Focused Prefetching: Performance Oriented Prefetching
Based On Commit Stalls

R. Manikantant and R. Govindarajantt
tDept. of Computer Science & Automation
1Supercomputer Education & Research Center
Indian Institute of Science, Bangalore,India

{rmani,govind}@csa.iisc.ernet.in

Abstract

Loads that miss in L1 or L2 caches and waiting for their
data at the head of the ROB cause significant slow down in
the form of commit stalls. We identify that most of these
commit stalls are caused by a small set of loads, referred to
as LIMCOS (Loads Incurring Majority of COmmit Stalls).
We propose simple history-based classifiers that track com-
mit stalls suffered by loads to help us identify this small set
of loads.

We study an application of these classifiers to prefetching.
The classifiers are used to train the prefetcher to focus on
the misses suffered by LIMCOS. This, referred to as focused
prefetching, results in a 9.8% gain in IPC over naive GHB
based delta correlation prefetcher along with a 20.8% reduc-
tion in memory traffic for a set of 17 memory-intensive
SPEC2000 benchmarks. Another important impact of fo-
cused prefetching is a 61% improvement in the accuracy
of prefetches. We demonstrate that the proposed classifi-
cation criterion performs better than other eristing criteria
like criticality and delinquent loads. Also we show that the
criterion of focusing on commit stalls is robust enough across
cache levels and can be applied to any prefetcher without any
modifications to the prefetcher.

Categories and Subject Descriptors: C.1 [Processor
Architectures]
General Terms: Design, Experimentation, Performance.

1. INTRODUCTION

In-order commit is employed in superscalar processors to en-
sure that the architected state of the processor is updated
by instructions in program order even though instructions
may be issued and executed out-of-order. The downside of
in-order commit is experienced when long latency instruc-
tions and loads that miss in the cache reach the head of the
ROB and wait for their completion or arrival of data. This
stalls the commit of all future instructions including those
which have already completed execution. Such commit stalls
have a negative impact on performance. On the other hand,
it is not easy to implement out-of-order commit processors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICS’08, June 7-12, 2008, Island of Kos, Aegean Sea, Greece.

Copyright 2008 ACM 978-1-60558-158-3/08/06 ...$5.00.

as it requires expensive checkpointing mechanisms to ensure
correctness [4]. Further, expensive memory checkpointing
mechanisms are required to support out-of-order commit of
stores.

Figure 1 shows that in the SPEC2000 benchmark suite!,
close to 60% of commit stalls are caused by loads®. These
load stalls are experienced inspite of having a hierarchy of
caches (in this case L1 and L2). Prefetching is widely used to
augment the performance of caches by bringing in data into
the caches before an actual demand request will be made.
A wide variety of prefetchers have been studied for data
caches [1, 6, 8, 9, 10, 15, 16, 23]. All these prefetchers are
normally trained on the miss/access stream and identify use-
ful patterns/trends among the accesses. The identified trend
is used to predict the addresses that are most likely to be
accessed in the near future. The impact of any prefetcher
on performance is based on the usefulness and the timely
arrival of prefetched data. However, prefetchers can have
a negative impact on performance due to increased mem-
ory traffic and pollution caused by the prefetched data in
cache [20].

An analysis of the commit stalls caused by various load in-
structions shows that a small number of loads account for a
large fraction of the commit stalls . We refer to these loads
as LIMCOS (Loads Incurring Majority of COmmit Stalls).
Simple classifiers based on history allow us to easily identify
this small set of loads that stall the pipeline frequently. The
classifiers are off the critical path and work by tracking the
stalls experienced by individual loads.

Focused Prefetching uses the classifiers to filter the training
stream seen by the prefetcher, i.e., only the misses suffered
by loads identified by the classifier act as the training stream
for the prefetcher. By focusing on misses suffered by LIM-
COS, it allows the prefetcher to eliminate misses that have
a significant impact on performance. The other interesting
aspect is that our method is agnostic to the prefetcher used.
As our method does not change the internal working of a
prefetcher, it can be applied to any of the current prefetch-
ing mechanisms.

Experimental evaluation shows that Focused Prefetching im-
proves performance (IPC) by 9.8% on an average for a set
of 17 memory-intensive SPEC2000 benchmarks over naive
prefetching using Global History Buffer (GHB) and delta
correlation prefetcher [16]. Also this gain in performance is

! fma3d is not considered as it did not run in our framework.
2The machine configuration and simulation parameters are
summarized in Section 5, and no prefetcher was used for this
study.

%Total Commit Stalls

Benchmark

Figure 1: Fraction of commit stall cycles that can be attributed to loads

achieved along with a 20% reduction in memory traffic and a
61% improvement in the accuracy of prefetches. Finally, we
demonstrate that the classification criterion of load commit
stalls is better than existing criteria like either criticality [7]
or load-specific criteria like delinquent loads [3]. Compared
to the approaches mentioned above, our Focused Prefetch-
ing scheme results in an IPC improvement of 4.6% and 4.2%
respectively.

In Section 2, we present the motivation behind our work.
Simple classifiers to identify LIMCOS loads are discussed in
Section 3. An application of the classifiers, Focused Prefetch-
ing is discussed in Section 4. Detailed simulation results and
comparison with other schemes are presented in Section 5.
A summary of related work can be found in Section 6. Con-
cluding remarks are presented in Section 7.

