
1 
 

Focused Surface Acoustic Wave induced nano-
oscillator based reservoir computing  

Md. Fahim F. Chowdhury1, Walid Al Misba1, Md Mahadi Rajib1, Alexander J. Edwards2, 
Dhritiman Bhattacharya3, Joseph S. Friedman2, Jayasimha Atulasimha1* 

 1Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA 
1{chowdhurymf, misbawa, rajibmm, *jatulasimha}@vcu.edu 

2Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, TX 
2{alexander.edwards, joseph.friedman}@utdallas.edu 

3Department of Physics, Georgetown University, Washington, DC 
3dhritiman.bhattacharya@georgetown.edu 

 

We demonstrate using micromagnetic simulations that a nanomagnet array excited by Surface 
Acoustic Waves (SAWs) can work as a reservoir. An input nanomagnet is excited with focused 
SAW and coupled to several nanomagnets, seven of which serve as output nanomagnets. To 
evaluate memory effect and computing capability, we study the Short-Term Memory (STM) and 
Parity Check (PC) capacities respectively. The SAW has a carrier frequency of 4 GHz whose 
amplitude is modulated to provide different inputs of sine and square waves of 100 MHz 
frequency. The responses of the selected output nanomagnets are processed by reading the 
envelope of their magnetization state, which is used to train the output weights using regression 
method (e.g. Moore-Penrose pseudoinverse operation). For classification, a random sequence of 
100 square and sine wave samples are used, of which 80 % are used for training, and the rest of 
the samples are used for testing. We achieve 100 % training accuracy and 100 % testing accuracy. 
Furthermore, the average STM and PC are calculated to be ~4.69 bits and ~5.39 bits respectively, 
which is indicative of the proposed acoustically driven nanomagnet oscillator array being well 
suited for physical reservoir computing applications. The energy dissipation is two-orders lower 
than a CMOS-based echo-state network. Finally, the ability to use high frequency (4 GHz) SAW 
makes the device scalable to small dimensions, while the ability to modulate the envelope at a 
lower frequency (100 MHz) adds flexibility to encode different signals beyond the sine and square 
waves demonstrated here.   

Keywords: Reservoir computing (RC), recurrent neural network (RNN), neuromorphic 
computing, surface acoustic wave (SAW), spintronics.  

A Recurrent Neural Network (RNN) is a machine learning algorithm, which uses its internal 
memory to remember previous inputs and hence process time-series data e.g., speech, audio, text, 
weather, etc. Reservoir Computing (RC) is derived from the RNN theory and is a computational 
framework where a fixed, non-linear reservoir maps the inputs into higher-dimensional space and 
the readout is trained with linear regression and classification1. A RC network consists of inputs, 
reservoirs, and outputs as shown in Fig. 1(a). In a RC network, only the output weights are trained 
with a fast and simple linear regression method, which enables the implementation of efficient 
training. Such physical reservoir implementations are suitable for edge devices that need to learn 
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in real-time with limited hardware, computational resources, and energy. An ideal physical 
reservoir should have short-term memory effect and non-linear dynamics as well as be amenable 
to manufacturing with minimal circuitry. Various Physical RC (PRC) systems are proposed by 
researchers such as spintronic PRC2-12, electronic PRC2, photonic PRC13-14, etc. Each of these 
physical reservoirs has respective advantages and disadvantages.  

Spintronic nanomagnetic devices are particularly well suited for physical reservoir computing due 
to their inherent interactive non-linear dynamics, recurrence characteristics, enduring lifetime, 
CMOS-compatibility, and low energy consumption2-3. Spintronic PRC has been simulated or 
experimentally implemented using dipole-coupled nanomagnets15-16, spin-torque nano-oscillators 
(STNOs)10,17-18, spin-wave systems19-21, and different skyrmion fabrics4-6,22. Simple pattern 
recognition task can be performed with a skyrmion fabric reservoir, which utilizes the recursive 
response of magnetization dynamics5. Complex tasks such as image classification can also be 
performed by a single magnetic skyrmion memristor (MSM) with current pulse stimulation4,6. 
Several studies have proposed domain wall (DW) based neurons and synapses for integrated 
hybrid CMOS and spintronic computing7-9. Apart from skyrmion textures and domain walls, 
vortex-type spin torque oscillator10, magnetic-dipole interactions15 can be used as a resource for 
nonlinear dynamics of a spintronic reservoir. Higher computational capabilities can be achieved 
using forced synchronization10, by increasing the number of STNOs, or at the boundary between 
synchronized and disordered states23.  

