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Abstract

This paper summarizes a study carried out on data from

the Face Recognition Vendor Test 2006 (FRVT 2006). The

finding of greatest practical importance is the discovery of

a strong connection between a relatively simple measure

of image quality and performance of state-of-the-art ven-

dor algorithms in FRVT 2006. The image quality measure

quantifies edge density and likely relates to focus. This ef-

fect is part of a larger four-way interaction observed be-

tween edge density, face size and whether images are ac-

quired indoors our outdoors. This finding illustrates the

broader potential for statistical modeling of empirical data

to play an important role in finding and codifying biometric

quality measures.

1. Introduction

Understanding factors that influence performance is fun-

damental to developing, evaluating, and operating face

recognition algorithms. This paper describes a statistical

analysis that quantifies the effects of multiple factors, co-

variates, for the Face Recognition Vendor Test 2006 (FRVT

2006). The statistical analysis technique is generalized lin-

ear mixed modeling (GLMM).

Previous GLMM work has analyzed how subject covari-

ates, such as gender and age, influence face recognition per-

formance [2, 3]. This paper advances this work by identify-

ing relatively simple image measures that predict dramatic

∗The identification of any commercial product or trade name does not

imply endorsement or recommendation by the authors or their institutions.

differences in the performance of a state-of-the-art algo-

rithm. The algorithm studied fuses similarity scores from

three top performers in FRVT 2006.

Covariates, in the context of this paper, are factors inde-

pendent of an algorithm that may effect performance; e.g.,

gender of a person and the size of the face in an image. The

goal of covariate analysis is to identify which covariates af-

fect algorithm performance and to quantify those effects.

This includes quantifying interactions among covariates.

Subject covariates are attributes of the person being rec-

ognized, such as age, gender or race. Subject covariates can

be transitive properties of subjects, such as smiling or wear-

ing glasses. Image covariates are attributes of the image or

sensor, such as size of the face or focus of the camera.

In the field of biometrics, there is considerable interest in

identifying good quality measures. Grother and Tabassi [4]

define a quality measure as a number that relates an image’s

quality to a recognition system and should be predictive of

performance. Within our framework, we define a quality

measures as a covariate that is measurable, is predictive of

performance and is actionable.

A measurable covariate can be reliably and consistently

computed from an image. The edge density measure to be

introduced shortly as a proxy for measuring image focus is a

measurable covariate. Other factors that may influence per-

formance, for example hair style, are not easily measured

and hence are not good candidates for quality.

An actionable covariate is one over which a biometric

application has a degree of control over. For example, po-

tential actionable covariates are size of the face in an image,

focus, and whether a person is smiling. Examples of covari-

ates that are not actionable are gender, race, and age.
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Figure 1. Examples of controlled lighting, and indoor and outdoor

uncontrolled lighting imagery.

Quality measures naturally fit into the GLMM model-

ing framework. The GLMM quantifies the effect of quality

measures and their interactions with other covariates. In ad-

dition, actionable covariates do not have to be identified a

priori. Rather, one analysis can provide input to assessing

impact of quality measures for multiple applications. In ap-

plications where the system designers can select a limited

number of covariates to manipulate, the model can assist in

the selection process.

Our primary finding, described in Section 4.2, is a four-

way interaction between focus, face size, and environment.

Environment is either outside or indoors in a hallway, and

the focus measure is a proxy based upon edge density. Over

these four image covariates, the model estimated verifica-

tion rate varied from 0.1 to 0.9 at a false accept rate of 0.001.

This is a surprising and highly significant scientific find-

ing. The effect of this interaction is greater than the effect of

gender, race, and whether a person was wearing glasses. An

additional major benefit of the GLMM technique is that our

key finding is independent of these other covariates; e.g.,

the four-way interaction effects performance regardless of

gender, race, and wearing of glasses.

All the covariates in the key finding are potentially ac-

tionable and hence quality measures. The results of this

analysis provide input to algorithm developers about where

to concentrate research; and to system designers regarding

which image covariates are most important to control.

2. FRVT 2006 Overview

The FRVT 2006 was an independent evaluation of face

recognition algorithms administered by the National Insti-

tute of Standards and Technology (NIST) [11]. The FRVT

2006 was the latest in a series of U.S. Government spon-

sored challenge problems and evaluations designed to ad-

vance automatic face recognition [8] [9] [10].

