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Abstract

Recurrent Neural Networks (RNNs) with atten-

tion mechanisms have obtained state-of-the-art

results for many sequence processing tasks. Most

of these models use a simple form of encoder

with attention that looks over the entire sequence

and assigns a weight to each token indepen-

dently. We present a mechanism for focus-

ing RNN encoders for sequence modelling tasks

which allows them to attend to key parts of the

input as needed. We formulate this using a multi-

layer conditional sequence encoder that reads in

one token at a time and makes a discrete deci-

sion on whether the token is relevant to the con-

text or question being asked. The discrete gating

mechanism takes in the context embedding and

the current hidden state as inputs and controls in-

formation flow into the layer above. We train it

using policy gradient methods. We evaluate this

method on several types of tasks with different

attributes. First, we evaluate the method on syn-

thetic tasks which allow us to evaluate the model

for its generalization ability and probe the behav-

ior of the gates in more controlled settings. We

then evaluate this approach on large scale Ques-

tion Answering tasks including the challenging

MS MARCO and SearchQA tasks. Our mod-

els shows consistent improvements for both tasks

over prior work and our baselines. It has also

shown to generalize significantly better on syn-

thetic tasks as compared to the baselines.
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1 Introduction

Recurrent Neural Networks (RNNs) with attention are

wildly used for many sequence modeling tasks, such as:

image captioning (Yao et al., 2016; Lu et al., 2017), speech

recognition (Chan et al., 2016; Bahdanau et al., 2016), text

summarization (Nallapati et al., 2016) and Question and

Answering (QA) (Kadlec et al., 2016). The attention mech-

anism allows the model to look over the entire sequence

and pick up the most relevant information. This not only

allows the model to learn a dynamic summarization of the

input sequence, it allows gradients to be passed directly

to the earlier time-steps in the input sequence, which also

helps with the vanishing and exploding gradient problem

(Hochreiter, 1991; Bengio et al., 1994; Hochreiter, 1998).

Most of these models use a simple form of encoder with at-

tention that is identical to the first one proposed (Bahdanau

et al., 2015), where the attention looks over the entire en-

coded sequence and assigns a soft weight to each token.

However, for more complex tasks we conjecture that more

structured encoding mechanisms may help the attention to

more effectively identify and selectively process relevant

information within the input.

Imagine reading a Wikipedia article and trying to identify

information that is relevant to answering a question before

one knows what the question is. Now, compare this to the

situation where the context or question is given before read-

ing the article. It would be much easier to read over the ar-

ticle, identify relevant information, group items and selec-

tively process relevant information based on its relevance

to a given context or question.

Keeping this intuition in mind, we have developed a fo-

cused RNN encoder that is modeled by a multi-layer RNN

that groups input sub-sequences based on gates that are

controlled or conditioned on a question or input context.

We dub the core part of the minimal form of this model a

focused hierarchical encoder module. Our approach rep-

resents a general framework that applies to many sequence

modeling tasks where the context or question can be ben-

eficial to focus (attend) over the input sequence. Our fo-

cused encoder module examined here is based on a two

layer LSTM where the upper layer is updated when a group

of relevant tokens has been read. The boundaries of the
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group are computed using a discrete gating mechanism that

takes as input the lower and upper level units as well as the

context or question, and it is trained using policy gradient

methods.

We evaluate our model on several tasks of different levels

of complexity. We began with toy tasks with limited vo-

cabulary size, where we analyze the performance, the gen-

eralization ability as well as the gating and the attention

mechanisms. We then move on to challenging large scale

QA tasks such as MS MARCO (Nguyen et al., 2016) and

SearchQA (Dunn et al., 2017). Our model outperforms the

baseline for both tasks. For the SearchQA task, it signifi-

cantly outperforms recently proposed methods (Buck et al.,

2018).

The key contributions of our work are the following:

• We explore the use of a conditional discrete stochastic

boundary gating mechanism that helps the encoder to

focus on parts relevant to the context, we use a soft

attention to look over the relevant states.

