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Abstract

We present a sonification method which we call Focused Audification (FA; previously: Augmented Audification) that allows to

expand pure audification in a flexible way. It is based on a combination of single-side-band modulation and a pitch modulation

of the original data stream. Based on two free parameters, the sonification’s frequency range is adjustable to the human hearing

range and allows to interactively zoom into the data set at any scale. The parameters have been adjusted in a multimodal

experiment on cardiac data by laypeople. Following from these results we suggest a procedure for parameter optimization to

achieve an optimal listening range for any data set, adjusted to human speech.

Keywords Sonification · Auditory display · Audification · Auditory graph · ECG data

Abbreviations

D/A Digital-to-analog [converter]

ECG Electrocardiogram

FA Focused Audification

FM Frequency modulation

GUI Graphical user interface

MIDI Musical Instrument Digital Interface

QUAD Quadratic slider design in GUI (see Sect. 5.1)

RMS Root mean squared

SSB Single-sideband modulation

SQRT Squared slider design in GUI (see Sect. 5.1)

1 Introduction

Sonification is still a young field building up a canon of

methodologies, e.g. for supporting multimodal displays. Two

of its standard methods are audification and auditory graphs.

Audification is “a direct translation of a data waveform to the

audible domain“ (cited in [16], p. 186). It is often used to

display one-dimensional, large data sets (with data display

rates of tens of kHz).
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The sonic design space map orders data along their size

on the x-axis and along their dimensionality on the y-axis

(for a full description see de Campo [5]). Therefore, audifi-

cation is to be found there on one end of x-axis. On the other

end of this axis we may find auditory graphs, a special case

of parameter mapping [11]. Auditory graphs classically use

a discontinuous pitch-time-display to display relatively few

data points.

This paper suggests an expansion of audification that may

even lead to a display comparable to an auditory graph. We

call this method Focused Audification (FA).1 It builds on

well-known techniques of signal processing, i.e., single-side-

band modulation utilizing the Hilbert transform, and pitch

modulation. Focused Audification conserves fundamental

properties of pure audification, notably the compact temporal

support and the translation of high frequency content of the

data into transient events in the sound. At the same time, both

the mean position of the frequency range and the bandwidth

of the resulting sound can be controlled by free parameters,

independently of the rate of the data display. Therefore, data

sets can be explored interactively at various time scales and in

different frequency ranges. These relationships are discussed

in detail in this paper.

The proposed method has been presented in [12] and basi-

cally evaluated with a small study on the perception of higher

1 Note that in previous publications [12,26] we termed our approach

Augmented Audification, but due to feedback from the community and

the possibility of confusion with Auditory Augmentation [2] we changed

the naming.
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statistical momentums in random noise data [26]. In Sect. 2

of this paper we discuss the background, i.e. basic properties

of audification and auditory graphs. Then, this paper summa-

rizes the signal processing algorithms of FA (Sect. 3), gives

an example of the behavior of the algorithm with seismic data

(Sect. 4), and evaluates it in a larger study (Sect. 5). The goal

of this study with laypeople and cardiac data was to find the

optimal calibration for the free parameter of FA. Concluding

on its results, a generic method for perception-based Focused

Audification of any data is proposed in Sect. 6.

2 Discussion of existingmethods

2.1 Audification

Audification is one of the oldest methods of sonification

research. A prominent, early study on the audification of

seismic signals was conducted by Speeth et al. [23]. Subjects

showed up to 90% discrimination rates between the sounds

of earthquakes from the ones of atomic bombs.

A crucial advantage of audification is the following: By

conserving the time regime of the data signal, audifications

of real physical processes are usually broad-band with a

pronounced proportion of high frequencies during rapid tran-

sients. In the task of identifying natural sounds, e.g., the

attack of musical instruments or speech signals, the tran-

sient signal portions provide important and salient features

for the human ear and thus should serve as basis for pattern

detection or recognition tasks in the auditory data explo-

ration. Many authors, e.g., Dombois and Eckel [6], have

argued in favor of a puristic approach to audification with

as little data preprocessing as possible. This strategy should

maximize the potential of the human hearing to detect yet

unknown structures in the data which might be impaired by

more sophisticated preprocessing.

The ideal audification signal has relevant auditory gestalts

within time and frequency regimes that can be well-perceived

by the human auditory system. Data sets that are problematic

in audification shall be discussed with a thought experiment:

let us assume a data stream with transient events that appear

within a range of 1 k data points and with an (aperiodic) inter-

val of roughly 10 k data points. This hypothetical data set is

shown in Fig. 1. With a playback rate of 44.1 kHz (Fig. 1a), we

find approximately four of these events per second, which is

comparable to the rate of syllables per second in English spo-

ken language2 and thus apt for human hearing. On the other

2 This is a rule of thumb according to [27]. Vowels per second is a good

estimation for syllables per second, which is correlated to the phoneme

rate in normal rate speech. An automatic estimation of speaking rate

(SR) for different languages measured the SR between 3.0 (for Man-

darin) and 4.9 (for Japanese) vowels per second for different languages

(English: 3.8) [19].

hand, each transient event lasts for approximately 22 ms and

appears as a band-limited impulse with a cut-off frequency

of around 50 Hz, which is far below the most sensitive fre-

quency range of the hearing system. If the playback rate were

to be raised by, e.g., a factor of 10, see Fig. 1b, the indi-

vidual impulses would be transposed to a more appropriate

frequency range, but at the cost of an indiscernible temporal

structure of the impulse series. Concluding from this exam-

ple, pure audification may suffer from a trade-off between

the rhythmic structure and the displayed frequency range of

individual events.

