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Abstract— On-road motion planning for autonomous vehicles
is in general a challenging problem. Past efforts have proposed
solutions for urban and highway environments individually. We
identify the key advantages/shortcomings of prior solutions, and
propose a novel two-step motion planning system that addresses
both urban and highway driving in a single framework. Refer-
ence Trajectory Planning (I) makes use of dense lattice sampling
and optimization techniques to generate an easy-to-tune and
human-like reference trajectory accounting for road geometry,
obstacles and high-level directives. By focused sampling around
the reference trajectory, Tracking Trajectory Planning (II)
generates, evaluates and selects parametric trajectories that
further satisfy kinodynamic constraints for execution. The
described method retains most of the performance advantages
of an exhaustive spatiotemporal planner while significantly
reducing computation.

I. INTRODUCTION

In the past three decades, the development of autonomous

passenger vehicles has been drawing great attention from

both academia and industry. Vehicle autonomy has great

potential in bringing transportation systems to a new level

of safety and efficiency, and will have a positive impact on

people’s lives.

Motion planning is a core technology for on-road au-

tonomous driving. It must produce safe and user-acceptable

trajectories in a wide range of driving scenarios. This paper

presents a motion planning framework that achieves high

performance in urban and highway driving settings while

significantly reducing computation with respect to similarly

performing methods.

II. RELATED WORK

Path generation schemes are foundational to motion plan-

ning. Arc-line[1], Bezier curve[2], B-splines[3] and quintic

splines [4] have been proposed as path primitive types.

However, the drawbacks of curvature discontinuity in [1] [2]

and the lack of intuitive parametrization in [?] [4] make them

less appealing for planning for passenger vehicles.

[5] and [6] proposed a real-time path planning algorithm

for smooth lane changing using a high-order polynomial

equation. They find a closed-form solution with second-order

path continuity, but have difficulty in generating a path to

avoid multiple obstacles in urban traffic situations.
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[7] proposed the use of polynomial curvature spirals,

which have the advantages of intuitive parameterization and

computational efficiency. This method was further adapted

for highway planning in [8].

Optimization techniques have been widely used in find-

ing optimal trajectories for ground vehicles. [9] and [10]

used time and lateral acceleration, respectively, as their

optimization criterion. However, both works used a single

optimality criterion, which lacked the tuning capability. [11]

used the conjugate gradient method to optimize a path from

an initial result given by the A* algorithm. [12] formalized

nonlinear obstacle avoidance trajectory optimization into

several steps and treated them as convex optimization sub-

problems. While they showed good results given enough run-

time, neither [11] nor [12] is capable of meeting the real-time

constraints of the on-road driving application.

Recent development of autonomous vehicles has been

greatly expedited by the DARPA Urban Challenge. CMU’s

Boss [13] won the competition with an architectural planning

framework with three subsystems: 1. Mission planner for the

global route; 2. Behavior planner for rule-based reasoning;

3. Motion planner for an executable trajectory.

For on-road motion planning in Boss, one layer of fixed

poses is sampled by laterally offsetting the centerline pose

at a short lookahead distance, yet retaining the road heading.

A quadratic curvature spiral path primitive type is used

connecting the current pose with sampled poses to generate

path candidates. Applying linear velocity profiles to each

path generates a pool for trajectory evaluation.

Based on Boss, [14] proposed a GPU-based spatiotempo-

ral lattice highway planner, which showed great capability

in several challenging scenarios. A spatial lattice is laid

out conforming to the entire road for path sampling, and a

temporal dimension is then appended to the spatial lattice to

create a dense spatiotemporal search space. Instead of having

a separate Behavior module, various cost terms inducing the

desired behaviors were devised to select a desired trajectory.

However, the nature of this solution is exhaustive sampling,

which requires huge computation to explore a large and

partially unnecessary spatiotemporal state space. Moreover, it

is questionable whether the cost-function-based approach can

be used to entirely replace the high-level behavior reasoning,

some of which could be intrinsically rule-based.

To quell the search space blow-up, [15] attempted to make

use of dynamic programming to plan discretely first, and

further generate the smooth plan by focusing the search.

