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Abstract: Protein cysteines (Cys) undergo a multitude of different reactive oxygen species (ROS), reac-
tive sulfur species (RSS), and/or reactive nitrogen species (RNS)-derived modifications. S-nitrosation
(also referred to as nitrosylation), the addition of a nitric oxide (NO) group to reactive Cys thiols,
can alter protein stability and activity and can result in changes of protein subcellular localization.
Although it is clear that this nitrosative posttranslational modification (PTM) regulates multiple signal
transduction pathways in plants, the enzymatic systems that catalyze the reverse S-denitrosation
reaction are poorly understood. This review provides an overview of the biochemistry and regu-
lation of nitro-oxidative modifications of protein Cys residues with a focus on NO production and
S-nitrosation. In addition, the importance and recent advances in defining enzymatic systems pro-
posed to be involved in regulating S-denitrosation are addressed, specifically cytosolic thioredoxins
(TRX) and the newly identified aldo-keto reductases (AKR).

Keywords: thioredoxins (TRXs); reactive nitrogen species; S-nitrosation; posttranslational modifica-
tions; Arabidopsis thaliana; S-Nitrosoglutathione reductase (GSNOR); glutaredoxins (GRXs); aldo-keto
reductases (AKRs)

1. Introduction

The molecular adaptation of plants in response to environmental cues is essential
for maintaining proper metabolism and to ensure optimal plant fitness. One aspect of
adaptation to biotic and abiotic stresses involves the posttranslational modifications (PTMs)
of proteins. PTMs have emerged as important regulatory mechanisms in cell signaling and
metabolism in all organisms, as they lead to alterations in protein activity, structure, and
localization in order to respond to new cellular demands [1–5]. Oxidation and reduction
(redox) reactions of specific amino acid side chains in proteins are a result of exposure to
nitro-oxidative stresses including extreme temperatures, high light, drought, salinity and
pathogen infection [6–8]. While the oxidation of amino acids such as His, Lys, Tyr and
Trp are considered irreversible, reactive oxygen (ROS) and reactive nitrogen species (RNS)
derived PTM of the sulfur-containing amino acids methionine (Met) and cysteine (Cys)
are in most cases reversible [9,10]. In the past decades, more evidence has accumulated
indicating that nitro-oxidative PTMs of cysteines are involved in a wide range of plant
processes, including germination [5,11,12], root growth [13] and fertility [14–16]. This
review provides an overview of nitro-oxidative protein modifications of Cys residues with
a focus on protein S-nitrosation and summarizes the importance of enzymatic systems
involved in the S-denitrosation reaction.

2. Protein Cys Thiols and Their ROS, RSS and RNS Dependent Modifications

Among the 20 common amino acids in proteins, Cys is one of the least abundant, but it
is frequently observed in functionally important sites of proteins [17]. Cys in its protonated
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state is a neutral, polar amino acid that is involved in a diversity of functions, including
structural stabilization, metal coordination and the regulation of protein activity. Structural
Cys residues form intra- or intermolecular disulfide bonds in proteins often found in en-
domembrane system-associated or extracellular proteins [18]. Metal binding Cys residues,
where ions such as iron, copper, nickel, zinc, or manganese are coordinated, can stabilize
the structure or the bound ion can be involved in direct catalysis as a cofactor [19,20].
Redox-active regulatory thiols can be found as conserved residues in protein catalytic sites
or in regions distinct from the active site and participate in several mechanisms like thiol-
disulfide exchange reactions, for example in thioredoxins (TRXs), glutaredoxins (GRXs)
and peroxiredoxins (PRXs), or in electron transfer reactions in the enzymes glutathione
reductase (GR) and thioredoxin reductase (NTR) [21,22].

Among these classes of Cys residues, redox dependent Cys have been investigated
for decades due to their ability to regulate protein function as a result of nitro-oxidative
PTMs. The acid dissociation constant (pKa) of a particular protein Cys thiol dictates
its reactivity at physiological pH. Based on the structure and local charge environment,
certain protein thiols have a lower pKa and exist as thiolate anions (R-S−) at typical
intracellular pH, resulting in higher reactivity towards electrophiles [23]. Examples for
proteins with low pKa values in their active site Cys are redox-active enzymes like GRXs
and TRXs, with values ranging between 3.9 (AtGRXS12; [24]) and 6.6 (CrTRXh1; [25]). In
contrast, glutathione (GSH), the major non-protein redox-buffer in cells, has reported pKa
values of 8.7 and 9.4, which would imply it has a rather low reactivity towards electrophiles
at physiological pH, but this is counterbalanced by its high mM intracellular concentration
and rapid enzymatic recycling by the GR-system [24,26].