Different concepts have been elaborated to cope with this

trade-off. Worrall [28] extends the notion of audification,

and allows other means of data pre-processing: besides fil-

tering and data interpolation, i.e. compression and frequency

shifting. This wider definition of audification still excludes

the explicit synthesis of sound or the use of specific signal

models (such as the one we develop in this paper). Another

similar approach has been explored within the CoRSAIRe

project for a multisensory virtual reality environment [25].

In this project, “sonification–audification metaphors” have

been developed for a specific data set (computational fluid

dynamics, data), notably three different ways of shifting the

pitch of a signals without changing its duration. Each of these

algorithms has specific artifacts changing the audio outcome,

but all have the advantage of adapting the audified data set

better to the human listening range. This argument meets our

motivation for FA, but we use a different algorithm (leading

to different artifacts). Equally favourable to FA, Feedback

from the data experts involved in the CoRSAIRe project

found a fourth method based on FM more intuitive than the

approaches using pitch shifting.

2.2 Auditory graphs

Just as audification, auditory graphs belong to the standard

repertoire of sonification research since its beginning. Obvi-

ous benefits are the straightforward analogy to visual graphs,

which make them intuitively understandable for sighted

users, and their accessibility for non-sighted users. The data

sets used are normally small, up to a few hundred data points,

but may have several dimensions, as human audition is apt to

segregate parallel data streams [11]. Focused Audification,

depending on the setting of its parameters, may lead to a

sonification that resembles in many ways an auditory graph

(i.e., data points are mapped to pitch over time). Therefore,

we shortly discuss the design of auditory graphs in the fol-

lowing.

Earlier research [3,15] recommended using musical pitches

(e.g., MIDI notes following the Western 12-tone scale)

mapped to the y-axis and time to the x-axis. The Sonification

Sandbox [4] was possibly the largest effort to develop a gen-

eral tool for auditory graphs in such a way. From experience

123



Journal on Multimodal User Interfaces (2020) 14:187–198 189

0 0.5 1 1.5 2

Time (Seconds) @ fs=44.1 kHz

0

0.2

0.4

0.6

0.8

1

A
m

p
lit

u
d
e

0 500 1000 1500 2000

Frequency (Hz)

-50

-40

-30

-20

-10

0

L
e
v
e
l 
in

 d
B

(a) Audification with a playback rate of 44.1 kHz.
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(b) Audification with a playback rate of 441 kHz.

Fig. 1 Hypothetical data showing a possible trade-off between rhyth-

mic structure and frequency in audification. The plots on top, a show

a time signal and power spectrum of a hypothetical data set containing

some background noise and transient, low frequency events of approx-

imately 22 ms each, with energy in the lower frequency domain well

below 500 Hz. The lower plots, b show an acceleration of the audifica-

tion by a factor of 10. Now, the spectrogram shows a broad-band signal,

but single events take place at very fast rates and are hardly discernible

with the toolbox it can be concluded that most real-world

sonification applications need a more flexible software envi-

ronment. Also, we consider the limitation to 12 semi-tones

and (aesthetically unpleasant) MIDI-sounds not any more

state-of-the-art. A recent development of a general-purpose

tool for sonification is the sonification workstation (see [20]

also for a discussion of previous attempts).

In an analysis, Flowers [8] discussed promises and pitfalls

of auditory graphs. He suggested the following strategies for

successful displays:

– Pitch coding of numeric value

– Exploiting temporal resolution of human audition

– Manipulating loudness changes in a pitch mapped stream

to provide contextual cues and signal-critical events

– Using time to represent time

All strategies but the last one are taken into account in the

design of the proposed method: the last point, using time to

represent time, might be fulfilled depending on the data set.3

3 Furthermore, in the case of several data sets, Flowers suggests to

choose distinct timbres to minimize stream confusions and unwanted

3 Focused audification: themodel

For explaining Focused Audification (henceforth: FA), we

start with a simple audification. We assume a dataset x(n)

with n = 1..N data points of a constant sampling frequency

fs . In the most direct audification we take fs equivalent to the

playback rate f p , i.e., fs data points are displayed per second.

