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Abstract

Deep convolutional neural networks (DCNN) have been

successfully used in many low-level vision problems such as

image denoising. Recent studies on the mathematical foun-

dation of DCNN has revealed that the forward propagation

of DCNN corresponds to a dynamic system, which can be

described by an ordinary differential equation (ODE) and

solved by the optimal control method. However, most of

these methods employ integer-order differential equation,

which has local connectivity in time space and cannot de-

scribe the long-term memory of the system. Inspired by the

fact that the fractional-order differential equation has long-

term memory, in this paper we develop an advanced im-

age denoising network, namely FOCNet, by solving a frac-

tional optimal control (FOC) problem. Specifically, the net-

work structure is designed based on the discretization of

a fractional-order differential equation, which enjoys long-

term memory in both forward and backward passes. Be-

sides, multi-scale feature interactions are introduced into

the FOCNet to strengthen the control of the dynamic sys-

tem. Extensive experiments demonstrate the leading perfor-

mance of the proposed FOCNet on image denoising. Code

will be made available.

1. Introduction

Image denoising aims to estimate the underlying clean

image from its noisy observation. As an indispensable step

in many digital imaging and computer vision systems, im-

age denoising has been investigated for decades, while it

is still an active research topic. A vast amount of methods
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RGC GRF grant (PolyU 152216/18E) and National Natural Science Foun-

dation of China (grant no. 61772389, 61877406, 61871260).

have been developed by using different mathematical tools

and models, including partial differential equations (PDE)

[39, 32], sparse coding [28, 13], low-rank approximation

[16, 22], and others [6, 9, 38]. Most of these methods rely

on very limited human knowledge or assumptions about the

image prior, limiting their capability in recovering complex

image structures.

In recent years, deep convolutional neural networks

(DCNN) have achieved a great success in many low-level

vision problems, including image denoising. In particu-

lar, Zhang et al. [45] proposed an effective image denois-

ing network called DnCNN by integrating batch normal-

ization into the residual learning framework, which outper-

forms traditional denoising algorithms by a noticeable mar-

gin. By adding symmetric skip connections, Mao et al. [29]

constructed an improved encoder-decoder network for im-

age denoising. Bae et al. [4] suggested to learn CNN on

the wavelets sub-bands for image denoising. Based on the

wavelet decomposition, Liu et al. [26] put forward a multi-

level wavelet based denoising DCNN. Tai et al. [42] con-

structed a densely connected denoising network to enable

memory of the network. Zhang et al. [46] introduced a fast

and flexible network (FFDNet) which can process images

with nonuniform noise corruption. To exploit the nonlocal

property of the image features in DCNN, Plötz et al. [35]

presented an N3Net by employing the k-nearest neighbor

matching in the denoising network.

Although various DCNN methods have been proposed

for image denoising, the network design is mostly empiri-

cal without clear mathematical bases. Recently, some stud-

ies [34, 44, 27, 40, 17, 25] on the mathematical founda-

tion of DCNN have revealed that the forward propagation

of DCNN corresponds to a dynamic system, which can be

characterized by an ODE and solved by optimal control

methods [44, 25]. For example, Pineda [34] studied the
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neural network from a viewpoint of dynamic systems, and

formulated the forward propagation of neural networks as

the discretization of a special ODE.

In [25], Li et al. studied the Residual Network (ResNet)

[18] via optimal control and showed that the ResNet can be

solved by Pontryagin’s maximum principle. Lu et al. [27]

found that the forward propagation of ResNet is the Euler

discretization of an ODE. They further concluded that many

state-of-the-art network structures can be considered as dif-

ferent discretizations of ODEs, such as FractalNet [24],

PolyNet [47] and RevNet [15]. More recently, Ruthotto et

al. [40] investigated the relation between DCNN and partial

differential equation (PDE), and indicated that the forward

process of DCNN resembles the diffusion equation. The

PDE/diffusion models on one hand provide an alternative

perspective to understand DCNN; on the other hand, they

help to explain the success of DCNN for image denoising,

since PDE/diffusion models have long been effective math-

ematical tools for developing image denoising algorithms

[39, 32, 21].