• We use a reinforcement learning approach to learn the

boundary gating mechanism.

• The elements above form the building blocks of our

proposed focused hierarchical encoder module, we

examine its properties with synthetic data experiments

and we show the benefits of using it for QA tasks.

Our model takes an input sequence, a question or context

sequence and generates an answer. It can be applied to any

sequence tasks where the context or question is beneficial

to modulating the processing of an input sequence.

2 Focused Hierarchical RNN

2.1 Architecture

Our model consists of: the focused hierarchical encoder

(FHE), the context encoder and the decoder. Compared to

a regular RNN with attention, we replace the encoder with

a context-aware focused RNN encoder.

Figure 1. A visualization of FHE. Lower-Layer LSTM processes

each step. For each token, the boundary gate decides (based on

the current lower-layer LSTM state and question embedding) if

information should be stored in the upper-level representation.

Higher-Layer LSTM states update only when the corresponding

gate is open.

The focused hierarchical encoder is modeled by a two-

layer LSTM. The lower layer operates at the input token

level, while the upper layer focuses on tokens relevant to

the context. We train a conditional boundary gate to de-

cide, depending on the context or question, whether it is

useful to update the upper-level LSTM with a summary of

the current set of tokens or not.

Lower-level Layer As shown in Figure 1, FHE has two

layers. Let P = (x1, . . . ,xn) be the sequence of input to-

kens, ht be the LSTM hidden state and ct be the LSTM

cell state at time t. To make our model as generic as possi-

ble, the lower-level layer may be also augmented with other

available information. The question for large QA tasks are

non-trivial and hence we augment the lower-layer inputs

with the question encoding at each step.

hl
t, c

l
t = LSTM(xt,h

l
t−1, c

l
t−1) (1)

Conditional Boundary Gate For each token in the pas-

sage, the boundary gate decides if information at the cur-

rent time step should be stored in the upper-level represen-

tation. We hypothesize that the question is essential in de-

ciding how to represent the passage. To capture this depen-

dency, the boundary gate computation is conditioned on the

question embedding q. The question embedding can vary

in complexity depending on the difficulty of the task. In

the simplest setting, the question embedding is simply a

retrieved vector.

The output of the boundary gate is a scalar bt ∈ (0, 1) that

is taken to be the parameter of a Bernoulli distribution b̃t ∼
Bernoulli(bt) that regulates the gate’s opening at time step

t. In the simplest case, the boundary gate forward pass is

formulated as

bt = σ(w⊤
b LReLU(Wbzt + bb)), (2)

where Wb, bb and wb are trainable weights, LReLU(·) is

a leaky ReLU activation, and zt is the input that varies and

depends on the task. In our experiments we used the fol-

lowing input

zt = [q⊙ hl
t,h

l
t,q], (3)

where ⊙ is the element-wise product. Hence, we essen-

tially use three groups of features: question representation

multiplied with lower-layer hidden states, question, and

lower-layer representations. These three groups are con-

catenated together and passed through an MLP to yield

boundary gate decisions (i.e., open/close).

In a more complex task that has stronger dependency on

the upper-level hidden states (see the following paragraph),

these can also be used to augment the boundary gate input

zt.
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Upper-level Layer The upper-layer LSTM states (de-

noted hu
t ) update only when the corresponding lower-layer

boundary gate is open.

h̃u
t , c̃

u
t = LSTM(hl

t,h
u
t−1, c

u
t−1) (4)

b̃t ∼ Bernoulli(bt) (5)

cut = b̃tc̃
u
t + (1− b̃t)c

u
t−1 (6)

hu
t = b̃th̃

u
t + (1− b̃t)h

u
t−1 (7)

Final Output The final output of FHE is a sequence of

lower-level states H l = {hl
1, . . . ,h

l
n} and a sequence of

upper-level states Hu = {hu
1 , . . . ,h

u
n}, where only k of

them are unique and k =
∑

t b̃t, the number of times the

boundary gates open over the length of the document. The

upper-level states Hu are typically the only ones being pro-

cessed by the downstream modules. Hence, all downstream

operations are performed faster than if they had to process

H l (the effective size of Hu is smaller than the size of H l).