This paper analyzes performance on the FRVT 2006 very

high-resolution image set. The very high-resolution images

were acquired with a 6 Mega-pixel Nikon D70 camera. Im-

ages were captured under three conditions, see Figure 1. All

images in the data set are full face frontal. The controlled

illumination images were taken in studio conditions with

lighting that followed the NIST mugshot best practices [6].

The average face size for the controlled illumination images

was 400 pixels between the centers of the eyes. The indoor

uncontrolled illumination images were taken in hallways

and indoor open spaces with ambient lighting. The aver-

age face size was 190 pixels between the centers of the eyes

(this is over the entire dataset). The outdoor images were

taken outdoors with ambient lighting. The average face size

was 163 pixels between the centers of the eyes.

The FRVT 2006 large-scale experiment report [11] pre-

sented results matching controlled illumination images to

controlled illumination images, and controlled illumination

images to indoor uncontrolled illumination images. This is

the first article to report results on matching controlled illu-

mination images to outdoor images for the FRVT 2006.

We analyze the performance of an algorithm that is the

fusion of three top performers in the uncontrolled illumi-

nation experiment in FRVT 2006. The performance of the

fusion algorithm was significantly better than the individ-

ual algorithms. For the experiment in this paper, the per-

formance of the fusion algorithm was a verification rate of

0.81 at a FAR of 0.001; the verification rates for the three

component algorithms was 0.74, 0.69, and 0.66.

The algorithms were fused as follows. For each al-

gorithm, the median and the median absolute deviation

(MAD) were computed from 36,602 similarity scores ran-

domly sampled from a total of 37,443,978 scores. Next,

similarity scores for each algorithm were standardized by

subtracting the median and dividing by its MAD. Formally,

if sk is a similarity score for algorithm k and sf is a fu-

sion similarity score for k = 1, 2, 3, then sf =
∑

k(sk −

mediank)/MADk where mediank and MADk are the me-

dian and MAD for algorithm k.

Analyzing the performance of the fusion algorithm has

two benefits. First, the analysis is done on an algorithm

that is better than any of the individual algorithms. Sec-

ond, attention is focused on the effect of covariates on per-

formance. Most people have an understandable predispo-

sition to focus on how well individual algorithms perform

and which performs best. In most circumstances, this is

very appropriate. However, in our studies it is desirable to

concentrate on on how covariates influence performance in

general and presenting results on the fused algorithm serves

this purpose well. That said, a complementary study of the

individual algorithms is underway.

3. Relating Performance to Covariates

Figure 2 illustrates our modeling approach and will be

referenced at several points throughout this section. The left

side of the figure indicates that modeling begins by relating



Figure 2. Schematic illustrating the overall flow of information for estimation and uses of the generalized linear mixed model (GLMM).

The left panel illustrates the process of fitting the model, whereas the right panel illustrates prediction of performance.

covariates to face recognition outcomes, in this case verifi-

cation outcomes as defined in Section 3.1. The right side

of the figure indicates a fitted statistical model provides a

quantitative basis for relating covariates to the probability

that a face will be correctly verified given a set of covari-

ates. Section 3.2 discusses the principal covariates used in

our model and Section 3.3 introduces the statistical model.

3.1. Verification Outcomes

The performance variable in our analysis is whether or

not a matching pair of images, two images of the same

person, are correctly verified at one of three possible false

accept rates (FARs). The FARs are 1

100
, 1

1,000
and 1

10,000
.

These FAR settings are assigned to match pairs at random,

balancing the total number of samples associated with each.

The connection between FAR and verification success or

failure is established through the population of non-match

scores derived from the images used in the study. Put sim-

ply, the population of non-match scores provides us the

match score threshold that yields each of the three FARs.

A match pair is recorded as a successful verification if it’s

match score is higher than the corresponding threshold.

3.2. The Covariates

As illustrated on the left side of Figure 2, GLMM analy-

sis begins with us fitting a model whose inputs are the veri-

fication outcomes and covariates associated with the match

pairs. There are 110, 514 match pairs derived from a pop-

ulation of 345 distinct people. For the controlled lighting

there are between 16 and 32 images per person. For the in-

door and outdoor images there are between 4 and 16 images

per person. For subject covariates such as gender and race

there is only one value per match pair. For other match pairs

there are two values; e.g., the size of the face in each image.

In this paper we report findings for gender, race, size

of the face, degree of focus of a face, wearing glasses,

whether images were taken indoors or outdoors, and FAR.