The rendering over a D/A converter with a reconstruction

filter leads to a continuous signal x(t) with a bandwidth B

between zero and 1
2

fs Hz. If fs and therefore f p is as low as a

few hundred data points per second, the resulting audification

will be in a low frequency range, where the human ear is not

very sensitive.

3.1 Frequency shifting

Therefore, as a first step, we perform frequency shifting using

a single-side-band (SSB) modulation. Applying a Hilbert

transform H (see, e.g., [18]), the original audification sig-

nal x(t) becomes the complex-valued signal xa(t):

Footnote 3 continued

perceptual grouping and, in general, to compare sonified data sequen-

tially rather than simultaneously.
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xa(t) = x(t) + j H{(x(t)} (1)

with the imaginary constant j . This analytical signal can

be written using a real-valued envelope env(t) = |xa(t)|
modulated by a phasor with the instantaneous phase θ(t) =
� [xa(t)]:

xa(t) = env(t) e jθ(t). (2)

Performing a frequency shift by ∆ f and taking the real

part of this signal leads to a SSB-modulated sound signal

xSSB(t):

xSSB(t) = Re
[

env(t) e j(θ(t)+2π∆ f t)
]

(3)

= x(t) cos(2π∆ f t) − H{x(t)} sin(2π∆ f t). (4)

The spectrum of the analytical signal, which contains

(only non-negative) frequencies between zero and B Hz, is

shifted to the range between ∆ f and (∆ f + B)Hz. Discard-

ing the imaginary part re-builds a symmetric spectrum.

The frequency shift ∆ f is a free parameter of the method,

which helps to yield a perceptually optimal frequency range

of the sonification, e.g., somewhere within the range of

100 Hz and 2 kHz. If ∆ f = 0, there is no difference to a

pure audification. A schematic illustration of the frequency

shift is shown in Fig. 2.

Let us consider two scenarios: (1) Assuming a signal band-

width B of 10 kHz, a small frequency shift of 100 Hz hardly

changes the overall signal, but might make low frequency

components of the signal better audible, as the spectrum

is now shifted to the range between 100 Hz and 10.1 kHz.

Note that in the case of large frequency shifts, the issue of

aliasing eventually has to be taken into account. (2) In the

second scenario, combining a strong frequency shift with

small signal bandwidth results in a very narrow-banded sig-

nal which might be problematic from a perceptual point of

view. The frequency shift squeezes the original spectrum to

a pitch range (∆ f + B)/∆ f . For example, if the bandwidth

of the primary audification signal is 100 Hz, and the spec-

trum is shifted by ∆ f = 500 Hz, the resulting bandwidth is

500–600 Hz. Speaking in musical terms, all frequency com-

ponents of the original data stream are now concentrated

within a minor third. Fluctuations of such narrow-banded

Signals might be difficult to perceive.

3.2 Exponential frequencymodulation

Therefore our approach is extended by modulating the fre-

quency shift of the phasor of the analytic signal xa(t).

The instantaneous frequency shift of the modulator, fi (t),

encodes the numeric data values of x(t) as pitch, i.e. as an

exponential function of x(t), following Flowers’ recommen-

dations:

fi (t) = 2cx(t)∆ f . (5)

The freely choosable parameter c controls the magnitude

of the modulation:

Setting c = 0 results in a constant instantaneous frequency

of the frequency modulation (FM) which is then independent

of the data values x(t). This results in a pure frequency shift

as described in Sect. 3.1.

Setting c = 1 leads to a transposition of one octave higher

and lower for signal values x(t) = ± 1. The value of c has

to be carefully chosen depending on the signal amplitude

and bandwidth to prevent aliasing resulting from strong FM

sidebands.

Integrating the instantaneous frequency results in the

instantaneous phase φi (t), which serves as a phase modu-

lating term for the analytical signal,

φi (t) =
∫ t

0

2π ∆ f 2cx(τ )dτ. (6)

The complete model of Focused Audification is thus

defined by:

xF A(t) = Re
[

env(t) e j (θ(t)+φi (t))
]

(7)

= x(t) cos(φi (t)) − H{x(t)} sin(φi (t)). (8)

The model of FA is controlled by two freely choosable

model parameters, ∆ f and c, that can be set according to the

explorative goals of the sonification. Figure 2 illustrates the

effect of the parameters with a schematic data set as compared

to the absolute hearing threshold.

One issue of FA when dealing with signals of harmonic

complexes needs to be discussed. Many physical processes

are—at least approximately—periodic. The related signals

therefore consist of harmonic partials, and their audification

makes use of human audition which groups these frequency

components into a single auditory gestalt. In pure audifica-

tion, frequency ratios and thus the periodicity of harmonic

complexes are preserved, resulting in one “sound” with a cer-

tain timbre and pitch. In FA on the contrary, the frequency

shift destroys the harmonic relationship between the partials

and thus the periodicity of the signal. This results in a com-

plex superposition of individual sinusoidal tracks instead of

one gestalt with a certain timbre.