The differential equations that indwell in the existing

DCNNs are integer-order differential equations (IODE),

which can only allow short-term feature interactions due to

their short-term memory. In practice, the evolution of a sys-

tem often depends on not only its current state but also its

historical states [10, 3]. In optimal control, the long-term

memory provides important information for robust control

of linear and nonlinear systems [33]. Long-term memory is

also beneficial for vision problems such as image denois-

ing [42], since it can preserve better mid/high-frequency

information. Therefore, it is not enough to employ only

IODE for designing advanced denoising DCNN. Although

some DCNNs have been designed to address the long-term

memory problem, such as DenseNet [19] and MemNet [42],

there still lacks solid theoretical analysis on how the mem-

ory is exploited.

It has been found that in a majority of systems such as

biological systems, electromagnetic fields and Hamiltonian

systems, the long-term memory holds in a certain mode

which can be characterized by the power-law [11]. It has

also been found that the corresponding memory systems

could be described by the fractional-order differential equa-

tions (FODE) [10]. The FODE was developed to mitigate

the limitations of IODE [5, 31, 36] not only in the memory

but also in many other aspects such as the stability of the

system. It has been shown that FODE can more accurately

describe a lot of dynamic systems than IODE [7].

In this paper, by solving a Fractional Optimal Control

(FOC) problem, we naturally design an advanced image de-

noising network, namely FOCNet. The forward propaga-

tion of FOCNet is constructed by an explicit discretization

of a FODE with control variables. The advantages of the

FODE induced FOCNet over the IODE induced networks

are twofold: 1) The fractional-order FODE can describe the

power-law memory mode which has been verified in many

practical systems to persist memory; 2) The FOCNet has

long-term memory not only in the forward process but also

in the backward passes. Instead of characterizing the FODE

based FOCNet on only one specific image scale, we further

introduce a multi-scale strategy to strengthen the denoising

network. Specifically, in the multi-scale model, different

scale features propagate forward according to their corre-

sponding FODE, and at the same time multi-scale feature

interactions are allowed by a scale transform operator.

To sum up, the contributions of this work are:

• A novel denoising network – FOCNet – is presented by

solving a FOC problem using FODE. FOCNet theoret-

ically enjoys the advantages such as long-term mem-

ory and better stability.

• A multi-scale implementation of FODE is elaborated

such that fine scale and coarse scale features in FOC-

Net can be simultaneously utilized to strengthen the

denoising system.

Extensive experiments on image denoising are con-

ducted to validate the effectiveness of FOCNet. The results

show that FOCNet achieves leading denoising performance

in both visual quality and quantitative measures.

2. Related work

In this section we briefly describe some ingredients of

DCNN and optimal control relevant to our work. First, we

outline the forward framework of DCNN, and its applica-

tion to image denoising. Then we present the optimal con-

trol problem and its connection to DCNN.

2.1. The propagation of DCNN

The DCNN learns a highly nonlinear mapping from a

large amount of labeled data by stacking multiple simple

nonlinear units. Mathematically, the plain DCNN can be

formulated as the following evolution process

ut+1 = f(ut, θt) t = 1 · · ·T, (1)

where ut ∈ R
d is the input of the t-th layer of the network,

ut+1 ∈ R
d is the output of the t-th layer and θt ∈ R

m

is the parameters of the convolution kernel. The nonlinear

unit is often modeled as f(ut, θt) = σ(θt ∗ ut)
1, where

σ : Rd → R
d denotes the nonlinear activation function. Af-

ter T layers evolution, a loss function is used to measure the

distance between the output and the label. The optimal net-

work parameters are obtained by minimizing the loss func-

tion and the regularization function of the parameters as

min
{θt}T

t=1

∑T

t=1
R(θt) + L(Φ(uT ),x), (2)

1For simplicity, the bias term is omited.
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where Φ : Rd → R
n transforms the final layer features to

the output, L : Rn → R is the loss function, R : Rm → R is

the regularization function on the parameter θt and x ∈ R
n

is the label.

The residual network [18] improves the plain network by

adding a skip connection as

ut+1 = ut + f(ut, θt) t = 1 · · ·T. (3)

Surprisingly, such a minor change has achieved remarkable

success in a lot of computer vision and image processing

applications [18].

The DCNN can be directly used for image denoising by

setting the input as the transformation of the noisy image

u0 = Ψ(y), and label x be the corresponding clean image.