The most well studied PTM of sulfur-containing amino acids is the oxidation of Cys
by ROS [27]. Here, the activated thiol is oxidized to a sulfenic acid derivative (R-SOH)
by ROS such as hydrogen peroxide (Table 1 and Figure 1a). R-SOH also reacts with
other Cys containing proteins to form intra- or intermolecular disulfide bonds. In the
absence of a second thiol, R-SOH is highly reactive, unstable, and acts as an intermediate
for the formation of further, higher oxidation states. This hyperoxidation upon ROS
exposure generates sulfinic (R-SO2H) and sulfonic (R-SO3H) acids. While oxidation states
up to R-SO2H can be reduced enzymatically by TRXs and GRXs, no reduction system for
overoxidized Cys (R-SO3H) has been identified [28–30]. Besides the TRX and GRX system,
sulfiredoxins (SRX) have been identified as specific enzymes catalyzing the reduction
of overoxidized (R-SO2H) peroxiredoxins [30,31]. These thiol modifications can have
regulatory downstream effects, thereby altering cellular function in response to various
stresses or developmental cues (reviewed in [32]).

Table 1. List of major reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive
sulfur species (RSS). Adapted from [33–35].

ROS RNS RSS
1O2, singlet oxygen •NO, nitric oxide RS•, thiyl radical
H2O2, hydrogen peroxide ONOO−, peroxynitrite H2S, hydrogen sulfide (hydrosulfide (HS−) and sulfide (S2−))
O•−2, superoxide radical NO2, nitrogen dioxide RSOH, sulfonic acid and RSO2H, sulfinic acid
OH•, hydroxyl radical N2O3, dinitrogen trioxide RS(O)SR, disulfide-S-monoxide/thiosulfinate
HO2

•, hydroperoxyl radical N2O4, dinitrogen tetraoxide RS(O)2SR, disulfide-S-dioxide/thiosulfonate

Gaseous signaling molecules like hydrogen sulfide (H2S), have recently emerged as
important regulators in animals and plants. S-Persulfidation (R-SSH) occurs through the
reaction of an oxidized protein thiol (R-SOH) with reactive sulfur species (RSS, Table 1),
which can have inhibitory or activating effects on proteins [36]. It is assumed that RSS
such as H2S and its dissociation products hydrosulfide (HS−) and sulfide (S2−) are able to
catalyze the persulfidation of Cys, but the active form of H2S in planta is not fully under-
stood [37]. H2S is produced in plants mainly in chloroplasts via the sulfate-assimilation
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pathway and also in mitochondria during the synthesis of β-cyanoalanine as a result of the
detoxification of cyanide [38]. A recent proteomic approach identified over 2000 proteins
as targets for this PTM in leaves of Arabidopsis, linking persulfidated cysteines to important
processes like carbon metabolism and stress responses, as well as growth and develop-
ment [38]. RSS-dependent Cys modifications have also been associated with physiological
processes such as seed germination [39], fruit ripening, (reviewed in [40]) and stomatal
movement [41]. Interestingly, proteins that undergo S-persulfidation are also prone to be
regulated by modifications such as S-nitrosation, suggesting there is crosstalk between
nitro-oxidative PTMs that may fine tune plant metabolism. Peroxisomal catalase (CAT), for
example, an important enzyme in redox homeostasis, is inhibited by S-persulfidation as
well as S-nitrosation [42,43], whereas ascorbate peroxidase is inhibited upon RSS-dependent
modifications, but its activity is upregulated after S-nitrosation [44,45].
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Alternatively, protein Cys can react with low-molecular weight thiols like GSH, re-
sulting in mixed-disulfides, a reaction termed S-glutathionylation. It has been suggested
that S-glutathionylation is a mechanism to protect critical Cys residues against overoxi-
dation [46]. Some glutathionylated proteins exhibit increased activity, while others show
a decrease. For example, stress induced S-glutathionylation of TRXf, a key component
in redox regulation of chloroplastic carbon fixation, impairs light activation of target en-
zymes, slowing metabolism [47]. S-glutathionylation can occur either by the reaction of
R-SOH with reduced GSH or with activated thiols (R-S−) and oxidized glutathione (GSSG).
Another route is the reaction of thiols with S-nitrosoglutathione (GSNO), the product of
RNS with GSH, providing further evidence for a direct crosstalk between ROS- and RNS-
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dependent signaling pathways. Deglutathionylation reactions are catalyzed enzymatically
by GRX and SRX [24,48], but there is also evidence that atypical TRX proteins from poplar
and yeast (TRX-like, TRX-lilium) are involved in the regulation of this PTM [49,50].

Nitric oxide (•NO; further referred to as NO) is a highly reactive gaseous molecule
belonging to the RNS family due to unpaired electrons in its orbital (Table 1). It is a free
radical that can gain or lose an electron, which leads to the formation of either the nitrosium
cation (NO+) or the nitroxyl radical (NO−) [51]. NO is also a lipophilic molecule that
diffuses through membranes [52] and has a half-lifetime of a few seconds. Therefore, NO
rapidly reacts with other molecules, such as O2

•−, metallo enzymes and O2. The reaction
with O2 leads to the formation of nitrogen dioxide (NO2), which decomposes to nitrite and
nitrate in aqueous solutions [53]. The major source of NO in animals is through an oxidative
pathway catalyzed by nitric oxide synthases (NOS). Three isoforms, iNOS (inducible NOS),
eNOS (endothelial NOS) and nNOS (neuronal NOS), catalyze the NADPH-dependent
oxidation of L-arginine to N-hydroxy-arginine, following citrulline and NO formation
by an oxidation step [53]. In land plants, however, no NOS enzyme has been identified,
although arginine-dependent NOS-like activities in plants are sensitive to mammalian NOS
inhibitors [52,54]. More recently, a cyanobacterial NOS enzyme was identified with high
similarity to animal NOS, but with a different domain architecture [55]. This finding may
lead to the identification of NOS-like enzymes in other photosynthetic organisms.