2.2 Training

We train our model to maximize the log-likelihood of the

answer (A) given the context (Q) and the passage (P ), us-

ing the output probabilities given by our answer decoder:

R = log p(A | Q,P ). (8)

Policy Gradient The discrete decisions involved in sam-

pling the boundary variable b̃t make it impossible to use

standard gradient back-propagation to learn the parameters

of the boundary gate. We instead apply REINFORCE-style

estimators (Williams, 1992). Denote by πb the model pol-

icy over the binary vector of decisions b = {b̃1, . . . , b̃n}.

We need to take the derivative:
∑

b

∇πb(b)Rb = Eb∼πb
[∇ log πb(b)Rb], (9)

where the reward Rb can be formulated differently depend-

ing on the task. In our synthetic experiments (Section 4),

we let Rb = ∂hu

∂b̃t
. For large scale natural language QA

tasks (Section 5), we use Rb = log p(A | Q,P,b). The

aforementioned gradient can be approximated by sampling

from the policy πb and computing the corresponding terms.

Rewards We use the final reward Rb for each decision

in the sequence. Following previous work (Williams, 1992;

Andrychowicz & Kurach, 2016), we add an exploration

term αH(πb) that prevents the policy from collapsing too

soon during training. The α is a hyperparameter to be set.

Sparsity Constraints We add a constraint on the spar-

sity of the upper-level representations. We want the model

to avoid grouping each token on its own and storing infor-

mation at each step on the upper level (i.e., always opening

the boundary gates). As a remedy we add a small penalty

G(b) the model needs to pay for storing information at the

upper level. In practice, we found the following formula-

tion to work the best:

βG(b) = βReLU

(

(

T
∑

t=1

bt
)

− γT

)

(10)

where β > 0 and γ ∈ [0, 1) are hyper-parameters and T

is the input sequence length. Hence, β is the strength of

penalty and γ is the proportion of the time the gates could

open without being penalized. Intuitively, we let a cer-

tain number of gates until a open threshold γT without any

penalty. Each open gate above the threshold is penalized.

This is the same as constraining the policy to act within a

certain region. One can skip γ (by setting γ = 0) and then

the penalty is just βbt applied at each time step:

βG(b) = βReLU

(

(

T
∑

t=1

bt
)

− γT

)

γ=0
=

T
∑

t=1

βbt. (11)

Note that hyper-parameters β and γ directly affect the spar-

sity of upper-level representations that can be formally de-

fined as the average value of b̃t and will be called gate

openness.

3 Related Work

As we have discussed above, our focused hierarchical en-

coder is modeled by a hierarchical RNN controlled by

gates conditioned on an input context or question. The idea

of using hierarchical RNNs to model data in which long

term dependencies must be captured was first explored in

El Hihi & Bengio (1995).

More recently, Koutnik et al. (2014) propose a stacked

RNN with a different updating rate for each layer, fixed

a priori. Graves (2016) propose a RNN that learns the

number of timesteps to ponder on an input before mov-

ing onto the next input. Srivastava et al. (2015) utilizes

skip-connections between layers in a feedforward network

for training a deep network. Yao et al. (2015) uses a soft

differential depth gate to connect the lower and the upper

layers and Sordoni et al. (2015) explore a multi-scale ar-

chitecture where the hierarchy is fixed. Both of these uses

a soft-differential gate compared to what can be seen as

a hard gate in the Chung et al. (2016). The Skip-RNN

(Campos et al., 2017) learns an updating rate by predict-

ing how many steps to skip in the future. Our document

encoder bears similarities to the Hierarchical Multi-Scale

LSTMs (HMSTMs) of Chung et al. (2016). The HML-

STM extends a 3-layered LSTM to have multiple gates at

each time step, which decide which of the LSTM layers

should be updated, and has been applied to unconditional

character-level language modelling. In contrast we learn
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a context-conditional sequence segmentation that only en-

codes relevant information to the context; this information

is fed to an attention mechanism to help with identifying

the most relevant information.

