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In a recent publication [3rd International Conference on Surface Metrology, Annecy, France, 2012, p. 1] it was 

shown that surface roughness measurements made using a focus variation microscope (FVM) are influenced by 

surface tilt. The effect appears to be most significant when the surface has microscale roughness (Ra ≈ 50 nm) that 

is sufficient to provide a diffusely scattered signal that is comparable in magnitude to the specular component. This 

paper explores, from first principles, image formation using the focus variation method. With the assumption of 

incoherent scattering, it is shown that the process is linear and the 3D point spread characteristics and transfer 

characteristics of the instrument are well defined. It is argued that, for the case of micro-scale roughness and 

through the objective illumination, the assumption of incoherence cannot be justified and more rigorous analysis is 

required. Using a foil model of surface scattering the images that are recorded by a FVM have been calculated. It is 

shown that for the case of through the objective illumination at small tilt angles, the signal quality is degraded in a 

systematic manner. This is attributed to the mixing of specular and diffusely reflected components and leads to an 

asymmetry in the k-space representation of the output signals. It is shown that by using extra-aperture 

illumination or at tilt angles greater than the acceptance angle of aperture (such that the specular component is 

lost), the incoherent assumption can be justified once again. The work highlights the importance of using ring-light 

illumination and/or polarizing optics, which are often available as options on commercial instruments, as a means 

to mitigate or prevent these effects. © 2016 Optical Society of America.  

OCIS codes: (180.0180)  Microscopy; (110.4850)   Optical transfer functions; 

http://dx.doi.org/10.1364/AO.99.099999 

1. INTRODUCTION 

The focus variation microscope (FVM) is an increasingly popular 

means to measure the surface geometry of micro-components that 

compares favourably to the more established techniques of confocal 

microscopy (CM) and coherence scanning interferometry (CSI) [1]. 

The focus variation method exploits the limited depth of focus of a 

vertical scanning microscope and consequently is suited to the 

measurement of steep surfaces provided that they are optically rough. 

Like other optical methods, however, FVM measurements can be 

influenced by surface tilt and tilt-dependent surface roughness 

measurements have been recently reported [2]. In this paper we 

explain a basic 3D linear theory of the focus variation [3] and extend 

this concept to show  the origin of  tilt sensitivity in FVM.   

1. BASIC 3D LINEAR THEORY OF THE FOCUS 

VARIATION MICROSCOPE 

 

 In previous publications we have analysed holography, tomography 

and 3D imaging techniques including CSI and CM using linear systems 

theory [4]. Linear systems theory allows us to characterise and 

compare optical systems in terms of their 3D point spread function 

(PSF), H(r), that represents the response the instrument to a point 

object (or impulse) located at the origin. In this way the output, O(r), of the instrument to more general objects, defined by the function, Δ(r), 

can be written as the superposition or convolution integral, 

 𝑂(𝐫) = ∫ Δ(𝐫′)𝐻(𝐫 − 𝐫′) d3𝑟′,  (1) 

 

where conventionally d3𝑟′ = d𝑟𝑥′𝑑𝑟𝑦′𝑑𝑟𝑧′. In essence this is a 

linear filtering operation that can be represented in the 

frequency domain (k-space) as the product, 

 𝑂̃(𝐤) = Δ̃(𝐤)𝐻̃(𝐤),   (2) 

 

where tilde denotes Fourier transformation. In this way 𝐻̃(𝐤) 

denotes the transfer function (TF) and its extent defines the 

frequency response of the system while in the space domain 

that of the PSF defines the resolution. In general terms, the 

object function Δ(𝐫) defines the object in 3D in terms of a 

physical parameter such as refractive index. For the case of 
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surface scattering, however, we have found it useful to 

represent the object as a foil-like membrane located at the 

interface between media with optical properties characterised 

by the reflection coefficient [5]. We call this a “foil model” of the 
surface. In general terms, linear theories of optical measuring 

instruments all rest on the assumption that the effects of 

multiple scattering are negligible and further assumptions are 

inherent in the foil model of surface scattering [5].  

Although the FVM is a surface measuring instrument, 

considerable insight into its performance can be gained without 

considering the details of surface scattering. A basic linear 

model of the focus variation method can be cast by considering 

the field scattered by the surface to be a set of independent, 

incoherent point sources of varying strength located on a foil-

like membrane. Accordingly it is intuitive to define the object 

function, Δ(𝐫), such that, 

 Δ(𝐫) = 𝐼𝑠(𝐫)𝛿(𝑟𝑧 − 𝑠(𝑟𝑥, 𝑟𝑦)),  (3) 

 

where 𝐼𝑠(𝐫) is a random function describing the source strength 

per unit area, 𝑠(𝑟𝑥, 𝑟𝑦) is the surface height, 𝛿(𝑥) is 1D Dirac 

delta function. 

It is well known from 2D linear systems theory that the 

diffraction limited image of a point source is determined by the 

numerical aperture and is characterised by way of either its 

coherent or incoherent PSF [6]. The coherent PSF describes the 

phase and amplitude of the image of a point source and is 

particularly useful when coherent detection is used (i.e. digital 

holography). The incoherent PSF describes the intensity of this 

image and is the squared modulus of its coherent counterpart. 

It is straightforward to extend this concept into 3D in order to 

model the intensity recorded by a FVM as it scans through focus 

to form the so-called “image stack”. 
As noted previously [5] it is often more convenient to define 

the response of the system as the TF in the frequency domain 

(k-space). Accordingly the portion of the 3D field, 𝐺̃𝑂(𝒌 ), that 

can be collected (or measured) by any far-field instrument 

(including FVM, CSI etc.) of observational numerical aperture, 

NO, can be written [5], 

 𝐺̃𝑂(𝐤 ) = 𝑗4𝜋𝑘0 𝛿(|𝐤| − 𝑘0) 𝑠𝑡𝑒𝑝 (𝐤.𝐨𝑘0 − √1 − 𝑁𝑂2 ), (4) 

 

where 𝑘0  is the wavenumber, defined here as inverse 

wavelength such that 𝑘0 = 1/𝜆, 𝛿(𝑥) and step (x) are the Dirac 

Delta and Heaviside Step functions respectively, while 𝐨̂ is a 

unit vector in the direction of the optical axis of the instrument.  

It is noted that Eq. (4) defines a “cap-like” area of the surface of 
a sphere of radius 𝑘0 = 1/𝜆 and is a k-space representation of 

the 3D amplitude field collected by a far-field instrument due to 

a point source at the coordinate origin. Making use of the auto-

correlation theorem [6], the corresponding intensity that 

describes the image recorded by a FVM can be expressed in the 

frequency domain by the auto-correlation function,  

 𝐻̃𝐵(𝐤) =  ∫  𝐺̃𝑂(𝐤′)𝐺̃𝑂∗ (𝐤′ − 𝐤) d3𝑘′ .  (5) 

 

It is interesting to note that this is the transfer function of a 

forward scatter, coherent confocal microscope [4,7,8]. If it is 

assumed that the optical axis of the instrument is in the z-

direction such that 𝐨̂ = 𝐳, Eq. (5) can be integrated following 

the procedure presented in APPENDIX A, to give a closed form 

solution, 

 𝐻̃𝐵(𝐤) =  18𝜋2|𝐤| 𝑠𝑡𝑒𝑝(𝐵2)𝑡𝑎𝑛−1 ( 𝐵√𝑘02−|𝐤|2/4−𝐵2), (6) 

 

𝐵 = √(𝑘02 − |𝐤|2/4) − [ |𝐤|2√𝑘𝑥2+𝑘𝑦2 (|𝑘𝑧| + 2𝑘0√1 − 𝑁𝑂2)]2
.(7) 

 

Under the assumption of incoherent scattering, this function, 

defines the TF that characterises the 3D image stack that is 

collected by a FVM as it scans through focus. The validity of this 

assumption will be discussed later, however, let us first 

consider the 3D form of the TF and the corresponding PSF with 

a view to identifying surface position. 

A section through the TF defined by Eq. (6) is shown in figure 

1a) for the case of a quasi-monochromatic imaging system with 

observational numerical aperture NO = 0.5 operating at a nominal wavelength of λ = 0.5 μm. It is noted that the vertical 
extent of the TF (~𝑘0𝑁𝑂2) is inversely proportional to the depth resolution while it’s lateral extent (~4𝑘0𝑁𝑂) defines the lateral 

resolution of the instrument (by the Nyquist resolution 

criteria). Interestingly, this is exactly the Nyquist resolution 

offered by a coherent (interferometric) backscatter instrument, 

such as CSI or a coherent CM, of equal aperture [5]. 

By definition the inverse Fourier transform of Eq. (6) gives 

the PSF characteristic of incoherent imaging and a section 

through the corresponding PSF is shown in figure 1b). It can be 

seen that the PSF resembles a focussed beam and it is noted 

that, as such, it decays relatively slowly (1 𝑧2⁄ ) in the axial 

direction. Using these characteristics 3D image of a plane 

surface can be calculated according to Eq. (2). An image section 

through such a surface is shown in figure 1c), where the source 

strength function, 𝐼𝑠(𝐫), is assumed to be white noise.  