In higher plants, NO is produced in different compartments (cytosol, chloroplast,
mitochondria, apoplast) through enzymatic and non-enzymatic mechanisms in reductive
pathways. Non-enzymatically, it can be generated by carotenoids in the presence of
light through the conversion of nitrogen dioxide [56] or induced by abscisic acid and
gibberellins in the apoplast under acidic conditions with nitrite as a source [57]. The
origin of enzymatic derived NO in plants, however, remains controversial. The best
described enzymatic source of NO in plants is nitrate reductase (NR). Arabidopsis has two
NR genes, NIA1 and NIA2, that are involved in nitrogen assimilation by reducing nitrate
to nitrite. They also have been shown to catalyze nitrite-dependent NO formation in vitro
and in vivo involving their molybdenum cofactor (Moco)-containing site in the N-terminal
domain [58], similar to other members of the Moco-enzyme family such as sulfite oxidase
(peroxisome), xanthine oxidoreductase/dehydrogenase (peroxisome), aldehyde oxidase
(cytosol) and the amidoxime-reducing component (mitochondria) [59]. Recently, Santolini
et al. [54] discussed the importance and contribution of NRs in NO production in plants.
They concluded that NR-induced NO synthesis is limited by the availability of nitrite,
which, under non-stressed conditions, is poorly concentrated in plant tissues due to the
activity of plastidic nitrite reductase (NiR). Therefore, only under conditions where NiR
is inhibited would NRs be able to generate NO from nitrite. Another group working on
Chlamydomonas proposed an additional model where NR together with NADPH and an
amidoxime-reducing component (later renamed to NO-forming nitrite reductase (NOFNiR)
in higher plants) might represent a major system for NO synthesis in photosynthetic
organisms [60]. In that model, NR would gain its electrons from NADPH and further
provide those to NOFNiR, which displays a higher affinity for nitrite than NR. Current
data highlight that the nitrogen assimilation pathway with its key metabolites nitrate and
nitrite constitute major substrates for NO production in plants through enzymatic and non-
enzymatic processes. However, further investigations are needed to determine the precise
impact of nitrogen metabolism on NO homeostasis with respect to different physiological
and developmental questions.

NO affects many plant processes, including plant defense [61,62], stomatal move-
ment [63,64], flowering and fertility [14,15,65], plant-microbe interactions [66], and germi-
nation [67]. In addition, certain biotic and abiotic stresses induce NO production, linking
NO to plant hormone homeostasis including salicylic and jasmonic acid signaling [68,69]
and ethylene as well as auxin metabolism [70,71]. The major signaling and regulatory
effect of NO and other RNS is through the reversible S-nitrosation (R-SNO) of critical
Cys residues analogous to ROS and RSS-mediated modifications (Figure 1b). In addition,
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Tyr nitration and the nitrosylation of metal-containing proteins are also common PTMs
associated with nitro-oxidative stresses (see [72] on terminology for NO-mediated PTMs).
However, NO exhibits poor oxidant capacity under physiological conditions, therefore,
nitrosative PTMs rely on molecules that are derived from the oxidation of NO with oxygen
or ROS.

S-nitrosation events can be divided in general into four mechanisms, an oxidative
pathway, a radical pathway, metal-transnitrosation and Cys-Cys transnitrosation [73,74]. In
the oxidative pathway, RSNO is formed upon the reaction of thiolates with (auto)oxidation
products of NO, such as nitrosonium cations (NO+), dinitrogen trioxide (N2O3) and nitrous
acid (HNO2). The radical pathway comprises the reaction of peroxinitrite (ONOO−)
with protein Cys residues, or through the reaction of NO radicals with Cys thiyl radicals
(RS−). Metal-transnitrosation is a transition metal catalyzed pathway where NO binds, for
example, to a protein ferric heme group, and the resulting Fe3+-NO complex then reacts
with a thiolate to form R-SNO and ferrous heme [75]. NO can be further transferred from
R-SNO through Cys-Cys transnitrosation reactions in which a thiolate attacks the nitrogen
atom of the nitrosothiol, resulting in a nitroxyl disulfide intermediate that further decays to
an RS− and a newly formed R-SNO [75].

NO also reacts with GSH to form S-nitrosoglutathione (GSNO), which functions as a
mobile NO reservoir in planta and is involved in the R-SNO formation of proteins in vitro
and in vivo [20,76]. S-nitrosation has received increasing attention as an important nitro-
oxidative regulatory mechanism in biological systems. The significance of this PTM in
animal systems is well established, while in comparison, knowledge in plants is limited.
Methodological developments of in vivo and in vitro labeling strategies, however, together
with sensitive detection by mass spectrometry, will further allow for the identification of
low abundant proteins that are modified by nitro-oxidative PTMs. Applying advanced
approaches in diverse cells and tissues subjected to different conditions will facilitate
linking these PTMs to developmental and environmental processes in plants.