The upper states of our network can be considered as a

memory focusing on relevant information that can be at-

tended to at each step of the answer generation process. In

particular, we use a soft-attention mechanism (Bahdanau

et al., 2015), which has become ubiquitous in conditional

language generation systems. Yang et al. (2016) and Ku-

mar et al. (2016) use a layered, hierarchical attention in that

they attend to both word and sentence level representations.

We use similar ideas but we learn how to attend to informa-

tion within the sequence structure rather than relying on a

fixed strategy. Another form of structured encoding encod-

ing mechanism would be the Miller et al. (2016), where

the attention is separate into pairs of key and value. The

key corresponds to the attention distribution and the value

is used to encode the context.

4 Synthetic Experiments

We first study two synthetic tasks that allow us to analyze

our proposed gating, attention mechanism and its gener-

alization ability, and then in Section 5 we study the more

complex tasks of natural language question and answering.

The synthetic tasks are the picking task and the Pixel-by-

Pixel MNIST QA task. For the picking task, we analyze

the gating mechanism and show how the model utilizes the

question (context) to dynamically group the passage tokens

and how the attention mechanism utilizes this information.

We also test the generalization ability our model following

the setup in (Graves et al., 2014). For the Pixel-by-Pixel

MNIST QA task, we show better accuracy with our FHE

module over the baseline. The tasks are chosen due to the

natural of the tasks. The gating mechanism for the pick-

ing task depends solely on the question, whereas the gating

mechanism for the Pixel-by-Pixel MNIST QA task is inde-

pendent of the question, but solely dependent on the data.

We compare the performance of our focused hierarchical

encoder module to two baseline architectures: a 1-layer

LSTM (LSTM1) and a 2-layer LSTM (LSTM2)1.

For the picking task, FHE utilizes less memory compare to

LSTM2, as the baseline LSTM2 model needs to store and

attend over all states, whereas FHE only needs to attend to

unique elements of Hu. For example, when gate openness

is below 10%, the attention module for FHE only attends

to than 10% of memory compared to a LSTM2 baseline

model.

1Note that baseline models are equivalent to FHE with the
boundary gate fully open for LSTM2 (bt = 1 for each t) or al-
ways closed for LSTM1 (bt = 0 for each t).

Table 1. Sample points for picking task (sequence length n = 30).

The first k digits are underlined and the target mode is bolded.

INPUT TARGET

SEQUENCE K MODE

random examples
805602017082838371701316304473 10 0
638733290890396690255937986485 23 3
164551937579373896813981125982 26 1

malicious examples
666333666288882888819999999990 6 6
666333666288882888819999999990 10 6
666333666288882888819999999990 20 8
666333666288882888819999999990 30 9

Hyper-parameters All models (FHE, LSTM1 and

LSTM2) for a certain task has the same number of hid-

den units (256 for picking task and 128 for Pixel-by-Pixel

MNIST QA task). In FHE module we used α = 0 hence, we

did not use exploration term mentioned in Section 2.2. In-

stead, we used simpler idea that is sufficient in the synthetic

experiments conducted – we add a small value to bt (0.01

for picking task and 0.1 for Pixel-by-Pixel MNIST QA task)

to encourage exploration. The values of β and γ depend

on the task and are provided later. Learning rates used for

all models are 0.0001 with the Adam optimizer (Kingma &

Ba, 2014).

4.1 Picking task

Given a sequence of randomly generated digits of length n,

the goal of the picking task is to determine the most fre-

quent digit within the first k digits2, where k ≤ n. Hence,

the value of k is understood as the question. We study three

tasks with input sequences of n ∈ {100, 200, 400} digits

respectively. Sample points for the task are presented in

Table 1.