 

 
 

Fig. 1. Normalised images a) TF, b) PSF and c) surface image for 

instrument with numerical aperture NO = 0.5 at nominal wavelength λ = 0.5 μm assuming incoherent scattering 

 

   Although several ways to deduce the position of a surface 

using incoherent imaging have been proposed in the literature 

[2,9,10], we will not concern ourselves with the details of these 

here but merely note that the information that defines the 

position of the surface is found in the high frequency 

information contained in figure 1c). Accordingly the surface can 

be revealed by modifying the TF such that only these 



components are passed. In 3D, a suitable filter, 𝐹𝐹𝑉𝑀(𝐤), is 

defined by the hollow cylinder, 

 𝐹𝐹𝑉𝑀(𝒌) = {1  for   𝑘𝑙𝑜𝑤 < √𝑘𝑥2 + 𝑘𝑦2 < 𝑘ℎ𝑖𝑔ℎ  0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,     (8) 

 

where 𝑘𝑙𝑜𝑤 = 0.6𝑘0𝑁0 and 𝑘ℎ𝑖𝑔ℎ = 1.5𝑘0𝑁0. The choice of 𝑘𝑙𝑜𝑤  

and 𝑘ℎ𝑖𝑔ℎ is somewhat arbitrary; in essence 𝐹𝐹𝑉𝑀(𝐤) selects the 

part of the transfer function that has the greatest axial extent 

while rejecting the uniform background intensity and low 

frequency components that contribute little to defining surface 

position. With this definition the TF of a filtered FVM,  output 

becomes, 

 𝐻̃𝐹𝑉𝑀(𝐤) = 𝐹𝐹𝑉𝑀(𝒌)𝐻̃𝐵(𝐤) = =  𝐹𝐹𝑉𝑀(𝐤)8𝜋2|𝐤| 𝑠𝑡𝑒𝑝(𝐵2)𝑡𝑎𝑛−1 ( 𝐵√𝑘02−|𝐤|2/4−𝐵2), (9) 

 

where B is defined as before. The TF and PSF that characterise 

the output of a filtered FVM and the corresponding surface 

image are shown in figure 2 a)-c). In comparison with figures 1 

a)-c) it is noted that although the lateral resolution is slightly 

decreased (because the lateral extent of the TF is reduced) the 

PSF is well defined in the axial direction and the surface is revealed as a distinct “string of beacons". Surface estimation 
can be considered to be the (non-linear) process of identifying 

and joining the centres of these “beacons".  
 

  
 
Fig. 2. Normalised images: a) Filtered TF, b) PSF and c) surface image 

for instrument with numerical aperture NO = 0.5 at a nominal wavelength λ = 0.5 μm assuming incoherent scattering 

 

The underlying assumption that the scattered field is 

completely incoherent is only strictly true, however, if the 

illumination is spatially incoherent and/or the surface is 

sufficiently rough for multiple scattering to dominate. It is 

noted that illumination which propagates through the objective 

does not fulfil the former condition, while the latter is only satisfied when the Ra >> λ. Consequently many of the 
illumination conditions used in practice and many surfaces of 

interest do not satisfy this assumption. A more comprehensive 

analysis is therefore required.  

2. DETAILED ANALYSIS OF THE FOCUS VARIATION 

MICROSCOPE  

 

A more rigorous model of the FVM must take into account the 

characteristics of both the illumination and the surface 

scattering. The starting point for this analysis is a general 

expression for the field 𝐸𝑚(𝐫) collected (or measured) by an 

instrument with restricted numerical aperture, when the 

surface of interest is illuminated by a plane monochromatic 

wave of amplitude 𝐸𝑟. According to the analysis presented in 

reference [5] this is given by: 

 𝐸𝑚(𝐫) = 𝐸𝑟 ∫ ∫ 𝑒−2𝜋𝑗(𝐤′−𝐤𝐫).𝐫 ( |𝐤′ − 𝐤𝐫|𝟐2(𝐤′ − 𝐤𝐫). 𝐳) Δ𝐹(𝐫) ×  𝐺̃𝑂(𝐤′ ) 𝑒2𝜋𝑗𝐤′.𝐫′d3𝑟𝑑3𝑘′.  (10) 

In this equation,  Δ𝐹(𝐫) = 4𝜋𝑗𝑅𝑊(𝑟𝑥, 𝑟𝑦)𝛿 (𝑟𝑧 − 𝑠(𝑟𝑥, 𝑟𝑦)),  (11) 

is the function that we refer to as the foil model of the surface, 

where the surface profile (height) is defined by 𝑠(𝑟𝑥, 𝑟𝑦), 𝑅 is 

the Fresnel amplitude reflection coefficient at normal incidence, 𝐸𝑟 and 𝐤𝐫 are the amplitude and the k vector of the incident 

wave, and 𝑊(𝑟𝑥, 𝑟𝑦) is a window function, which is different 

from zero only for the illuminated region of the surface. Fourier 

transformation gives the spectral density of the portion of the 

scattered field that is collected by the aperture of a far-field 

optical instrument such that,  

 𝐸̃𝑚(𝐤) = 𝐸𝑟𝐺̃𝑂(𝐤 ) ( |𝐤−𝐤𝐫|𝟐2(𝐤−𝐤𝐫).𝐳) ∫ 𝑒−2𝜋𝑗(𝒌−𝐤𝐫).𝐫 Δ𝐹(𝐫) d3𝑟 . (12) 

 

In order to analyse the 3D image recorded by a FVM, we now 

decompose the surface profile function, 𝑠(𝑟𝑥, 𝑟𝑦),  into two 

components; a smooth or specular component, 𝑠𝑆(𝑟𝑥, 𝑟𝑦), that 

represents the surface form and varies slowly on the scale of a 

wavelength; and a diffuse component, 𝑠𝐷(𝑟𝑥, 𝑟𝑦), that is a small 

perturbation that varies quickly on the scale of a wavelength, 

and results in diffusely scattered light,  such that, 

 𝑠(𝑟𝑥, 𝑟𝑦) = 𝑠𝑆(𝑟𝑥, 𝑟𝑦) + 𝑠𝐷(𝑟𝑥, 𝑟𝑦).  (13) 

 

Substituting we have, 𝐸̃𝑚(𝐤) = 𝐸𝑟𝐺̃𝑂(𝐤 ) ( |𝐤 − 𝐤𝐫|𝟐2(𝐤 − 𝐤𝐫). 𝐳) × 

∫ 4𝜋𝑗𝑅𝑊(𝑟𝑥, 𝑟𝑦)𝑒−2𝜋𝑗[(𝐤−𝐤𝐫).𝐫𝑥+(𝐤−𝐤𝐫).𝐫𝑦] × 𝑒−2𝜋𝑗(𝐤−𝐤𝐫).𝐳 [𝑠𝑆(𝑟𝑥,𝑟𝑦)+𝑠𝐷(𝑟𝑥,𝑟𝑦)]d𝑟𝑥d𝑟𝑦  (14) 

 

If the amplitude of the diffuse component is small, such that 2𝜋𝑗(𝐤 − 𝐤𝐫). 𝐳𝑠𝐷(𝑟𝑥, 𝑟𝑦) ≪ 1 , we can write,   𝑒−2𝜋𝑗(𝐤−𝐤𝐫).𝐳 [𝑠𝐷(𝑟𝑥,𝑟𝑦)]  ≈ [1 − 2𝜋𝑗(𝐤 − 𝐤𝐫). 𝐳𝑠𝐷(𝑟𝑥, 𝑟𝑦)]  and the 

measured field can be written, 𝐸̃𝑚(𝐤) = 𝐸𝑟𝐺̃𝑂(𝐤 ) ( |𝐤 − 𝐤𝐫|𝟐2(𝐤 − 𝐤𝐫). 𝐳) ∫ 𝑒−2𝜋𝑗(𝐤−𝐤𝐫).𝐫 × [1 − 2𝜋𝑗(𝐤 − 𝐤𝐫). 𝐳𝑠𝐷(𝑟𝑥, 𝑟𝑦)]Δ𝐹𝑆(𝐫)d3𝑟, (15) 



 

where  Δ𝐹𝑆(𝐫) = 4𝜋𝑗𝑅𝑊(𝑟𝑥, 𝑟𝑦)𝛿 (𝑟𝑧 − 𝑠𝑆(𝑟𝑥, 𝑟𝑦)) is a foil model 

of the smooth component of the surface form. Writing 𝐸̃𝑚(𝐤) = 𝐸̃𝑆(𝐤) + 𝐸̃𝐷(𝐤), the measured field can be split into 

specular and diffusely scattered components given by, 

 𝐸̃𝑆(𝐤) = 𝐸𝑟𝐺̃𝑂(𝐤 ) ( |𝐤−𝐤𝐫|𝟐2(𝐤−𝐤𝐫).𝐳) ∫ 𝑒−2𝜋𝑗(𝐤−𝐤𝐫).𝐫 Δ𝐹𝑆(𝐫) d3𝑟. (16) 

 𝐸̃𝐷(𝐤) = −𝜋𝑗𝐸𝑟𝐺̃𝑂(𝐤 )|𝐤 − 𝐤𝐫|𝟐 × 

 ∫ 𝑒−2𝜋𝑗(𝐤−𝐤𝐫).𝐫 𝑠𝐷(𝑟𝑥, 𝑟𝑦) Δ𝐹𝑆(𝐫) d3𝑟.  (17) 

 

It is clear that the specular and diffuse components of the 

measured scattered field are linear functions of the smooth 

surface form Δ𝐹𝑆(𝐫). It is noted, however, that a FVM records 

the scattered intensity of the collected field and this implies 

that the corresponding spectra are mixed according to the auto-

correlation theorem [6], such that, 

 𝐼𝑚(𝐤) = ∫ 𝐸̃𝑚(𝐤′)𝐸̃𝑚∗ (𝐤′ − 𝐤) d3𝑘′.  (18) 

 

Finally we note that a FVM generally illuminates the sample 

either through the objective or with additional extra-aperture 

illumination. If the numerical aperture of the illuminating 

system is 𝑁𝐼 , then the 3D, incoherent image, 𝑂̃𝑚(𝐤), can be 

written in k-space as, 

 𝑂̃𝑚(𝐤) = ∫ ∫ 𝐸̃𝑚(𝐤′)𝐸̃𝑚∗ (𝐤′ − 𝐤) 𝑑3𝑘′ |𝐺̃𝐼(−𝐤 𝒓)|d3𝑘𝑟, (19) 

 

where 𝐺̃𝐼(𝐤 ) = 𝑗4𝜋𝑘0 𝛿(|𝐤| − 𝑘0) 𝑠𝑡𝑒𝑝 (𝐤.𝐨𝑘0 − √1 − 𝑁𝐼2 ). (20) 

 

Remembering that the scattered field is the sum of specular and 

diffuse components, 𝐸̃𝑚(𝐤) = 𝐸̃𝑆(𝐤) + 𝐸̃𝐷(𝐤), the output can be 

split into terms that represent the interaction of these 

components, such that,  

 𝑂̃𝑚(𝐤) = 𝑂̃𝑆𝑆(𝐤) + 𝑂̃𝑆𝐷(𝐤) + 𝑂̃𝐷𝑆(𝐤) + 𝑂̃𝐷𝐷(𝐤),  (21) 

 

where 𝑂̃𝑆𝐷(𝐤) = ∫ ∫ 𝐸̃𝑆(𝐤′)𝐸̃𝐷∗ (𝐤′ − 𝐤) 𝑑3𝑘′ |𝐺̃𝐼(−𝐤 𝐫)| d3𝑘𝑟  etc. 

