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N
anolithography comprises the set of

techniques that allow the reduction

of the dimensions of materials as

well as the fabrication of nanodevices, gen-

erally through top-down techniques.1 Some

well-known examples of nanolithography

techniques are optical lithography, electron-

beam lithography, and nanoimprint litho-

graphy. Such techniques have recently been

applied to the promising field of flexible

electronics.2�10 Flexible electronics is a

broad field in which electronic devices are

built into flexible substrates for applications

in low-cost microelectronics, portable bio-

medical applications, conformable chemical/

physical sensors, lightweight displays and

solar cells, etc. Within flexible electronics,

transparent substrates are of special interest

for applications in photonics and opto-

electronics, giving rise to the subfieldnamed

transparent flexible electronics (TFE). TFE is

expected to reach applications in trans-

parent electrodes for displays and photovol-

taic or solar cells,11�13wearable computers,14

smart contact lenses,15 etc. One of the re-

maining challenges in this field is to imple-

ment the existing general nanolithography

techniques, which have been developed

to meet the demands of standard Si-based

semiconductor technology. However, diffi-

culties arise due to issues such as chemical

compatibility, substrate roughness, mechan-

ical or thermal instabilities, and charging

effects. In the present work, we demonstrate

the feasibility of using focused electron and

ion beam induced deposition (FEBID/FIBID)

techniques to create functional (electrically

and optically active) micro- and nanoscale

patterns on transparent flexible polycarbon-

ate substrates.

FEBID and FIBID are additive-lithography

techniques where precursor molecules de-

livered by a gas-injection system become

adsorbed onto a surface and are dissociated

by a focused electron or ion beam, creating

a local deposit. FEBID and FIBID permit high-

resolution nanopatterning. In fact, by using

a Pt metallorganic precursor, 3 nm Pt dots
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ABSTRACT The successful application of focused electron (and ion) beam

induced deposition techniques for the growth of nanowires on flexible and

transparent polycarbonate films is reported here. After minimization of charging

effects in the substrate, sub-100 nm-wide Pt, W, and Co nanowires have been

grown and their electrical conduction is similar compared to the use of standard Si-

based substrates. Experiments where the substrate is bent in a controlled way

indicate that the electrical conduction is stable up to high bending angles, >50�,

for low-resistivity Pt nanowires grown by the ion beam. On the other hand, the

resistance of Pt nanowires grown by the electron beam changes significantly and reversibly with the bending angle. Aided by the substrate transparency, a

diffraction grating in transmission mode has been built based on the growth of an array of Pt nanowires that shows sharp diffraction spots. The set of

results supports the large potential of focused beam deposition as a high-resolution nanolithography technique on transparent and flexible substrates. The

most promising applications are expected in flexible nano-optics and nanoplasmonics, flexible electronics, and nanosensing.

KEYWORDS: nanolithography . focused electron beam induced deposition . flexible transparent electronics . nanowires .

diffraction gratings . magnetic materials . superconducting materials
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have been created with a scanning electron micro-