4 The example of FA of seismological data

As an example with real scientific data we take a file of

seismological data from the Incorporated Research Institu-
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Fig. 2 A schematic spectrum of a pure audification signal X( f ) of

bandwidth B is compared to the absolute hearing threshold in a. The

frequency shift by ∆ f , depicted in b, transposes the spectrum to a more

sensitive region of hearing, while narrowing the resulting pitch range.

This can be compensated by the frequency modulation controlled by the

parameter c. The resulting signal X F A( f ) is located in a more sensitive

region of human hearing and has comparable bandwidth to the original

signal X( f )

tions for Seismology [13]. The data set is a seismological

event with 5 s length given f p = 44.1 kHz. Figure 3a shows

the spectrogram. The appertaining sound examples can be

found at http://phaidra.kug.ac.at/o:92490. The event is char-

acterized by an impulsive sequence in the beginning with a

bandwidth of around 5 kHz. The rest of the example shows

relevant signal energies within 600 Hz bandwidth. The first

half of the data set, we find high energies at very low fre-

quencies that are perceivable as a low pitched glissando in

the pure audification.

For focused audification, the playback rate is now reduced

by a factor of 4 ( f p = 5.5 kHz) and the frequency shifted

by ∆ f = 250 Hz in order to stay in the audible range, see

Fig. 3b. A little pitch modulation of one semi-tone (for signal

values of 1) is added as well, c = 1/12. These settings allow

for a better resolution both in time and frequency of what

was a glissando in the original file.

Zooming into the glissando sequence, Fig. 3c, the fre-

quency is shifted even more, δ f = 500Hz. The modulation

of c = 3/12 leads to a pitch transposition of a minor third.

Fig. 3 Spectrograms of a seismological data set of ca. 5 s length with

a bandwidth of up to 5 kHz (dynamic resolution is limited in the plot),

stemming from [13]: a pure audification, b FA, and c FA of section

12–25 seconds (with varying parameter settings)

The sound behaves as an auditory graph, and the former dull

glissando event can be explored in detail.

5 Listening test with electrocardiogram data

In this section we present the evaluation of FA in an interac-

tive setting. The main focus of the presented experiments was

the adjustment of the free parameters of the model. As data

set we chose electrocardiogram (ECG) data: on the one hand,

there are well-established, scientifically labeled data sets of

ECG data available. On the other hand, these are commu-

nicable even to medical laypeople—our test subjects—who

are able to categorize these data (this is arguable as, e.g., Bal-

lora et al. [1] have shown that part of their test subjects could

achieve 90% correct identification rates with ECG data in a

sonification of four different cardiac states). Previous soni-

fication research on ECG signals was conducted by Worrall

et al. [29] and Terasawa et al. [24], with a more diagnostic

focus.

We performed a pilot test and consecutive experiment,

with both quantitative and qualitative analysis, to answer our

research questions:
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Fig. 4 Normal ECG trace (“sinus rhythm”) comprising the P wave

(representing atrial depolarization) and the QT interval (depolarization

and repolarization of the ventricles). Source: “SinusRhythmLabels” by

Agateller (Anthony Atkielski), licensed under Public Domain via Wiki-

media Commons

– Which are the optimal (preferred and efficient) inter-

individual parameter settings for the FA of ECG signals?

– Which general lessons can be learned using our approach

in an interactive, explorative setting?

5.1 Experiment design

5.1.1 Choice of data files

We used data from the online MIT-BIH Arrhythmia Database.

It is one of the most used ECG databases due to its long and

consistent data series [10,14,17], digitized with an average

sampling rate of 360 Hz.

One cycle of the basic ECG trace is shown in Fig. 4. Dif-

ferent types of arrhythmias (i.e., irregular heartbeats) have

lengthened or shortened intervals within one cycle, or may

exhibit an abnormal polarity of the signal part. Furthermore,

some arrhythmias appear alternating, where each second or

third heartbeat is different.4

For our experiment, we chose three types of cardiac states,

as labeled in the database: “Paced rhythm”, “Premature

ventricular contraction” and “Ventricular trigeminy”. This

selection was made following the consultation of an internist

with specialization on cardiac insufficiency, ensuring that

4 In analyzing the ECG signal, the cardiologist uses a template heart

beat (averaged over, e.g., a hundred beats) for each of the twelve ECG

leads (i.e., taken from 12 positions on the patient’s body), and measures

their behavior. This process is often automated today using specialized

algorithms to discern different arrhythmias. Still, the expert knowledge

of the cardiologists comes into play for border cases, when s/he uses

the data plots to explore the signal, as in previous times.

the signals show differences that are obvious to laypeople.

For each of those, we used three segments of three different

patients of 20 s length each (i.e., there were 9 different files

divided in three anonymized groups, A, B, and C). The files

showed some variability based on the individuality of the

patients, both in terms of heart rate and the form of the sig-

nal. The mean maximum amplitude was 0.32 with a standard

deviation of 0.06 (calculated over the means of the amplitude

spread for each file).