For denoising, the loss function is often set to the l2 loss as

L(uT ,x) =
1
2‖Φ(uT )−x‖22. Due to the powerful learning

ability, DCNN has been attracting considerable attention in

image denoising [45, 42, 35] as we have introduced in Sec-

tion 1.

2.2. The optimal control problem

The continuous counterpart of deep neural network is

optimal control which has been well studied for hundreds

of years with solid mathematical theories [14]. Denote by

u0 ∈ R
d the initial condition of a dynamic system, the con-

trol of the system can be described by the following ordi-

nary differential equation (ODE)
{

u̇(t) = f(u(t), θ(t)),
u(0) = u0, t ∈ [0, T ],

(4)

where θ(t) : [0, T ] → Θ ⊂ R
d is the control parameter

function also called a control [14]. The trajectory u(t) is

regarded as the corresponding response of the system.

PAYOFFS. The overall task of optimal control is to de-

termine what is the best control θ(t) for the system in Eq.

(4). For this reason, a payoff functional should be speci-

fied such that the optimal control maximizes the payoff [14].

The payoff functional can be defined as [25]

P [θ(·)] :=

∫ T

0

H(u(t), θ(t))dt+G(Φ(u(T ))) (5)

where H(·) is the running payoff and G(·) is the terminal

payoff.

Eq. (5) plays the same role as the regularization function

and the loss in Eq. (2), and the residual network in Eq. (3) is

exactly the explicit Euler forward discretization of Eq. (4)

[27]. From the differential equation (4), one can see that the

nonlinear function f(u(t), θ(t)) is designed to depict the

time derivative of the feature trajectory u(t) at time t. The

optimal control viewpoint opens a new way to study deep

neural networks in continuous functional space by leverag-

ing the rich results from differential equations and varia-

tional calculus [41, 25].

3. Proposed method

In Eq. (4), the integer-order differential equation (IODE)

is used to depict the dynamic system, and based on which

the network is constructed [27]. However, the IODE system

has short-term memory, i.e., the evolution of the feature tra-

jectory depends only on the current state without consider-

ing the history of its development.
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Figure 1. Memory mode. The left subfigure illustrates the short-

term memory of IODE, and the right subfigure illustrates the

power-law memory (long-term memory) of FODE.

Power-law memory. As previously discussed, the long-

term memory is the key to the success of a lot of dynamic

systems. In general, memory obeys the power-law prop-

erty, in which the weight of the previous state at time ti
in defining the present stage at time t is proportional to

(t− ti)
β−1

[11], where 1 > β > 0. Recent studies in [12]

have shown that the power-law memory system can be de-

scribed by a fractional-order differential equation (FODE),

where the fractional-order derivative Dβ
u(t) of a function

u(t) is defined by 2

Definition 1 [31](Grünwald-Letnikov)

D
β
u(t) = lim

h→0

1

hβ

[ t

h
]

∑

k=0

(−1)k
(

β

k

)

u(t− kh) (6)

where β is the order of the derivative (0 < β < 1), [·] means

the interger part and h is the step size.

To show how the memory mode of FODE is different

from that of IODE, an illustration is given in Figure 1, and

where the vertical-axis is the memory weight of the pre-

vious state ti in defining the present stage at time t, the

horizontal-axis is the time that has been past. One can see

that when time evolves, the memory on the previous states

disappear in IODE, while it lasts in FODE. To take full ad-

vantage of the FODE in memory persistent, we propose to

construct an image denoising network from the fractional

optimal control (FOC) viewpoint.

2Note that there are several definitions of the fractional-order deriva-

tive. Here we adopt the widely used Grünwald-Letnikov’s definition.
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Figure 2. Comparison between the single scale memory system

and multi-scale memory system. The blue dot represents the cur-

rent state, the black arrow lines represent the connections of dif-

ferent layers in one scale, and the red arrow lines represent the

cross-scale feature interactions.

3.1. Fractional optimal control view of image de­
noising

We consider the fractional-order system in [36], and as-

sume that u is not only continuous in time but also continu-

ous in space as a functional u(t, s) to depict the image fea-

ture trajectory, where s ∈ Ω is the two dimensional spatial

position. Thus the control problem can be mathematically

described as

min
θ(t)

1

2

∫

Ω

(Φ(u (T, s))− x (s))
2
ds

s.t.