The input digits xi are one-hot encoded vectors (size 10)

and the question embedding q is a vector retrieved from the

lookup table (that is learnt during training) with n entries.

To obtain the final sequence representation, soft attention

(as in Bahdanau et al. (2015)) is applied on the upper-level

states Hu (for FHE and LSTM2) or the lower-level states

H l (for LSTM1). Finally, the representation is concate-

nated with the question embedding and fed to one layer

feed-forward neural network to produce the final prediction

(i.e. probabilities for all 10 classes).

As introduced in Section 2.2, there are two hyper-

parameters (β and γ) that affect the sparsity of higher-level

representations in FHE. We explore two approaches for de-

termining their values.

One approach is to fix these hyper-parameters to a small

2If there is more than one mode, the largest value digit should
be picked.
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Table 2. Accuracy (%) for picking task for LSTM1, LSTM2 and

FHE-fixed. Our model and LSTM2 are on par with performing

while LSTM1 is behind for longer input sequences.

LENGTH LSTM1 LSTM2 FHE-FIXED

100 99.4 99.7 99.5
200 97.0 99.2 99.4
400 92.9 97.5 96.9

Table 3. Accuracy (%) for picking task for the models providing

a level of control over the accuracy-sparsity trade-off at a cost of

slightly lower performance.

LENGTH FHE80 FHE90 FHE95 FHE98

100 93.4 94.2 96.6 98.7
200 92.3 92.4 93.6 93.6
400 87.2 90.5 90.0 91.0

Table 4. Test accuracy (%) for longer sequence length for picking

task on model trained on sequence length n = 200.

LENGTH LSTM1 LSTM2 FHE-FIXED

200 97.1 99.2 99.4
400 55.9 61.4 97.6
800 39.6 39.7 95.6

1600 29.5 28.6 93.3
10000 18.5 14.8 66.8

value (for example β = 0.1 and γ = 0.25) in the be-

ginning of training, such that the gates can almost freely

open. Once the desired accuracy has been reached, we

enforce constraints on our hyper-parameters. This pro-

vides a level of control over the accuracy-sparsity trade-

off – we used this approach with the requirement of

achieving a desired accuracy a. We tested FHE models

with a ∈ {80%, 90%, 95%, 98%} and call them FHE80,

FHE90, etc. The relationship between accuracy and gate

openness is visualized in Figure 2.

Another approach is to set β and γ to a fixed value from the

start, so the gate openness of the model is more restricted

right from the start. We find that the model performs better

with fixed the hyper-parameters (the results for β = 1 and

γ = 10% are presented in Table 2 as FHE-fixed).

The results achieved for each model and sequence length

are presented in Table 2 and Table 3. For each setup at

least two runs were performed and the difference in result

between the pair were typically neglectable (< 0.5%).

The picking task is useful to validate our gating mechanism.

Once trained we can inspect the positions of the opened

gates. Figure 3 shows that our model learns to open gates

around k’th step only and attend a single gate right after

the k’th step. The lower-level LSTM is used to count the

occurrences of the various digits. That information is then

passed to the upper-level LSTM at a single gate. The atten-

Figure 2. A relationship between accuracy and gate openness for

picking task and sequence length n = 100. The best performance

is achieved for gate openness around 10%.

Figure 3. Gate openness (G) conditioned on the position asked

(P). Focus (F) is the average of final attention weight set for a

given step. Hence, focus sums to one and it is always lower

than gate openness (because our model attends only over unique

states). Result showed for sequence length n = 200. The first

four plots illustrate FHE model having 99.4% accuracy and 10%

gate openness, while the last four are for FHE model having 97%

accuracy but 5% gate openness.

Figure 4. A visualization of the gating mechanism learned using

the Pixel-by-Pixel MNIST dataset. Red pixels indicate a gate

opening and are overlayed on top of the digit which is white on

a gray background. The digits are vectorized row-wise which ex-

plains why white pixels appear left of the red pixels.
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Table 5. Accuracy (%) for validation set of Pixel-by-Pixel MNIST

QA task. Our model slightly outperform both LSTM1 and

LSTM2.