5.1.2 Scenario and task

Our scenario was the usage of FA to monitor ECG data in

real-time in an explorative setting. The subjects‘ task was to

find one optimal parameter set (i.e., for frequency shift and

pitch modulation) for all nine sound files, with the goal to

(a) be able to hear differences between the groups A, B, and

C (and verbalize their findings) and

(b) have the most amenable sound possible.

NB We did not test if FA is better (e.g., more efficient or its

sound more amenable) than other sonification approaches.

Developing new methodologies for sonification requires to

work also with well-known data sets and environmental con-

ditions of real, scientific, data. For sorting the chosen cardiac

states by auditory means a variety of methods could be

chosen. The states differ from each other and might even

be differentiated by pure audification. In our experiment,

subjects were free to choose their preferences from pure audi-

fication to FA within a far range of parameters. The efficiency

of FA versus, e.g., audification, can be deduced by the theo-

retical considerations regarding the human hearing in Sect. 2,

and would need further testing.

5.1.3 Test conditions

The procedure was repeated in four conditions with differ-

ent playback rates, see Table 1. We chose these values for

the following reasons: we wanted to explore the two free

parameters ∆ f and c, while the playback rate was freely

choosable as well. This 3D-space of inter-depending factors

is arguably too complex to fully explore within the limited

Table 1 Test conditions of pilot test [only conditions (1)–(3)] and

experiment [conditions (1)–(4)] with ECG data, based on a sampling

frequency, fs = 360 Hz

(1) Real-time f p1 = 8 kHz

(2) Slow f p2 = 1
4

f p1 = 2 kHz

(3) Fast f p3 = 5 f p1 = 40 kHz

(4) Adjusted f pa = 3.6 f p1 = 28.8 kHz
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time of an experiment. Therefore we fixed three playback

speeds in independent conditions. In real-time, the heartbeat

of a healthy person varies between 50 and 100 beats per

minute, i.e. roughly 1 Hz. Exploring the details of each indi-

vidual cycle as shown in Fig. 4 requires a slower playback

rate that we set to one fourth of real-time as a result of infor-

mal tests by the authors. For exploring the macro-structure

over several cycles, the acceleration of a factor of 5 was cho-

sen, leading to a rhythm of roughly 5 beats per second, the

upper range of the speaking rate measured as vowels per sec-

ond (see footnote in Sect. 2.1 and [19]). In the pilot test, we

only tested conditions (1) to (3). For the full experiment, we

added a fourth condition with adapted task: using individual

averages, ∆ fmean and cmean , as calculated over the condi-

tions (1) to (3) for each subject, the subject should set the

optimal playback speed.

5.1.4 Test procedure

Figure 5 shows the graphical user interface (GUI) of the

experiment. For each condition, the subjects were free to

choose any sound file and change the parameters as often and

as long as they wanted. The experiment was accompanied by

an observer, who led through it and collected qualitative data

based on an open questionnaire. Questions covered differ-

ences between the sound file groups A, B, and C; between

the playback speeds, i.e., conditions; and general remarks on

the sound quality and the understanding of the mapping (in

particular, the correlation between the graph and the sound).

Test design of the pilot test The pilot test consisted of two

successive rounds that were repeated after a pause that ranged

from one hour to 2 days for each subject. The only difference

between round one and round two was the use of a differ-

ent slider design. Our hypothesis was that participants might

rely on their visual memory of the slider positions in the first

Fig. 5 Graphical user interface used in the pilot test. Subjects could

choose out of nine sound files sorted in three groups (anonymously

labeled A0–C3). The waveform was shown with a reference of the

position of the data readout. (The graphics show aliasing which is usual

for cardiologists and was therefore not adjusted. We indicated this fact to

the subjects.) Two sliders without numerical reference and with simple

labeling (“Frequency shift” and “Pitch modulation”) could be adjusted

freely

round. Randomly alternating, the subjects were assigned one

or the other design first: either the “squared” design (QUAD),

where the slider value x behaved like x = pos2, or the

square-rooted one (SQRT), where x = √
pos.

The range for the frequency shift ∆ f was [0, 2000]Hz

with varying resolution of maximally 30 Hz for the begin-

ning/end of the slider depending on the slider design (QUAD

or SQRT). The pitch modulation c could be chosen within

[0, 10] with a maximal step-size of 0.4.

The pilot test showed statistical differences between the

two slider designs: this was obviously not intended and due

to poor experiment design. Our main hypothesis is that the

SQRT design is perceptually counter-intuitive as compared

to the exponential dependancy between pitch and frequency.

The QUAD design is more similar to the psychometric curve

of pitch sensitivity [21]. For this reason we re-designed the

interaction paradigm of setting the parameters for the main

experiment.

Test design of the experiment Instead of sliders in the GUI,

we used an Apple Mighty Mouse5 with one miniature track-

ball that served as a simple, “endless” slider interface. The

subjects did thus not receive any visual or tactile feedback

on the position of the parameter setting as compared to its

possible range.