We adapt a simplified version of this to account for static

obstacles.



A. Motivation

The urban driving planning scheme in [13] and its highway

variant [14] motivate our work. It is non-trivial to design a

planner that naively merges these two scenarios. Neverthe-

less, urban and highway environments can be very similar,

as shown in Fig. 1. It is desirable to have a unified motion

planner for both environments.
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Fig. 1: Motion Planning Architecture

One common trait of all prior works mentioned above

is explicit trajectory sampling and evaluation for on-road

planning. Spatial (path) sampling is performed first. Three

major factors determine the sampling: 1. path primitive type;

2. sampling horizon (short vs. long); 3. sampling pattern

(simple vs. lattice). For the path primitive type, we use

curvature polynomial spirals, as in [7] [14].

A simple approach to the sampling horizon is to relate the

host vehicle speed to the horizon to prevent uncomfortable

reactiveness due to being too short-sighted. This is addressed

in [13] by making the lookahead horizon an empirical func-

tion of current speed. In [14], however, the horizon is always

a constant long value, which is good in being less reactive,

but contributes to the enormous search space. It is ideal

to determine the lookahead distance based on a principled

method, preferably related to the future velocity profile (an

estimate), which is based on the future road geometry, road

conditions and some other maneuver directives. This prevents

undesirable reactiveness and an excessive search space.

For sampling patterns, simple sampling in [13] by gener-

ating paths connecting one layer of lookahead nodes is valid

when the vehicle is traveling at low speed (which means

a short sampling horizon) and the road geometry is not

difficult. As the speed increases (which means the sampling

horizon should also increase), the simple pattern will fail

to conform to (complex) road geometry. Hence, the lattice

approach used in [14] is used in our work to allow path

sampling over long and complex road geometry.

Temporal (trajectory) sampling is typically performed after

spatial (path) sampling. A direct way of building a trajectory

space is by combining the spatial and temporal spaces into

a high-dimensional spatiotemporal space, as in [14]. The

resulting trajectory space is large enough that GPU parallel

computation has to be used to achieve real-time performance.

We acknowledge the validity of spatiotemporal approaches

for general motion planning in dynamic environments. It

would be ideal, though, if the search space could be focused

on the region where the optimal solution is likely to exist.

For normal on-road planning, the spatial space is strictly

constrained by the road geometry. Meanwhile, several user

preference indices can greatly reduce the temporal space

given the spatial space. Hence, a separate planning step

that decouples spatial and temporal planning to trim the

spatiotemporal space is useful.

We propose a two-step planning architecture. The Ref-

erence Trajectory Planner (I) uses multiple optimization

techniques to generate a non-parametric human-like refer-

ence trajectory accounting for road geometry, obstacles and

high-level directives. The Tracking Trajectory Planner (II)

conducts focused spatiotemporal sampling and evaluation.

By using parametric trajectories, it guarantees analytical

continuity. One optimal trajectory is selected and used for

execution. Like [13], we believe it is valid to have a higher-

level reasoning module (Behavior module) in our planning

system. The two-step planning should generate trajectories

that reflect the high-level directives. Fig. 2 shows our pro-

posed motion planning system.
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Fig. 2: Motion Planning Architecture

III. REFERENCE TRAJECTORY PLANNING

Reference trajectory planning generates a non-parametric

trajectory optimized for road geometry, obstacles and higher-

level motion directives.

Multiple optimization techniques are applied. The lack of

an absolute criterion of trajectory quality makes it hard to

devise optimality criteria. However, user preference gives a

good subjective criterion. Hence it is important to formulate

the optimization in a way that generates human-like trajecto-

ries and allows easy tuning to reflect individual preference.

A. Road Blockage Detection & Seeding Path Generation

Road geometry is defined by the centerline of the lane,

which is sampled at a constant interval ∆s to get a set of

N points Pc = {pc
i | i = 0 · · ·N − 1}; each point has an

associated unit lateral vector −→n c
i , as shown in Fig. 4.