3. Enzyme Catalyzed Regulation of S-Nitrosated Proteins

S-nitrosation is a reversible PTM of protein Cys residues that is involved in multiple
plant processes as discussed above. While there has been considerable recent progress
on the formation and identification of R-SNOs, less is known regarding the denitrosation
reaction of this important modification. More and more evidence has accumulated in both
animals and plants that S-nitrosation is reversed by specific proteins through either direct
or indirect reaction mechanisms. In addition, GSH has been reported to effect the non-
enzymatic S-denitrosation reaction of target proteins (reviewed in [77]), such as Arabidopsis
GSNOR and GAPDH [78,79]. However, in the following, we discuss the importance and
summarize recent findings on cytosolic thioredoxins, which are a specific subgroup of
proteins that directly catalyze the denitrosation reaction and focus on enzymes that regulate
the S-nitrosation status of proteins in an indirect manner.

3.1. Direct Enzyme-Catalyzed Denitrosation Reactions: Focus on Thioredoxins
3.1.1. Thioredoxins in Photosynthetic Organisms

TRXs were first described by Peter Reichard and coworkers in the 1960s as small, heat
stable protein cofactors required for activity of the essential enzyme ribonucleotide reduc-
tase [80]. TRXs are ubiquitous, multifunctional thiol-disulfide oxidoreductases containing
two Cys residues in a conserved active site motif (WC[G/P]PC) [49]. TRXs are components
of an important thiol antioxidant system consisting of TRX and NADPH-dependent thiore-
doxin reductases (NTR) which act to regenerate reduced TRX Cys residues. Together with
other TRX-superfamily members, such as GRXs, protein-disulfide isomerases, glutathione
peroxidases and glutathione-S-transferases, they share a common structural motif, the
thioredoxin fold, that consists of five stranded β-sheets and four flanking α-helices [81,82].
The nucleophilic Cys residue of TRX, located at the N-terminal side of the active motif, is
deprotonated even under physiological conditions and largely exposed, allowing for direct
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protein-protein interaction through intermolecular disulfide bonding [21]. The second
resolving Cys is mostly buried and usually protonated. It functions by attacking the inter-
molecular disulfide bond, releasing the reduced target protein. In plants, the regeneration
of TRXs is catalyzed by NADPH-dependent NTRA or B in the cytosol and mitochondria,
respectively, and by NTRC and ferredoxin-thioredoxin reductase in chloroplasts [83,84].

The functions of different members of the TRX superfamily largely depend on vary-
ing structural features and expression patterns, but also on their specific redox midpoint
potential (Em) [85]. The Em is a characteristic feature particularly determined by the two
amino acids between the two Cys residues and the surrounding microenvironment [25].
Reported redox potentials within the TRX superfamily vary from −280 mV for TRXh2 from
Arabidopsis to −120 mV for DSBA from E. coli [86,87]. At present, plants possess the largest
family of TRXs with 20 members in Arabidopsis that can be divided into subgroups, those
found in the chloroplast: TRX-m1, 2 3 and 4, TRX-f1 and 2, TRX-x, TRX-y1 and 2 and TRX-z;
the mitochondria: TRX-o1 and 2; and the eight member TRX-h group, primarily found in
the cytosol (Table 2) [83,88]. In addition, more than 40 TRX-like proteins have been identi-
fied [49,89]. The evolutionary origin of the TRX m, x and y types is prokaryotic, whereas
types f, h and o are of eukaryotic origin [88]. The diversity of isoforms seems to provide
plants with an additional antioxidant system compared to mammals where only two types
of TRX have been described: TRX1 in the cytosol and the mitochondrial TRX2 [90].

Table 2. Arabidopsis h-type Thioredoxins.

Protein AGI Uniprot
ID

MW
(in kDa) Subgroup Localization Active Site

Motif Activity References

TRXh1 AT3G51030 P29448 12.67 I Cytosol WCGPC Insulin reduction (Ta-, Os-
and AtTRXh1) [91,92]

TRXh2 AT5G39950 Q38879 14.67 II Cytosol, Mitochondria WCGPC Insulin reduction (TaTRXh2) [91]

TRXh3 AT5G42980 Q42403 13.10 I Cytosol WCPPC Insulin reduction (Ta- and
AtTRXh3) [91,93,94]

TRXh4 AT1G19730 Q39239 13.06 I Cytosol WCPPC Insulin reduction (AtTRXh4);
unpublished results [95]

TRXh5 AT1G45145 Q39241 13.12 I Cytosol WCPPC Insulin reduction (AtTRXh5)
and S-denitrosation reaction [95,96]

TRXh7 AT1G59730 Q9XIF4 14.53 II Cytosol, Plasma membrane WCGPC Insulin reduction (MtTRXh7) [97]
TRXh8 AT1G69880 Q9CAS1 17.25 II Cytosol, Plasma membrane WCGPC Insulin reduction (MtTRXh8) [97]
TRXh9 AT3G08710 Q9C9Y6 15.33 III Cytosol, Plasma membrane WCGPC / [98]