The experiment was conducted in one round.

5.1.5 Test subjects and time

For the pilot test, 12 test subjects were recruited out of the

colleagues of the authors and the authors themselves, i.e.,

all experienced listeners, but all laypeople in the field of

medicine/cardiology (7 out of 12 with a certified hearing

loss of less than 15 dB, being part of a trained expert listen-

ing panel [9,22]). In the experiment, 14 subjects participated

out of which 7 had already taken part in the pilot test (5 of

them are part of the trained expert listening panel).

The experiment took roughly 15 min each.

5.2 Results

First, we compared results from the two slider designs in the

pilot test with the ones of the experiment. Figure 6 shows the

95% confidence ellipses for the parameter settings chosen

by the participants. The influence of the slider design on c

is not significant for the mean nor the median (p > 0.43).

However, in the QUAD slider design, participants generally

chose smaller values for ∆ f than in the SQRT design (p <

0.001). The sequence of the presented slider designs had no

significant influence (p = 0.55 for c and p = 0.41 for ∆ f ).

Figure 6 also shows that the mean results of the QUAD design

5 https://en.wikipedia.org/wiki/Apple_Mighty_Mouse.
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Fig. 6 95% confidence ellipses of mean parameters for the two slider

designs SQRT and QUAD of the pilot test (“Exp. 1”) and the linear

endless design of the experiment (“Exp. 2”), averaged over all partici-

pants and playback rates. The confidence ellipses were computed from

the eigenvalues and eigenvectors of the covariance matrix between ∆ f

(averaged logarithmically) and c (the eigenvectors define the orienta-

tion of the ellipses; and the eigenvalues define their semi-axes, which

are scaled from variance to confidence interval). The y-axis shows the

perceived frequency shift, and the x-axis is scaled over real octaves (as

calculated from the averaged amplitude spread of the original files used,

see Sect. 5.1)

Table 2 Results for aggregated results of pilot test (QUAD) and exper-

iment

C ∆ fm ∆ fstd ∆ fcon f cm cstd ccon f

(1) 279 146–534 199–391 3.11 ± 2.74 ± 1.43

(2) 274 151–498 200–377 1.91 ± 1.26 ± 0.67

(3) 298 145–614 204–434 3.26 ± 2.93 ± 1.53

all 290 150–561 240–350 2.73 ± 2.39 ± 0.68

For settings of parameters ∆ f and c in three conditions and the overall

mean of all data are given: mean values (m), standard deviations (std),

and 95% confidence intervals (conf)

coincide with the mean results of the experiment. Therefore,

we summarized the results from the QUAD slider design

of the pilot test and the ones from the endless slider of the

experiment in the further analysis.

Results of the experiment are given in Table 2, showing

mean, standard deviation, and 95% confidence interval for

∆ f and c for all three conditions and the overall average.

The mean ideal playback rate (for the individually calculated

mean parameters, i.e. condition (4) in Table 1) was found to

be 3.6 (minimum 0.9, maximum 7, standard deviation 1.7).

Figure 7 shows the summarized results for the settings

of parameters, averaged over all conditions. We may con-

clude a useful parameter range for the ECG data between

∆ f = [240, 350]Hz and c = [2.04, 3.41]. (These values

have to be seen in relation with specificities of the ECG data

signal, which has an average maximum amplitude of 0.32,

a standard deviation of 0.06, and an effective bandwidth of
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average

Fig. 7 General results averaged over all participants (all of the exper-

iment and only QUAD slider design of the pilot test) for the three

playback rates as confidence ellipses, cf. Fig. 6. Averaging over the three

playback rates (i.e., the black encircled ellipse), adjusted values were

found within the region of ∆ f = [240, 350]Hz and c = [2.04, 3.41]
octaves

4.4 Hz.) The whole parameter space as provided in the sliders

of up to 2000 Hz and 10 octaves has not been exploited by

far. All different playback speeds of the three conditions use

the same frequency shift, only the slow condition shows a lit-

tle narrower distribution of c-values. There is no, e.g. linear,

trend that could be expected with raising playback rate: given

a heartbeat frequency of, e.g., 1 Hz, the playback conditions

lead to heartbeat rates of 0.25 Hz (slow), 1 Hz (real-time), and

5 Hz (fast). This initial offset can be neglected as compared

to a frequency shift of 240–350 Hz. Therefore, the ellipses in

Fig. 7 are all mainly overlapping.

5.3 Discussion

The results show a clear, inter-individual preference of set-

ting the parameters to a specific range. We looked into more

detail why this could be. The findings in Fig. 7 show a rather

uniform distribution, with a few outliers. We hypothesized

that the test subjects tried to set the resulting spectra accord-

ing to their preferred listening range, e.g., as used in speech.