In order to understand the effect of mixing specular and 

diffusely scattered components it is useful to consider the form 

of each of these terms for the case of a scattering surface that 

has the form of an infinite plane. Without loss of generality we 

will assume that the normal to this plane, 𝐧̂, is aligned with the 

z-axis such that 𝐧̂ = 𝐳. The analysis presented in APPENDIX B 

provides the form of the terms  𝑂̃𝑆𝑆(𝐤), 𝑂̃𝑆𝐷(𝐤), 𝑂̃𝐷𝑆(𝐤) and  𝑂̃𝐷𝐷(𝐤) in the xz plane i.e. 𝐤 = (𝑘𝑥 , 0, 𝑘𝑧). Accordingly the term, 

𝑂̃𝑆𝑆(𝐤), that represents the self-interaction of the specular 

reflections, is given by, 

 𝑂̃𝑆𝑆(𝐤) = 𝛿(𝐤) |𝐸𝑟𝑅|24𝜋𝑘0 ∫ 𝑠𝑡𝑒𝑝 (𝐤r. 𝐨̂𝑘0 − √1 − 𝑁𝑂2 ) ×  
 𝑠𝑡𝑒𝑝 (−𝐤𝐫.𝐨𝑘0 − √1 − 𝑁𝐼2 ) 𝛿(|𝐤𝐫| − 𝑘0)d3𝑘𝑟 , (22) 

 

where 𝐤r = 𝐤𝐫 − 2(𝐤𝐫. 𝐳)𝐳  represents the reflected wave 

vector. It is clear from Eq. (22) that the term 𝑂̃𝑆𝑆(𝐤) describes 

the zero frequency (DC) term characterised by a delta function 

at the origin and this corresponds to a uniform intensity in the 

output. The magnitude of this term depends on the angle of the 

instrument axis defined by 𝐨̂ relative to the surface normal, 𝐳. 

In practice this term is completely removed by the 

filter, 𝐹𝐹𝑉𝑀(𝐤), defined by Eq. (8). 

Following the derivation in APPENDIX B, the terms 𝑂̃𝑆𝐷(𝐤) and 𝑂̃𝐷𝑆(𝐤)  corresponding to interaction of the specular and 

diffusely scattered components are given by, the linear forms. 

 𝑂̃𝑆𝐷(𝐤) = Δ̃𝑆(𝐤)𝐻̃𝑆𝐷(𝐤),  (23) 

 𝑂̃𝐷𝑆(𝐤) = Δ̃𝑆(𝐤)𝐻̃𝐷𝑆(𝐤).  (24) 

 

Here the transfer function 𝐻̃𝑆𝐷(𝐤), is given by, 

 𝐻̃𝑆𝐷(𝐤) = |𝐸𝑟|2𝑅∗16𝜋 ∫ d𝑘𝑦𝑟 |𝐤 − (𝟐𝐤0r . 𝐳)𝐳|𝟐|𝐤|√𝑘02 − |𝐤|2/4 − 𝑘𝑦r 2 × 

 𝑠𝑡𝑒𝑝 (𝑘0𝑥𝑟 𝑜𝑥 + 𝑘0𝑧𝑟 𝑜𝑧 − 𝑘𝑥𝑜𝑥 − 𝑘𝑧𝑜𝑧𝑘0 − √1 − 𝑁𝑂2 ) × 

 𝑠𝑡𝑒𝑝 (𝑘0𝑥𝑟 𝑜𝑥+𝑘0𝑧𝑟 𝑜𝑧𝑘0 − √1 − 𝑁𝑂2 ) 𝑠𝑡𝑒𝑝 (−𝑘0𝑧𝑟 𝑜𝑥+𝑘0𝑧𝑟 𝑜𝑧𝑘0 − √1 − 𝑁𝐼2 ),
  (25) 

 

where, 𝑘0𝑥𝑟 = 12 (𝑘𝑥 − 𝑘𝑥𝑘𝑧|𝑘𝑥||𝐤| √4𝑘𝑁2 − |𝐤|2),  (26) 𝑘0𝑧𝑟 = 12 (𝑘𝑧 + |𝑘𝑥||𝐤| √4𝑘𝑁2 − |𝐤|2),  (27) 

and 𝑘𝑁2 = 𝑘02 − 𝑘𝑦r 2
.  (28) 

 

Similarly the transfer function 𝐻𝐷𝑆(𝒌) is given by, 

 𝐻̃𝐷𝑆(𝐤) = − |𝐸𝑟|2𝑅∗16𝜋 ∫ d𝑘𝑦𝑚 |𝐤 + (𝟐𝐤0m. 𝐳)𝐳|𝟐|𝐤|√𝑘02 − |𝐤|2/4 − 𝑘𝑦𝑚2 × 



𝑠𝑡𝑒𝑝 (𝑘0𝑥𝑚 𝑜𝑥 + 𝑘0𝑧𝑚 𝑜𝑧 + 𝑘𝑥𝑜𝑥 + 𝑘𝑧𝑜𝑧𝑘0 − √1 − 𝑁𝑂2 ) × 

𝑠𝑡𝑒𝑝 (𝑘0𝑥𝑚 𝑜𝑥+𝑘0𝑧𝑚 𝑜𝑧𝑘0 − √1 − 𝑁𝑂2 ) 𝑠𝑡𝑒𝑝 (−𝑘0𝑥𝑚 𝑜𝑥+𝑘0𝑧𝑚 𝑜𝑧𝑘0 − √1 − 𝑁𝐼2 ),
   (29) 

 

where, 𝑘0𝑥𝑚 = 12 (−𝑘𝑥 − 𝑘𝑥𝑘𝑧|𝑘𝑥||𝐤| √4𝑘𝑁2 − |𝐤|2),  (30) 𝑘0𝑧𝑚 = 12 (−𝑘𝑧 + |𝑘𝑥||𝐤| √4𝑘𝑁2 − |𝐤|2),  (31) 

and  𝑘𝑁2 = 𝑘02 − 𝑘𝑦𝑚2.  (32) 

 

It is clear that Eqs. (23) and (24) have the same linear form as 

Eq. (2) and correspond to a linear filtering operation applied to 

the foil representation of the surface form, Δ̃𝑆(𝐤). In contrast 

the incoherent transfer function, 𝐻̃𝐵(𝐤)  (derived in APPENDIX 

A), the filtering due to 𝐻̃𝑆𝐷(𝐤) and 𝐻̃𝐷𝑆(𝐤) is generally tilt 

dependent. Additionally, if there is no surface tilt such that, 𝐨̂ = 𝐳 it is straightforward to show that the 𝑂̃𝑆𝐷(𝐤) and 𝑂̃𝐷𝑆(𝐤) 

terms cancel.  

We will return to the significance of these findings later but for 

the moment let us move on to the term 𝑂̃𝐷𝐷(𝐤) corresponding 

to self-interaction of the diffusely scattered components which, 

following the derivation in APPENDIX B, is given by, 

 𝑂̃𝐷𝐷(𝐤) = 116𝜋2|𝐤| ∫ d𝑘𝑦′√𝑘02 − |𝐤|24 − 𝑘𝑦′ 2 × 

𝑠𝑡𝑒𝑝 (𝐤𝟎′ . 𝐨̂𝑘0 − √1 − 𝑁𝑂2 ) 𝑠𝑡𝑒𝑝 ((𝐤𝟎′ − 𝐤). 𝐨̂𝑘0 − √1 − 𝑁𝑂2 ) × 

 |𝐸𝑟|𝟐𝜋4𝑘0 ∫ d3𝑘𝑟 |𝐤𝟎′ − 𝐤𝐫|𝟐|𝐤𝟎′ − 𝐤 − 𝐤𝐫|𝟐 Δ̃𝑆(𝐤𝟎′ − 𝐤𝐫) ×  Δ̃𝑆∗ (𝐤𝟎′ − 𝐤 − 𝐤𝐫)𝑠𝑡𝑒𝑝 (−𝐤𝐫.𝐨𝑘0 − √1 − 𝑁𝐼2 ) 𝛿(|𝐤𝐫| − 𝑘0), (33) 

 

where the vector 𝐤𝟎′ = (𝑘0𝑥′ , 𝑘𝑦′ , 𝑘0𝑧′ ) is with components: 

 𝑘0𝑥′ = 12 (𝑘𝑥 − 𝑘𝑥𝑘𝑧|𝑘𝑥||𝐤| √4𝑘𝑁2 − |𝐤|2),   (34) 𝑘0𝑧′ = 12 (𝑘𝑧 + |𝑘𝑥||𝐤| √4𝑘𝑁2 − |𝐤|2),    (35) 

and 𝑘𝑁2 = 𝑘02 − 𝑘𝑦′ 2
.   (36) 

 

It is important to realise that Eq. (33) does not have the linear 

form of Eq. (2). Comparison with Eq. (A12), however, shows 

that 𝑂̃𝐷𝐷(𝐤) consists of two coupled integrals corresponding to 

the TF derived under the assumption of incoherent 

illumination, 𝐻̃𝐵(𝐤), and the integral 𝐼1(𝐤, 𝐤𝟎′ ), given by, 

 𝐻̃𝐵(𝐤) =  116𝜋2|𝐤| ∫ d𝑘𝑦′√𝑘02 − |𝐤|24 − 𝑘𝑦′ 2 𝑠𝑡𝑒𝑝 (𝐤𝟎′ . 𝐨̂𝑘0 − √1 − 𝑁𝑂2 ) 

 × 𝑠𝑡𝑒𝑝 ((𝐤𝟎′ −𝐤).𝐨𝑘0 − √1 − 𝑁𝑂2 ),  (37) 