3.1.2. The Cytosolic H-Type TRXs

The cytosolic TRX-system consists of h-type TRXs and has been studied in Arabidopsis
and other plants, including rice, Medicago and poplar [83,92,97]. The Arabidopsis genome
encodes nine TRXh genes that are distributed across chromosomes 1, 3 and 5 (Figure 2a).
However, one of the genes, TRXh10 (AT3G56420), is listed as putative in the Uniprot
database and therefore is not included in this review. Further analysis is required to show
whether the TRXh10 gene is actively expressed or not. Genomic sequences of the h-type
TRXs range between 634 (TRXh7) and 1225 bps (TRXh8), with a similar gene-structure split
into three or four exons, indicating that all h-type TRXs may have evolved from a common
ancestor gene (Figure 2b).
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Figure 2. Chromosomal location, gene structure and phylogenetic relationships of h-type thioredoxins
from Arabidopsis. (a) Chromosomal location of h-type TRXs from Arabidopsis. (b) Intron-exon structure
of representative gene models. Exons are represented by black bars and introns by folded black lines,
while 5′- and 3′ UTR regions are white boxes. Lines and bars to scale and represent total sequence
length. ATG; start codon, TGA/TAA; stop codon, WCG/PPC; active site. Scale bars represent
100 nucleotides. (c) Maximum likelihood phylogenies for h-type TRX proteins from Arabidopsis and
TRX1 from Homo sapiens. Protein sequences from representative gene models were used with the
MEGA 11 program with bootstrap test (1000 times) and neighbor-joining method. Branch lengths are
proportional to phylogenetic distances.

All h-type TRXs have a WC[G/P]PC active site in a single TRX domain (Table 2
and Figure 3) and can be classified into three subgroups based on their phylogenic rela-
tionship [83]. Members of the subgroup I are located in the cytosol and exhibit insulin
reduction activity with NTR and DTT as electron donors [91,93,95]. TRXh2, in subgroup II,
also shows insulin reduction activity, but is reported to be localized in both the cytosol and
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mitochondria [85]. The other type II and III proteins are less well characterized. However,
the Medicago truncatula TRXh7 and TRXh8 orthologs also show insulin reduction, but to a
lesser extent [97]. Cys exchange variants of the N-terminally located Cys residues of TRXh3,
which also is present in all other members of the subgroup I and additionally in TRXh8
(Figure 3), showed that this cysteine residue is not involved in the catalytic activity [99].
Interestingly, some isoforms (h2, h7, h8 and h9) are associated with the endomembrane
system, most likely due to myristoylation at their N-terminal extensions (glycine residue at
position 2) [100,101].
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Highlighted in red are the active site Cys residues as well as the N-terminal Cys. The catalytic motif
is underlined and additional C-terminal Cys residues unique to HsTRX1 are in blue. Glycine residues
that undergo N-myristoylation are in green. Asterisks (*) denote conserved residues, (:) strong and (.)
weakly similar amino acid properties.

Some studies have provided evidence that h-type TRXs are involved in processes such
as mitochondrial metabolism [102], calcium signaling [103], and germination [104,105], but
only a few functions have been associated with specific TRXh isoforms based on direct
protein-protein interactions or genetic studies. Different TRXhs are able to reduce homod-
imerized cytosolic malate dehydrogenase in vitro and in planta, thereby maintaining redox-
homeostasis by minimizing the oxidative inactivation of MDH [106]. TRXh1 is involved
in cyanide detoxification in Arabidopsis upon interaction with sulfurtransferases [107] as
well as in the fine-tuning of phosphate metabolism through regulation of the E2 ubiquitin
conjugase PHO2 together with TRXh4 [108]. In addition, TRXh1 is involved in modulating
ROS production in Arabidopsis under anoxic conditions by interacting with HRU1 (hypoxia
responsive universal stress protein 1) [109].

Other plant metabolic processes are regulated by the TRXh2 isoform. Fonseca-Pereira
and coworkers [110] reported that TRXh2 contributes to the redox regulation of mitochon-
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drial photorespiratory metabolism through direct deactivation of glycine decarboxylase
(GDC-L) in vitro. TRXh3, on the other hand shows a redox-dependent functional switch
from a disulfide reductase to a molecular chaperone under heat stress [111]. In addition,
TRXh3 is, in conjunction with TRXh5, involved in the monomerization of NPR1 in re-
sponse to pathogens and cold acclimation [96,112]. TRXh3 is also involved in glutathione
metabolism by reducing GSSG in vitro [113], a function that has previously been assigned
to the GRX system rather than TRXs. However, the overall reduction rate of GSSG by
TRXh3 together with NTRA was ~200-fold lower in comparison to the GRX system using
GR1, therefore, further experiments are needed to show the significance of TRXh3 in this
process, especially in vivo.