scope on thin carbon membranes16 and Si sub-

strates,17 and 10 nm-wide Pt nanowires have been

grown with a focused ion beam.18 Besides the high

resolution, FEBID and FIBID have additional advan-

tages such as the capability to grow three-dimensional

structures19,20 and their potential use on unconven-

tional surfaces such as cantilever tips.21,22However, the

implementation of FEBID and FIBID techniques in

flexible electronics for the fabrication of high-resolution

nanodevices remains unexplored. Similarly, there is

limited work on the use of these techniques for the

fabrication of optical elements,23�25 andmoreover, the

use of flexible substrates can provide nanodevices with

optical changes controlledby the substrate bending.26,27

In the present work, we challenge the growth of high-

resolution functional materials by FEBID and FIBID on

transparent and flexible substrates for potential use in

TFE. Polycarbonate (PC) substrates have been chosen

since they offer a number of advantages.28 PC is a

common engineering plastic used in multiple applica-

tions such as compact discs, lenses, cars, constructive

parts, cell phone cases, etc. It shows good temperature

resistance (Tg = 147�), mechanical resistance, chemical

resistance (to alcohols and diluted acids) and optical

properties (almost transparent at wavelengths down

to 400 nm). The transparency of PC, in combination

with its lightweight compared to glass, has made it

widely used in optical applications such as sunglasses,

contact lenses, swimming goggles, automotive head-

lamps and windscreens in vehicles. Furthermore,

the nanopatterning of PC substrates has allowed

the exploration of some photonic applications of this

material. For example, Choi et al. have used an Atomic

ForceMicroscope to pattern grating nanostructures on

PC substrates,29 while Burghoorn et al. have explored

the nanopatterning of PC substrates by means of

nanoimprint techniques for application as antireflec-

tive elements.30 Given its physical and chemical prop-

erties as well as its broad range of applications, PC is an

ideal candidate for TFE applications. Herein, we report

that the nanopatterning of PC substrates by means of

FEBID and FIBID techniques is feasible, allowing the

exploration of interesting effects and devices.

RESULTS AND DISCUSSION

Growth of Nanowires on Polycarbonate Substrates. We

have first addressed the feasibility of FEBID and FIBID

growth on PC substrates. The following available

precursor gas injection systems have been studied:

(CH3)3Pt(CpCH3), W(CO)6, and Co2(CO)9. In all cases, the

main barrier to obtaining the desired deposits arises

from charging effects occurring on the substrate. This

type of problem is typical of insulating substrate

materials due to the use of e� in FEBID and Gaþ in

FIBID, but nevertheless can be managed in several

ways. In our case, we have performed the growth close

to metallic pads to allow easier charge evacuation.

Once the charging effects are minimized, it is possible

to target the growth of narrow structures, which is one

of the main advantages of this technique. To obtain

such high lateral resolution, it is necessary to use low

beam currents, of the order of a few picoampere (pA),

which have small beam spots. As can be noticed in

Figure 1, it is possible to grow nanowires of aspect ratio

>200. The length of the nanowires has been fixed to

Figure 1. (a) Sketch showing the techniqueused togrownanodeposits onflexible and transparent polycarbonate (PC) substrates.
Scanningelectronmicrographsof thegrownnanowires indicate theachievementof high lateral resolution: 50nmforPtnanowires
by FEBID (b); 95 nm for Co nanowires by FEBID (c); 60 nm for W nanowires by FIBID (d); 80 nm for Pt nanowires by FIBID (e).
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20 μm, and the width has been targeted to be as small

as possible. The best results obtained after growth

optimization are shown in Figure 1, with the corre-

sponding widths of 50, 95, 60, and 80 nm, respectively,

for deposits of Pt by FEBID, Co by FEBID, W by FIBID,

and Pt by FIBID. The details about the growth of these

nanowires are described in the Methods section.

Figure 1 demonstrates that the use of FEBID and FIBID

as nanolithography techniques on PC substrates is

viable. Despite this, it is worth mentioning that the

use of insulating substrates like PC is prone to charging

effects and loss of lateral resolution of the grown

deposits. This can be circumvented by some charge

compensation strategy such as the use of an electron

gunwhendepositingwith the ion beam, adjustment of

the working voltage, appropriate design of the metal

structures around the FEBIP working area, and so forth.

We have selected three types of nanowires (Pt

by FIBID, W by FIBID, Co by FEBID) to perform their

topography characterization by atomic force micro-

scopy (AFM). As shown in Figure 2, the polycarbonate

substrate roughness is in the 5 nm range and

shows some periodic structure of unknown origin.

The thickness of the nanowires can be very precisely

determined with these measurements, but the appar-

ent width observed in these measurements is deter-

mined by the convolution of the intrinsic nanowire

width and the AFM tip dimensions. For that reason,

the width is obtained from SEM images. The Pt, W,

and Co nanowires are continuous and their roughness

is comparable to that of the substrate.