Recently, strain-mediated nanomagnet devices28-29 were demonstrated for memory applications 
through resonant surface acoustic wave (r-SAW) assisted spin-transfer-torque24-25. Unlike memory 
application, reservoir computing does not require the nanomagnets to switch to an orthogonal state 
or undergo a complete reversal. Hence, the energy barrier (𝐸 = 𝐾 𝑉~1𝑒𝑉) constraint, associated 
with volume (V), and perpendicular anisotropy constant (𝐾 ) is not critical to its working. The 
SAW induced stress at a suitable frequency can induce ferromagnetic resonance, which leads to 
large amplitude precession while being energy efficient. These advantages motivated us to propose 
SAW induced magnetization dynamics as an input to nanomagnetic reservoirs. SAWs are 
generated by an inter-digitated transducer (IDT) patterned on a piezoelectric substrate, which 
produces Raleigh (transverse) waves. Piezoelectric materials such as Lithium Niobate (𝐿𝑖𝑁𝑏𝑂 ), 
can be used to generate such SAW waves that induce magnetization dynamics in magnetostrictive 
nanomagnets fabricated on these substrates.  

In this work, we demonstrate via micromagnetic simulation that a nanomagnet array, shown in 
Fig. 1, excited by surface acoustic wave (SAW) can be used as a reservoir to classify sine and 
square waves with high accuracy. We also evaluate two figures of merit tasks of RC named short-
term memory (STM) capacity and parity check (PC) capacity. The STM and PC capacity tasks 
characterize the memory effect (influence of past states) and computing capability (non-linearity) 
of the system, respectively26. The amplitude of the SAW applied to the input nanomagnet is 
modulated in such a way that its envelope forms random sequence of sine and square waves of 
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100 MHz frequency. The non-linear responses of the output nanomagnets due to such an input are 
processed by reading the reservoir state in certain intervals and then trained to classify sine and 
square waves and calculate STM and PC capacity.    

 

Fig. 1: (a) Concept of reservoir computing (b) A micro-magnetic snapshot of the input, the reservoir and 
output nanomagnets. The SAW is applied to the input nanomagnet (ip1) and the magnetizations of the 
output nanomagnets (op1 to op7) are read.  

We obtain the free layer magnetization dynamics of the reservoir through micromagnetic 
simulation with MuMax327. The magnetization direction of the reference ferromagnetic layer of 
an MTJ is fixed and the free layer magnetization is governed by the Landau-Lifshitz-Gilbert (LLG) 
equation as follows:  

⃗
= −

( )
𝛾[𝑚 × 𝐻 ] −

( )
𝛾 𝑚 × 𝑚 × 𝐻               (1) 

Here, 𝑚 is the normalized magnetization defined as 
⃗
, �⃗� is the magnetization, 𝑀  is the saturation 

magnetization, α is the Gilbert damping coefficient, γ is the gyromagnetic ratio. The effective 

magnetic field, 𝐻  is comprised of the fields due to the SAW induced stress 

anisotropy (𝐻  ), demagnetizing field due to shape anisotropy (𝐻 ), and the exchange 

field due to Heisenberg exchange coupling (𝐻 ) as described in the equation below. 

𝐻 = 𝐻  + 𝐻 + 𝐻                            (2) 

The effective field due to stress, 𝐻   (in the form of cyclic tension and compression)24 due 
to the inverse magnetostriction effect25 can be expressed as: 

𝐻  = (�⃗�. 𝑚)�⃗�                                               (3) 

Here, 𝜇  is the magnetic permeability of free space, �⃗� is the applied stress direction. The stress 

anisotropy constant, 𝐾  is 𝜎𝜆 , where 𝜎 is the induced stress by SAW and 𝜆  is saturation 
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magnetostriction. We consider a uniaxial stress induced by SAW in the �⃗� direction and neglect the 
in-plane component which experiences opposite stress orthogonal to �⃗� due to Poisson’s effect. We 
note that the estimated stress amplitude is conservative due to this assumption, but the qualitative 
magnetization dynamics remain the same. Since the focused SAW is locally applied to the region 
of the input magnet only, the induced stress in the piezoelectric substrate in the reservoir or output 

region is comparatively negligible. So, the stress anisotropy field, 𝐻  = 0 and the 

effective field on the nanomagnets of the reservoir or output nanomagnets is comprised of 𝐻  

and 𝐻 .  