2. MOTIVATION

2.1 Memory Intensive Benchmarks

Figure 2 shows the absolute IPC for baseline and a machine
with a perfect L2 cache. The machine parameters can be
obtained from Section 5 and no prefetcher is used for the
purpose of this study. The configuration with perfect L2 can
be thought of as an 100% accurate and timely prefetch to
mask all L2 misses. The potential gains in performance are
an indicator of the memory intensive nature of the bench-
marks. In 8 benchmarks, apsi, crafty, eon, gzip, mesa, perl,
siztrack, vortex, the performance improvement with a per-
fect L2 is very small. The remaining benchmarks show at
the least 20% improvement in IPC with perfect L2. These
are classified as memory-intensive benchmarks. Similar cri-
terion has been used in earlier works [16] to identify memory-
intensive benchmarks. Henceforth, we will discuss results in
detail for the set of 17 memory-intensive benchmarks iden-
tified here. Fig 2 also shows the geometric mean of IPC for
all benchmarks and the 17 memory-intensive benchmarks.

2.2 Commit Stalls and Individual Loads

Figure 1 shows that loads account for most of the commit
stalls. On analysing it further by looking at the contribution
of individual loads, led us to observe a few interesting trends.
The fraction of commit stalls accounted by various number
of static loads (from 1 to 64, in powers of two) is shown in
Figure 3 for the 17 memory-intensive benchmarks.

It can be observed that in all the benchmarks, only a small
set of static loads account for most of the commit stalls. For
instance, 10 static loads can account for anywhere between
50% (twolf) to 95% (galgel,lucas, mcf,wupwise) of the total

stalls caused by loads. The only exception to this among
the memory-intensive benchmarks is applu which requires
11 static loads to cover 50% of load commit stalls. 16 static
loads, as can be observed from Figure 3 account for at the
least 70% of commit stalls except in applu and parser.

As the LIMCOS loads encounter commit stalls mainly due
to cache misses, we carried out a limit study to identify the
potential benefits that could be achieved if these loads were
to hit in the L2 cache. For the purpose of the limit study, we
used a profile run to identify the static loads that account for
50% of load commit stalls(LIMCOS-50). We implemented
an idealized scheme, referred to as Instant Replacement, sim-
ilar to [3], in which the static loads identified in the previous
step, suffer no L2 cache misses. In other words, any data
requested by the selected set of static loads is brought in-
stantaneously into the L2 cache if it is not present in the
cache. This can be thought of as an 100% accurate and
timely prefetch focused on the small set of static loads.
Figure 4 shows the gain in IPC over baseline (no prefetch) for
Instant Replacement. Applying Instant Replacement for the
static loads in LIMCOS-50 results in a 63% gain in IPC over
baseline for the memory-intensive benchmarks (the corre-
sponding number is 44% for the entire set of 25 benchmarks
studied). As Instant Replacement mimics 100% accurate
prefetching for LIMCOS-50, the results indicate that there
is a scope for significant performance gain by focusing on
the LIMCOS loads.

2.3 Commit Stalls and Delinquent Loads

Previous research [3] has shown that a small set of loads
account for a major fraction of the cache misses. This small
set of loads is referred to as Delinquent Loads. A load expe-
riences commit stalls only when it misses the L1 cache and
is waiting for data to arrive from lower levels of cache or
memory. Naive expectations might lead one to believe that
the loads that account for most of the misses, the delin-
quent loads, will account for most of these commit stalls.
But this need not necessarily be the case, and a compari-
son between the loads accounting for commit stalls and the
delinquent loads, shows only a partial overlap. This can be
observed from Figure 5, which shows the number of static
loads that account for 50% of misses, the number of static
loads that account for 50% of load commit stalls and the
overlap between them. When more than one delinquent load
miss happens in parallel, the oldest miss is held responsible
for the commit stalls and the later delinquent loads might
not get counted as part of LIMCOS. The lack of a perfect
match between the delinquent loads and the LIMCOS loads

Benchmark

Figure 2: IPC for baseline (no prefetch) and perfectL2

100 =

90
80
70 —
60 —
50 —
40 —
30 —
20 —
10 —

Fraction of Stalls

S e

Benchmark

Figure 3: Individual loads and their contribution to commit stalls: Fraction of commit stalls accounted for

by various number of static loads

70 10034 51099

65
60

T [T

Benchmark

Figure 4: Gain in performance for Instant Replace-
ment over baseline

can be attributed to the effects of Memory Level Parallelism
(MLP) [17]. Focused Prefetching using Classifiers, will iden-
tify all these overlapping loads one after the other (from the
oldest to the youngest) and will eliminate the stalls suffered
by them.

3. CLASSIFIERS

Figure 1 indicates that loads account for most of the commit
stalls, while Figure 3 further shows that only a few static
loads account for most of the commit stalls. Taking the
two facts together, it is obvious that a few loads should
suffer commit stalls frequently. We make use of this fact to

design simple history based classifiers that can identify loads
causing a significant fraction of commit stalls. The classifiers
work by tracking the commit stalls experienced by each load
and make their decision as to whether the loads experience
frequent commit stalls.

We study two types of classifiers, a Counting classifier which
uses counters to keep track of the absolute number of stalls
experienced by each load and a Confidence based classifier,
which approximates the counts using confidence counters.

3.1 Counting Classifier

The Counting classifier works by keeping track of the stalls
experienced by the individual loads. Any load that has ac-
counted for more than a certain fraction of total stalls seen so
far is classified as one stalling frequently. Figure 6 illustrates
the key structures and the organization of the counting clas-
sifier. There are two main operations associated with any
classifier viz., Update, where the classifier needs to be up-
dated when a load incurs commit stalls and Classification,
where for a given load, the classifier needs to decide whether
or not it belongs to LIMCOS.

As can be seen from Figure 6, the classifier is an array of
counters, called Per PC Stall Table (PPST), which is tagged
and indexed based on load PC. An Update is performed when
a load that has stalled at the head of the ROB for a few cy-
cles commits. An Update operation requires the knowledge
of the load PC and the number of cycles of stall incurred by
it. Indexing based on load PC is common to both Update
and Classification operations. The operations that are spe-
cific to Update are shown in the shaded region of Figure 6.