Electrical Characterization of the Nanowires Grown on Poly-

carbonate Substrates. For many applications, one of the

main issues of focused beam induced deposition

techniques is the low metallic content and the corre-

sponding high electrical resistivity.31 In the Methods

section, data on the compositional study of the depos-

its can be found. These data indicate that the deposit

composition is similar to the one measured in deposits

grown on conventional substrates. To investigate the

resistivity of the grown nanowires on PC substrates

in comparison with the use of standard substrates

(Si, SiO2, etc.), we have first tackled the fabrication of

metallic Al contact pads by optical lithography on the

PC substrate. As described in the Methods section,

some adjustments were required with respect to the

Figure 2. AFMmeasurements of some of the nanowires grown on the polycarbonate (PC) substrates: Pt by FIBID, W by FIBID,
and Co by FEBID.
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standard process but there was no problem in gener-

ating clean Al contact pads, as shown in Figure 3. One

of the properties of the PC substrate, its flexibility,

is clearly observable in Figure 3a. The contact pads

were designed to allow the growth of long nanowires

(up to 50 μm or so) in the central part. To connect

the nanowires to the Al contact pads, rectangular Pt

deposits were grown by FIBID. The electrical resistivity

measurements were performed using a microprobe

station that allows precise location of the probes on

the Al pads. Images of the probes are displayed in

Figure 3b and of a typical nanowire in Figure 3c.

Current-versus-voltage measurements of the following

types of nanowires have been carried out to investi-

gate their resistivity: Co by FEBID, W by FIBID, and Pt by

FEBID and FIBID. The corresponding results are shown

in Figure 3d. All the nanowires display linear current-

versus-voltage in the voltage range studied and the

absolute values of resistivity are similar or lower than

those found using standard substrates. Thus, the most

metallic nanowire is the Co one, with resistivity of

30.5 μΩ cm, similar to the value found by Fernández-

Pacheco et al.32 Next, the W nanowire shows resistivity

of 80.4 μΩ cm, similar to the value found by Li et al.33

The Pt nanowire grown by FIBID presents a resistivity

value of 438.9 μΩ cm, slightly lower than the previous

value found by De Teresa et al.31 Similarly, the resistiv-

ity of the Pt nanowire grown by FEBID shows a

resistivity value of 3.18 � 104 μΩ cm, lower than in

our previous experiments using standard silicon oxide

substrates.31 Such improvement likely arises from a

minimized carbon contamination of the deposit in the

present case due to improved vacuum conditions

in the growth chamber used in the present study.