𝐻   is calculated by MuMax27 at every point in each nanomagnet due to shape anisotropy of 

the nanomagnet itself and due to dipole coupling from other nanomagnets.  

Finally, the Perpendicular Magnetic Anisotropy (PMA) is set to zero as PMA is negligible when 
the soft later thickness exceeds 1-2 nm and the thickness is 35 nm in our case.   

The schematic diagram of the input, reservoir, and output nanomagnets for the RC simulation is 
shown in Fig. 1(b). The input nanomagnet is indicated by ip1 and of the rest of the nanomagnets 
in the reservoir, seven nanomagnets are selected as outputs and denoted by op1 to op7.  A 4 GHz 
focused surface acoustic wave induced stress is applied to the input nanomagnet. We assume the 
SAW is applied using a focused interdigitated transducer (FIDT), which is patterned on top of a 
piezoelectric. The simulation dimension is 256 x 256 x 16 cells which covers all input, reservoir, 
and output nanomagnets, and each cell size is 2 nm x 2 nm x 2.1875 nm, which is much lower than 

the ferromagnetic exchange length, 2𝐴 𝜇 𝑀⁄  = 6.32 nm. The cylindrical nanomagnets are 30 

nm in diameter and 35 nm in height. The piezoelectric substrate is assumed to be lithium niobate 
(LiNbO3) and the simulation parameters39-42 are summarized in Table I.  

Table I. Simulation parameters for the physical reservoir for the soft ferromagnetic CoFe39-42 layer.   

Parameter Value 

Gilbert damping constant, 𝛼 0.05 

Saturation magnetization, 𝑀  0.72 x 106 A/m 

Exchange stiffness, 𝐴  13 x 10-12 J/m 

Free layer thickness, 𝑡 35 nm 

Nanomagnet diameter, 𝐷 30 nm 
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Fig. 2: (a) Simulation schematic showing application of SAW with Focused Inter-Digitated Transducer 
(FIDT) on the input nanomagnet as well as reservoir and output nanomagnets  (b) Electrical  readout of the 
magnetization of the output nanomagnet softlayer with an MTJ (c) Normalized stress anisotropy applied 
using SAW and labeling of sine and square waves as 1 and 0 (top), magnetization of output nanomagnets 
1 and 4 in response to SAW and their corresponding envelopes (bottom) (d) The envelopes of the responses 
vs. time (ns) of several output nanomagnets.  

Two fundamental properties required for reservoir computing are nonlinearity and memory38. Due 
to the nonlinearity and complex dynamics of the reservoir, the network response should be 
consistent/similar for similar inputs and distinguishable for different inputs30. For RC, we utilize 
the magnetization dynamics of the input and output nano-oscillators, which are governed by the 
LLG equation described earlier. Further, the input information is encoded in the envelope of a 
focused SAW of 4 GHz consisting of a random sequence of sine and square waves, applied to the 
input nanomagnet as shown in Fig. 2(a). During classification, the sine and square waves are 
labeled as 1 and 0, respectively. The details of the RC method are presented in the supplementary.  

We evaluate the quantitative performance of the reservoir with STM task and PC task30. STM task 
characterizes the memory effect of the system by generating delayed inputs and testing if the 
internal dynamics of the reservoir is trained to adjust to this delay. The training and testing input 
data for STM is given below: 

𝑦 , = 𝑖 (𝑛 − 𝑑)                                                      (4) 
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Here, 𝑑 = introduced delay. Since the STM task is not sufficient to prove reservoir property, the 
PC task is also evaluated as a benchmark task. The PC task characterizes the non-linearity of the 
system, which is indicative of the computing capability of the system and simplifies the training 
of the reservoir. The training and testing data for the PC task is prepared with modulo(2) operation 
to introduce non-linearity and is expressed as follows: 