LSTM1 LSTM2 FHE-FIXED

97.3 98.4 99.1

tion mechanism then uses the information around the same

time step to provide the mode (i.e. solve the task).

We tested the generalization ability of FHE. The models

trained on short sequences (n = 200) were evaluated on

longer sequences and k ≤ 200. The results are in Table 4.

The models can not be evaluated for k larger than max-

imum sequence length used during training because the

question embeddings are parts of the models. FHE gen-

eralizes better to longer sequences by a wide margin. We

believe this is due to the boundary gates being open for only

the first k-steps, and the attention mechanism not attending

over possibly misleading states.

4.2 Pixel-by-Pixel MNIST QA task

We adapt the Pixel-by-Pixel MNIST classification task (Le-

Cun et al., 1998; Le et al., 2015) to the question and an-

swering setting. The passage encoder reads in MNIST dig-

its one pixel at a time. The question asked is whether the

image is a specific digit and the answer is either True or

False. The data is balanced such that approximately half of

the answers are True and the other half are False.

The LSTM2 reached an accuracy of 98.4% on the valida-

tion set, and FHE3 outperformed the baseline by having

an accuracy of 99.1%. Figure 4 shows a visualization of

the gates for the passage encoder learned by the model.

The model learns to open the boundary gate almost always

around the digit. We also found that for this particular task,

the gates do not depend on the question. We hypothesize

that this is because it is much easier for the passage en-

coder to learn to open the gates when there is a white pixel.

In any case, these experiments illustrate how our proposed

mechanism modulates gates based on input questions and

features in the data.

5 Large Scale Natural Language QA Tasks

Next, we explore the more complex task of natural lan-

guage question answering. We study our approach using

the MS MARCO and SearchQA datasets and tasks. These

tasks are well-suited for our model since they both in-

volve searching over a long input passage for answers to

a question. Our results are that for the MS MARCO task,

we achieved scores higher than the baseline models. Our

model on SearchQA significantly outperforms very recent

3We used β = 0.0001 and γ = 50%.

work (Buck et al., 2018). We also run ablation studies on

the model for MS MARCO task to show the importance of

each component in the model.

To obtain competitive results on these difficult question-

answering tasks we embed FHE with a modified version

of both the question encoder and the answer decoder. All

changes with respect to what was presented earlier are de-

tailed in the following sections.

5.1 Question Encoder

Following recent work (Cui et al., 2016; Chen et al., 2017),

we use a bidirectional LSTM that first reads the question

and then performs self-attention to construct a vector rep-

resentation of it. At the model-level, the question-encoder

module outputs the vector q, which is then used as condi-

tioning information in a FHE.

5.2 Decoder

The answer decoder follows the standard decoding proce-

dure in RNN with attention (Bahdanau et al., 2015; Gul-

cehre et al., 2016). The only difference is that the decoder

looks over the upper-level hidden states hu
t learned using

a FHE conditioned on the question. The upper-level states

Hu provide an abstracted, dynamic representation of the

passage. Because they receive lower-layer input only when

the boundary gate is open, the resulting hidden states can be

viewed as a sectional summary of the tokens between these

“open” time-steps. The upper layer thus summarizes a pas-

sage in a smaller number of states. This can be beneficial

because it enables the encoder LSTM to maintain infor-

mation over a longer time-horizon, reduces the number of

hidden states, and makes learning the subsequent attention

softmax layer easier.

Pointer Softmax In order to predict the next answer

word and to avoid large-vocabulary issues, we use the

pointer softmax (Gulcehre et al., 2016). This method de-

composes as two softmaxes: one places a distribution over

a shortlist of words and the other places a distribution

over words in the document. The softmax parameters are

Wo ∈ R|V |×Dh and bo ∈ R|V |, where |V | is the size of

the shortlist vocabulary4. A switching network enables the

model to learn the mixture proportions over the two distri-

butions. Switching variable zj determines how to interpo-

late between the indices in the document and the shortlist

words. It is computed via an MLP. Let oj be the distribu-

tion of word in the shortlist, and αj be the distribution over

words in the document index. Then the pointer softmax

Pj ∈ R|V |+D is Pj = [zjoj ; (1− zj)αj ].