{

D
β
t u(t, s) = f (u(t, s), θ(t))

u(0, s) = Ψ(y(s)), t ∈ [0, T ],

(7)

where y(s) is the input noisy image, x(s) is the ground

truth clean image and D
β
t u(t, s) is the β-th order derivative

of u(t, s) w.r.t. time t. Φ and Ψ are linear transformations,

e.g., convolution. The problem (7) aims to find the optimal

control θ(t) such that the objective loss is minimized. The

state equation in problem (7) characterizes the whole evo-

lution process of the denoising system given the noisy input

u(0, s).

3.2. Multi­scale memory systems

The continuous model (7) is independent of the actual

image resolution. In practice, different resolutions of an

image represent different scales of features. Enabling the

long-term memory on different scale features can naturally

strengthen the representation power of the system. There-

fore, to make the best use of our memory system, we pro-

pose a multi-scale model by applying the FODE in Eq. (7)

to multi-scale image features, which can be described as

follows






























D
β
t u(t, s, l1) = f(u(t, s, l1), g(u(t, s, l1+1)), θ1(t))

D
β
t u(t, s, l2) = f(u(t, s, l2), g(u(t, s, l2±1)), θ2(t))

· · ·

D
β
t u(t, s, lk) = f(u(t, s, lk), g(u(t, s, lk−1)), θk(t))

u(0, s, l1) = Ψy(s),u(0, s, li) = T↓u(1, s, li−1)
1 ≤ li ≤ k, 0 ≤ t ≤ T,

(8)

where D
β
t u(t, s, li) represents the fractional order deriva-

tives in Eq. (7) at scale li. l1 is the original scale space and

lk is the down-sampled k-th scale space. In Eq. (8), adja-

cent scale interactions are allowed by a scale switch func-

tion which is defined by g(x) = wT (x), where w ∈ {0, 1}
is a binary variable and T (·) is the pooling or unpooling op-

eration 3. The average pooling is adopted in this paper such

that high scale features represent mostly the low frequency

information (coarse features).

The multi-scale memory system increases the expres-

sivity of current state features by memorizing the previous

state features and different scale features, as shown in Fig-

ure 2. Consider only the current state (blue dot), Figure 2

(a) is the single scale memory system, in which the current

state is explicitly connected to the previous layers. Figure

2 (b) is the multi-scale memory system, in which the cur-

rent state is not only explicitly connnected to the previous

layers (black arrow lines) but also implicitly connect to the

features of all the scales (red arrow lines), thus the features

of the current state can be more expressive.

3.3. Architecture of FOCNet

The architecture of our FOCNet is based on the dis-

cretization of the foregoing continuous FOC model in Eq.

(8). In discretization, we set h in Eq. (6) to be 1. Based on

the multi-scale dynamic system defined in Eq. (8), we could

build our network whose architecture is shown in Figure. 3.

The image features evolve in different scales according to

FODE in Eq. (8).

In each scale, the network connects the long-term fea-

tures according to the specific definition of the fractional-

order derivative. Moreover, different scale features are in-

teracted via a scale transform (pooling/unpooling) operator

together with a learned scale transform switch function g in

Eq. (8), which determines whether cross-scale feature inter-

actions are allowed or not by taking a binary value {0, 1}.

Mathematically, the evolution process of our image denois-

ing network can be expressed as

u
ll
t+1 =

t
∑

k=0

wku
ll
k + σ

(

θt ∗
(

u
ll
t + g(u

ll±1

t )
))

(9)

where u
ll
t+1 is the output of the t-th layer in scale ll.

The weight wk is set according to Eq. (6) as wk =
(−1)t−k+2

(

β

t−k+1

)

, which can be calculated by wt =

β,wk−1 = (1 − 1+β

t−k+2 )wk, k = 1, · · · t. The nonlinear

unit σ(·) consists of “Convolution + BN + Relu”. u
ll±1

t de-

notes that either upper scale features u
ll+1

t or lower scale

features u
ll−1

t are used 4.