Summarizing, the use of PC substrates maintains the

electrical properties of the grown nanowires, not ham-

pering their applicability. More specifically, the W

deposits grown by FIBID can be used for circuit editing

and mask repair,34 for electrical contacting of nano-

structures,35 and in superconductivity studies below

5 K.36�38 The Pt deposits grown by FEBID and FIBID can

be used for electrical contacting of nanostructures,39,40

being particularly successful when applied to semicon-

ducting nanowires for gas sensing.41 The Co nanowires

are being studied for their potential applicability in

magnetic storage, logic, and sensing.42

One of the main potential advantages of the PC

substrate is its bendability. A mechanical device has

been constructed to perform systematic measure-

ments of the electrical resistance of the grown nano-

wires as a function of the bending angle. The results are

shown in Figure 4a, using a Pt nanowire grownby FIBID

(ion voltage of 30 kV and ion current of 7 pA) with the

following dimensions: length = 30 μm,width = 160 nm,

thickness = 100 nm. With the use of electrical micro-

probes, the electrical resistance was monitored as a

function of the bending angle for a few bending

angles. The electrical resistance remained constant

(within the noise below 1%) up to a high bending

angle, 52.3�, in which the electrical resistance in-

creased by a factor of 500, probably due to the

appearance of some cracking in the nanowire. The

robustness of the electrical resistance of these nano-

wires against bending underlines their potential use

in applications where the substrate is flexible and

the resistance of the nanowire needs to remain

unchanged.2�15

Importantly, the electrical resistance of deposits

grown by FEBID can be very sensitive to mechanical

deformations43 or variation in humidity.44 Thus, such

Figure 3. (a) Picture of a polycarbonate (PC) substrate patterned by means of optical lithography to allow electrical
measurements. (b) Scanning electron micrographs of the patterned area of the polycarbonate substrate with Al pads
togetherwithmicroprobes ready for electricalmeasurements. (c) Scanning Electronmicrographs of a typical grownnanowire
and Pt contacts to permit the electrical measurements. (d) Electrical measurements (current versus voltage) of all the types of
nanowires grown and the corresponding values of the resistivity obtained from suchmeasurements and taking into account
the dimensions of the nanowires.
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type of deposits could eventually bear the information

on the mechanical deformation or the humidity envi-

ronment that the device is submitted to, expanding

the applicability of nanodeposits grown on PC sub-

strates. To explore such possibility, Pt nanowires were

grown by FEBID and their resistance was measured

against substrate bending. The results are shown in

Figure 4b. In this case, the substrate bending provoked

a significant change of the nanowire resistance, which

returned to the original value after unbending. This

effect can be explained by the microstructure of the

nanowires, which is composed by small Pt grains

(about 3 nm in diameter) immersed in a carbonaceous

matrix. The conduction mechanism is through tunnel-

ing between the neighboring Pt nanoparticles and, as a

consequence, is very sensitive to changes in the aver-

age distance between them.43 In the present case, the

bending of the substrate produces an elongation of

the nanowire along its long axis that increases the

distance between the Pt nanoparticles, resulting in the

resistance augmentation. In the case of the nanowires

grown by FIBID, shown in Figure 4a, such variation of

the resistance against bending is not observed be-

cause the conduction mechanism is different, as evi-

denced by the absolute value of the resistivity, a factor

of 100 smaller than in the case of Pt nanowires grown

by FEBID. For Pt nanowires grown by FIBID, the value of

resistivity is typical of a dirty metal, indicating that the

Pt grains are mainly connected and the primary con-

duction mechanism is not through tunneling.31

After demonstrating the potential for growing flex-

ible electronic nanowires by focused beam deposition

on PC substrates, we decided to explore their applic-

ability in nano-optics, taking advantage of the trans-

parent nature of the substrate. The transparency of the

PC substrates adds optical functionality in transmission

mode, which is explored hereafter through the fabrica-

tion of a diffraction grating based on Pt nanowires

grown by FIBID. To the best of our knowledge, these

results constitute the first experimental evidence of the

use of focused beam induced deposition techniques

for application in diffraction gratings. Diffraction grat-

ings are commonly used in classical applications such

as instrumental analysis, laser systems and astronom-

ical telescopes as well as in more recent applications

like fiber-optic telecommunications, beam splitters,

optical couplers and metrology.45 We have designed

the most appropriate nanowire array for the subse-

quent optical experiment, displayed in Figure 5. The

experiment consists of the laser illumination of the

nanowire array grown on the transparent PC substrate,

which diffracts the incident light. The diffraction pat-

tern thus obtained is collected on a screen placed

behind the substrate, where the expression for the

position of the diffraction maxima when the incident

light is perpendicular to the substrate is given by eq 1:

sinΘn ¼
nλ

d
(1)

where λ is the light wavelength (here 532 nm, provided

by a laser), d is the nanowire periodicity (in this case

1.97 μm, as shown in Figure 5), n is the diffraction order,

and Θn is the diffraction angle corresponding to the

n diffraction order. The calculated first and second dif-

fraction spots should appear at 15.7� and 32.7� and the

experimental values are close to such values: 15.9� and

33.8�. This is a simple but clarifying experiment of the

potentiality of FEBID and FIBID on transparent sub-

strates for optical applications, which remains basically

unexplored. It is worthmentioning that a large number

of micro- and nano-optical devices are investigated for

future technology and their functionality lies at a large

extent on the precise micro- and nano- dimensions of

the active optical element.46 Laser writing47 and elec-

tron beam lithography48,49 are frequently used to

obtain the required patterns in such applications.