Our model had 50 covariates, but these seven covariates

produced the most interesting scientific effects.

As is the case with virtually all face recognition applica-

tions, a measure of focus has to be computed post hoc from

the face in an image. Krotkov [5] advocated the average

edge density in an image as an effective after-the-fact mea-

sure of focus, showing it did a superior job of predicting

quality of focus when compared to other measures includ-

ing those based on the spectral energy in an image. The

edge-density measure is not perfect, as it is sensitive to en-

vironmental factors which give rise to high edge density.

Only the face if of interest, so the focus measure we in-

troduce in this analysis is the Face Region In Focus Mea-

sure (FRIFM). Figure 3 illustrates how this measure is com-

puted. First, a face is transformed to a standard size. Sec-

ond, a Sobel edge mask is applied to the image to derive

edges. The FRIFM is then simply the average Sobel edge

magnitude within an oval defining the region of the face.



Figure 3. Face Region In Focus Measure (FRIFM) values are com-

puted by summing edge density within an oval face mask.

3.3. The Statistical Model

The word generalized in generalized linear mixed model

refers to the sensible assertion that verification outcomes are

Bernoulli distributed, rather than normally distributed as in

ordinary linear models. Through a link function (canoni-

cally, the logit function in the present case) transforming the

mean response, this model allows one to relate verification

outcomes to a linear function of the covariates.

Specifically, the verification outcomes are expressed as

Bernoulli random variables Yiaj with success probabilities

piaj . The subscripts indicate specific covariates, and here

only a sufficient number of covariates has been used to sug-

gest the form of GLMM. In this example, a GLMM may be

defined by the following equation:

log
(

piaj

1−piaj

)

= µ + γa + βB + γj + γaj + πi where

µ = grand mean

γa = effect of level a of factor A
β = effect of continuous covariate B
γj = effect of the jth FAR level

γaj = interaction effect between A and FAR

πi = subject-specific random effect

The last term, πi, is a random variable having a

Normal(0,σ2) distribution. This term is associated with

the word mixed in GLMM because it means that the lin-

ear predictor contains both fixed and random effects. The

random effect parameterizes the extra-Bernoulli variation

in verification outcomes associated with unexplained dif-

ficulty or ease of recognizing various people. It also allows

outcomes within subject to be correlated while outcomes

between subjects remain independent.

In practical terms, the presence of a random effect to ac-

count for differences in recognition difficulty between peo-

ple is very important. It is well understood that some people

are harder to recognize than others [1], and our model takes

this into account with the random subject effect. It is called

a random effect because we do not care precisely who is

difficult and who is easy; all that we care about is that some

people are harder than others to recognize. Accounting for

this variation reduces the unexplained variation that would

otherwise weaken our ability to detect how other covariates

influence performance.

While we are the first group to our knowledge to have in-

troduced GLMMs to the task of evaluating biometric algo-

rithms, these models are well-known and increasingly used

by statisticians. Their use has grown over roughly the last

20 years as reliable and efficient computational strategies

have been developed for fitting them.

In our context, one of the useful attributes of the GLMM

is that it directly relates covariates to the expected probabil-

ity of successful verification, or in essence to the expected

verification rate. This aspect is highlighted on the right hand

side of Figure 2. The direct mapping between the output of

our statistical model and one of the most commonly used

performance measures for face recognition makes the task

of interpreting results simpler compared to, for example,

analysis based on similarity scores.

4. Findings

Our major findings are summarized here. Limited space

has led us to omit many details, and as we prepare this work

for archival publication, details including a summary of the

statistical model selection process will be added. This topic

is especially noteworthy because it requires a careful mix-

ture of quantitative analysis and expert judgment.

Because of the massive sample size of our dataset,

110, 514 match pair observations, almost all effects pass

common tests of statistical significance. Thus, the common

notion of statistical significance (i.e., that an observed effect

is too large relative to estimated precision to be attributable

to chance alone) is not particularly relevant here because the

precision is extremely fine due to sample size.

We turn, therefore, to a notion of operational or scientific

significance. Specifically, an effect is considered scientifi-

cally significant if it is statistically significant and it leads to

a change in verification performance equivalent to at least

2 out of 100 people. The five findings that follow pass this

test and are particularly notable.