3Pooling is denoted by T↓ and unpooling is denoted by T↑.
4Note that cross-scale feature interactions are not necessary for every

layer in each scale, the specific connections are shown in Figure 3.
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+
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Average 
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Figure 3. Architecture of the FOCNet. The memory lines are constructed according to the Grünwald-Letnikov’s definition of the fractional-

order derivative in Eq. (6). The block “Conv+BN+Relu” corresponds to Eq. (9). The scale switch function is defined in Eq. (8).

Let {(yi,xi)}Ni=1 be a training set, where y
i is the input

noisy image and x
i is the ground truth image label (clean

image). Denote by u
i
T (Θ) the final output of our network

and Θ represents the parameters of the network, then ac-

cording to Eq. (7), the loss functional in our FOCNet is

L (ui
T (Θ)) =

1

2N

N
∑

i=1

‖Φ(ui
T (Θ))− x

i‖2F (10)

The optimal parameter set Θ∗ is obtained by minimizing the

loss function L (ui
T (Θ)) using the ADAM algorithm [23].

3.4. Property of the long­term memory

By exploiting the optimal conditions of the control prob-

lem (7), we show that our FOCNet has the long-term mem-

ory not only in the forward but also in the backward prop-

agation. To begin with, we define the Hamiltonian H :
R

d × R
d ×Θ → R of the control problem

H(u(t), p(t), θ(t)) := p(t) · f(u(t), θ(t)). (11)

According to the Pontryagin’s maximum principle, the opti-

mal conditions of the minimization problem (7) can be char-

acterized by the following lemma.

Lemma 1 (Pontryagin’s maximum principle) [2] Let

(û(t), θ̂(t)) be the optimal control process for (7). Then

there exists an absolutely continuous co-state process p̂(t) :
[0, T ] → R

d such that the Hamilton’s equation

D
β
t û(t) = ∇pH(û(t), p̂(t), θ̂(t)), (12)

D
β
t p̂(t) = −∇uH(û(t), p̂(t), θ̂(t)), (13)

with initial conditions

û(0) = Φ(y), p̂(T ) = −∇L (û(T ))

are satisfied. Moreover, for each t ∈ [0, T ], we have the

Hamiltonian maximization condition

H(û(t), p̂(t), θ̂(t)) ≥ H(û(t), p̂(t), θ(t)). (14)

for all θ(t).

According to the analysis in [25] and the mechanism of

backward propagation (BP), one can easily verify that the

discretization of Eq. (12) and Eq. (13) correspond to the

forward propagation (FP) and BP of the FOCNet, respec-

tively. Thus, the forward and backward of FOCNet corre-

spond to a specific FODE which has the long-term memory.

3.5. Discussions

We construct a FOCNet by solving a multi-scale

fractional-order optimal control problem to address the

long-term memory in denoising DCNN. Some denoising

DCNN have also been constructed to deal with the long-

term memory and multi-scale interactions but from totally

different angles.

Relation to MemNets. The MemNet [42] was proposed

to address the long-term memory by concatenating the out-

put of previous layers to generate large size features, then

the large size features are contracted to a small one by learn-

ing a contraction filter with a huge amount of parameters.

In addition, the mechanism for characterizing the long-term

memory using concatenation is not theoretically solid. In

contrast, our FOCNet can characterize well the power-law

memory principle. Moreover, it does not need to learn the

huge amount of contraction filters to combine the image fea-

tures.

Relation to Unet. The Unet consists of a contraction and

an expansion subnets. In the contraction stage, the image

features are successively convolved and down-sampled to
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generate multi-scale image features. In the expansion stage,

the image features are convolved and up-sampled succes-

sively to generate the final output. In our proposed method,

image features propagate in multiple scales, and the Unet

can be considered as a special case of FOCNet in which the

forward process evolves only one step for each scale. Be-

sides, a scale transform switch is designed in our FOCNet

so that the across-scale feature interactions can be adaptive,

which is not available in Unet. In brief, our proposed net-

work structure is more flexible and general than the Unet

architecture [37].