𝑦 , = [𝑖 (𝑛 − 𝑑) + 𝑖 (𝑛 − 𝑑 + 1) + ⋯ + 𝑖 (𝑛)] 𝑚𝑜𝑑(2);  𝑑 ≠ 0               (5) 

Once the learned weights are obtained, the correlation coefficient between testing data, 𝑦 /
,  

and output data 𝑦  are calculated. The total capacities for STM (𝐶 ) and PC (𝐶 ) tasks are 
calculated by integrating (summing in the discrete case) the correlation coefficients for delay up 
to 𝑑 .  

𝑟 / (𝑑) =
[ /

, , ]

/
, [ ]

                                      (6) 

𝐶 / = ∑ 𝑟 / (𝑑)                                                (7) 

Fig. 2(a) shows an example of the experimental setup of the proposed reservoir with the application 
of focused SAW. The focused SAW IDT and the reservoir are fabricated on a piezoelectric 
substrate, which is assumed to be lithium niobite (LiNbO3). The input, reservoirs, and outputs are 
realized by magnetic tunnel junctions (MTJs), made of two CoFe layers (free layer and reference 
layer) separated by a tunnel barrier layer (MgO). The free layer magnetization responses are read 
from the output nanomagnets and preprocessed to obtain envelopes by spline interpolation31 over 
local maxima separated by at least 3 samples. The upper envelopes of the output nanomagnets are 
shown in Fig. 2(d). Each sine or square signal is sampled into N nodes separated by a sampling 
time 𝜏. The node density can be increased by introducing virtual nodes32-33. The signals are labeled 
as 0 and 1 in response to the sine and square waves, respectively. The weights are obtained by the 
linear regression method explained above. 

To quantify the performance of the proposed reservoir, the sine and square wave classification is 
performed by the reservoir as a first task. Although simple, this classification task requires non-
linearity and memory effects of the system to predict or classify these waves with high accuracy. 
The input is a random sequence of 100 sine and square waves with equal period of 10 ns. The first 
80 signals are used to train, and the next 20 signals are used to test the reservoir for signal 
classification, STM task, and PC tasks. The reservoir is able to achieve 100 % training and 100 % 
testing accuracy with any of the output nanomagnets. The training and testing are performed for 
the different numbers of virtual nodes 5, 10, 20, 25, and 50, where 100 % recognition rate in both 
training and testing was achieved for all these numbers of nodes.  
To further evaluate the performance of the reservoir, we studied two fundamental characteristics: 
fading memory and non-linearity. To evaluate the memory of the proposed reservoir we have 
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calculated STM capacity and to evaluate the nonlinearity, we have performed the PC task and 
results are discussed next. 

 
Fig. 3: (a) Square of correlation coefficient, 𝑟 (𝑑) for STM task in terms of delay (𝑑) and number of 
virtual nodes, (b) square of correlation coefficient, 𝑟 (𝑑) for PC task in terms of delay(𝑑) and number of 
virtual nodes.  
 

Fig. 3(a) shows the square of the correlation coefficient, 𝑟 (𝑑) between the training data of STM 

task, 𝑦 ,  and output data, 𝑦  as a function of delay from 𝑑 = 0 to 𝑑 = 10. Each of the time 

steps correspond to a 10 ns delay. The STM correlation coefficient2, 𝑟 = 1 for all the number 
of virtual nodes, 𝑁 in consideration at delay, 𝑑 = 1 and starts to decrease with the increase of the 
delay. The 𝑟 (𝑑) tends to be higher in general with the increase in the number of the virtual 
nodes. Similarly, Fig. 3(b) presents the square of the correlation coefficient, 𝑟 (𝑑) between the 

training data of PC task, 𝑦 ,  and output data, 𝑦  as a function of delay from 𝑑 = 0 to 𝑑 = 10. 
Similar trends as STM have been observed for the PC task, for the correlation coefficient, as a 
function of the number of virtual nodes, and delay.  

 

Fig. 4: (a) Short-Term Memory capacity (𝐶 )  and (b) Parity Check capacity (𝐶 ) of the reservoir as a 
function of the number of virtual nodes (c) Average STM and PC capacity of the reservoir as a function of 
the number of virtual nodes.  