We therefore computed the spectra from the audio files as

resulting from the parameter settings for each subject, and

compared these spectra to an averaged speech spectrum com-

puted from English, French, and German female and male

speakers from EBU SQAM recordings [7]. Figure 8 shows

the spectra of sound files of FA for different conditions. Fig-

ure 8a depicts all individual spectra for real-time and Fig.

8b “typical” spectra for each condition. A typical spectrum

is calculated by taking the logarithmically averaged maxi-

mum and average –6dB bandwidth and fitting these values

to a Gaussian distribution. It turned out that the individual
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Fig. 8 Spectra (RMS levels in third-octave bands) of the sound files

using Focused Audification as adjusted by the 14 subjects of the exper-

iment in comparison to the average speech spectrum computed from

English, French, and German female and male speakers from EBU

SQAM recordings [7]: a individual spectra and average (Gaussian dis-

tribution fit to logarithmically averaged maximum and average −6 dB

bandwidth) for playback rate of 1 (i.e., real-time), b average spectra

(calculated as in a) for each condition

spectra of FA of the ECG signals are distributed within the

speech spectrum, showing a much smaller bandwidth due to

the original ECG signal, see Fig. 8a for the real-time condi-

tion. The mean spectra for all conditions shown in Fig. 8b

reveal that their main energies lie in the region where also

speech has most energy.

We may conclude that test subjects tried to adjust the spec-

trum resulting from the FA to the region that they are used

to by speech. Furthermore, results of the mean ideal play-

back rate (based on a heartbeat rate of approximately 1 Hz)

correspond to the rate of syllables in, e.g., English language,

which is approximately 4 Hz as discussed in Sect. 2.1.

Finally, we may draw general conclusions from the qual-

itative results on the effectiveness of the new method.

Preliminary qualitative research of the answers of the test

subjects lead to the following conclusions:

– FA is efficient for categorizing data Most subjects could

verbalize differences between the data categories A, B,

and C. As far as the understanding of the authors is

concerned (all of us being medical laypeople), these dif-

ferences correspond well to the specificities of the cardiac

arrhythmias as described in the database.

– FA is flexible in interactive data exploration In the exper-

iment, we could categorize the participants into two

groups: the larger one focused on rhythmic aspects and

preferred the fast condition. A smaller group of subjects

liked the slow condition better because they were more

interested in the details of the modulation within one

heartbeat cycle. This finding shows one of the benefits of

FA: the interactive, seamless setting of parameters allows

to focus on different aspects or scales of a data set. Cardi-

ologists focus both on the behavior within one heartbeat

and the general rhythm. Both behaviors have been found

and explored by our laypeople listeners.

– FA provides an acceptable sound Participants were rather

neutral towards the sound quality, many stating that

within the context it would be ok (the context had not

been defined but assumed by the listeners to be a clinical

one). A few participants stated that they would not like

to listen to the sound for a longer period. The relation-

ship between the data plot and the sound were reported as

clear, even if no participant drew 100% correct conclu-

sions about the underlying mapping. Many participants

hypothesized about the data sets, thus they clearly used

our approach to explore the data.

Obvious interpretations on the data (e.g., “like a heart-

beat”, “again arrhythmies”) were equally mentioned

as music metaphors (“a syncopated rhythm”, “strange

beat”) or technical ones (“metallic piston noise”, “back-

ground noise as in our server room”, “as a remote disco

sound”, “chaotic”), and general statements (“unagi-

tated/dull”, “annoying”, “cool/interesting”). It would

need a cardiologist to check if the individual findings of

the participants could be useful in diagnosis.

6 Optimized parameter selection for FA

Concluding from the experiment of Sect. 5 we propose a pro-

cedure for selecting the FA parameters ∆ f and c for arbitrary

data sets. These are optimal in the sense that they adjust the

resulting spectrum of the FA as much as possible to the spec-

trum of average human speech.
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1. Normalize the analytical signal to a maximum amplitude

of 1.

2. Find relevant events in the signal (either by some a-priori

analysis or statistical methods, e.g., an auto-correlation

method), and calculate their mean rate fevent related to

the sampling rate of the signal (e.g., one event every 100

samples).

3. Choose the playback rate f p for the FA signal in a way

that on the average 3–5 of the relevant events take place

within one second, rspeech ∈ [3..5], to approximate a

typical speaking rate,

f p =
rspeech

fevent

(9)

4. Calculate the effective bandwidth Bsig of the analytical

signal xa(t), i.e. the central second order moment (the

variance) of the power spectrum.6 (Note: if the relevant

events constitute only a small part within a long data

series, take only the bandwidth of this sequence.)

5. The effective bandwidth of the typical speech spec-

trum Bspeech ranges between flow,speech = 125 Hz and

fup,speech = 500 Hz, i.e., over 2 octaves, and exhibits

a geometric mean frequency fmid,speech at 250 Hz (see

Sect. 5.2). In general,

fmid =
√

fup · flow (10)

Based on Bspeech we set ∆ f equal to fmid,speech

∆ f = fmid,speech . (11)

By this we achieve a frequency shift of the original sig-

nal spectrum to the typical center frequency of the speech

spectrum.