4. Experiments

4.1. Experimental setting

Dataset generation. Before training the FOCNet model,

we need to prepare a training dataset with image pairs

{yi,xi}
N
i=1. Here yi is generated by adding AWGN with

specific noise levels to the latent clean image xi, i.e., yi =
xi +n. Following [26], we consider three noise levels, i.e.,

σ = 15, 25, 50. We collect clean images from two datasets,

including 200 images from Berkeley Segmentation Dataset

[30] and 500 images from DIV2K [1] to generate the train-

ing data. We randomly crop N = 64× 2000 image patches

of size 80× 80 from the collected images for training.

Network training. The residual mapping strategy pre-

sented in [45] is employed in our FOCNet. To learn the

optimal parameters, the ADAM optimizer [23] is used to

minimize the loss function. The default setting of the hyper-

parameters of ADAM is adopted. The network parameters

are initialized by random values as in DnCNN [23] and the

mini-batch size is 64. We set the scale number as 4, the

first scale has 4 convoution layers, the second and the third

scale have 11 convolution layers and the fourth scale has

7 convolution layers. For all the 4 scales, we set the fea-

ture channel as 128 and the size of the convolution filters as

3× 3× 128× 128.

We use the MatConvNet package [43] with cuDNN 8.0

to train FOCNet. All the experiments are conducted in the

Matlab (R2017a) environment running on a PC with In-

ter(R) Xeon(R) E5-2620 CPU 2.10GHz and an Nvidia TI-

TAN Xp GPU. We learn for each noise level a FOCNet

model. The learning algorithm converges very fast within

40 epoch, thus we train 35 epoch for our FOCNet, the learn-

ing rate is decayed exponentially from 10−3 to 10−4 in the

35 epochs. It takes about two days to train a FOCNet.

4.2. Ablation study

The setting of β. The setting of parameter β in Eq. (6)

is important to our FOCNet. When β is an integer num-

ber, Eq. (6) reduces to an integer-order derivative. To fig-

ure out how the parameter β influences the denoising re-

sults, we conduct experiments with different β values as:

Table 1. Comparison of the denoising results with different β. The

PSNR values are the average results on Set12 with noise level 50.

β 0.1 0.2 0.5 0.7 1.0 2.0

PSNR 27.37 27.42 27.30 27.25 27.12 27.15

Table 2. Comparison of the denoising results (dB) with different

scales. The noise level is set as σ = 50.
Dataset one scale two scales three scales four scales five scales

Set12 27.42 27.49 27.58 27.68 27.69

BSD68 26.32 26.38 26.45 26.48 26.50

Urban100 26.80 27.02 27.21 27.40 27.40

10-2 100

Computational time (seconds)

27.1

27.2

27.3

27.4

27.5

27.6

27.7

PS
N

R

FOCNet

MemNet
FFDNet

DnCNN

N3Net

RED

Figure 4. Comparison of computational time and PSNR values.

β = 0.1, 0.2, 0.5, 0.7, 1.0 and 2.0 for single scale FOC-

Net. We test FOCNet on the dataset Set12 for noise level

σ = 50. The results (average PSNR) are shown in Table

1. One can see that the FOCNet achieves the highest PSNR

when β = 0.2 and gets inferior PSNR value for β = 1, 2,

which indicates that the long-term memory is useful to im-

age denoising.

The setting of scale. We would also like to show the ef-

fectiveness of the multi-scale strategy in FOCNet for image

denoising. We test FOCNet from 1 to 5 scales, and the aver-

age PSNR values on three datasets are shown in Table 2. We

see that with the increase of the number of scales, the PSNR

values increase as well. However, when the scale number is

up to 4, further increase of the scale only gives negligible

improvement. To balance the efficiency and effectiveness,

we set the scale number to be 4.

4.3. Denoising results

We evaluate the denoising performance of FOCNet on

three widely used test sets, i.e., Set12 [45], BSD68 [30] and

Urban100 [20]. The experimental results of the FOCNet are

compared with the following state-of-the-art and represen-

tative denoising methods: BM3D [9], WNNM [16], TNRD

[8], DnCNN [45], FFDNet [46], RED [29], MemNet [42]

and N3Net [35]. Among the compared methods, except for

BM3D, WNNM and TNRD, all the remaining methods are

based on DCNN. Similar to FOCNet, the MemNet exploits

the long-term memory as well.

Table 3 exhibits the average PSNR results of the compet-

ing methods on the three datasets and Table 4 lists the PSNR

values of the competing methods for each image in Set12.