The dependency of STM capacity (𝐶 ) on the number of virtual nodes, 𝑁 in each signal is shown 
in Fig. 4(a). There is a general tendency of increasing STM capacity with an increasing number of 
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virtual nodes for all the output nanomagnets. Fig. 4(b) shows the PC capacity (𝐶 ) vs. virtual 
node numbers (N) follows similar characteristics as STM task. The maximum capacity achieved 
by the reservoir for both STM and PC tasks is 5.43 bits for the case with output nanomagnet op7 
and 25 virtual  nodes. The obtained STM and PC capacities are comparable or higher than the 
other spintronic reservoirs10,23,26,34. The average STM and PC capacity of seven output 
nanomagnets are shown in Fig. 4(c) in terms of the virtual node numbers. The reservoir has an 
average STM capacity of ~4.69 and PC capacity of ~5.39 bits.  

To separate the role played by the nonlinear nanomagnet reservoir in achieving the high STM and 
PC over that due to pre-processing (carrier amplitude modulation) and post-processing (filtering 
the carrier) we perform the following study. The pre-processed input is fed into a single-layer 
perceptron (SLP) network and its output post-processed before classifying and this is compared to 
the case of the reservoir with pre and post-processing. The result shows a correlation (𝑟 )  of 1 for 
both STM and PC tasks, at delay 1 but very low or almost no correlation (𝑟 ) for delay 2 and 
higher compared to the case with filters and reservoir as shown in Fig. 5. The calculated STM and 
PC capacities of the SLP are ~1.44 bits and ~1.43 bits, respectively while STM and PC capacities 
of the reservoir are ~3.52 bits and ~3.46 bits, which indicates the effectiveness of the reservoir 
over merely pre and post- processing.  

 
Fig. 5: (a) Architecture of single layer perceptron (SLP) which is used to measure the influence of pre and 

post-processing on the performance of reservoir (b) Calculated coefficient, 𝑟 / (𝑑) for STM and PC 

tasks with various delay, d for two different cases: with reservoir (solid lines) and without reservoir (only 
SLP and dashed lines). The number of virtual nodes for both cases are, 𝑁=20. The lines are drawn to guide 
the eye. 

The total energy dissipation in the proposed reservoir system solely depends on the SAW 
excitation35-37 as there is no other input mechanism needed. To estimate the energy consumption 
of the nanomagnets we also assume total generation of SAW induced strain from the piezoelectric 
substrate to the nanomagnets. The energy dissipated by the focused SAW IDT per input time 
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period is 𝑊𝑡 = 0.87 𝑝𝐽. The MTJ read out typically costs much less than 1 fJ43-44 per 

virtual node and the passive filter costs no additional energy. Therefore, the readout cost of 50 
virtual nodes is less than 50 fJ (0.05 pJ), meaking total RC energy cost 0.92 pJ per input time 
period.  The spintronic reservoir energy consumption is compared with an equivalent CMOS-based 
echo-state network (ESN). The ESN is simulated to obtain the similar performance of nanomagnet 
RC. To achieve similar parity check capacity the CMOS ESN needs 11 neurons, which 
corresponds to 338 pJ of energy that is two-orders higher than the proposed nanomagnet reservoir 
(<1 pJ). The detailed energy dissipation and comparison is presented in the supplementary. 
Although CMOS ESN is able to achieve comparable accuracies for PC task, the STM task 
accuracies of the CMOS reservoir are still significantly low compared to our spintronic reservoir, 
which exhibits high capacities for both STM and PC tasks. The energy dissipation can be further 
decreased by applying higher frequency (> 4GHz) focused SAW, reducing the period of 
sine/square wave, and carefully selecting or optimizing material parameters. Furthermore, this 
NMRC scheme requires readout of only a single MTJ and enables the implementation of less 
external circuitry with more energy saving. 