 𝐼1(𝐤, 𝐤𝟎′ ) = |𝐸𝑟|𝟐𝜋4𝑘0 ∫ d3𝑘𝑟 |𝐤𝟎′ − 𝐤𝐫|𝟐|𝐤𝟎′ − 𝐤 − 𝐤𝐫|𝟐 ×  Δ̃𝑆(𝐤𝟎′ − 𝐤𝐫) Δ̃𝑆∗ (𝐤𝟎′ − 𝐤 − 𝐤𝐫) × 𝑠𝑡𝑒𝑝 (−𝐤𝐫.𝐨𝑘0 − √1 − 𝑁𝐼2 ) 𝛿(|𝐤𝐫| − 𝑘0).   (38) 

 

Considering 𝐼1(𝐤, 𝐤𝟎′ ) first, it can be seen that this contribution 

introduces the non-linear self-mixing of the function, Δ̃𝑆(𝐤), 

that (in k-space) represents the roughened foil model of the 

surface (see APPENDIX B Eq. (B9)) given by, 

 Δ̃𝑆(𝐤) = ∫ 𝑒−2𝜋𝑗𝐤.𝐫 𝑠𝐷(𝑟𝑥, 𝑟𝑦) Δ𝐹𝑆(𝐫) d3𝑟. (39) 

 

For the case of a plane surface with surface normal in the z 

direction, it is noted however, that Δ̃𝑆(𝐤) is independent of 𝑘𝑧 . 
If 𝑠𝐷(𝑟𝑥, 𝑟𝑦) is assumed to be white noise it follows that the 

product  Δ̃𝑆(𝐤𝟎′ − 𝐤𝐫) Δ̃𝑆∗ (𝐤𝟎′ − 𝐤 − 𝐤𝐫) is essentially a random 

function of 𝑘𝑥 , 𝑘𝑦  and the term  |𝐤𝟎′ − 𝐤𝐫|𝟐|𝐤𝟎′ − 𝐤 − 𝐤𝐫|𝟐 

represents a relatively slowly varying modulation. Making the 

substitution, 𝐮 = 𝐤𝟎′ − 𝐤𝐫, Eq. (38) can be simplified, such that, 

 𝐼1(𝐤, 𝐤𝟎′ ) = −𝑗|𝐸𝑟|𝟐𝜋2 ∫ d3𝑢 |𝐮|𝟐|𝐮 − 𝐤|𝟐 ×  Δ̃𝑆(𝐮) Δ̃𝑆∗ (𝐮 − 𝐤) 𝐺̃𝐼(𝐮 − 𝐤𝟎′ ),  (40) 

 

where we have also used Eq. (20), 𝐺̃𝐼(𝐤 ) = 𝑗4𝜋𝑘0 𝛿(|𝐤| −𝑘0) 𝑠𝑡𝑒𝑝 (𝐤.𝐨𝑘0 − √1 − 𝑁𝐼2 ) . As mentioned previously, 𝐺̃𝐼(𝐤 ) 

defines the illumination aperture and can be considered to be a 

kernel that averages the terms, |𝐮|𝟐|𝐮 − 𝐤|𝟐 Δ̃𝑆(𝐮) Δ̃𝑆∗ (𝐮 − 𝐤) 

over a region defined in extent by the numerical aperture, 𝑁𝐼 , 

and positioned according to the vector, 𝐤𝟎′ = (k0x′ , ky′ , k0z′ ). 

From the previous argument it might be assumed that 𝐼1(𝐤, 𝐤𝟎′ ) 

is independent of 𝑘𝑧 , but this is not necessarily so. Through Eq. 

(34), 𝑘0𝑥′ = 12 (𝑘𝑥 − 𝑘𝑥𝑘𝑧|𝑘𝑥||𝐤| √4𝑘𝑁2 − |𝐤|2),  the lateral position 

of 𝐺̃𝐼(𝐮 − 𝐤𝟎′ ) (defined by k0x′ and ky′ ) will depend strongly on 𝑘𝑧 . Differentiating this relation at the point 𝐤 = (𝑘0𝑁𝑂, 0,0) 

(where the incoherent TF has maximum axial thickness) we 

find that  𝑘0𝑥′ ≈ 2𝑘𝑧 𝑁𝑂⁄  and it is straightforward to show that 

the half thickness at this point,  𝑡 ≈  𝑘0𝑁𝑂2 2⁄  . Further from Eq. 

(20), it is straightforward to show that the lateral half width of 𝐺̃𝐼(𝐤 )  in a plane normal to 𝐨̂  is 𝑤 = 𝑘𝑜𝑁𝐼 . Providing √𝑘0𝑥′2 + ky′2 < 𝑘𝑜𝑁𝐼  for all 𝑘𝑧 of interest, it is reasonable, 

therefore, to assume that 𝐼1(𝐤, 𝐤𝟎′ ) is constant in the z direction 

(that defines the surface normal). In this case we 

require√𝑘𝑂2 𝑁𝑂2 + ky′2 < 𝑘𝑜𝑁𝐼 or to a good approximation, 𝑁𝑂 < 𝑁𝐼.   (41) 



So, providing that the illumination aperture is at least that of 

the observation aperture, the 𝑂̃𝐷𝐷(𝐤) term takes the form, 

 𝑂̃𝐷𝐷(𝐤) = 𝐻̃𝐵(𝐤)Δ̃(𝐤)  (42) 

 

where the surface is defined in k-space by a function Δ̃(𝐤) that 

is independent of 𝑘𝑧 and corresponds to a surface defined of the 

form is Δ(𝐫) = 𝐼𝑠(𝑟𝑥, 𝑟𝑦)𝛿(𝑟𝑧) where 𝐼𝑠(𝐫) is a (pseudo) random 

function. Comparison with Eqs. (2) and (3) shows that the 𝑂̃𝐷𝐷(𝐤) term defined by Eq. (42) has an identical linear form to 

that derived under the assumption of incoherent scattering. Eq. 

(41) can be interpreted as the condition for the assumption of 

incoherent scattering to be valid. 

In order to understand the behaviour of FVM it is necessary to 

consider the relative importance of the terms  𝑂̃𝑆𝑆(𝐤), 𝑂̃𝑆𝐷(𝐤), 𝑂̃𝐷𝑆(𝐤) and  𝑂̃𝐷𝐷(𝐤) that, in k-space, characterise a through 

focus, 3D image of a rough surface as follows. 

3. DISCUSSION 

 

The analysis presented in the previous section provides a k-

space representation of the 3D image formed by a FVM as it 

scans through focus. The analysis was based on a foil model of 

surface scattering where the surface profile function, 𝑠(𝑟𝑥, 𝑟𝑦) 

was decomposed into a form component, 𝑠𝑆(𝑟𝑥, 𝑟𝑦), that is 

slowly varying and resolved by the instrument, together with a 

small unresolved perturbation,  𝑠𝐷(𝑟𝑥, 𝑟𝑦). Using this approach 

the scattered field was decomposed into specular and diffusely 

scattered components and the image stack output by a FVM 

was characterised by the terms 𝑂̃𝑆𝑆(𝐤), 𝑂̃𝑆𝐷(𝐤), 𝑂̃𝐷𝑆(𝐤) and  𝑂̃𝐷𝐷(𝐤) corresponding to the combination of these components 

in the output images. 

The relative size of each term depends on the amplitude of 𝑠𝐷(𝑟𝑥, 𝑟𝑦). It is clear that if the surface roughness is small such 

that 𝑠𝐷(𝑟𝑥, 𝑟𝑦) ≪ 𝜆, 𝑂̃𝑆𝐷(𝐤), 𝑂̃𝐷𝑆(𝐤) and  𝑂̃𝐷𝐷(𝐤) are negligible 

and the term,  𝑂̃𝑆𝑆(𝐤), that represents the self-mixing of the 

specular reflection dominates. It is clear from Eq. (22), 

however, that this term is a scaled delta function at the origin 

and therefore merely represents the uniform background 

intensity that is removed by the filter 𝐹𝐹𝑉𝑀(𝐤) that is applied 

during analysis process as described in Section 1.  

As 𝑠𝐷(𝑟𝑥, 𝑟𝑦) increases the terms 𝑂̃𝑆𝐷(𝐤) and 𝑂̃𝐷𝑆(𝐤) appear in 

the output. These represent the interaction of the diffusely 

scattered components with the specular reflections. The terms 

can be written as linear filtering operations that are 

characterised by the transfer functions 𝐻̃𝑆𝐷(𝐤)  and 𝐻̃𝐷𝑆(𝐤) 

defined in closed form by Eqs. (25) and (29), and applied to a 

roughened foil model of the surface as defined in Eq. (39). In 

contrast with the incoherent transfer function, 𝐻̃𝐵(𝐤), derived 

in Section 1, 𝐻̃𝑆𝐷(𝐤) and 𝐻̃𝐷𝑆(𝐤) depend on the tilt of the 

sample relative to the optical axis of the instrument and relative 

numerical apertures, 𝑁𝐼  and 𝑁𝑂 , of the illumination and 

observation optics respectively. If the surface normal coincides 

with the optical axis of a typical instrument using through the 

lens illumination such that  𝑁𝑂 = 𝑁𝐼 it is straightforward to 

show that the 𝑂̃𝑆𝐷(𝐤) and 𝑂̃𝐷𝑆(𝐤) terms completely cancel. If 

however, the surface is tilted, this is not the case and the 

transfer function 𝐻̃𝑆𝐷(𝐤) + 𝐻̃𝐷𝑆(𝐤)  is asymmetric. Figure 3 

shows sections in the plane 𝑘𝑦 = 0 for the combined TFs  

(𝐻̃𝑆𝐷(𝐤) + 𝐻̃𝐷𝑆(𝐤)) and corresponding PSFs as a function of 

angle for a quasi-monochromatic FVM with 𝑁𝑂 = 𝑁𝐼 = 0.5.  

  

 
 
Fig. 3. Normalised sections in the plane 𝑘𝑦 = 0 for the combined TFs  

(𝐻̃𝑆𝐷(𝐤) + 𝐻̃𝐷𝑆(𝐤)) (left) and corresponding PSFs as a function of angle 

(right) for a quasi-monochromatic FVM with 𝑁𝑂 = 𝑁𝐼 = 0.5  with surface tilt a) 1⁰, b) 10⁰, c) 15⁰, d) 25⁰, e) 29⁰ 

 

It is clear from figure 3 that the tilt dependence of the TF/PSF is most visible when the surface normal is tilted at 29⁰ from the 
optical axis of the instrument. At this angles only a small 

fraction of the specular reflections of the wave vector 

components transmitted by illumination aperture are collected 

by the observation aperture. Remarkably a similar result is observed at 1⁰ where 𝐻̃𝑆𝐷(𝐤) + 𝐻̃𝐷𝑆(𝐤) cancel over the majority 

but not all of k-space. Interestingly 𝐻𝑆𝐷(𝐤) and 𝐻̃𝐷𝑆(𝐤) also 

cancel for the case of a tilted surface if the illumination aperture 

is increased.  