To plan a coarse collision-free path, K layers of lookahead

nodes are laid out conforming to the lane at an appropriate

interval ∆L, which is related to ∆s as follows:

∆L =
N − 1

K − 1
·∆s

Edges are linear paths generated by connecting all nodes

at one layer to all nodes at the next layer (blue curve in

Fig. 3). Cost is assigned to each edge enk→nk+1
, where nk
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Fig. 3: Blockage Detection & Seeding Path Generation

represents the node from layer Lk and nk+1 the node from

layer Lk+1:

C(e) = wd · d(e) + (1− wd) · o(e) + δobstacle(e) (1)

In (1), d(e) penalizes long edges, o(e) penalizes lateral

offset, and the weight wd determines the tradeoff between

these two terms; δobstacle(e) prevents collision with static

obstacles and is defined by

δobstacle =

{

0 if edge is collision-free

∞ otherwise

The problem becomes a shortest-path problem, which can

be quickly solved by the dynamic programming algorithm.

The optimal solution is given by a sequence of moves on the

K-layer network that satisfies:

argmin
{enk→nk+1

}

K−1
∑

k=0

C(enk→nk+1
) (2)

The dynamic programming determines a decision asso-

ciated with each node. If no decision exists, this node is

unreachable due to prior blockage; if all nodes at one layer

have infinite values, the road is blocked. Hence, blockage

can be quickly detected as a by-product of the dynamic

programming algorithm.

Connecting K points (the dark blue arrows in Fig. 3)

by interpolating between any two points with cubic spline

produces a curvature-continuous path (the black curve in Fig.

3 and 4), on which N points are sampled to generate a non-

parametric seeding path (the black dots in Fig. 3 and 4). For

the purpose of subsequent optimization, the sampling finds

the lateral offset (given by oseedi in Fig. 4) indicated by the

spline function at ∆s intervals

Pseed = {pseed
i = pc

i + oseedi · −→n c
i | i = 0 · · ·N − 1}

B. Non-parametric Path Optimization
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Fig. 4: Road Model & Non-parametric Path Optimization

A non-parametric path under optimization is given with

respect to the seeding path Pseed

P = {pi | i = 0 · · ·N − 1}

where

pi = pseed
i + oi ·

−→
n

c
i

= pc
i + (oi + oseedi ) · −→n c

i

and oi is the nudging scalar to be determined.

The blue curves in Fig. 4 with value pairs of li and ri set

the bounds of optimization

oi + oseedi ∈ [ri, li]

Since the path points are close to each other, the linear

distance ∆si can be used to approximate the actual path

distance between two points:

∆si = ‖pi+1 − pi‖ (3)

The unit heading vector ui is given by

ui =
(pi+1 − pi)

∆si
(4)

The change of unit heading vector can be calculated

accordingly as a measurement of path curvature κi

κi =
(ui+1 − ui)

∆si
(5)

The optimization criterion is

argmin
{oi}

(

N−1
∑

i=0

wκ · ‖κi‖+ (1− wκ) · |oi|) (6)

where the weight wκ trades off between minimizing cumu-

lative curvature and minimizing cumulative lateral offset.

The Levenberg-Marquardt algorithm is used in the opti-

mization. Like most nonlinear programming techniques, this

algorithm only returns local minima unless the objective

function is convex. The ‖κi‖ term in Equation (6) is not

convex, so the optimization result is a local optimum.

The result is influenced by the initialization, and both the

smoothness and the position of the seeding path matter. Em-

pirical experience shows that the algorithm takes a long time

to converge if the seeding path is curvature-discontinuous.

This is the reason for using the cubic interpolation generating

the seeding path in the previous subsection. Meanwhile, the

position of the seeding path affects the local minima to which

the algorithm converges.

In sum, there are two parameters that affect the opti-

mization result: wd in Equation (1) from the seeding path

generation and wκ in Equation (6) from the nonlinear opti-

mization. We have the tuning capability to capture different

user preferences by varying these parameters, as shown in

Fig. 5(a) and Fig. 5(b). The optimized path is given by

Popt = {popt
i | i = 0 · · ·N − 1}

where

p
opt
i = pc

i + (oopti + oseedi ) · −→n c
i
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Fig. 5: Path Parameter Tuning

C. Non-parametric Velocity Regulation

The non-parametric reference velocity profile is one extra

dimension vregi appended to each optimized path point p
opt
i .