In summary, we have introduced a spintronic physical reservoir where a focused SAW is applied 
to the input. The non-linear response of the output nanomagnets are processed and output weights 
are trained through simple linear regression. The reservoir is able to identify sine and square waves 
with 100 % accuracy. In addition, we have demonstrated the expressivity of the reservoir by 
evaluating two figures of merit for RC. We have achieved average capacities of ~4.69 and ~5.39 
for STM and PC respectively, which are indicative of a viable physical reservoir. The reservoir is 
extremely energy efficient and potentially needs two-orders of magnitude less energy than a 
CMOS-based ESN. Finally, the ability to use high-frequency SAW makes the device scalable to 
small dimensions, while the ability to modulate the envelope at a lower frequency (100 MHz) adds 
flexibility to encode different signals beyond the work in this paper. This could be key to 
applications such as speech recognition, anomaly detection, etc. using in-situ learning in edge 
devices.   
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Reservoir computing (RC): 

The reservoir computing is implemented as follows: 

𝑖 (𝑛) =
0,         𝑠𝑖𝑛𝑒
1,   𝑠𝑞𝑢𝑎𝑟𝑒

                                                        (S1) 

  𝑖 = {0,1,01, … … … ,1,1,0};       𝑛 ∈ {1,2,3 … , 𝑛 , 𝑛 , … … , 𝑛 }              (S2) 

𝑠 = [𝑠  𝑠   𝑠 … … 𝑠 ]                                                   (S3) 

Here 𝑖  is the input label of 100 (𝑛 ) random sine or square waves. In each period of sine or 
square, the non-linear magnetization response (or magnetoresistance due to magnetization 
orientation of the soft layer of the MTJ) of the reservoir is read N times in an interval 𝜏, where 

𝜏 = , 𝑇 = period of sine or square, and 𝑁 =  number of virtual nodes.  Here, 𝑠  is the virtual node 

vector of a sine or a square signal and the measured virtual nodes represent the states of the 
reservoir nanomagnets that are obtained from the output envelopes.  

The current state of the reservoir depends on the current input and the previous state of the 
reservoir, which represents the short-term memory of the reservoir.  

𝑠 (𝑁 + 1) = 𝑓[𝑠 (𝑁), 𝑖 (𝑛) ]                                              (S4) 

The optimum weights are obtained by linear Moore-Penrose pseudo-inverse operation to the 
training data. The optimized output weight is called learning and used to classify the test 
waveforms. The mean square error (MSE), the optimized weight matrix (𝑊 ) is expressed as: 

𝑀𝑆𝐸 = ∑ (𝑦 − 𝑊 𝑠 )                                    (S5) 

𝑊 = 𝑦 ∗ 𝑝𝑖𝑛𝑣(𝑠 )   ;    𝑡 = {1,2,3 … , 𝑛 }                         (S6) 
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Here 𝑝𝑖𝑛𝑣 finds the Moore-Penrose pseudoinverse of a matrix. Suppose the 𝑊  thus evaluated 
is:  

𝑊 = [𝑊 , 𝑊 , . . ., 𝑊 ]                                           (S7) 

Then the output of the reservoir (denoted as 𝑦 ) is obtained by the matrix multiplication of the 
learned weight and reservoir state or test data of the network.  

𝑦 = 𝑊 𝑠    ;    𝑣 ∈ {𝑛 , … , 𝑛 }                                        (S8) 

  𝑦  = [𝑊 , 𝑊 , . ..  , 𝑊 ]

⎣
⎢
⎢
⎢
⎡𝑠   𝑠  . . .  𝑠

𝑠   𝑠  . . .  𝑠
.                   .                 .

𝑠   𝑠  . . .  𝑠 ⎦
⎥
⎥
⎥
⎤

                                (S9)  

 
Fig. S1: The SAW input data (𝑖 ) for STM (a) and PC (d) tasks. The training sequence of the input for (b) 
short-term memory task (𝑦 , ) at delay, 𝑑 = 1 and (e) parity check task (𝑦 , ) at 𝑑 = 1. 