4.1. Findings 1 to 4

Finding 1: FAR for Indoor and Outdoor Images Fig-

ure 4 shows the estimated probability of successful verifi-

cation as a function of the FAR, separately for indoor and

outdoor query image locations. The fact that the probabil-

ity of verification increases with increased FAR is a math-

ematical necessity. Also, for all FAR settings, verification



Figure 4. Estimated probability of successful verification for out-

door and indoor query images at 3 false accept rates.

Figure 5. Estimated probability of successful verification for in-

door and outdoor query images Male (M) and Female (F) subjects.

is easier when the query image is indoors and there is an

interaction between FAR and query image location. Specif-

ically, the penalty for outdoor query images is reduced as

FAR increases.

It is also important to recognize that the results shown

represent effects after controlling for the impact of all other

covariates in the model. In other words, the model has ac-

counted for other factors and the probability of successful

verification shown is an output of the GLMM with covari-

ates not explicitly indicated set to default/nominal values.

This is true here and for all the findings which follow.

Finding 2: Gender Figure 5 shows the estimated proba-

bility of successful verification as a function of gender for

Figure 6. Estimated probability of successful verification for in-

door and outdoor query images for subjects of various races.

Figure 7. Estimated probability of successful verification for in-

door and outdoor query images for cases when the subject did or

did not wear glasses in the query image. Note subjects never wore

glasses in the target images.

each query image location. The effect of gender on perfor-

mance is scientifically significant. However, because gen-

der interacts1 with query image location, there is no signif-

icant marginal (i.e., averaged across locations) gender ef-

fect. Instead, we see that when men and women are pho-

tographed indoors, women are somewhat more likely to

be correctly verified. Conversely, when men and women

are photographed outdoors, men are slightly more likely to

be verified correctly. Furthermore, the penalty for outdoor

query images is greater for women than for men.

1Line plots are commonly used in this type of analysis to accentuate

relationships. Specifically, the observation that the two lines are not par-

allel is a visual cue reinforcing the conclusion that there is an interaction

between gender and environment (indoor/outdoor).



Finding 3: Race Figure 6 shows the estimated probabil-

ity of successful verification as a function of race for each

query image location. Most of the 345 subjects used in

this analysis are either East Asian or Caucasian. The actual

number of match pairs, i.e. verification outcomes for each

of the four races, are indicated along the horizontal axis

of the plot. Overall, we would not wish to overly empha-

size the result for the Hispanic or Unknown categories due

to comparatively low numbers of subjects. However, the

distinction between the verification performance for East

Asians versus Caucasians is convincing and consistent with

previous findings by other studies [2, 3]. For reasons that

are still not fully understood, verification performance for

East Asian subjects is better.

Finding 4: Glasses When the people in the study were

photographed under uncontrolled lighting they were also

permitted to wear their glasses. For the controlled imagery

people were never permitted to wear glasses. Consequently,

some of the comparisons in the study involved people wear-

ing glasses in the query image but not in the target. It is not

surprising that glasses make verification much harder. This

result is shown in Figure 7. However, it is more surpris-

ing that there is a significant interaction between wearing

glasses and the query image location. Specifically, for query

images without glasses the estimated performance penalty

for outdoors query imagery is seen but for query images

with glasses the outdoor query location actually improves

performance, albeit from a much lower baseline.

4.2. Finding 5: The Face Size, Focus and Environ-
ment Interaction

This is by far the most interesting finding. It provides

an excellent example of the detection and interpretation of

multi-factor interactions. It also demonstrates a very strong

linkage between easily measured aspects of image quality

and probability of successful verification. The overall result

is summarized in Figure 8. A careful exploration of this

figure is given in the following paragraphs.

First note the three columns of plots in Figure 8 cor-

responding to the resolution of the query images as mea-

sured by the distance between the eyes measured in pixels.

The median distance between eyes for the columns labeled

Small, Medium and Large are 137, 164 and 210 pixels re-

spectively. The break points between the columns fall at

150 and 185 pixels between the eyes. Query image resolu-

tion is the first of the four interacting covariates.

Next focus on the upper and lower rows of plots. The up-

per row is for query images acquired indoors and the lower

row is for query images acquired outdoors. The second of

the four covariates participating in this interaction is the dis-

tinction between indoor versus outdoor imagery.

The six plots shown share the same x- and y-axes. The

horizontal axis shows FRIFM for the query image and the

vertical axis shows FRIFM for the target image. Note the

overall broader range of FRIFM values for the query im-

agery compared to the target imagery. This makes sense

considering the control exerted over the acquisition of the

target images compared to the query images.

