) for Xeg. For a fixed z=

(24,....25)eUN, let f({) be a rational function regular in {{cC|{ #z,,...,zy}. For
u,eF, uleF! anda=1,...,N, put

rei= gR_es(f(C)A(C = z,)d0)u,, (5.25-1
rli=ul, CRzes(f(C)A(OdC), 5.25-2)
V=l Qu; ®@ - D1, ® - ® Uy, (5.25-3)
V=11 Qu; ® - Quy, (5.25-4)

where r, in v, is placed at the a™ component. Then we have

N
<D< Y vyt Vs z> =0. (5.26)

=1
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(B2) For u,eF,, ,ul e} and a=1,...,N, we have

0
D(v,;2) = 5 D(u; z), (5.27)
where we put u:=ul ®u, ® - @uy and
vo=ul Qu; ® - QL_u,® - Quy. (5.28)
Note. Physicists maybe prefer to use the following notation for conformal blocks:
<UL(OO)”1(21) uy(zy)D e = ‘D(u:o Ru; @ - Duy; 2), (5.29)

where u,e %, and u] eZ] .

Lemma 5.3. Let u,,...,u; and p, be in h*. Let ¥ be a conformal block for 97;2 ®
L L-1 °
X Z,, and v in F! ® ) F,,. Suppose that y; = — «; for some i=1,...,r. For
a=1 a=1
a fixed we UL, let f({) be a rational function on € regular at { = w,. Then we have
the following:
d
Y ®rw)= F W) P ®s;w)}, (5.30-1)
Wy,
YU @ry(X);w)y=0 for Xeb,, (5.30-2)

P ®ry(Fyw)= — Kéz,j%{f(wl) P | —od;w} for j=1,...,r,
L

(5.30-3)

where we put
ry= gliis (fOTE—wp)dl)s;, (5.31-1)
ra(Y)= Res (fOX(C~w)dl)s, for Yeq. OO (531-2)

This follows from Corollary 5.2 and the definition of conformal blocks.

L
For uy,...,u eb*, put d:=(uy,...,u) and py = U,. The operator V(i; w)
=1

defined by ¢
L
V(i w):=" H gltuaiwa)® l"[ (w, — Wb)(ualﬂb)/K’ (5.32)
a=1 1<a<bslL

converges in UL, The following formula is widely known:

L

[T V(usw,)=V(H;w) up to phase factor. {5.33)

a=1

Using the method in [TK2], we can prove the following two lemmas.

Lemma 5.4. Under the above notation, there is a unique conformal block W of the

L
WZW model for F1 ® (X) F,_ with the following properties:
freo a=1 B
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(1) Putting vo:=|p; > ® - @l pL Y, uo:=10) and ul := {1, we have
P!, @uosw) = ul [V whuod = [T (w, — wy)keliol, (5.34)

15a<bslL
(2) The condition (B1) also holds, even if A({) is equal to one of the operators x (),
O A0) and p{{) where acA, and i=1,...,r. [

Lemma 5.5. Under the same situation as in Lemma 5.4, suppose that L=N + M
and pysp= — oy for some 1(b)elN and any b=1,...,M. Let I (x) be in N for
a=1,...,N and acA,. Put uy:=10) and

ui= [] x[01*®|p,> for a=1,....N, (5:35)
aEA +
V= ul ® "'®UN®S“1)® '..®SI(L)’ (5.36)
N M L
Y= TT [T xawa)'® T ScoyWnss) TT Ve wa). (5.37)
a=1 aeA4 b=1 a=1

Then, for ul e F Zw, the conformal block ¥ in Lemma 5.4 satisfies the following:
P! ®uv,w)=ul |W(wue) up to phase factor. [ (5.38)

N
5.5. Let us construct integral representations of conformal blocks for # ]; ® X Z,..
a=1

For this purpose, we shall freely use the notation in 0.6 to 0.8. For example
(Ars---r An)e®®)V and 1, Z/l—ZmaforsomemeN Put M:= Zmand

a=1 i=1 i=1

L:= N+ M. Define w=(z,t) by (0.25) and % by (0.26). Let ¥ be the conformal
L
block for #! ® (X) #,, in Lemma 5.3. Define the multivalued function I(w) by

L
(0.27). Then (5.32), (5.33) and Lemmas 5.4 (2) implies that, for each ve # }:m® X Z
a=1
the function ¥(v; w) can be represented in the form ¥(v; w) = l(w) f(w), where f(w)
is some rational function regular in U*. Let {I'(z)} be a family of M-cycles with
N

properties (0.28) and (0.29). Define the linear map @ from #| ® (X) #;, to the
a=1
space of multivalued function on U™ by

N
Dy z):= | Yu®szndt for ueF| @ X F,,, (5.39)
I'(z) a=1
where we put
$:= 5,1, ® - ®s,4 (atensor product of the screening vectors), (5.40)

under the notation (0.24).