[Delinquent(L1)

Wl StallPC(50)
Il Match

Benchmark

Figure 5: Relation to Delinquent Loads: Overlap between loads accounting for 50% of stalls and 50% of misses

| Stall Cycles

> Min Stalls
Total Load Stall Count Ff================;
'

L
PC Tag Per-PC Stall Count

LOAD PC

Per—PC Stall >=|
(Threshold * F======~, 0
Total Load Stall| H

Yes
;

i

LIMCOS Non-LIMCOS

Per PC Stall Table (PPST)

Figure 6: Counting classifier organization

Updates are carried out only if the number of stall cycles
encountered is greater than Min Stalls, a design parameter
of the classifier specified in terms of number of processor cy-
cles. This helps to reduce the number of entries required in
the classifier and to avoid updates from loads that do not
experience frequent stalls. In case of the stall cycles incurred
by the load being above Min Stalls, it is added to the PPST
entry of the load (identified by the PC) and is also added
to the global counter which indicates the total commit stalls
caused by loads. In case the load in question is not be-
ing tracked by the classifier, a new entry is allocated in the
PPST to track the stalls experienced by the load. LRU re-
placement is used to identify the candidate for replacement
in the classifier.

The Classification procedure should indicate as to whether
a load belongs to LIMCOS or not. The dotted lines in Fig-
ure 6 show the steps involved in Classification. The Count-
ing Classifier, as mentioned above, is indexed using the PC
of the load. If the load in question is not being tracked by
the classifier currently, it is classified as non-LIMCOS. Oth-
erwise, the load is classified as LIMCOS if the stall cycles
in the corresponding PPST entry accounts for more than
a Threshold fraction of the total stalls caused by the loads.
Thus the counting classifier has two parameters, namely Min
Stalls and Threshold.

The design with a single global counter tracking the commit
stalls caused by all the loads can affect the efficiency of the
classifier as new entries in the PPST will never get classified
as LIMCOS due to the high value of the global counter. To
overcome this, we clear the global counter and all the PPST
entries periodically. This period is set as 1 million cycles for
all the simulations carried out in this study. Also we wait

Y]

Stall Cycles
Stall Cycles > Min Stalls
ES/Increment

PC Tag Saturating Counter

LOAD PC

'n’ bits Counter Value
.......... >

S= peeeeeen :

27(n-1)

Yes 1

¥

LIMCOS Non-LIMCOS

Per PC Stall Table (PPST)

Figure 7: Confidence based classifier organization

until a reasonable amount of history is gathered before we
make any attempts at classifying a load. This value is fixed
as 10,000 load stall cycles.

3.2 Confidence Based Classifier

The Confidence Based Classifier is an approximation of the
mechanism behind the Counting Classifier. The organiza-
tion of the Confidence based Classifier is illustrated in Fig-
ure 7. The key difference is the use of saturating counters in
PPST instead of counting the actual number of stalls expe-
rienced by each load. We used 5 bit saturating counters in
each PPST entry. An Update, indicated by the shaded region
of Figure 7, involves incrementing the confidence counter for
a given load if the stall cycles caused by it is greater than
Min Stalls. The PPST is indexed using the load PC and the
replacement of existing entries, if required is carried out us-
ing LRU policy, as in the counting classifier. Classification,
indicated by dotted lines, classifies a load as LIMCOS if the
counter value is more than half of the maximum value. The
classification mechanism based on observing the confidence
value also eliminates the need for the global counter which
is present in Counting Classifier.

While the basic principle behind the working of both the
classifiers is the same, there are a few differences between
the classifier designs. In the presence of focused prefetching,
which is discussed in Section 4, the stalls suffered by a load
identified as belonging to LIMCOS by the classifiers will be
eliminated to a greater extent. Thus the dynamic instances
of this static load might not incur commit stalls. Yet the
confidence based classifier will classify the load as frequently
stalling (as there is no decrement of confidence) and will
enable focused prefetching. The counting classifier, on the

‘I Overall Accuracy M Accuracy [False Positive ‘

a0 nn ||
. nn ||
i nn ||
2 gl nn ||
. nn ||
3yl nn ||
<ol nn ||
o nn ||
o L I | | |
I S \&\ &Q ¢ & @é & 8 @é\ & & ¢ @Q
FETTFEFITatdgidty

Benchmark

Figure 8: Accuracy of counting classifier: 32 Entries,
Min Stalls 16 cycles, Threshold 1/32

other hand might not classify future instances of this load
as frequently stalling as (i) the commit stalls are removed
due to focused prefetching and (ii) other loads might add to
the overall stalls caused by loads and the Threshold might
not be met over a period of time.

3.3 Evaluating the Classifiers

In this section, the classifiers are evaluated on the basis
of their ability to accurately identify LIMCOS and non-
LIMCOS loads. The machine configuration used for these
experiments are presented in Table 1. No prefetcher is used
during these studies. The ability of the classifiers to identify
correctly the loads accounting for 50% of the load commit
stalls, LIMCOS-50 3 is studied. The criteria used to judge
the performance of the classifiers are: (i) Overall Accuracy:
The fraction of dynamic loads that are identified correctly
as either belonging to LIMCOS-50 or not. (ii) LIMCOS Ac-
curacy: The fraction of LIMCOS loads that are classified
accurately. (ili) False Positive Rate: The fraction of non-
LIMCOS loads that are wrongly identified as belonging to
LIMCOS.