 
Fig 4. Normalised sections in the plane 𝑘𝑦 = 0 for the combined TFs  

(𝐻̃𝑆𝐷(𝐤) + 𝐻̃𝐷𝑆(𝐤)) (left) and corresponding PSFs (right) for a quasi-monochromatic FVM with surface tilt of 15⁰ and  𝑁𝑂 = 0.5 ; a) 𝑁𝐼 = 𝑠𝑖𝑛45° and b) 𝑁𝐼 = 𝑠𝑖𝑛60°. 

 

Figure 4 shows the TF and PSF for the case of surface tilt of 15⁰ 
when the illumination aperture is increased to a) 𝑁𝐼 = 𝑠𝑖𝑛45° 

and b) 𝑁𝐼 = 𝑠𝑖𝑛60° . It is clear that when 𝑁𝐼 = 𝑠𝑖𝑛60 the 𝐻̃𝑆𝐷(𝐤) 

and 𝐻̃𝐷𝑆(𝐤) terms cancel once again (the outline has been 

added to indicate the position of the incoherent TF). It is 

straightforward to show that this condition is satisfied if,  

 𝑠𝑖𝑛−1𝑁𝐼 > 𝑠𝑖𝑛−1𝑁𝑂 + 2𝑠𝑖𝑛−1( 𝐧̂. 𝐨̂)     (43) 

 



where 𝒏̂ and 𝒐̂ are unit vectors in the direction of the surface 

normal and the optical axis respectively. 

The final term, 𝑂̃𝐷𝐷(𝐤), is the dominant term and the only 

significant term in the output image of the FVM if i) the 𝑂̃𝑆𝐷(𝐤) 

and 𝑂̃𝐷𝑆(𝐤) terms completely cancel as previously discussed or 

ii) the surface is tilted such that no specular reflection is 

collected by the observation aperture or iii) the surface is 

sufficiently rough that there is no significant specular 

deflection. All of these conditions are possible in practice. The 

analysis presented in the previous section shows that providing 

the illumination aperture is sufficient this output can be 

considered as a linear filtering operation characterised by the 

incoherent transfer function, 𝐻̃𝐵(𝐤), applied to a foil model of 

the surface with a modulation that depends on the both the 

surface roughness and the numerical apertures, 𝑁𝐼 and 𝑁𝑂, of 

the illumination and observation optics. A sufficient condition 

for this is, 

 𝑁𝐼 > 𝑁𝑂   (44) 

 

If this condition is not fully satisfied it can be shown that the 

axial resolution of the instrument will progressively decrease. 

Outputs 𝑂̃𝐷𝐷(𝐤) together with sections through the 

corresponding surface images calculated using the filter 

specified are presented in figure 5 for different illumination 

apertures, 𝑁𝐼 . In this figure the phase of  𝑂̃𝐷𝐷(𝐤) that is plotted 

while the surface images are the real values. It can be seen that 

as 𝑁𝐼  decreases the axial resolution decreases as expected.   

 

 
 
Fig. 5. Phase of  𝑂̃𝐷𝐷(𝐤)  (left) together with sections through 

normalised surface images for a quasi-monochromatic FVM (right) with surface tilt of 0⁰ and 𝑁𝑂 = 0.5; a) 𝑁𝐼 = 0.5, b) 𝑁𝐼 = 0.25, c) 𝑁𝐼 = 0.1 and 

d) 𝑁𝐼 = 0.01.  
 

4. CONCLUSIONS 

 

In this paper we have considered 3D image formation using the 

focus variation microscope (FVM) as a linear filtering process. 

In this way a FVM can be characterised in the frequency domain 

(k-space) by its transfer function (TF) or equivalently, in the 

space domain by its point spread function (PSF). In essence 

these functions define the 3D resolution of the instrument and 

its ability to measure surface form. With the assumption of 

incoherent scattering, it is shown that the imaging process 

takes a linear form and a closed form solution of the TF is 

derived for the case of a quasi-monochromatic instrument. It is 

shown that the TF and PSF are a well-defined function of the 

numerical aperture of the observation optics. 

It is argued however, that, for the case of micro-scale roughness 

and illumination optics of restricted numerical aperture, the 

assumption of incoherence cannot be justified and more 

rigorous analysis is required. Using a foil model of surface 

scattering that we have discussed elsewhere [5], the scattered 

fields and 3D output of a FVM was calculated. An important 

aspect of this analysis is the separation of the specular and 

diffusely scattered components of the field collected by the 

instrument. In this way the TF was calculated for the case of an 

infinite plane surface of well-defined roughness. It is shown 

that in general, the TF depends on surface tilt and is attributed 

to the mixing of specular and diffusely reflected components.  

The tilt dependence depends strongly on the numerical 

aperture of the illumination optics. For the case of illumination 

through the imaging optics (as is frequently the case in 

practice) the TF is modified most significantly when the tilt 

angle approaches the acceptance angle of imaging/illumination 

aperture. It is noted, however, that tilt dependence is avoided if 

the illumination aperture is sufficient to ensure that a specular 

reflection of the source is collected across the entire 

observation aperture. In general, this requires that the 

illumination aperture is significantly larger than that of the 

observation optics (Eq. (43)). Finally it is shown that the TF 

derived using the foil model of surface scattering is reduced to 

that derived with the assumption of incoherent scattering 

providing that the numerical aperture of the illumination optics 

is at least as large as the observation optics (Eq. (44)). If this is 

not satisfied the axial resolution of the instrument is decreased 

proportionately.   

It should be emphasised however, that many commercially 

available focus variation microscopes provide additional 

resources to prevent or mitigate the described effects. In 

addition to increasing the illumination aperture (which can be 

realized by using ring lights that can be mounted on the 

objective), polarization filters can be introduced to attenuate or 

block the specular light components and hence reduce or 

eliminate the tilt dependent response. 

Finally it should be mentioned that focus variation microscopes 

are typically applied to surfaces which have roughness that lies 

above the range where the tilt dependent response is observed 

(i.e. Ra >> 50 nm). In addition the use of polychromatic light 

and optical aberrations that are present in real systems are 

expected to have significant effect on both the resolution and 

the tilt dependence of the transfer function. Accordingly, 

further work is planned to compare experimental observations 

with the predictions of the theory presented here. 
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APPENDIX A 
 

In the following we calculate an analytic expression for the 

transfer function (TF) of an axis-symmetric optical system, 

defined by, 

 𝐻̃𝐵(𝐤) =  ∫  𝐺̃𝑂(𝐤′)𝐺̃𝑂∗ (𝐤′ − 𝐤) d3𝑘′ ,  (A1) 

 

where 𝐺̃𝑂(𝐤 ) = 𝑗4𝜋𝑘0 𝛿(|𝐤| − 𝑘0) 𝑠𝑡𝑒𝑝 (𝐤.𝐨𝑘0 − √1 − 𝑁𝑂2 ). (A2) 

 

Substituting  Eq. (A2) in (A1) we have   

 𝐻̃𝐵(𝐤) =  116𝜋2𝑘02 ∫ 𝑠𝑡𝑒𝑝 (𝐤′. 𝐨̂𝑘0 − √1 − 𝑁𝑂2 ) × 

  𝑠𝑡𝑒𝑝 ((𝐤′−𝐤).𝐨𝑘0 − √1 − 𝑁𝑂2 ) 𝛿(|𝐤′| − 𝑘0)𝛿(|𝐤′ − 𝐤| − 𝑘0) d3𝑘′.  
(A3) 

 

It is noted that each (1D) delta function in this equation defines 

a spherical surface of radius 𝑘0. Since the centres of the spheres 

are separated by a distance |𝐤| , their product defines a circle 

that is the intersection of the spherical surfaces. It is also noted 

that due to the finite aperture of the instrument, only k-vectors that are represented by a small “cap-like” portion of the sphere 

are collected according to the step functions in Eq. (A3). 

Because of this, the integrand represents a circular arc in k-

space as shown in figure A1. 

In order to evaluate integral we will use following transforma-

tion [11], 𝛿(𝑦1)𝛿(𝑦2) … 𝛿(𝑦𝑛) =  1|𝒅𝒆𝒕(𝑱)| 𝛿(𝑥1 − 𝑎1) × 

 

 𝛿(𝑥2 − 𝑎2) … 𝛿(𝑥𝑛 − 𝑎𝑛),   (A4) 

 

where  𝑦1 =  𝑦1(𝑥1,, 𝑥2, … 𝑥𝑛) ; 𝑦2 =  𝑦2(𝑥1,, 𝑥2, … 𝑥𝑛) , … , 𝑦𝑛 =  𝑦𝑛(𝑥1,, 𝑥2, … 𝑥𝑛)  with roots 𝑎1,  𝑎2  … 𝑎𝑛  (such that 𝑦𝑖(𝑎1, 𝑎2, … 𝑎𝑛) = 0) and 𝑱  is the Jacobian of the transformation 

from 𝑦1, 𝑦2 … 𝑦𝑛  to 𝑥1,, 𝑥2, … 𝑥𝑛 evaluated at points 𝑥𝑖 = 𝑎𝑖, given 

by, 

 𝑱𝒊,𝒋 = 𝜕𝑦𝑖𝜕𝑥𝑖|𝑥𝑖=𝑎𝑖  
 

 

 
 
Fig。 A1. Integration along a circular arc in k-space. 