There are no publications on the specific function of TRXh4. Nevertheless, TRXh4
is highly expressed in developing embryos and dry seeds based on the ePlant database,
indicating that it might be involved in fertility and germination. Besides its oxidoreduc-
tase activity, TRXh5 was identified as a key regulator in the systemic acquired resistance
signaling by specific S-denitrosation of NPR1 [96,114], and plants lacking TRXh5 show a
higher susceptibility to pathogens. In addition, TRXh5 is associated in the plant tolerance
to the fungal pathogen Cochliobolus victoriae [115], further indicating a specific role for this
isoform in disease- and pathogen-related processes.

TRXh7 is, as mentioned earlier, associated with the endomembrane system due to its
N-myristoylation at the N-terminus. Recent work from Baune et al. [116] could show that
TRXh7 interacts with the glucose-6-phosphate (G6P)/phosphate translocator GPT1 and is
involved in the redox-dependent release of the transporter to peroxisomes, thereby regulat-
ing the oxidative pentose phosphate pathway. Interestingly, GPT1 regulation presumably
involves S-glutathionylation of Cys65 in the GPT1 N-terminus, which in turn could be
regulated by cytosolic GrxC1, which is also reported to be posstranslationally associated to
endomembranes upon N-myristoylation.

There have been no studies on the specific function of TRXh8 and its involvement in
nitro-oxidative or stress related processes. TRXh9 shows, in contrast, a remarkable redox-
dependent characteristic. Two amino acids in its N-terminal extension (Gly2 and Cys4),
are important for the association with plasma membranes, due to a combination of Gly
myristoylation and Cys palmitoylation [98]. Both modifications together are important for
TRXh9 to move from cell to cell, implicating an involvement in intercellular communication.
In addition, Cys4 and Cys57 of TRXh9 have been identified as important residues in the
dithiol-disulfide exchange reaction and the subsequent reduction of oxidized glutathione
peroxidase 3 (GPX3) [117].

3.1.3. TRXs Can Denitrosate Proteins via Two Proposed Mechanisms

In general, TRXs are well characterized oxidoreductases that catalyze the reduction of
oxidized target proteins [88,89]. More recently, however, they have been reported to also
be involved in the specific denitrosation reaction of protein-SNOs. Besides human TRX1
and TRXh1 from Chlamydomonas, Arabidopsis TRXh5 has been described as an important
enzyme controlling the S-nitrosation status of proteins [96,118,119]. TRXs are proposed to
catalyze the S-denitrosation reaction of target proteins via two distinct mechanisms [96].
In a reductive pathway, the nucleophilic Cys residue of TRX displaces NO from the target
Cys by heterolytic cleavage, forming an intermolecular disulfide bond between TRX and
its target substrate. Subsequently, the resolving active site Cys attacks the mixed disulfide
and gets oxidized, releasing the reduced substrate. Oxidized TRX is then recycled by NTR
using NADPH as the electron donor (Figure 4a). The second mechanism by which nitro-
oxidative PTMs can be regulated is demonstrated by emerging data demonstrating Cys-Cys
transnitrosation reactions—the transfer of an NO group from one R-SNO to the free thiol of
another protein. (Figure 4b) [120]. For example, HsTRX1 is able to catalyze transnitrosation
from its non-active site Cys73 to Caspase 3, leading to an inhibition of caspase activity [121].
A Cys-Cys transnitrosation reaction has also been discussed as one potential mechanism by
which TRXh5 regulates the RNS-derived PTM of target proteins [96].
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Figure 4. Proposed TRX denitrosation mechanisms via the reductive (a) or transnitrosation path-
way (b). In the reductive pathway (a), the nucleophilic Cys residue of the TRX displaces NO from
the target Cys by heterolytic cleavage, resulting in the formation of an intermolecular disulfide bond
between TRX and its target substrate. Subsequently, the resolving active site Cys attacks the mixed
disulfide and gets oxidized, releasing the reduced substrate. Oxidized TRX is then recycled by NTR.
(b) R-SNOs can undergo a transnitrosation reaction with another thiol leading to the transfer of NO.

No data on denitrosation activities for other h-type TRXs are published. Given the high
amino acid sequence identity of TRXh5 with other cytosolic TRX isoforms from Arabidopsis
(≥60%; Table 3), it could be speculated that the other class I members also denitrosate
target proteins. In comparison to the known human denitrosation enzyme, TRX1, the
percent sequence identity/similarity is even lower, indicating that Arabidopsis class II and
III h-type TRX might also show denitrosation activities. Kneeshaw and colleagues [96]
reported that TRXh5 shows selective denitrosation activity of specific target proteins.
Assuming a spatiotemporal expression of the cytosolic TRXs, it could be that specific TRX
isoforms target different substrates. For example, membrane bound TRXh2, h8 and h9
could denitrosate other membrane-bound proteins, which would allow further NO-related
signal propagation. Furthermore, differences in TRX sequences may also dictate interaction
with different substrates. Additional experiments are necessary to assess the involvement
of other cytosolic TRXs in denitrosation reactions, their substrate specificity and their role
in general NO homeostasis in Arabidopsis and other plants.