Figure 8 shows the Ouverall Accuracy, LIMCOS accuracy and
False Positive Rate for the Counting Classifier design used
in the rest of this study. The overall accuracy is 94.4% on
an average for the set of 17 memory-intensive benchmarks.
Further the LIMCOS accuracy is also high, (84% on an av-
erage), and the false positive rate, on an average, remains at
a low 5%. In our experiments, the Min Stalls is kept at 16
cycles for Counting Classifier and 32 cycles for Confidence
Based Classifier to enable the Counting Classifier to learn
quickly as the counters in the PPST are cleared periodically
after every million cycles.

Figure 9 shows the Overall Accuracy, LIMCOS accuracy and
False Positive Rate for the Confidence Based Classifier de-
sign used in the rest of this study. While the Overall Ac-
curacy (84%) is slightly lower compared to the Counting
Classifier, the quick learning allows the confidence based
classifier to achieve high LIMCOS Accuracy of 90%. The
flip side of the quick learning and the lack of a decrement
of the confidence values can be seen by the relatively higher
false positive rate of 17%. The interesting aspect to note is
the reasonably high overall accuracy achieved by the classi-
fiers inspite of using only 32 entries.

3The trends observed were similar with higher coverage like
LIMCOS-80.

W False Positive‘

‘l Overall Accuracy [l Accuracy

Accuracy

Benchmark

Figure 9: Accuracy of confidence classifier: 32 En-
tries, 8 way associative, Min Stall 32 cycles

TRAINING STREAM TRAINING STREAM TRAINING STREAM

T A

PREFETCHER

‘ PREFETCHER ‘
PREFETCHER
FEEDBACK
MECHANISM
PREFETCH ADDRESS PREFETCH ADDRESS PREFETCH ADDRESS
STREAM STREAM STREAM

(a) Current (b) Focused (¢) Feed-
Prefetching back Di-
rected

Figure 10: Focused Prefetching and other prefetch
mechanisms

4. FOCUSED PREFETCHING

Focused prefetching is an application of the classifiers men-
tioned in Section 3. Focused prefetching is a filtering mecha-
nism that helps any prefetcher to focus more on misses that
have a bigger impact on performance.

Any existing prefetcher, as shown in Figure 10(a), is made
up of three components — the main prefetching algorithm,
the input to it which is normally a stream of misses and
the output which is a stream of prefetch addresses. The
prefetching algorithm identifies trends in the input stream
and generates the prefetch stream which contains the ad-
dresses that are likely to be accessed in the future.

In Focused Prefetching, the thrust is in filtering the training
stream seen by the prefetcher. As shown in Figure 10(b),
given any prefetch algorithm, we use a classifier to filter the
training stream so that the core of the prefetcher sees only
the misses caused by LIMCOS loads. One of the two clas-
sifiers proposed in Section 3 could be used to implement
Focused Prefetching. The rationale behind this filtering is
that, by definition of LIMCOS loads, eliminating the misses
suffered by the loads identified by the classifier will lead to
lesser commit stalls and improved performance. Also seeing
only a part of the training stream, will allow the prefetcher
to use its hardware resources efficiently and improve the ac-
curacy of the prefetches. The improved accuracy and gen-
erating prefetches in response only to a subset of the misses
translates into lesser number of wasted prefetches being gen-
erated. This also alleviates the pressure on the memory
and reduces the memory traffic caused by naive prefetching.

Focused Prefetching is oblivious to the underlying prefetch
mechanism and hence has a wide applicability.

An important aspect to consider in Focused Prefetching is
the timing of the Classification requests to the classifier. The
outcome of the Classification step decides whether or not the
miss will form a part of the input stream to the prefetcher. If
the prefetcher is associated with a cache level where the load
PC information is available, the Classification request could
be made once a miss is suffered. At caches closer to memory,
where load PC information is generally not available [16], the
Classification request has to be made earlier in the pipeline
and the result has to be propagated along with the load
request. As the classifiers are indexed based on load PC, the
classification request could be made once the PC is known.
In our simulations, the classification request is made earlier
in the pipeline, once the instruction is identified as a load.

A recent research in eliminating the harmful effects of prefetch-

ing and deriving the maximum benefit out of it is Feedback
Directed Prefetching (FDP) [20]. FDP, as shown in Fig-
ure 10(c), filters the prefetches once they are generated based
on the prefetch accuracy, timeliness and pollution caused
by the prefetcher. FDP achieves this by controlling the
prefetch degree. Further, FDP is a reactive mechanism and
is oblivious to the importance of the misses eliminated by
the prefetcher. FDP is orthogonal to Focused Prefetching
and can complement our scheme to improve its performance.

S. RESULTS

5.1 Simulation Details

The simulation framework used in this study is built on
top of the sim-alpha simulator [5]. The machine model
and other relevant parameters are presented in Table 1.
Each level of cache has 32 MSHRS [12] out of which 16
are reserved for prefetches. Regular accesses are given pri-
ority over prefetches. We used the early single simulation
point [18] for all our simulations. The interval size consid-
ered is 100 million instructions.

Most of the detailed evaluation is carried out for prefetching
at the L2 cache. For this purpose, we consider a per-PC
Delta correlation prefetcher built on top of Global History
Buffer (GHB) [16]. The prefetcher is made up of two struc-
tures, a Global History Buffer, which holds the most recent
misses in FIFO order and an Indez Table which chains the
misses that share the same characteristics together. In this
study, we use the Index Table to chain together misses that
were caused by the same load instruction. The per-PC delta
correlation prefetching mechanism uses delta pairs to decide
the prefetch addresses. When a miss occurs, the two most
recent deltas (differences between the 3 most recent misses)
are computed. The miss history is searched backwards for a
match with the delta pair computed above. Once a match
is found, for a prefetch degree of 8 assumed in this study,
the next 8 deltas in the per-PC miss stream following the
delta pair are used to generate the prefetch addresses. The
prefetching mechanism of Delta correlation is adapted as it is
shown to be one of the best performing prefetch algorithm
in [16]. Though we evaluated focused prefetching with a
GHB containing 16 Index table entries (capability to chain
together miss stream of 16 loads), as we focus only on a
small set of PCs, for fairness, we compared it with a naive
prefetcher that uses a GHB with 256 index table entries.
The classifiers used are the ones evaluated in Section 3.