 

In this case, without loss of generality we consider a 2D slice in 

k-space such that, 𝑥1 = 𝑘𝑥′ , 𝑥2 = 𝑘𝑧′ , and we have, 

 𝑦1 = |𝐤′| − 𝑘0 = √𝑘𝑥′ 2 + 𝑘𝑦′ 2 + 𝑘𝑧′ 2 − 𝑘0,  (A5) 

 𝑦2 = |𝐤′ − 𝐤| − 𝑘0 = 

 = √(𝑘𝑥′ − 𝑘𝑥)2 + (𝑘𝑦′ − 𝑘𝑦)2 + (𝑘𝑧′ − 𝑘𝑧)2 − 𝑘0 (A6) 

 

 

The roots of these equations 𝑎1 = 𝑘𝑥0′  and 𝑎2 = 𝑘𝑧0′ , define the 

intersection of the circular arc with the plane 𝑘𝑦′ = 𝑘0𝑦′ . It is 

clear that in this case the transfer function is axis-symmetric 

and we need only to consider its form in any plane that passes 

through this axis. Accordingly in the plane 𝑘𝑦 = 0, it is found, 

 𝑘0𝑥′ = 12 (𝑘𝑥 − 𝑘𝑥𝑘𝑧|𝑘𝑥||𝐤| √4𝑘𝑁2 − |𝐤|2),    (A7) 

 𝑘0𝑧′ = 12 (𝑘𝑧 + |𝑘𝑥||𝐤| √4𝑘𝑁2 − |𝐤|2),    (A8) 

 



where  𝑘𝑁2 = 𝑘02 − 𝑘𝑦′ 2
.  

 

Performing the required differentiation and substituting into 

Eq. (A4) it is found, 

 𝛿(|𝐤′| − 𝑘0)𝛿(|𝐤′ − 𝐤| − 𝑘0) = 𝑘02|𝑘0𝑧′ 𝑘𝑥 − 𝑘0𝑥′ 𝑘𝑧| 𝛿(𝑘𝑥′ − 𝑘0𝑥′ ) × 

 𝛿(𝑘𝑧′ − 𝑘0𝑧′ )   (A9) 

 

Using this transformation, the 3D integral in Eq. (A3) reduces to 

a one dimensional integral given by, 

 𝐻̃𝐵(𝐤) =  116𝜋2𝑘02 ∫ 𝑠𝑡𝑒𝑝 (𝐤′. 𝐨̂𝑘0 − √1 − 𝑁𝑂2 ) × 

 𝑠𝑡𝑒𝑝 ((𝐤′ − 𝐤). 𝐨̂𝑘0 − √1 − 𝑁𝑂2 ) 𝑘02|𝑘0𝑧′ 𝑘𝑥 − 𝑘0𝑥′ 𝑘𝑧| × 

 

 𝛿(𝑘𝑥′ − 𝑘0𝑥′ )𝛿(𝑘𝑧′ − 𝑘0𝑧′ ) d3𝑘′.  (A10) 

 

Using Eqs. (A7) and (A8) once again the term |𝑘0𝑧′ 𝑘𝑥 − 𝑘0𝑥′ 𝑘𝑧| in 

this integral can be written,  

 |𝑘0𝑧′ 𝑘𝑥 − 𝑘0𝑥′ 𝑘𝑧| =  |𝐤|√𝑘02 − |𝐤|2/4 − 𝑘𝑦′ 2
.  (A11) 

 

And, 

 𝐻̃𝐵(𝐤) =  116𝜋2|𝐤| ∫ 𝑠𝑡𝑒𝑝 (𝐤0′ . 𝐨̂𝑘0 − √1 − 𝑁𝑂2 ) × 

  𝑠𝑡𝑒𝑝 ((𝐤0′ −𝐤).𝐨𝑘0 − √1 − 𝑁𝑂2 ) 1√𝑘02−|𝐤|2/4−𝑘𝑦′ 2 d𝑘𝑦′  , (A12) 

 

where 𝐤0′ = (𝑘0𝑥′ , 𝑘𝑦′ , 𝑘0𝑧′ ). 

Now without loss of generality we assume that the optical axis 

of the instrument is aligned to the z axis such that, 𝐨̂ = 𝐳. As 

mentioned previously the step() functions in this expression 

represent “cap-like” regions of the spherical surfaces (see 
figure A1) and effectively define the limits of integration. 

Analysis of the arguments of these functions provides |𝑘𝑦′ | <𝐵 where B is given by, 

 𝐵 = √(𝑘02 − |𝐤|2/4) − [ |𝐤|2|𝑘𝑧| (|𝑘𝑥| + 2𝑘0√1 − 𝑁𝑂2)]2
 . (A13) 

 

Finally, noting that ∫ 1/√𝑎 − 𝑥2 d𝑥 = 𝑡𝑎𝑛−1(𝑥/√𝑎 − 𝑥2)  +   𝑐,  

the transfer function can be written, 

 𝐻̃𝐵(𝐤) =  18𝜋2|𝐤| 𝑠𝑡𝑒𝑝(𝐵2)𝑡𝑎𝑛−1 ( 𝐵√𝑘02−|𝐤|2/4−𝐵2).  (A14) 

 

Eqs.(A13) and (A14) provide the cross-section ( 𝑘𝑦 = 0 ) 

corresponding to the transfer function defined by Eqs. (A1) and 

(A2) for the case of a symmetric optical instrument with its 

optical axis aligned with the 𝑘𝑧  direction. Noting once again that 

the transfer function is axis-symmetric, 𝑘𝑥  represents any 

radial component, and more generally we can write, 

 

𝐵 = √(𝑘02 − |𝐤|2/4) − [ |𝐤|2√𝑘𝑥2+𝑘𝑦2 (|𝑘𝑧| + 2𝑘0√1 − 𝑁𝑂2)]2
. (A15) 

 

Although Eqs. (A14) and (A15) are valid for any position 𝐤 = (𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧)  in k-space, it is noted, that |𝐤|  in the 

denominator of Eq. (A14) results in a singularity of 𝐻̃𝐵(𝐤) at the 

origin |𝐤| = 0.  We note however, that direct integration of Eq. 

(A1) at 𝐤 = 0  gives,  

 𝐻̃𝐵(0) = 𝛿(0)8𝜋 (1 − √1 − 𝑁𝑜2),  (A16) 

 

and provides the correct scaling of the zero-frequency compo-

nent.  

Eq. (A14) defines a closed form solution to the 3D TF that 

characterises the 3D images collected by a FVM with the 

assumption of incoherent scattering. It should be noted that 

this is a fundamental result that also corresponds to the TF of a 

coherent forward-scatter confocal microscope and the part of a 

the 3D image collected by a coherence scanning interferometer 

that is not modulated by interference fringes [5]. 

 

APPENDIX B 
 

In this section we consider each of the terms in Eq. (21) that 

characterise the output image stack in FVM when incoherent 

scattering is not assumed. In the following the output is derived 

for the case of a roughened, infinite plane surface. The 

coordinate system is chosen such that the z-axis is normal to 

this surface such that 𝑠𝑆(𝑟𝑥, 𝑟𝑦) = 0. An axis-symmetric FVM 

with its optical axis defined by the unit vector 𝒐̂ (that is not 

necessarily normal to the surface) is assumed. First the forms of 

the specular and diffuse components of the scattered fields are 

derived.  Substituting the foil model Δ𝐹𝑆(𝐫) = 4𝜋𝑗𝑅𝑊(𝑟𝑥, 𝑟𝑦)𝛿 (𝑟𝑧 − 𝑠𝑆(𝑟𝑥, 𝑟𝑦)) with 𝑠𝑆(𝑟𝑥, 𝑟𝑦) = 0  in 

Eq. (16) the specular component, 𝐸̃𝑆(𝐤), corresponding to plane 

wave illumination, 𝐤𝐫,  is given by, 

 𝐸̃𝑆(𝐤) = 𝐸𝑟𝐺̃𝑂(𝐤 ) ( |𝐤 − 𝐤𝐫|𝟐2(𝐤 − 𝐤𝐫). 𝐳) × 

 

 ∫ 𝑒−2𝜋𝑗(𝐤−𝐤𝐫).𝐫 4𝜋𝑗𝑅𝑊(𝑟𝑥, 𝑟𝑦)𝛿(𝑟𝑧) d3𝑟  (B1) 

 

Assuming  𝑊(𝑟𝑥, 𝑟𝑦) = 1  (for an infinite plane) direct 

integration gives, 

 𝐸̃𝑆(𝐤) = −𝑅𝐸𝑟𝑘0 𝛿(|𝐤| − 𝑘0) 𝑠𝑡𝑒𝑝 (𝐤. 𝐨̂𝑘0 − √1 − 𝑁𝑂2 ) × 

( |𝐤−𝐤𝐫|𝟐2(𝐤−𝐤𝐫).𝐳) 𝛿(𝑘𝑥 − 𝑘𝑟𝑥)𝛿(𝑘𝑦 − 𝑘𝑟𝑦),  (B2) 

 



where 𝐺̃𝑂(𝐤 )  has been substituted from Eq. (4). This 

expression is simplified by a change of the variables within the 

arguments of the delta functions using the transformation 

defined in Eq. (A4). Substituting 𝑥1 = 𝑘𝑥 ,  𝑥2 = 𝑘𝑦 ,  𝑥3 = 𝑘𝑧, 𝑦1 = 𝑘𝑥 − 𝑘𝑟𝑥 , 𝑦2 = 𝑘𝑦 − 𝑘𝑟𝑦 , 𝑦3 = √𝑘𝑥2 + 𝑘𝑦2 + 𝑘𝑧2 − 𝑘0 and the 

roots 𝑎1 = 𝑘𝑟𝑥 ,  𝑎2 = 𝑘𝑟𝑦 ,  𝑎3 = −𝑘𝑟𝑧, the absolute value of the 

determinant of the Jacobian of the transformation is, 

 

|𝑑𝑒𝑡(𝑱𝑥=𝑎)| = |𝑑𝑒𝑡 ( 1 0 00 1 0𝑘𝑟𝑥𝑘0 𝑘𝑟𝑦𝑘0 −𝑘𝑟𝑧𝑘0
)| = |−𝑘𝑟𝑧|𝑘0 = |𝑘𝑟𝑧|𝑘0 , (B3) 

 

whence it is found, 

 𝛿(𝑘𝑥 − 𝑘𝑟𝑥)𝛿(𝑘𝑦 − 𝑘𝑟𝑦)𝛿(|𝐤| − 𝑘0) = 

 = 𝑘0|𝐳.𝐤𝐫| 𝛿(𝐤 − (𝐤𝐫 − 𝟐(𝐤𝐫. 𝐳)𝐳)).  (B4) 