Equation 11 is an approximation for signals with negligi-

ble bandwidth Bsig as compared to Bspeech (as is the case,

e.g., for the ECG signals in the experiment above). For the

case where Bsig is broadband, ranging from flow,sig =
fsig − Bsig/2 to fup,sig = fsig + Bsig/2, we need to

account for the logarithmic frequency scale and the fre-

quency shift ∆ f has to satisfy the following equation:

(∆ f + flow,sig) · (∆ f + fup,sig) = f 2
mid,speech (12)

Solving the quadratic equation gives as the one physical

solution

∆ f = − fsig +

√

f 2
mid,speech +

B2
sig

4
(13)

6 Bsig = 2 ·
√

∫

|Xa ( f )|2( f − fsig)2d f
∫

|Xa ( f )|2d f
with the spectral centroid fsig =

∫

|Xa ( f )|2 f d f
∫

|Xa ( f )|2d f
.

For the special case of low-frequency signals,

(Bsig/2) ≪ fmid,speech, (14)

we may approximate:

∆ f ∼ fmid,speech − fsig. (15)

6. The optimal value of the modulation parameter c is based

on the effective speech bandwidth and is set to c = 1 for

amplitude-normalized narrow-band signals. For broad-

band signals, the following equation has to be solved for

c:

2c =
fup,speech

∆ f + fup,sig

= 2 ·
fmid,speech

∆ f + fup,sig

(16)

Again, for the special case of low frequency signals

(Eq. 14), the optimal value of the modulation parameter

c can be approximated7 by:

c ∼ 1 − 0.7 ·
Bsig

fmid,speech

(17)

In the case of data sets exhibiting different time regimes

of information, i.e. a larger rhythmic structure of events and

individual events of interest, we recommend selecting opti-

mal values for f p, ∆ f , and c for every event rate found in

Step 2 and let the user explore all of them.

With this semi-automatic selection of parameters for FA,

the resulting spectrum of the sonification is similar to the one

of speech, and thus comfortable for human hearing.

7 Conclusions and outlook

We presented Focused Audification as a method that allows to

adjust a sonification between a pure audification and a pitch-

based auditory graph. As opposed to pure audification, where

only the playback rate can be changed, two more model

parameters can be chosen independently. One parameter, ∆ f ,

controls the magnitude of a frequency shift. The second, c,

sets the excursion of a pitch modulation. The implementa-

tion of FA is simple and preserves preferable properties of

audification whilst permitting a true “zooming” at any time

scale for the interactive exploration of a data set.

7 Using the identity x = eln(x) yields

ec·ln 2 = eln 2−ln(1+Bsig/2· fmid,speech ),

c · ln 2 = ln 2 − ln(1 + Bsig/(2 · fmid,speech)), and

c = 1 − 1.4427 · ln(1 + Bsig/(2 · fmid,speech)).

Since Bsig/(2· fmid,speech) ≪ 1 and taking into account that ln(1+x) ∼
x for x ≪ 1, the logarithm can be approximated. This leads to c =
1−1.4427 · Bsig/(2 · fmid,speech) or c = 1−0.7213 · Bsig/ fmid,speech ,

which leads to Eq. 17.
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The method has been discussed by the example of a seis-

mological data set. Preferred and efficient settings for the

model’s free parameters have been explored in an experiment

with ECG data. They appeared to be adjusted in a relatively

narrow region, whose spectrum has maximum energy within

the one of speech. Therefore we concluded on a procedure

to find parameters for FA for any data set in such a way that

their resulting spectrum is similar as much as possible to the

one of speech. Further research has to test the procedure with

different types of data and check the efficiency of FA against

other sonification methods.
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Appendix

The software implementation of the proposed method is pre-

sented in the following in order to facilitate its use. We

implemented FA using both MATLAB8 and SuperCollider

(SC).9 MATLAB allows for an analytic use of the method,

8 https://www.mathworks.com/products/matlab.html.

9 https://supercollider.github.io/.

Fig. 9 Synth definition for an FA implemented in SuperCollider (Ver-

sion 3.9.3). The implementation of FA in SC starts from a given buffer

b, with an adjustable playback rate and a start position startpos

from which the buffer read-out starts. The model parameters are called

deltaf and c according to the model definition in Eq. 6. The instan-

taneous frequency fMod is defined, its sine and cosine calculated. The

existing unit generator HilbertFIR returns a two-dimensional array:

hilb[0] contains the primary signal sig (and is multiplied by the

cosine), hilb[1] contains its Hilbert transform (which is multiplied by

the sine). The final output is the difference between those two, according

to Eq. 8

thus we prepared the sound examples and plots discussed

in Sect. 4 in MATLAB. SuperCollider, on the other hand, is

more handy for real-time, interactive use of the method, and

was thus used for the experiment described in Sect. 5. We

present the basic SC Code in Fig. 9.
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