Fetch/Issue/Commit | 8

Width

ROB/LQ/SQ 128/32/32 Entries
Int ALU/Mult 6/2

FP ALU/Mult 6/2

Branch Predictor 21264’s Predictor, 32 Entry
RAS

L1 DCache - 32KB, 4 Way ,
32 Byte linesize, 1 cycle
Unified L2 - 1MB, 8 Way, 64
Byte linesize, 12 cycles

All the caches have 32 MSHRs
Minimum 225 cycles

At L2 - 512 Entry 16 Index
GHB Per PC Delta Correla-
tion

512 Entry 256 Index was also
evaluated for Baseline
Prefetch Degree 8

Counting Classifier 32 Entries, Lower Limit 16
and Threshold 1/32

32 Entries, 8 Way Associative,
Lower Limit 32

Memory Hierarchy

Memory Latency
Prefetcher

Confidence Classifier

Table 1: Machine parameters

5.2 Performance and Traffic Gains with Fo-
cused Prefetching

By using the classifiers to focus only on LIMCOS loads, we
expect Focused Prefetching to eliminate most of the com-
mit stalls encountered and hence have a positive impact
on performance. In this section, we study the performance
of Focused Prefetching when applied to a GHB based per-
PC delta correlation prefetcher which tracks L2 misses and
brings the prefetched data into L2. Figure 11 shows the im-
provement in IPC obtained by focused prefetching and naive
prefetching over no prefetching. In this figure, B-16 and B-
256 stand for baseline prefetching with 16 and 256 Index
Table entries in the GHB respectively. Results are shown
for Focused Prefetching using both the classifiers discussed
in Section 3. Focused Prefetching uses an Indexr Table with
16 entries. It can be observed that in most of the bench-
marks, Focused Prefetching results in performance improve-
ment over no prefetching and naive prefetching (baseline
prefetching). On an average, Focused Prefetching with Con-
fidence Based Classifier results in an IPC gain of 37.2% over
no prefetching and 9.8% over naive prefetching (B-256). Be-
tween the confidence based and counter based classifiers, the
confidence based classifier results in a higher IPC gain. This
can be attributed to the relatively higher LIMCOS Accuracy
of the confidence based classifier as shown in Section 3. Also
the gain in IPC over B-16, 8.6% using Confidence Based
Classifier and 7.3% using Counting Classifier indicates that
intelligent filtering carried out by Focused Prefetching is bet-
ter than any naive filtering achieved by having lesser number
of Index Table entries.

Benchmarks twolf and vpr gain very little improvement in
performance with any prefetching. In lucas, mcf, mgrid,
swim and wupwise the effect of Focused Prefetching over
naive prefetching is significant. On the other hand, in bench-
marks like applu, equake and facerec, Focused Prefetching
suffers minor performance degradation compared to naive
prefetching. Especially in facerec, where focused prefetching

80

70

60

50
40
30
20
10 —

o -
-10

%IPC Gain

I B-16
W B-256
I Count
Il Conf

-20 T T T T T T T T T

Benchmark

R <& =
& <& &

Figure 11: Performance gains of GHB with PC-Delta Correlation and Focused Prefetching over a baseline

with no prefetcher

[Count/B-256
[Conf/B-256

%Reduction in Prefetches Generated

Benchmark

Figure 12: Reduction in the number of prefetches
generated by Focused Prefetching

is relatively unhelpful, focusing on the PCs identified by the
classifiers results in a decrease in the number of prefetches by
83% and the number of useful prefetches? is brought down
by 75%. This results in a drop in the performance compared
to naive prefetching.

Figure 12 shows the reduction in the number of prefetches
generated by Focused Prefetching compared to B-256. On
an average, for the confidence based classifier, the number
of prefetches generated goes down by 50% while the number
of useful prefetches goes down by 26.3% (not shown in fig-
ure). In spite of this reduction in the number of prefetches,
focusing on the loads in LIMCOS leads to a 9.8% gain in
performance over naive prefetching. This confirms the ben-
efits of focusing on the LIMCOS loads. Using the counting
classifier results in a performance gain of 8.3% over naive
prefetching despite the fact that the number of prefetches
generated went down by 52.4%.

The other intended benefit of focused prefetching is the im-
proved ability to learn trends in the filtered miss stream
and generate more useful prefetches. We use the metric
Prefetch Accuracy, which is defined as the fraction of use-
ful prefetches among the total prefetches generated [20].
The gains in accuracy over B-16 and B-256 for Counting
Classifier and Confidence Based Classifier are shown in Fig-
ure 13. Focused Prefetching leads to a 61% improvement in
the prefetch accuracy compared to naive prefetching. All
the benchmarks, even those where Focused Prefetching did

4prefetches servicing a demand access.

£ [Count/B-16
g B CountB-256
[Conf(B-16
[l ConfB-256

Accuracy Gain over Naiv:

¢ L O o5 &
. TR IO S
(’& §§ [Y \\s“ &

Q
A
5 g & &

Benchmark

Figure 13: Improvement in prefetch accuracy due to
Focused Prefetching

not result in a major gain in performance, showed a gain in
accuracy as a result of employing Focused Prefetching.
Accuracy in prefetching and focusing on a subset of misses
leads to a reduction in the number of wasted prefetches,
thereby saving valuable memory bandwidth. Figure 14 shows
the reduction in the memory traffic measured in terms of the
number of bytes transferred. It is important to consider the
entire traffic rather than just the prefetch traffic as the pollu-
tion effects of prefetching can increase the miss traffic. The
average reduction in memory traffic experienced is 20.3%
using the confidence based classifier and 20.2% using the
counting classifier. All the benchmarks showed a reduction
in the memory traffic on employing Focused Prefetching. All
the results together indicate that focusing on the small set
of LIMCOS loads is beneficial to performance. In short, Fo-
cused Prefetching enables one to eliminate the misses that
matter and achieves more performance by virtue of more
relevant prefetches.