 

Substituting Eq. (B4) into Eq. (B2) we find, 

 𝐸̃𝑆(𝐤) = −𝑅𝐸𝑟𝑘0  𝑠𝑡𝑒𝑝 (𝐤. 𝐨̂𝑘0 − √1 − 𝑁𝑂2 ) × 

 ( |𝐤−𝐤𝐫|𝟐2(𝐤−𝐤𝐫).𝐳) 𝑘0|𝐳.𝒌𝒓| 𝛿(𝐤 − (𝐤𝐫 − 𝟐(𝐤𝐫. 𝐳)𝐳)). (B5) 

 

Using the identity 𝑓(𝑥)𝛿(𝑥 − 𝑎) = 𝑓(𝑎)𝛿(𝑥 − 𝑎)   and 

simplifying we find, 

 𝐸̃𝑆(𝐤) =  𝑅𝐸𝑟𝑠𝑡𝑒𝑝 (𝐤. 𝐨̂𝑘0 − √1 − 𝑁𝑂2 ) 𝛿(𝐤 − (𝐤𝐫 − 𝟐(𝐤𝐫. 𝐳)𝐳)), 
 (B6) 

where it is noted that the term, 𝐤𝐫 − 𝟐(𝐤𝐫. 𝐳)𝐳 is simply the 

incident field with its component in the z direction reversed 

and consequently the scattered field described by Eq. (B6), 

simply describes the reflected plane wave that is either 

collected or rejected by the aperture of the instrument 

according to the step function. Although the term 𝐤𝐫 − 𝟐(𝐤𝐫. 𝐳)𝐳 

is clearly a function of the incident field wave vector, the term 

will appear frequently in the upcoming analysis and to simplify 

the notation we will denote the reflected term by 𝐤r as it arises 

such that, 

 𝐤r = 𝐤𝐫 − 2(𝐤𝐫. 𝐳)𝐳.  (B7) 

 

Returning to the diffuse component, a similar analysis shows 

that the diffusely scattered field collected by the instrument, 

can be written in k-space as, 

 

𝐸̃𝐷(𝐤) = −𝐸𝑟𝜋𝑗𝐺̃𝑂(𝐤 )|𝐤 − 𝐤𝐫|2Δ̃𝑆(𝐤 − 𝐤𝐫),  (B8) 

 

where 

 Δ̃𝑆(𝐤) = ∫ 𝑒−2𝜋𝑗𝐤.𝐫 𝑠𝐷(𝑟𝑥, 𝑟𝑦) Δ𝐹𝑆(𝐫) d3𝑟. (B9) 

 

We are now in a position to derive each term in the FVM output 𝑂̃𝑚(𝐤) = 𝑂̃𝑆𝑆(𝐤) + 𝑂̃𝑆𝐷(𝐤) + 𝑂̃𝐷𝑆(𝐤) + 𝑂̃𝐷𝐷(𝐤). 

 

The 𝑂̃𝑆𝑆(𝐤) term: 

 

First we derive the integral, 𝐼𝑆𝑆(𝐤) = ∫ 𝐸̃𝑆(𝐤′)𝐸̃𝑆∗(𝐤′ − 𝐤) d3𝑘′,  
given by, 

 𝐼𝑆𝑆(𝐤) = ∫ 𝑅𝐸𝑟𝑠𝑡𝑒𝑝 (𝐤′. 𝐨̂𝑘0 − √1 − 𝑁𝑂2 ) 𝛿(𝐤′ − 𝐤r) × 

 𝑅∗𝐸𝑟∗𝑠𝑡𝑒𝑝 ((𝐤′−𝐤).𝐨𝑘0 − √1 − 𝑁𝑂2 ) 𝛿(𝐤′ − 𝐤 − 𝐤r)d3𝑘′ .  (B10) 

 

Direct integration gives,  

 𝐼𝑆𝑆(𝐤) =  |𝑅𝐸𝑟|2𝛿(𝐤)𝑠𝑡𝑒𝑝 (𝐤r.𝐨𝑘0 − √1 − 𝑁𝑂2 ).  (B11) 

 

The contribution of this term to the output is, 𝑂̃𝑆𝑆(𝐤) =∫  𝐼𝑆𝑆(𝐤) |𝐺̃𝐼(−𝐤 𝐫)| d3𝑘𝑟 , such that, 

 𝑂̃𝑆𝑆(𝐤) = 𝛿(𝐤) |𝑅𝐸𝑟|24𝜋𝑘0 ∫ 𝑠𝑡𝑒𝑝 (𝐤r. 𝐨̂𝑘0 − √1 − 𝑁𝑂2 ) ×  
 𝑠𝑡𝑒𝑝 (−𝐤𝐫.𝐨𝑘0 − √1 − 𝑁𝐼2 ) 𝛿(|𝐤𝐫| − 𝑘0) d3𝑘𝑟.  (B12) 

 

The 𝑂̃𝑆𝐷(𝐤) term: 

 

The integral 𝐼𝑆𝐷(𝐤) = ∫ 𝐸̃𝑆(𝐤′)𝐸̃𝐷∗ (𝐤′ − 𝐤) d3𝑘′ , is given by, 

 𝐼𝑆𝐷(𝐤) = ∫ 𝑅𝐸𝑟𝑠𝑡𝑒𝑝 (𝐤′. 𝐨̂𝑘0 − √1 − 𝑁𝑂2 ) 𝛿(𝐤′ − 𝐤r) × 

 𝐸𝑟∗𝜋𝑗𝐺̃0∗(𝐤′ − 𝐤)|𝐤′ − 𝐤 − 𝐤𝐫|𝟐Δ̃𝑆∗ (𝐤′ − 𝐤 − 𝐤𝐫)d3𝑘′. (B13) 

 

Using 𝐺̃∗𝑂(𝐤) = −𝐺̃𝑂(𝐤)  and Δ̃∗𝑆(𝐤) = − 𝑅∗𝑅 Δ̃𝑆(−𝐤)   direct 

integration gives, 𝐼𝑆𝐷(𝐤) = |𝐸𝑟|2𝜋𝑗𝑅∗𝐺̃𝑂(𝐤r − 𝐤)|𝐤r − 𝐤 − 𝐤𝐫|𝟐 × 



 𝑠𝑡𝑒𝑝 (𝐤r.𝐨𝑘0 − √1 − 𝑁𝑂2 ) Δ̃𝑆(𝐤r + 𝐤 + 𝐤𝐫).  (B14) 

The contribution of this term to the output is, 𝑂̃𝑆𝐷(𝐤) =∫  𝐼𝑆𝐷(𝐤) |𝐺̃𝐼(−𝐤 𝐫)| d3𝑘𝑟, such that, 

 𝑂̃𝑆𝐷(𝐤) = −|𝐸𝑟|2𝜋𝑅∗(4𝜋𝑘0)2 ∫ 𝛿(|𝐤r − 𝐤| − 𝑘0) 𝑠𝑡𝑒𝑝 ((𝐤r−𝐤).𝐨𝑘0 − √1 − 𝑁𝑂2 )  

 × |𝐤 + (𝟐𝐤𝐫. 𝐳)𝐳|𝟐𝑠𝑡𝑒𝑝 (𝐤r. 𝐨̂𝑘0 − √1 − 𝑁𝑂2 ) Δ̃𝑆(𝐤 + (𝟐𝐤𝐫. 𝐳)𝐳) 

 × 𝛿(|𝐤𝐫| − 𝑘0) 𝑠𝑡𝑒𝑝 (−𝐤𝐫.𝐨𝑘0 − √1 − 𝑁𝐼2 ) d3𝑘𝑟 . (B15) 

 

Writing the integral in terms of the reflected component 𝐤𝐫 = 𝐤r − 2(𝐤r. 𝐳)𝐳 and noting that d3𝑘𝑟 = −d3𝑘𝑟 , we have, 

 𝑂̃𝑆𝐷(𝐤) = |𝐸𝑟|2𝜋𝑅∗(4𝜋𝑘0)2 ∫ 𝛿(|𝐤r − 𝐤| − 𝑘0) 𝑠𝑡𝑒𝑝 ((𝐤r −𝐤).𝐨𝑘0 − √1 − 𝑁𝑂2 )  

 × |𝐤 − (𝟐𝐤r. 𝐳)𝐳|𝟐𝑠𝑡𝑒𝑝 (𝐤r. 𝐨̂𝑘0 − √1 − 𝑁𝑂2 ) Δ̃𝑆(𝐤 − (𝟐𝐤r. 𝐳)𝐳) 

  × 𝛿(|𝐤r| − 𝑘0)𝑠𝑡𝑒𝑝 (−(𝐤r−(𝟐𝐤r.𝐳)𝐳).𝐨𝑘0 − √1 − 𝑁𝐼2 ) d3𝑘𝑟 .  (B16) 

 

Using the substitution 𝛿(|𝐤r| − 𝑘0)𝛿(|𝐤r − 𝐤| − 𝑘0) =𝑘02|𝑘0𝑧𝑟 𝑘𝑥−𝑘0𝑥𝑟 𝑘𝑧| 𝛿(𝑘𝑥r − 𝑘0𝑥𝑟 )𝛿(𝑘𝑧r − 𝑘0𝑧𝑟 ) (see APPENDIX A, Eq. (A9), 

and noting that Δ̃𝑆(𝐤) has no dependence on 𝑘𝑧  such that  Δ̃𝑆(𝐤 − (𝟐𝐤′. 𝐳)𝐳̂) = Δ̃𝑆(𝐤), we can write, 

 𝑂̃𝑆𝐷(𝐤) = Δ̃𝑆(𝐤) |𝐸𝑟|2𝑅∗𝜋(4𝜋)2 ∫ d3𝑘𝑟 1|𝑘0𝑧𝑟 𝑘𝑥 − 𝑘0𝑥𝑟 𝑘𝑧| × 

 𝛿(𝑘𝑥r − 𝑘0𝑥𝑟 )𝛿(𝑘𝑧r − 𝑘0𝑧𝑟 )𝑠𝑡𝑒𝑝 ((𝐤r  − 𝐤). 𝐨̂𝑘0 − √1 − 𝑁𝑂2 ) × 

 |𝐤 − (𝟐𝐤r. 𝐳)𝐳|𝟐𝑠𝑡𝑒𝑝 (𝐤r. 𝐨̂𝑘0 − √1 − 𝑁𝑂2 ) × 

𝑠𝑡𝑒𝑝 (−(𝐤r−(𝟐𝐤r.𝐳)𝐳).𝐨𝑘0 − √1 − 𝑁𝐼2 ) .  (B17) 