However, such techniques have some limitations in

resolution or processing and focused beam induced

deposition could be an alternative technology with the

aforementioned advantages of being single step and

having high resolution, 3D capabilities and growth on

arbitrary substrate. In fact, FEBID techniques have been

Figure 4. (a) Measurements of the electrical resistance of a Pt nanowire grown by FIBID as a function of the bending angle of
the polycarbonate substrate. Images of the substrate bending along such measurements are also shown. (b) Similar
measurements for a Pt nanowire grown by FEBID for bending as well as unbending of the substrate.
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used to fabricate nano-optical structures based on Au

or Pt deposits20,23,25 or as nanomasks for subsequent

gold evaporation.50 The combination of those and

other types of optically active structures with flexible

and transparent substrates is consequently perceived

as a promising future research field.

CONCLUSIONS

The present results indicate that FEBID and FIBID

techniques are viable additive nanolithography tech-

niques to pattern flexible transparent substrates such

as polycarbonate films. This opens new perspectives in

the extension of the applicability of these powerful

nanolithography techniques. On top of the known

general advantages of FEBID and FIBID (single-step

process, high resolution, 3D capabilities), the use of

flexible transparent substrates permits their applica-

tion in flexible electronics as well as in nano-optics

and optoelectronics. In the field of flexible electronics,

the most promising applications could be found in the

fabrication of flexible nanoscale sensors which are

robust against substrate bending for applications such

as monitoring of temperature, specific gas, humidity,

magnetism, etc.41�44 Moreover, specific nanodeposits

can be designed to measure the substrate bending

itself due to their increase of electrical resistance with

the bending angle. The substrate transparency will be

suitable for fabricating not only diffraction gratings

(as shown here) but also other optical elements such as

optical waveguides, couplers, Fresnel lenses, sensors, etc.

In particular, the most promising applications could

occur in the emerging field of nanoplasmonics thanks

to the combination of the high resolution in the fabrica-

tion of the nanostructures by FEBID and FIBID and the

use of gold or silver precursors. Finally, it is also worth

mentioning that theuseofmagnetic or superconducting

deposits on transparent substrateswill allow the explora-

tion of advanced magneto-optical or superconductive-

optical effects. In summary, the use of nanolithography

techniques based on FEBID and FIBID on flexible trans-

parent substrates provides new degrees of freedom in

the fabrication of nanodevices in multiple fields.

METHODS

Patterning of Polycarbonate Substrates by Optical Lithography. Poly-

carbonate sheets (LEXAN) of 127 μm thickness were purchased

from Tizaro (code LEXAN GRA0713001007). The patterning

of a 3-in. polycarbonate wafer with optical lithography began

with the evaporation of 50 nm of aluminum. After designing a

suitable optical mask for the electrical transport experiments, a
positive photoresist (A6632) was spun on thewafer, UV exposed
with a MA/BA 6 Mask Aligner by Süss Microtec, and developed
with a diluted sodium-based developer. Then, a concentrated
solution of the developer was used to produce wet etching of
the Al not covered with the photoresist. Ultrasonic baths were
used to speed up the process.