For completeness, we also show the performance gains expe-
rienced for the remaining benchmarks, except fmadd which
did not run in our framework. The gains in performance
over B-16 and B-256 by employing focused prefetching are
shown in Figure 15. In apsi, Focused Prefetching results in
an IPC improvement of nearly 7%. Only for crafty and eon,
there is a marginal performance degradation (less than 1%)
compared to naive prefetching. On an average, for all the 25
benchmarks, the gain in performance over naive prefetching
is 7% for confidence based classifier and 6% using counting
classifier. For the entire set of 25 benchmarks, the mem-

50

45

40

35

30
25
20 —
15
10
5
0

Reduction in Memory Traffic

NS

Benchmark

o
%3

[Count/B-16
Il Count/B-256
[Conf/B-16
Il Conf/B-256

Figure 14: Reduction in memory traffic by employing Focused Prefetching

[mcont6
| M Count-256
| ConfB-16

\| Conf/B-256

%IPC Gain over naive prefetching

T T T T
apsi crafty eon qzip mesa perl sixtrack vortex Avg

Benchmark

Figure 15: Gain in performance with Focused
Prefetching for benchmarks not discussed in detail

ory traffic reduces by 22.8% for confidence based classifier
and by 23.3% for counting classifier. The interesting thing
to note is that even in benchmarks that are not sensitive
to memory performance, there is a substantial reduction in
memory traffic by employing Focused Prefetching.

5.3 Relation to Other Criteria

In this section, we present quantitative comparisons with
two of the most closely related criteria to commit stalls viz.,
criticality [7] and delinquent loads [3].

5.3.1 Criticality

Critical loads are defined as the loads that together with
other critical instructions decide the overall execution time
of the program. Earlier work has attempted to tailor prefetch-
ing schemes targeting critical loads [21]. The implementa-
tion was dependent on a set of heuristics like load leading
to a load miss or branch misprediction and measuring the
number of instructions issued after the load to identify the
critical loads. However, such works report a significant loss
in performance compared to naive prefetching for the L2
cache. For the purpose of this study, we identify critical
loads using the much rigorous criteria of criticality suggested
by Fields [7]. The methodology proposed in [7] works by
constructing a graph where the edge weights are the delay
incurred by an instruction at various stages in the pipeline
waiting for true dependencies and resource constraints to be
resolved. The longest path in this graph, known as the crit-
ical path, accounts for the entire execution time. Any delay
to instructions in the critical path, the critical instructions,

will add to the execution time of the program.

During simulations, we observed that instead of focusing on
critical loads (including both hits and misses), it is better
from a performance point of view to focus on the static loads
that account for a large fraction of the critical misses. This
is a subtle but significant difference compared to the earlier
work.

Thus, to implement Focused Prefetching with criticality as
the criteria, we use the definition of Fields [7] to identify a
set of static loads that account for most of the critical misses
suffered at L2 cache.

5.3.2 Delinquent Loads

Section 2 showed that there is a partial overlap between
delinquent loads [3] and LIMCOS.

5.3.3 Performance Comparison

As critical loads are identified accurately using an offline
analysis, for fairness and accuracy purposes we do not use a
dynamic classifier and use profile runs to identify the loads
matching the various criteria. The profile and actual runs
use the same input data and are run for 100 million instruc-
tions at the simulation point [18]. The machine configura-
tion used in the profile runs is same as the one shown in
Table 1. However, no prefetcher is used in the profile runs.
For each benchmark, we identify the set of static loads that
account for 50% of commit stalls. An equal number of static
loads that account for most of the critical L2 misses are also
identified. Similarly, one more profile run is used to iden-
tify an equal number of delinquent loads that account for
most of the misses. As Focused Prefetching, in this case,
eliminates the misses suffered by the static loads identified
above, for fairness, it is imperative to consider same num-
ber of loads across the three criteria. LIMCOS-50 is used
as the basic criteria as the criterion of commit stalls re-
quired the least number of loads to achieve 50% coverage.
We implemented Focused Prefetching at L2 cache to focus
and eliminate the misses suffered by these set of static loads
identified using the three different criteria. The prefetcher
used is the same prefetcher considered so far in the study,
GHB that can track 512 misses from 16 different PCs (16
Index table entries) and using a perPC Delta Correlation to
generate the prefetch addresses [16].

Figure 16 gives the performance improvement achieved by
commit stall criterion over the other two. On an average, the
gain in performance for commit stall based focused prefetch-
ing over criticality based focused prefetching is 4.6% while

‘ [Gain over Criticality [l Gain over Delinquent

50
45
40
35
£
= 20
£ 15
S 10
= 5
o
-5
10
15 T T T T T T T T T T T T T T T
S > & AR =3 < S S © & > & < S $ E SY
S L > e X N NS R & <8 < & &S S K & 5
B R S & & & <& & S S \Y\0Q$
Benchmark

Figure 16: Performance gains of Focused Prefetching over Criticality and Delinquent Loads

the gain over delinquent load based focused prefetching is
4.2%. Though there are a few benchmarks, where either
criticality or delinquent loads seems to be the better crite-
ria, in a majority of the benchmarks, focusing on commit
stalls gives the maximum benefit. The only exception seems
to be lucas where the profile based identification of commit
stalls is not as efficient as other criteria. But in lucas, the
classifiers perform well at run time as less than 10 loads ac-
count for 95% of the commit stalls, resulting in an IPC gain
of 25.6% over B-256.