Table 3. Percent amino acid identity/similarity of Arabidopsis h-type TRXs and human TRX1. High-
lighted in red are the percent identity/similarity of h-type TRX in comparison to TRXh5. Data were
assessed using SIAS (http://imed.med.ucm.es/Tools/sias.html, accessed on 26 April 2022) and the
EBLOSUM62 matrix with default parameters. Values were rounded to the nearest integer.

TRXh1 100
TRXh2 43/59 100
TRXh3 62/73 40/53 100
TRXh4 60/71 45/58 61/72 100
TRXh5 61/75 45/57 74/82 60/75 100
TRXh7 38/49 42/55 36/50 40/54 39/49 100
TRXh8 33/51 38/57 35/50 37/52 37/50 47/58 100
TRXh9 44/56 31/47 37/48 39/51 36/53 35/45 26/38 100
HsTRX1 43/56 41/54 41/52 46/55 36/55 36/47 33/47 46/59 100

TRXh1 TRXh2 TRXh3 TRXh4 TRXh5 TRXh7 TRXh8 TRXh9 HsTRX1

3.2. Other Direct Enzymatic Denitrosation Systems

Other oxidoreductases have been described as direct denitrosation enzymes in mam-
mals. For example, human dithiol GRX1 and monothiol GRX5 exhibit denitrosation activity
in vitro with nitrosated caspase 3 and cathepsin B as substrates [122]. The mechanism

http://imed.med.ucm.es/Tools/sias.html


Antioxidants 2022, 11, 1411 11 of 20

is similar to the proposed TRX mechanisms, where either one or both cysteines of the
oxidoreductase are involved (Figure 4). However, in contrast to the TRX system, GRXs are
dependent on GSH and glutathione reductase for their activity [28]. Sulfiredoxins, oxidore-
ductases initially reported as enzymes involved in the reduction of hyperoxidized proteins,
have recently been identified as specific enzymes that catalyze the ATP-dependent reduc-
tion of nitrosated peroxiredoxin 2 (PRX2) in humans [123,124]. No GRX- or SRX-dependent
denitrosation systems have been reported in plants, but given the general conservation
of those enzymes among species, some plant GRXs or SRXs might also be involved in
denitrosation reactions.

3.3. Indirect Enzyme-Catalyzed Denitrosation Systems

Besides the direct denitrosation of target proteins, there are enzymatic systems that reg-
ulate nitrosation status indirectly. Reduction of GSNO by the enzyme S-nitrosoglutathione
reductase (GSNOR) is a major route of GSNO catabolism in all organisms [15,125]. This
highly conserved enzyme is present as a single copy gene in most higher plants and
is expressed ubiquitously in the cytosol and nucleus [14,15]. The mutation of Arabidop-
sis GSNOR (AT5G43940) leads to higher intracellular concentrations of protein-SNOs,
demonstrating the critical role of this enzyme in plant NO homeostasis. In addition, T-
DNA null insertion alleles show multiple plant growth defects, including shorter and
multibranching inflorescences, reduced lateral roots, compromised pathogen response
and reduced fertility [15,126–128], demonstrating that a fine-tuned NO homeostasis is
mandatory for proper plant development. GSNOR acts as a homodimer that catalyzes
the NADH-dependent reduction of GSNO to N-hydroxysulfinamide (GSNHOH), which
through spontaneous downstream reactions results in the production of GSSG and NH4+

(reviewed in [129]). Interestingly, GSNO and other nitroso compounds have been iden-
tified as inducing S-nitrosation of Arabidopsis GSNOR at specific solvent accessible Cys
residues, negatively affecting GSNOR activity, which may allow for proper NO-dependent
signal transduction [20,130,131]. More recently it was reported that catalase 3 is able to
trans-nitrosate GSNOR at Cys10, leading to structural alterations and GSNOR targeted
degradation through autophagy [131].

Although GSNOR has been acknowledged as a critical enzyme controlling NO home-
ostasis and thereby regulating the S-nitrosation status of proteins in plants and other
organisms, recent data indicate that a specific mammalian aldo-keto reductase AKR1A1
also plays a role in controlling GSNO levels [132]. AKR1A1 is upregulated in GSNOR-
deficient mice, presumably as a compensatory mechanism [132,133]. AKRs comprise a
superfamily of generally monomeric 34–37 kDa oxidoreductases that share a common
(α/β)8-barrel structural motif and act to decompose a broad range of reactive carbonyl
substrates produced during stress [134–136]. The substrate specificity is determined by
three structural loops and a conserved catalytic tetrad consisting of Asp, Tyr, Lys and
His, which is essential for the enzymatic activity of these proteins [137]. In contrast to
GSNOR, which is NADH-dependent, the GSNO and S-nitrosated coenzyme A (SNO-CoA)
reduction activity of AKR1A1 is dependent on NADPH as cofactor [135,138]. AKRs in
general catalyze an ordered bi kinetic mechanism in which NADPH binds first and leaves
last [139]. GSNO reduction by AKR1A1 follows the canonical AKR reaction scheme, where
the hydride transfer from NADPH to the nitrogen atom of the SNO moiety and protonation
of the oxygen atom by the active site Tyr generates a S-(N-hydroxy) intermediate that
rearranges eventually to GSH sulfinamide [132].