Figure 5. (a) Diffraction grating formed by Pt wires grown by FIBID on polycarbonate (PC) substrates. (b) Experimental setup
for the measurement of the diffraction pattern in transmission mode created by such grating. (c) Zoom-in of the diffraction
pattern generated in the experiment shown in (b). As described in the text, the diffraction spots are located at the expected
positions given the light incidence angle (perpendicular to the substrate), the laser wavelength (532 nm) and the nanowire
periodicity (1.97 μm).
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Growth Parameters of the Nanowires. The nanowires shown in
Figure 1were synthesized as follows. In general, the current was
in the pA range to guarantee the growth of narrow structures,
whereas the voltage was chosen either to minimize charging
effects, maximize the nanowire metal content, or enhance the
lateral resolution. The FIBID Pt nanowires were grown under
30 kV beam voltage. Along several optimization experiments,
the ion beam current was progressively diminished, starting in
the nanoampere (nA) range and finishing in the pA range
(7.7 pA). Under such low current, high lateral resolution
(125 nm) was obtained. The FEBID Pt nanowires were grown
under 5 kV electron beam voltage. With the use of an electron
beam current of 1.6 nA, it was possible to achieve high lateral
resolution (50 nm). The FIBID W nanowires were grown under
30 kV ion beam voltage. Along several optimization experi-
ments, the ion beam current was progressively diminished to
reach high lateral resolution (<100 nm) when the ion beam
current was 24 pA. The FEBID Co nanowires were grown under
5 kV electron beamvoltage and electron beamcurrent of 1.6 nA,
reaching high lateral resolution (<100 nm). The nanowires used
in the electrical transport experiments shown in Figure 3 were
prepared using the optimized growth conditions: 30 kV/7.7 pA
for the FIBID Pt nanowires, 5 kV/1.6 nA for the FEBID Pt nano-
wires, 30 kV/24 pA for the FIBIDWnanowires, and 5 kV/1.6 nA for
the FEBID Co nanowires. The most straightforward way to
measure the width of the nanowires was through the white/
black change of contrast observed in the SEMmicrographs with
top-down view. In some nanowires, we cross-checked the
obtained value with cross-sectional SEM images taken in the
standard way (deposit coverage, FIB cut and SEM inspection).
Bothmethodswere found to provide similar values of thewidth.
We would like to point out that we want to provide the typical
values of width obtained and are not interested in giving very
accurate values for each individual nanowire.

Compositional Study by Means of EDS. We have studied themetal
content of three types of nanodeposits (Pt by FIBID, W by FIBID,
Co by FEBID) by Energy Dispersive X-ray Spectroscopy (EDS) to
check that the metal content is similar to that obtained in
deposits grown on standard substrates such as silicon ones. The
voltage used in the EDS experiments was 5 kV. To get enough
signal, the deposits were grown with dimensions 500 nm �

500nm� 100nm.The respectivegrowthconditionswereas follows:

• Pt by FIBID: voltage of 30 kV and current of 7 pA

• W by FIBID: voltage of 30 kV and current of 18 pA

• Co by FEBID: voltage of 5 kV and current of 1.6 nA

The metal content (atomic percent) in the case of the Pt
deposit was 32%, similar to the value obtainedwhen standard Si
substrates are used.31 The metal content in the case of the W
deposit was 63%, also similar to the value obtained when
standard Si substrates are used.51 Themetal content in the case
of the Co deposit was 84%, slightly smaller than the value
obtained when standard Si substrates are used (90%).32 In this
case, the measured C content is 11%, whereas the O content is
5%, which points to signal contamination from the electrons
penetrating into the substrate instead of lack of Co2(CO)8
precursor dissociation. The low resistivity value of the Co
nanowires shown in the main text is also a good hallmark of
the high Co content of deposits on polycarbonate substrates.

AFM Experiments. These experiments were carried out with a
commercial VEECO Multimode 8 system using noncontact
mode. We selected three types of nanowires (Pt by FIBID, W
by FIBID, Co by FEBID) to perform their topography character-
ization by Atomic Force Microscopy (AFM). The growth condi-
tions in each case were as follows:

• Pt by FIBID: voltage of 30 kV and current of 0.79 nA

• W by FIBID: voltage of 30 kV and current of 33 pA

• Co by FEBID: voltage of 5 kV and current of 1.6 nA

Geometry of the Nanowires Measured in Figure 3. Using the
following nomenclature, L = length, W = width, t = thickness,
the dimensions of the studied nanowireswere as follows. FEBID-
Co: L = 9.5 μm, W = 1.6 μm, t = 100 nm; FIBID-W: L = 8.97 μm,
W = 1.01 μm, t = 100 nm; FIBID-Pt: L = 8.03 μm, W = 160.2 nm,
t =100 nm; FEBID- Pt: L = 8.36 μm, W = 1.84 μm, t = 100 nm
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