5.4 Different Prefetchers and Cache Levels

We apply Focused Prefetching to L1 Data Cache by filtering
the training stream seen by a stride prefetcher. This also al-
lows us to study the effectiveness of Focused Prefetching with
a different prefetch algorithm. The stride prefetcher has a
per-PC stride detection mechanism and a confidence mecha-
nism of waiting for the same stride to appear more than once
in succession before issuing prefetches. The prefetch degree
is set at 8. Some of the recent works on prefetching have used
the stream buffer [10] as one of the prefetch mechanisms. We
opted for the stride prefetcher instead of stream buffer as re-
search shows that the performance of stream buffer improves
by using a per-PC stride [6] or Markov prefetcher [19] along
with it. The delta correlation predictor used earlier can be
thought of as an approximation of the Markov predictor [9)].
We studied Focused Prefetching with a confidence based
classifier for the L1 cache. The performance gains over naive
prefetching with an ability to track 16 per-PC Strides and
256 per-PC strides are shown in Figure 17. For the set of
25 SPEC benchmarks®, there is a 11% gain in performance
over B-16 with a 2.3% reduction in memory traffic. In a
significant number of benchmarks (10 out of 25), there is at
the least 5% improvement in IPC over naive prefetching. In
lucas and mgrid, the gain in IPC is more than 70%. Com-
pared to the more aggressive B-256, the IPC gain is reduced
and is only 1.2%. Nonetheless, there is a gain over the naive
prefetcher and the memory traffic reduces by 8.2%.

6. RELATED WORK

The works related to contributions made in this paper can
be classified into three major categories: tracking commit
stalls, prefetching mechanisms and filtering prefetches.

5The full set of 25 benchmarks is used as all of them are
sensitive to L1 cache misses.

Mot 16 Moo 256—

:
il

SN OL AdS W FoRER L o
& [I I A A R\
@‘Q@QQ& ﬁ“@@m&b c;pqu\\,c&&@

{ N
@&

A o8 44
e L8O CR 9
g CE FEEY
FEEaTaTg
Benchmark

Figure 17: Performance gains provided by Focused
Prefetching at L1

6.1 Tracking Commit Stalls

Tracking commit stalls experienced by a program and treat-
ing them as an indicator for the DRAM performance of the
system has been carried out in [14]. Scavenger [2] makes an
observation that loads missing in L2 account for a significant
fraction of stall time, which is similar to ours. While [2],
focuses on the misses from an address point of view and sug-
gests cache structure reorganization, we focus on the stalls
from an instruction point of view and focus on improving
prefetching performance with out any modifications to ex-
isting prefetchers. Loads blocking the ROB often is also
demonstrated in [11] and it proposes load speculation when
a load stalls at commit. In short, they use commit stalls to
filter the load speculation that needs to be carried out. But
the major difference is the fact that they try to eliminate
all the commit stalls rather than focusing on a few or the
instructions that account for a lot of them as is done in this
work.

6.2 Prefetching Mechanisms

Global History Buffer [16] has been shown to be the most
effective way to track misses and also provides the flexibil-
ity to implement a variety of prefetching schemes on top
of it. Earlier prefetching mechanisms used sequential [8] or
nextline prefetching, while Markov predictors for prefetch-
ing proposed in [9] identified complex patterns in the miss
stream. The popular prefetching scheme of tracking multiple
streams in parallel, stream buffer is proposed in [10]. Lat-
ter research also showed that it is profitable to use either a

stride [6] or Markov prefetcher [19] with stream buffers. Our
approach is oblivious to the underlying prefetching mecha-
nism used and helps by filtering the input stream seen by
the prefetcher to improve the accuracy and efficiency.

6.3 Filtering Prefetches

Not treating all the loads as equal, and focusing only on a
few of them was first proposed in [21]. A complex tracking
mechanism and large prediction structures are used to iden-
tify and predict the criticality of a load in [21]. However
their performance evaluation revealed poorer performance
compared to naive prefetching at L2 and resulted in a loss
in performance compared to no prefetching at L1. One of
the criteria employed in [21] to identify critical loads is to
measure the number of instructions issued in a certain num-
ber of cycles following the issue of a load. If the number of
instructions issued is below a certain predetermined thresh-
old, the load is classified as critical. The major problem
with this approach of tracking at issue is the fact that the
tracking needs to be carried out for multiple loads in parallel
and if one of them is critical enough to affect the issue, all
the other loads will get wrongly classified as critical.

In Feedback Directed Prefetching (FDP) [20], the filtering
of the generated prefetches is carried out based on the ac-
curacy, timeliness and pollution caused by the prefetcher.
FDP is reactive and is not aware of the relative impact on
performance of the loads that suffer the misses. FDP fil-
ters prefetches once they are generated while we filter the
training stream seen by the prefetcher. This allows FDP to
complement our scheme without any negative effects.

A static filter which enables prefetching for a set of loads
has been proposed in [22]. Unlike Focused Prefetching, it
requires a profiling run and requires knowledge of the un-
derlying prefetch mechanism. Also the filtering criteria is
not performance oriented but is determined by the regu-
lar behaviour observed in the miss stream of a particular
load, which might lead to an improvement in the accuracy
of prefetches.

A filter based on usefulness of the prefetches is proposed in
[24]. The scheme works by filtering prefetches once they are
generated on a per prefetch basis. Like FDP, this scheme is
also orthogonal to Focused Prefetching.