4We use a short-list of 100 or 10,000 most frequent words for
SearchQA or MS MARCO tasks, respectively.
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Table 6. SearchQA results measured in F1 and Exact Match (EM) for validation and test set. Our model and AMANDA (Kundu & Ng,

2018) are on par with performing while the other models are behind.

MODELS
VALIDATION TEST

F1 EM F1 EM

TF-IDF MAX (DUNN ET AL., 2017) - 13.0 - 12.7
ASR (DUNN ET AL., 2017) 24.1 43.9 22.8 41.3
AQA (BUCK ET AL., 2018) 47.7 40.5 45.6 38.7
HUMAN (DUNN ET AL., 2017) - - 43.9 -

LSTM1 + POINTER SOFTMAX 52.8 41.9 48.7 39.7
LSTM2 + POINTER SOFTMAX 55.3 44.7 51.9 41.7

OUR MODEL 56.7 49.6 53.4 46.8

CONCURRENT WORK

AMANDA (KUNDU & NG, 2018) 57.7 48.6 56.6 46.8

Table 7. MS MARCO results using BLEU-1 and Rouge-L evaluation. Our model clearly outperforms both standard memory networks

and sequence-to-sequence models. In addition in both Bleu-1 and Rouge-L, we outperform strong baselines. Available results for the first

three methods are taken from their respective papers (hence the not available ones). Ablation study results show that our model benefits

the most from elementwise product between questions and context. The pointer softmax also gives a significant gain for performance.

GENERATIVE MODELS
VALIDATION TEST

BLEU-1 ROUGE-L BLEU-1 ROUGE-L

SEQ-TO-SEQ (NGUYEN ET AL., 2016) - 8.9 - -
MEMORY NETWORK (NGUYEN ET AL., 2016) - 11.9 - -
ATTENTION MODEL (HIGGINS & NHO, 2017) 9.3 12.8 - -

LSTM1 + POINTER SOFTMAX 24.8 26.5 28 28
LSTM2 + POINTER SOFTMAX 24.3 23.3 27 28

OUR MODEL 27.3 26.7 30 30

ABLATION STUDY

OUR MODEL – DOT-PRODUCT BETWEEN QUESTION AND CONTEXT 18.5 19.3 - -
OUR MODEL – POINTER SOFTMAX 20.5 18.7 - -
OUR MODEL – LEARNED BOUNDARIES 23.5 24 - -

Hyper-parameters All components of the model (FHE,

question encoder, decoder) in all natural language QA ex-

periments uses 300 hidden units. FHE hyper-parameters

were fixed (α = 0.001, β = 0.5, γ = 50%). We use the

Adam optimizer (Kingma & Welling, 2014) with a learning

rate of 0.001.

5.3 SearchQA Question and Answering Task

Search QA (Dunn et al., 2017) is large scale QA dataset

in the form of Question-Context-Answer. The question-

answer pairs are real Jeopardy! questions crawled from

J!Archive. The contexts are text snippets retrieved by

Google. It contains 140, 461 question-context-answer

pairs. Each pair is coupled with a set of 49.6 ± 2.10 snip-

pets, and each snippet is 37.3±11.7 tokens long on average.

Answers are on average 1.47± 0.58 tokens long.

We use the same metric as reported in Buck et al. (2018),

which are F1 scores for multi-word answers and Exact

Match (EM) for single word answers.

QA Results Our model outperformed the recently pro-

posed AQA model (Buck et al., 2018) by 8 points in EM

and more than 6 points in terms of F1 scores. See detailed

results in Table 6.