N
Theorem 5.6. Under the notation, above @ is a conformal block for F{ ® X) #.
a=1

Proof. Tt is easy to see from (0.29) that @ satisfies (B2). Let A({) be one of the
operators T({) and X({) for Xeg. For a fixed z=(z,,...,zy)eU", let f({{) be a
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rational function regular in {{ #z,,...,zy}. Under the notation (5.25), define the
N

vectors u and v in F|_® X) Z,, by
a=1

w=ul Qu;®: - Quy, (5.41-1)
vi= %1 U, + Vg (5.41-2)
In addition, we put, for b= 1,. ..,al\—l,
ro(ts):= ?:e: (FIOAQ — )d0)s p) (3.42-1)
e(ty):= 5,1, ® - ®1y(tp) ® - ® S, p1y5 (5.42-2)

wﬂ?ere ry(ty) in ey(t,) is placed at the '™ component. Define the vector e(t) in
® gz_a'(b) by
b=1

M
et)y= 3 eylty). (5.43)
b=1
L
Since ¥ is a conformal block for #' ® X #,,, we find that
a=1

Yo®@s+u®elt),z,t)=0. (5.44)
On the other hand, Lemma 5.3 implies that
| Pu®eyty)z,0)dt=0 for b=1,...,M. (5.45)

I'(z)
Thus it is proved that @ satisfies (B1): @(v;2)=0. O

5.6. Now we shall show that the integral representation (5.39) of a conformal block

implies that of a solution of the KZ equation (0.23). Owing to Proposition 4.4, we

can identify #,[0] and & I[O] with M* and M, respectively. Thus the operator
N N

0, , defined by (0.22) acts on (X) #,,[0] and ) #] [0].
a=1 a=1

Lemma 5.7 [KZ]. Let Aq,...,Ay and 1, be in bh* and @ a conformal block for
N
F!1 . ® Q) F,,. Then, foru,eF;,[0] =M% andul e F| [0]=M]_, the conformal
a=1
block @ satisfies the following conditions:

(1) For Xeg, putting
N

v=ul X[0]Qu;® - ®uy— ¥, ul @u;®@ - ®X[0]u,® - Quy.  (5.46)

a=1
we obtain @(v;z)=0.
(2) Fora=1,...,N, we have

Ol ®Q, ,u';z2)

N Za—Zb

i<D(1¢:f0(>§u’;z) = Y

5.47
o, 1 (5:47)

S NA
oA

b
+

where we put u':=u, ® - @ uy.



Integral Representations in the WZW Models 541
Proof. Let X be in g and put A({):= X({). Then applications of (B1) to the cases
(O =1and f({)=(—z,)" ! respectively imply (1) and the following:
Ol u; @ X[ —1]u,® - Quy; 2)
_ ¥ Out ®uy- @X[0Ju,® - Quy; 2)

. (5.48)
1<bSN 2,72
b#a
By Lemma 4.5, we obtain
dimg
L oju,=— Y J/[—11J7°[0]u, (5.49)
K p=1

Thus, by (B2), we obtain
dimg

0 1
QWL ®uiz)== Y OWl@u® - ®J[—11J7[0]u,® - @uy)

52,, K p=1

L'y diig<D(uL®---@JP[OJua®~--®J”EOJub®“'®“~)
N p=1

23— 2

(5.50)
Rewriting this by 2, ,, we find (2). O

Recall that the weight subspace M%Aw has been defined by (0.19). Lemma 5.5
implies the following.

Lemma 5.8. Under the same notation as in 5.5, we have
V(A |®v®5;2,t) = (P(z,t)v) up to phase factor for verJm. 0 (5.5

Theorem 5.9. Under the notation in 0.8, if F(z) is defined by (0.32), then F(z) is
valued in SL}(M%) and satisfies the KZ equation (0.23).

Proof. Let @ denote the conformal block defined by (5.39). Then, by Lemma 5.8, we
obtain

D({A,|®v,2) =< F(2)|v) for veM{lw. (5.52)

Therefore the theorem follows from Lemma 5.7. [
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