The best results are highlighted in red. It can be seen from

Table 3 and Table 4 that the PSNR results of FOCNet have

remarkable improvements over the competing methods not
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(a) Original Image (b) Noisy Image (c) WNNM [16] (25.44) (d) TNRD [8] (25.42) (e) DnCNN [45] (25.70)

(f) FFDNet [46] (25.77) (g) RED [29] (25.80) (h) MemNet [42] (25.76) (i) N3Net [35] (26.00) (j) FOCNet (26.19)
Figure 5. Visual quality comparison. The referenced region (red rectangle) is zoom in at the bottom left green rectangle for better compar-

ison. The PSNR value of each recovered result is given in the parentheses.

Table 3. Average PSNR values for noise level 15, 25 and 50 on Set12, BSD68 and Urban100. The best results are highlighted in red. The

symbol “-” denotes that the results are not provided by the corresponding authors.

Dataset σ BM3D [9] WNNM [16] TNRD [8] DnCNN [45] FFDNet [46] RED [29] MemNet [42] N
3Net [35] FOCNet

Set12

15 32.37 32.70 32.50 32.86 32.75 - - - 33.07

25 29.97 30.28 30.05 30.44 30.43 - - 30.50 30.73

50 26.72 27.05 26.82 27.18 27.32 27.34 27.38 27.43 27.68

BSD68

15 31.08 31.37 31.42 31.73 31.63 - - - 31.83

25 28.57 28.83 28.92 29.23 29.19 - - 29.30 29.38

50 25.60 25.87 25.97 26.23 26.29 26.35 26.35 26.39 26.50

Urban100

15 32.34 32.97 31.98 32.67 32.42 - - - 33.15

25 29.70 30.39 29.29 29.97 29.92 - - 30.19 30.64

50 25.94 26.83 25.71 26.28 26.52 26.48 26.64 26.82 27.40

only on average but also for each test image. Specifically,

FOCNet improves the traditional methods such as BM3D

and WNNM by 0.5 ∼ 0.9 dB on Set12 with noise level

σ = 50, and compared with DnCNN, the improvement is

still up to 0.3 ∼ 0.5dB. On the Urban100 dataset, the dif-

ferences between FOCNet and the compared methods be-

come more distinct. FOCNet also outperforms the memory

persistent network MemNet by a large margin in all the test

sets. We also compare FOCNet with the nonlocal based

denoising network N3Net, and the results verified the su-

periority of FOCNet over N3Net, despite that there are no

time consuming nonlocal operations in FOCNet.

Visual quality comparisons are given in Fig. 5 and Fig.

6, in which the clean images are corrupted by Gaussian

noise with noise level σ = 50. In Fig. 5, we can see that

FOCNet is able to recovery the fine details of the corrupted

image, such as the region in the red rectangle, which is

zoomed-in at the bottom left of the image marked by green

rectangle. In contrast, the competing methods over-smooth

the details of the image. In Fig. 6, the recovered result

provided by FOCNet is more faithful to the clean image

than all the competing methods. As shown in the zoomed-

in part (the windows of the building and the wall), FOCNet

can accurately estimate the clean image with clear struc-

tures, while the results of competing methods either over-

smooth or blur much the structures. All these facts indicate

that FOCNet is superior to the existing methods not only in

quantitative results but also in perceptual quality.

In addition to the denoising performance, we also com-

pare the run time together with the corresponding PSNR

value of the competing methods in Figure 4. Only the CNN

based methods are considered in this comparison. The com-

putational time of FOCNet is much less than RED [29],

MemNet [42] and N3Net [35]. In comparison to DnCNN

[45] and FFDNet [46], FOCNet is a little slower but it deliv-

ers much more satisfactory results in terms of PSNR. Over-

all, FOCNet is not only efficient but also effective.

5. Conclusion

In this paper, we used the fractional optimal control

(FOC) theory to model the deep convolution neural net-
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(a) Original Image (b) Noisy Image (c) WNNM [16] (25.40) (d) TNRD [8] (25.06) (e) DnCNN [45] (25.56)

(f) FFDNet [46] (25.75) (g) RED [29] (25.78) (h) MemNet [42] (25.82) (i) N3Net [35] (25.91) (j) FOCNet (26.14)
Figure 6. Visual quality comparison. Two reference regions (marked in red) are zoomed in at the bottom of each subimage (marked in

green). The PSNR value of each recovered result is given in the parentheses.