5.4 MS MARCO Question and Answering Task

The Microsoft Machine Reading Comprehension Dataset

(MS MARCO) (Nguyen et al., 2016) is one of the largest

publicly available QA datasets. Each example in the dataset

consists of a query, several context passages retrieved by

the Bing search engine (ten per query on average), and sev-

eral human generated answers (synthesized from the given

contexts).

Span-based vs Generative Most of the recent question

and answering models for MS MARCO are span-based5

(Weissenborn et al., 2017; Tan et al., 2017; Shen et al.,

2017; Wang & Jiang, 2016). Span-based models are cur-

rently state of the art according to Bleu-1 and Rouge scores

on the MS MARCO leaderboard, but are clearly limited as

5For MS MARCO, span-based models are trained using
“gold-spans”, obtained by a preprocessing step which selects the
passage in the document maximizing the Bleu-1 score with the
answer.
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Figure 5. We visualize the attention heat map of the passage encoder using an example from the MS MARCO validation set. Darker

background color indicates higher attention (figure better seen on-screen). The question related to this passage is “walgreens store sales

average” and the ground truth answer is “Approximately $15,000 per year.”. Our model learns to attend to the passage containing the

answer (first line). In addition, most of the other high-intensity passages are related to the question.

they cannot answer questions where the answer is not con-

tained in the passage. In comparison, generative models,

such as ours synthesize a novel answer for the given ques-

tion. Generative models could learn a disentangled rep-

resentation, and therefore generalize better. Our approach

takes the first step towards closing the gap between gener-

ative models and span-based models.

We report the model performance using Bleu-1 and Rouge-

L, which are the standard evaluation for MS MARCO task.

QA Results Table 7 reports performance evaluated us-

ing the MS MARCO dataset. Specifically, we evaluate the

quality of the generated answers for different models. Our

model outperforms all competing methods in terms of test

set Bleu-1 and Rouge-L.

Ablation Studies Table 7 shows also the results of learn-

ing our model without some of its key components. The

ablation studies are evaluated on the validation set only.

The largest gain came from the elementwise-product be-

tween question and context. This result is to be expected,

since it is difficult for the model to encode the appropriate

information without direct knowledge of the question.

The pointer softmax is another important module of the

model. The MS MARCO dataset contains many rare

words, with around 90% of words appealing less than 20

times in the dataset. It is difficult for the model to gener-

ate words it has only seen a few times, and therefore the

pointer-softmax provides a significant gain.

Our experiments also show the importance of learned

boundaries. This results is supportive of our hypothesis

that learned boundaries help with better document encod-

ing, and therefore generates better answers.

Overall, the different components in our model are all

needed to achieve the final score.

Model Exploration Figure 5 reports the results of our at-

tention mechanism on an example from the MS MARCO

dataset. Our attention focuses on the relevant passage

(the one that contains the answer) as well as other salient

phrases of the passage given the question.

Human Evaluation We performed a human evaluation

study to compare answers generated by our model to an-

swers generated by the LSTM1 baseline model in Table 7.

We randomly selected 23 test-set questions and their corre-

sponding answers. The order of the questions are random-

ized for each questionnaire. We collected a total of 690

responses (30 volunteers each given 23 examples) where

volunteers were shown both answers side-by-side and were

asked to pick their preferred answers. 63% of the time, vol-

unteers preferred the answers generated from our model.

Volunteers are students from our lab, and were not aware

of which samples came from which model.

6 Conclusion

We introduced a focusing mechanism for encoder recurrent

neural networks and evaluated our approach on the popu-

lar task of natural-language question answering. Our pro-

posed model uses a discrete stochastic gating function that

conditions on a vector representation of the question to con-

trol information flow from a word-level representation to a

concept-level representation of the document. We trained

the gates with policy gradient techniques. Using synthetic

tasks we showed that the mechanism correctly learns when

to open the gates given the context (question) and the in-

put (passage). Further, experiments on MS MARCO and

SearchQA – recent large-scale QA datasets – showed that

our proposed model outperforms strong baselines and in

the case of SearchQA outperforms prior work.
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