 

Finally after integrating over d𝑘𝑥r d𝑘𝑧r we will have 𝐤0r =(𝑘0𝑥𝑟 , 𝑘𝑦𝑟 , 𝑘0𝑧𝑟 ) and we can write, 

 𝑂̃𝑆𝐷(𝐤) = Δ̃𝑆(𝐤)𝐻𝑆𝐷(𝐤),   (B18) 

 

where,     

 

𝐻̃𝑆𝐷(𝐤) = |𝐸𝑟|2𝑅∗16𝜋 ∫ d𝑘𝑦𝑟 |𝐤−(𝟐𝐤0r .𝐳)𝐳|𝟐|𝐤|√𝑘02−|𝐤|2/4−𝑘𝑦r 2 × 

𝑠𝑡𝑒𝑝 (𝑘0𝑥𝑟 𝑜𝑥 + 𝑘0𝑧𝑟 𝑜𝑧 − 𝑘𝑥𝑜𝑥 − 𝑘𝑧𝑜𝑧𝑘0 − √1 − 𝑁𝑂2 ) × 

𝑠𝑡𝑒𝑝 (𝑘0𝑥𝑟 𝑜𝑥+𝑘0𝑧𝑟 𝑜𝑧𝑘0 − √1 − 𝑁𝑂2 ) 𝑠𝑡𝑒𝑝 (−𝑘0𝑥𝑟 𝑜𝑥+𝑘0𝑧𝑟 𝑜𝑧𝑘0 − √1 − 𝑁𝐼2 ). 

  (B19) 

And it is noted that, 

 𝑘0𝑥𝑟 = 12 (𝑘𝑥 − 𝑘𝑥𝑘𝑧|𝑘𝑥||𝐤| √4𝑘𝑁2 − |𝐤|2),   (B20) 

 𝑘0𝑧𝑟 = 12 (𝑘𝑧 + |𝑘𝑥||𝐤| √4𝑘𝑁2 − |𝐤|2),   (B21) 

 

where  𝑘𝑁2 = 𝑘02 − 𝑘𝑦𝑟 2. 
 

The 𝑂̃𝐷𝑆(𝐤) term: 

 

A similar analysis provides the 𝑂̃𝐷𝑆(𝐤) term such that, 

 𝑂̃𝐷𝑆(𝐤) = Δ̃𝑆(𝐤)𝐻𝐷𝑆(𝐤), where,  (B22) 

 𝐻̃𝑆𝐷(𝐤) = − |𝐸𝑟|2𝑅∗16𝜋 ∫ d𝑘𝑦𝑚 |𝐤+(𝟐𝐤0m.𝐳)𝐳|𝟐|𝐤|√𝑘02−|𝐤|2/4−𝑘𝑦𝑚2 × 

𝑠𝑡𝑒𝑝 (𝑘0𝑥𝑚 𝑜𝑥 + 𝑘0𝑧𝑚 𝑜𝑧 + 𝑘𝑥𝑜𝑥 + 𝑘𝑧𝑜𝑧𝑘0 − √1 − 𝑁𝑂2 ) × 

𝑠𝑡𝑒𝑝 (𝑘0𝑥𝑚 𝑜𝑥+𝑘0𝑧𝑚 𝑜𝑧𝑘0 − √1 − 𝑁𝑂2 ) 𝑠𝑡𝑒𝑝 (−𝑘0𝑥𝑚 𝑜𝑥+𝑘0𝑧𝑚 𝑜𝑧𝑘0 − √1 − 𝑁𝐼2 ) ,

  (B23) 

where components of the vector 𝐤0m = (𝑘0𝑥𝑚 , 𝑘𝑦𝑚 , 𝑘0𝑧𝑚 ) are: 

 𝑘0𝑥𝑚 = 12 (−𝑘𝑥 − 𝑘𝑥𝑘𝑧|𝑘𝑥||𝐤| √4𝑘𝑁2 − |𝐤|2),   (B24) 𝑘0𝑧𝑚 = 12 (−𝑘𝑧 + |𝑘𝑥||𝐤| √4𝑘𝑁2 − |𝐤|2),   (B25) 

where  𝑘𝑁2 = 𝑘02 − 𝑘𝑦𝑚2. 
 

The 𝑂̃𝐷𝐷(𝐤) term: 

 

The integral, 𝐼𝐷𝐷(𝐤) = ∫ 𝐸̃𝐷(𝐤′)𝐸̃𝐷∗ (𝐤′ − 𝐤) d3𝑘′, is given by, 

 𝐼𝐷𝐷(𝐤) = |𝐸𝑟|𝟐16𝑘02 ∫ d3𝑘′ |𝐤′ − 𝐤𝐫|𝟐|𝐤′ − 𝐤 − 𝐤𝐫|𝟐 ×  Δ̃𝑆(𝐤′ − 𝐤𝐫) Δ̃𝑆∗ (𝐤′ − 𝐤 − 𝐤𝐫) 𝛿(|𝐤′| − 𝑘0) 𝛿(|𝐤′ − 𝐤| − 𝑘0) ×   𝑠𝑡𝑒𝑝 (𝐤′.𝐨𝑘0 − √1 − 𝑁𝑂2 )  𝑠𝑡𝑒𝑝 ((𝐤′−𝐤).𝐨𝑘0 − √1 − 𝑁𝑂2 ). (B26) 

 

Now we will use again: 𝛿(|𝐤′| − 𝑘0)𝛿(|𝐤′ − 𝐤| − 𝑘0) = 

 



= 𝑘02|𝐤|√𝑘02 − |𝐤|2/4 − 𝑘𝑦′ 2 𝛿(𝑘𝑥′ − 𝑘0𝑥′ )𝛿(𝑘𝑧′ − 𝑘0𝑧′ ) 

 𝐼𝐷𝐷(𝐤) = |𝐸𝑟|𝟐16𝑘02 ∫ d3𝑘′ 𝑘02𝛿(𝑘𝑥′ − 𝑘0𝑥′ )𝛿(𝑘𝑧′ − 𝑘0𝑧′ )|𝐤|√𝑘02 − |𝐤|24 − 𝑘𝑦′ 2 × 

|𝐤′ − 𝐤𝐫|𝟐|𝐤′ − 𝐤 − 𝐤𝐫|𝟐 Δ̃𝑆(𝐤′ − 𝐤𝐫) Δ̃𝑆∗ (𝐤′ − 𝐤 − 𝐤𝐫) × 

  𝑠𝑡𝑒𝑝 (𝐤′.𝐨𝑘0 − √1 − 𝑁𝑂2 ) 𝑠𝑡𝑒𝑝 ((𝐤′−𝐤).𝐨𝑘0 − √1 − 𝑁𝑂2 ) (B27) 

 

After integrating along variables 𝑘𝑥′  and 𝑘𝑧′  we have, 𝐼𝐷𝐷(𝐤) = |𝐸𝑟|𝟐16|𝐤| ∫ d𝑘𝑦′√𝑘02 − |𝐤|24 − 𝑘𝑦′2 × 

|𝐤𝟎′ − 𝐤𝐫|𝟐|𝐤𝟎′ − 𝐤 − 𝐤𝐫|𝟐 Δ̃𝑆(𝐤𝟎′ − 𝐤𝐫) Δ̃𝑆∗ (𝐤𝟎′ − 𝐤 − 𝐤𝐫) ×  𝑠𝑡𝑒𝑝 (𝐤𝟎′ .𝐨𝑘0 − √1 − 𝑁𝑂2 ) 𝑠𝑡𝑒𝑝 ((𝐤𝟎′ −𝐤).𝐨𝑘0 − √1 − 𝑁𝑂2 ) (B28) 

where 𝐤0′ = (𝑘0𝑥′ , 𝑘𝑦′ , 𝑘0𝑧′ )  (as defined in (A7), (A8), (A12)).  

The contribution of this term to the output is, 𝑂̃𝐷𝐷(𝐤) =∫  𝐼𝐷𝐷(𝐤) |𝐺̃𝐼(−𝐤 𝐫)| d3𝑘𝑟 , such that, 

 𝑂̃𝐷𝐷(𝐤) = 116𝜋2|𝐤| ∫ d𝑘𝑦′√𝑘02−|𝐤|24 −𝑘𝑦′ 2 × 

𝑠𝑡𝑒𝑝 (𝐤𝟎′ . 𝐨̂𝑘0 − √1 − 𝑁𝑂2 ) 𝑠𝑡𝑒𝑝 ((𝐤𝟎′ − 𝐤). 𝐨̂𝑘0 − √1 − 𝑁𝑂2 ) × |𝐸𝑟|𝟐𝜋4𝑘0 ∫ d3𝑘𝑟 |𝐤𝟎′ − 𝐤𝐫|𝟐|𝐤𝟎′ − 𝐤 − 𝐤𝐫|𝟐 Δ̃𝑆(𝐤𝟎′ − 𝐤𝐫)  × Δ̃𝑆∗ (𝐤𝟎′ − 𝐤 − 𝐤𝐫)𝑠𝑡𝑒𝑝 (−𝐤𝐫.𝐨𝑘0 − √1 − 𝑁𝐼2 ) 𝛿(|𝐤𝐫| − 𝑘0) , (B29) 

where the components of the vector 𝐤0′ = (𝑘0𝑥′ , 𝑘𝑦′ , 𝑘0𝑧′ ) are,  

 𝑘0𝑥′ = 12 (𝑘𝑥 − 𝑘𝑥𝑘𝑧|𝑘𝑥||𝐤| √4𝑘𝑁2 − |𝐤|2),   (B30) 𝑘0𝑧′ = 12 (𝑘𝑧 + |𝑘𝑥||𝐤| √4𝑘𝑁2 − |𝐤|2),   (B31) 

where 𝑘𝑁2 = 𝑘02 − 𝑘𝑦′ 2
.    (B32) 

 