The (c) STM output data (𝑦 , ) and PC output data (𝑦 , ). The virtual node number, 𝑁 = 20. The 

output nanomagnet 𝑜𝑝 . NOTE: The  𝑜𝑝  is merely used as an example, 𝑜𝑝  provided better STM and PC.   
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Training and testing for short-term memory (STM) and parity check (PC) tasks: 

The input data (𝑖 ), training data for STM (𝑦 , ), and PC (𝑦 , ) tasks, and the 

corresponding output data (𝑦 ,  and 𝑦 , ) are shown in Fig. S1. The training data for the 

STM (Fig. S1(b)) and PC tasks (Fig. S1(e)) are defined in Equations (4) and (5) of the main article, 
respectively. The output is calculated using the magnetization dynamics of the output nanomagnet, 
𝑜𝑝  and the number of virtual nodes per signal, 𝑁 = 20. The optimized weights, 𝑊   are 
obtained using Equation (S6). The output data fits the training data for both STM and PC tasks at 
the delay, 𝑑 = 1 and 𝑑 = 1, respectively, which corresponds to the square of the correlation 
coefficient, 𝑟 = 1.0. 

Energy consumption of the SAW induced reservoir:  

To introduce strain in the magnetostrictive free layer of the input nanomagnet, we have applied 4 
GHz SAW on the piezoelectric substrate through focused IDT (FIDT)S1 with circular-arc focal 
points. The FIDT generates concentrated SAW energy with high intensity, which is localized on 
the center of the IDT, and produces higher amplitude wavesS2. The energy dissipation due to SAW 
excitation on the piezoelectric substrate mostly depends on the potential (𝑉 ) applied to induce 
required stress (𝜎) to strain the magnetostrictive free layer (𝐶𝑜𝐹𝑒) of the input MTJ, Young’s 
modulus of CoFe (𝑌) the FIDT beamwidth (𝑊), frequency of SAW (𝑓 ), and the piezoelectric 
substrate (𝐿𝑖𝑁𝑏𝑂 ) properties such as 𝑑  coefficient (ratio of induced strain to the applied electric 
field), admittance (𝑦 ), SAW propagation speed etc. The maximum required stress is: 𝜎 =
∆  

= 186 MPa, where saturation magnetostriction of CoFe, 𝜆 =250 ppm and the 

maximum change of magnetic anisotropy is 7.0x104 Jm-3. The power dissipation by the SAW 
FIDT is defined byS3  

= |𝑉|                                                           (S10) 

The required surface potential is determined by 𝑉 =
 

 
= 3.87 𝑉, where 𝑌 = 200 𝐺𝑃𝑎, 

𝜎 = 186 𝑀𝑃𝑎, 𝑑 = 34.45 𝑝𝑚/𝑉. For wavelength, 𝜆 =897 nm and admittance, 𝑦 = 0.21x10-3 

(S), the power dissipation, = 1757.58 W/m.  

If the IDT beamwidth (𝑊) is 50 nm and SAW application time (𝑡 ) is 10 ns, the energy 

dissipated per input is 𝑊𝑡 = 0.87 × 10  𝐽.  
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Table SI. Parameters related to energy calculation.    

SAW frequency, f 4 GHz 

Piezoelectric constant, d33 34.45 pm/V 

Youngs modulus, Y 200 GPa 

Admittance, ya 0.21x10-3 S 

Required voltage, V 3.875 V 

FIDT width, W 50 nm 

SAW application duration, 𝑡  10 ns 

 

Energy of CMOS-based echo-state-network: 

 

Fig. S2: The block diagram of digital reservoir system (CMOS-based echo-state network).  

The reservoir energy dissipation is compared with an equivalent CMOS-based echo-state network 
(ESN) shown in Fig. S2. The arrows represent data path of the digital reservoir. The labeling of 
the blocks is as follows: 1 – arithmetic block, 2 – control logic block, 3 – memristor crossbar array, 
and 4 – memory block. Primary inputs are concatenated with the previous reservoir state and 
multiplied by a 16-bit fixed point reservoir weight matrix. This multiplication is performed row-
by-row and then a non-linear activation function (Look Up Table) is used to calculate the 
reservoirs’ internal state. Finally, in order to compare resource consumption of only the reservoir 
implementations and not the output layers, calculations for AEDP assume a memristor crossbar 
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array is used as the output layer. The energy usage breakdown of the CMOS RC is given in Table 
SII.  

Table SII. Energy usage breakdown of CMOS-based ESN   

Total CMOS energy 169 pJ 

Look up table energy 81.1 pJ 

Arithmetic units’ energy 87.9 pJ 

Memristor Crossbar Array (MCA) energy 0.0556 pJ 
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