7. CONCLUSIONS

This paper proposed Focused Prefetching, a scheme that fo-
cuses the prefetching efforts on a small set of loads incurring
majority of commit stalls. To summarize, the key contribu-
tions made in this paper are:

e We observe that close to 60% of the commit stalls are
caused by loads and that a small set of loads, referred
to as LIMCOS incur most of these stalls.

e We propose simple hardware structures called Classi-
fiers that are entirely off the critical path to identify
the occurrences of the LIMCOS loads.

e We demonstrate an application of the Classifiers to
improve the performance gains from prefetching in Fo-
cused Prefetching. We show that focusing prefetching
efforts on LIMCOS loads can lead to gains in perfor-
mance, reduction in the memory traffic and improved
prefetch accuracy.

e We also demonstrate that the criterion of commit stalls
is better than other well known criteria like critical-
ity [7] and delinquent loads [3].

8. REFERENCES

[1] J. Baer and T. Chen, An effective on-chip preloading scheme
to reduce data access penalty. In Proc. of Supercomputing’91,
1991.

[2] A. Basu, N. Kirman, M. Kirman, M. Chaudhuri, J.F.
Martinez, Scavenger: A New Last Level Cache Architecture
With Global Block Priority. In Proc. of Int. Symp. on
Microarchitecture, 2007.

[3] J.D. Collins, H. Wang, D.M. Tullsen, C. Hughes, Y-F. Lee, D.
Lavery and J.P. Shen, Speculative Precomputation:
Long-range Prefetching of Delinquent Loads. In Proc. of Int.
Symp. Computer Architecture-28, 2001.

[4] A. Cristal, D. Ortega, J. Llosa and M. Valero, Out-of-order
commit processors. In Proc. of Int. Symp. on High
Performance Computer Architecture, 2004.

[5] R.Desikan, D.C. Burger, S.W. Keckler and T. Austin,
Sim-alpha: a Validated, Execution-Driven Alpha 21264
Simulator. The University of Texas at Austin, Department of
Computer Sciences. Technical Report TR-01-23,2001.

[6] K. Farkas, P. Chow, N. Jouppi and Z. Vranesic,
Memory-system design considerations for
dynamically-scheduled processors. In Proc. of Int. Symp.
Computer Architecture, 1997.

[7] B. Fields, S. Rubin and R. Bodik, Focusing processor policies
via critical-path prediction. In Proc. of Int. Symp. Computer
Architecture, 2001.

[8] J.W.C. Fu and J.H. Patel, Stride directed prefetching in scalar
processors. In Proc. of Int. Symp. on Microarchitecture, 1992.

[9] D. Joseph and D. Grunwald, Prefetching Using Markov
Predictors. In IEEE Trans. on Computer Systems, 1999.

[10] N.P. Jouppi, Improving direct-mapped cache performance by
the addition of a small fully-associative cache and prefetch
buffers. In Proc. of Int. Symp. Computer Architecture, 1990.

[11] N. Kirman, M. Kirman, M. Chaudhuri and J.F. Martinez,
Checkpointed Early Load Retirement. In Proc. of Int. Symp.
on High Performance Computer Architecture, 2005.

[12] D. Kroft, Lockup-free instruction fetch/prefetch cache
organization. In Proc. of Int. Symp. Computer Architecture,
1981.

[13] W.F. Lin, S.K. Reinhardt, D. Burger and T.R. Puzak,
Filtering superfluous prefetches using density vectors. In Proc.
of Int. Conf. on Computer Design, 2001.

[14] O. Mutlu and T. Moscibroda, Stall-Time Fair Memory Access
Scheduling for Chip Multiprocessors. In Proc. of Int. Symp.
on Microarchitecture, 2007.

[15] K.J. Nesbit, A.S. Dhodapkar and J.E. Smith, AC/DC: An
adaptive data cache prefetcher. In Proc. of Int. Conf. on
Parallel Architectures and Compilation Techniques, 2004.

[16] K.J. Nesbit and J.E. Smith, Data Cache Prefetching Using a
Global History Buffer. In Proc. of Int. Symp. on High
Performance Computer Architecture, 2004.

[17] M.K. Qureshi, D.N. Lynch, O. Mutlu, Y.N. Patt, A Case for
MLP-Aware Cache Replacement. In Proc. of Int. Symp.
Computer Architecture, 2006.

[18] T. Sherwood, E. Perelman, G. Hamerly and B. Calder,
Automatically Characterizing Large Scale Program Behaviour.
In Proc. of Int. Conf. on Architectural Support for
Programming Languages and Operating Systems, 2002.

[19] T. Sherwood, S. Sair and B. Calder, Predictor-Directed Stream
Buffers. In Proc. of Int. Symp. on Microarchitecture, 2000.

[20] S. Srinath, O. Mutlu, H. Kim, Y.N. Patt, Feedback Directed
Prefetching: Improving the Performance and Bandwidth
Efficiency of Hardware Prefetchers. In Proc. of Int. Symp. on
High Performance Computer Architecture, 2007.

[21] S.T. Srinivasan, R.D-C. Ju, A.R. Lebeck, C.R. Wilkerson,
Locality vs. Criticality. In In Proc. of Int. Symp. Computer
Architecture, 2001.

[22] V. Srinivasan, G.S. Tyson and E.S. Davidson, A static filter for
reducing prefetch traffic. CSE-TR-400-99, University of
Michigan Technical Report, 1999.

[23] Z. Wang, D. Burger, K. McKinley, S. Reinhardt and C.
Weems, Guided Region Prefetching: A Cooperative
Hardware/Software Approach. In Proc. of Int. Symp.
Computer Architecture, 2003.

[24] X. Zhuang and H.H.S. Lee, A hardware-based cache pollution
filtering mechanism for aggressive prefetches. In Proc. of Int.
Conf. on Parallel Processing, 2003.