The estimated probabilities of successful verification

shown in the six plots are color-coded using a standard cold

to warm pseudo-color mapping. Each of the six plots has

been further refined to indicate approximately which re-

gions the response surface correspond to the available data.

To put this another way, interior to the regions bounded by

the black outlines are portions of the surface where about

95% of all our observations lie. In order to avoid accidental

extrapolation, it is important to restrict our attention to the

interior of these regions.

Several conclusions are striking when one studies Fig-

ure 8. First, there is a very large variation in predicted per-

formance. For the indoor images, the probability of verifi-

cation values range from around 0.7 up to greater than 0.95.

For the outdoor images the range in probability of verifica-

tion values over an astonishingly large range, from a low

0.1 to a high of nearly 0.9.

Second, note that query FRIFM scores do not range as

high for the indoor query images than for the outdoor query

images. This may be suggestive of some relationship be-

tween query image location and FRIFM.

Third, it is surprising that lower FRIFM values are asso-

ciated with higher estimated probability of correct verifica-

tion. This suggests that the three algorithms prefer images

somewhat out of focus. Were we studying older whole im-

age matching algorithms, this finding would not seem so

surprising. It has been fairly well established that tech-

niques such as PCA do marginally better when images are

smoothed [7]. However, here we are looking at state-of-the-

art commercial algorithms, and it is less obvious that they

should share this preference for reduced focus.

It is also important to note that while FRIFM is a good

surrogate for a true measure of focus, it may also reflect

other image attributes such as harsh lighting, hairs across

the forehead, etc. Because of the importance of our findings

with respect to FRIFM, we have visually inspected about

50 images with very high and very low FRIFM scores. Six

of these images are shown in Figure 9. Overall, it is our

judgment that in the majority of cases FRIFM is responding

to what we as human judges would call focus. However, it

is also clear that other factors are at work as well. Notice,

for example, the glasses and overall strong shadowing of

the face in the woman shown in the upper right of Figure 9.

Also notice the hair coming down across the face combined

with strong lighting in the woman shown in the lower right

of Figure 9. Low FRIFM scores also seem to be produced



Figure 8. Estimated probability of successful verification split by query image resolution, query image location, and FRIFM for both query

and target images. See the text for a full explanation of this figure.

by people whose overall complexion and facial appearance

is relatively uniform, for example the woman shown in the

middle left image of Figure 9.

Taking a broader perspective, it is clear that a single

simple quality measure computed post hoc from images

is highly correlated with probability of successful verifica-

tion by state-of-the-art vendor algorithms. From a practical

standpoint, such findings may be very valuable for enabling

progress toward a better overall measure of face image qual-

ity. In terms of algorithm development and improvement, it

is important to better understand why images with high edge

density (i.e., high FRIFM scores) confound algorithms.

5. Conclusions

A tremendous amount of effort will be spent in the near

future trying to better characterize the quality of face images

in terms of successful biometric matching. For example, in

the past two years NIST has sponsored two workshops on

biometric quality. Our work has demonstrated that statisti-

cal modeling provides an excellent means of explicitly es-

tablishing connections between easily measured properties

of imagery and predicted probability of verification success.

Furthermore, the generalized linear mixed model allows

us to explicitly to control for confounding covariates, allow

for subject-specific performance variation, and capture in-

teractions between covariates. The importance of analysis

at this level is illustrated by the complex four-way interac-

tion presented above. Because the GLMM controls for con-

founding covariates, the four-way interaction effects perfor-

mance regardless of the other covariates. In the case of this

analysis, regardless of gender, race, and wearing of glasses.

Finally, this study has helped identify where some of

the most important short term gains in performance may

be achieved. In particular, it seems that improvements or

compensation for the FRIFM factor should improve perfor-



Figure 9. Examples of three images with very low and three im-

ages with very high FRIFM scores.

mance. Also, high resolution outdoor query images lead

to much better performance than do low-resolution outdoor

query images and this finding has practical importance be-

cause image resolution is a factor that may be easily in-

creased in many common circumstances. With further anal-

yses of richer datasets that lie ahead, we anticipate iden-

tifying additional strategies for improving algorithm per-

formance on the basis of a growing understanding of the

impact of subject covariates and image quality on perfor-

mance.
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