Table 4. The PSNR results of different methods on Set12 dataset with noise level 15, 25 and 50. The best results are highlighted in red.

Images C.man House Peppers Starfish Monarch Airplane Parrot Lena Barbara Boat Man Couple

Noise Level σ = 15

BM3D [9] 31.91 34.93 32.69 31.14 31.85 31.07 31.37 34.26 33.10 32.13 31.92 32.10

WNNM [16] 32.17 35.13 32.99 31.82 32.71 31.39 31.62 34.27 33.60 32.27 32.11 32.17

TNRD [8] 32.19 34.53 33.04 31.75 32.56 31.46 31.63 34.24 32.13 32.14 32.23 32.11

DnCNN [45] 32.61 34.97 33.30 32.20 33.09 31.70 31.83 34.62 32.64 32.42 32.46 32.47

FFDNet [46] 32.42 35.01 33.10 32.02 32.77 31.58 31.77 34.63 32.50 32.35 32.40 32.45

FOCNet 32.71 35.44 33.41 32.40 33.29 31.82 31.98 34.85 33.09 32.62 32.56 32.64

Noise Level σ = 25

BM3D [9] 29.45 32.85 30.16 28.56 29.25 28.42 28.93 32.07 30.71 29.90 29.61 29.71

WNNM [16] 29.64 33.22 30.42 29.03 29.84 28.69 29.15 32.24 31.24 30.03 29.76 29.82

TNRD [8] 29.72 32.53 30.57 29.02 29.85 28.88 29.18 32.00 29.41 29.91 29.87 29.71

DnCNN [45] 30.18 33.06 30.87 29.41 30.28 29.13 29.43 32.44 30.00 30.21 30.10 30.12

FFDNet [46] 30.06 33.27 30.79 29.33 30.14 29.05 29.43 32.59 29.98 30.23 30.10 30.18

N
3Net [35] 30.08 33.25 30.90 29.55 30.45 29.02 29.45 32.59 30.22 30.26 30.12 30.12

FOCNet 30.35 33.63 31.00 29.75 30.49 29.26 29.58 32.83 30.74 30.46 30.22 30.40

Noise Level σ = 50

BM3D [9] 26.13 29.69 26.68 25.04 25.82 25.10 25.90 29.05 27.22 26.78 26.81 26.46

WNNM [16] 26.45 30.33 26.95 25.44 26.32 25.42 26.14 29.25 27.79 26.97 26.94 26.64

TNRD [8] 26.62 29.48 27.10 25.42 26.31 25.59 26.16 28.93 25.70 26.94 26.98 26.50

DnCNN [45] 27.03 30.00 27.32 25.70 26.78 25.87 26.48 29.39 26.22 27.20 27.24 26.90

FFDNet [46] 27.03 30.43 27.43 25.77 26.88 25.90 26.58 29.68 26.48 27.32 27.30 27.07

RED [29] 27.02 30.46 27.22 25.80 26.99 25.94 26.45 29.58 26.65 27.32 27.20 27.08

MemNet [42] 27.23 30.70 27.51 25.76 27.19 25.96 26.49 29.63 26.67 27.29 27.24 27.14

N
3Net [35] 27.14 30.50 27.58 26.00 27.03 25.75 26.50 29.67 27.01 27.32 27.33 27.04

FOCNet 27.36 30.91 27.57 26.19 27.10 26.06 26.75 29.98 27.60 27.53 27.42 27.39

work. With the aid of fractional-order derivative, a FOCNet

was elaborated to mitigate the short-term memory of the ex-

isting integer-order derivative based network. The FOCNet

obeys the power-law memory mode which has verified to be

effective in a lot of dynamic systems. According to the op-

timal condition given by Pontryagin’s maximum principle,

we showed that the FOCNet has long-term memory not only

in the forward process but also in the backward process. In

addition, a multi-scale strategy was adopted to strengthen

the network by promoting cross-scale feature interactions.

Experimental results on image denoising verified that FOC-

Net achieves the leading PSNR results while having a rea-

sonable runing speed.
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