Plants encode a large number of aldo keto reductases with Arabidopsis having 22 AKR
proteins (Figure 5). Although no specific plant orthologue of the human AKR1A1 protein
can be identified, Arabidopsis AKR4C8 is the homolog with the most similar amino acid
sequence to human AKR1A1. AKR4C8 is in a clade with three other cytosolic AKRs in a
4C subclass (AKR4C9, AKR4C10, AKR4C11), with 64–82% sequence identity and 73–86%
similarity, respectively (Figure 5).
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Figure 5. Phylogenetic tree of Arabidopsis AKR proteins. The phylogenetic tree was constructed by
searching for aldo-keto reductases (PTHR11732) in the PANTHER database and using the MEGA 11
program with bootstrap test (1000 times) and the neighbor-joining method. Highlighted in red are
the four members of the subclass 4C, while marked in blue are AKR proteins that lack the Lys residue
in their catalytical tetrad. Green denotes AKR proteins that show an N-terminal extension, indicating
they may localize to chloroplasts or mitochondria. In addition to the AGI identifiers, other names
given to each AKR are shown.

Recent research identified that AKR4C8 and AKR4C9 are upregulated in Arabidopsis
GSNOR-null mutant leaves [140]. Furthermore, it could be demonstrated that all four
members of this subclass catalyze the NADPH-dependent reduction of GSNO, although less
efficiently than GSNOR [140]. In addition, plants lacking GSNOR show increased NADPH-
dependent GSNO reduction in planta [140]. These data support the hypothesis that these
AKR4C proteins are additional components regulating the NO homeostasis in plants.
However, it should be noted the AKR4C proteins have also been characterized as having
significant activity with other substrates [137,141]. Defining the most significant in vivo
substrates of these diverse and typically promiscuous enzymes requires further analysis,
and whether other AKRs participate in NO homeostasis through reduction of GSNO is
an open question. The catalytic tetrad is mostly conserved among all Arabidopsis AKRs
(Figure 6), with the exception of the ALKR group, where the positively charged Lys residue
is exchanged with a negatively charged Glu. However, there is high structural variation
in the three loops that define substrate binding, indicating that there are differences in
substrate recognition between the AKR proteins. Further work will be necessary to integrate
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the newly identified AKR proteins in the network controlling NO homeostasis in plants
and other organisms (Figure 7).
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Figure 6. Multiple sequence alignment of AKRs from Arabidopsis. Red boxes highlight the catalytic
tetrad residues, while green, cyan and red bars above the alignment denote the flexible loops defining
the active site important for substrate specificity. Elements were assigned using the structural
information of Arabidopsis AKR4C8 (PDB code 3h7r). Residues are color-coded based on their
properties: red: positive; blue: hydrophobic; green: polar; orange: glycine; purple: negative; teal:
aromatic; yellow: proline.
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Figure 7. Direct (a) and indirect (b) denitrosation of proteins in plants. Enzymatic denitrosation
systems have been reported in the literature. The thioredoxin system uses NADPH to remove the
nitroso group from S-nitrosated target proteins via two distinct mechanisms. However, further
studies have to show the contribution of the GRX and SRX-system in this process in plants. In
contrast, the level of available NO is regulated by GSNOR and the newly identified AKR proteins,
thereby modulating the S-nitrosation status of proteins indirectly. See text for further details.

4. Concluding Remarks and Future Outlook

Despite the involvement of NO in multiple plant processes, including germination,
root growth and fertility, a basic understanding of the mechanisms by which NO exerts
its effects is lacking. NO and its derivatives can affect physiological processes through
the reversible S-nitrosation of critical protein cysteines, which regulates protein activ-
ity, structural stability and localization. Past research on TRXs has mainly focused on
biochemical characterization and their specificities for different target enzymes with re-
spect to ROS related PTMs, but recent studies identified that a specific subset of cytosolic
TRXs in different organisms are able to catalyze the direct denitrosation of S-nitrosated
target proteins. Future studies will be necessary to address the denitrosation activity of
other cytosolic TRX isoforms using purified proteins as well as by generation of plant
mutants for single and multiple TRXs. There are no studies on chloroplast or mitochondrial
TRX enzymes in plants with regard to S-denitrosation reactions. However, given that
chloroplasts as well as mitochondrial proteins are known targets for nitro-oxidative modifi-
cations, it remains to be elucidated whether organellar TRX systems are also involved in
catalyzing the S-denitrosation of target proteins. Evidence in mammalian systems further
suggests that GRXs as well as sulfiredoxins may form an additional, cooperative system
regulating NO-derived PTMs. GSNOR is considered a key regulator of NO homeostasis
through NADH-dependent catabolism of GSNO, the bioactive form of NO, fine-tuning the
S-nitrosation status of proteins indirectly. AKRs represent a newly identified, additional
system capable of regulating GSNO in an NADPH-dependent manner. Biochemical studies
to further elucidate the AKR catalytic mechanism and substrate affinities as well as genetic
analyses with plant mutants are needed to show their significance in regulating GSNO
levels and overall NO homeostasis.
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