Vreg = {vregi | i = 0 · · ·N − 1}

Three legal and user preference constraints can be applied

to reduce the temporal space:

Limit 1: Legal road speed

vregi ≤ V Limit
lon

Limit 2: Maximum centripetal acceleration

|κi| · (v
reg
i )2 ≤ ALimit

lat

Limit 3: Maximum longitudinal acceleration/deceleration

−DLimit
lon ≤ v̇regi ≤ ALimit

lon

Limit 1 can be constrained straightforwardly. To apply

Limit 2, we must first find the curvature κi at each path

point p
opt
i by locally (least-square) fitting a spline curve

and calculating the curvature analytically. Limit 3 is satisfied

using algorithm 1, which approximates velocity to be linear

between discretized points.

D. Trajectory Optimization Result

Fig. 6(a) demonstrates a sample segment of road on which

the trajectory optimizations are performed. The centerline is

the dashed black curve, and the optimized path is in red.

Comparing the two curvature plots in Fig. 6(b), we can see

the path optimization obviously results in much smoother

curvature change by leveraging the lateral width of the lane.

Fig. 6(c) and Fig. 6(d) show the velocity profile being

regulated with centerline and optimized path, respectively.

The black (constant), blue and red curves represent the

shapes of the velocity profile after applying each of the

three limits. The red-shaded areas are the truncated temporal

space. Comparing the two figures, the path optimization also

smooths the velocity profile overall.

Algorithm 1 Capping Acceleration/Deceleration

Require: A discrete velocity profile V

Ensure: An Acc/Dec-regulated velocity profile Vreg

SCAN Velocity profile

IDENTIFY Accelerating regions Ra

IDENTIFY Decelerating regions Rd

DO

FOR EACH region r ∈ Ra

FOR points in region r

IF (v2i+1 − v2i )/(2 · si) ≥ ALimit
lon

vi+1 =
√

v2i + 2 · si ·ALimit
lon ·

FOR EACH region r ∈ Rd

FOR points in region r

IF (v2i − v2i+1)/(2 · si) ≥ DLimit
lon

vi =
√

v2i+1
+ 2 · si ·DLimit

lon ·

WHILE change of velocity profile ≤ Threshold
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Fig. 6: Reference Trajectory Optimization Simulation Result

IV. TRACKING TRAJECTORY GENERATION

A common controller approach is to split up path tracking

and velocity tracking. [16] compared geometric, kinematic

and dynamic path trackers, and concluded that they all

require at least curvature-continuous path reference and

sometimes even first-derivative curvature continuity. The

velocity tracker is commonly implemented as a PI controller

that tracks the velocity reference independently. High-order

continuity of the velocity profile is preferred to prevent

overshoot and uncomfortable oscillation.

With the reference trajectory as input, this section explains

the details of parametric trajectory generation, focused spa-

tiotemporal sampling and evaluation.

A. Parametric Path Generation

Choosing the polynomial curvature spiral as the path

primitive type, the path generation problem is formulated

as: given starting vehicle state X0 and desired final vehicle

state Xf , find the desired parameter vector P that generates

a path connecting X0 and Xf satisfying the path model

Xf = X0 + F (P ) (7)



where F abstracts the kinodynamic model in [7], given by

x(s) =
∫ sf

0
cos(θ(s)) · ds

y(s) =
∫ sf

0
sin(θ(s)) · ds

θ(s) =
∫ sf

0
κ(s) · ds

κ(s) = p0 + p1 · s+ p2 · s
2 + ...

(8)

In the cubic spiral case, the terms in κ(s) stop at

p3 · s3. Hence, the unknowns to solve for are P =
[sf , p0, p1, p2, p3]

T ; The inputs are starting vehicle state

X0 = [x0, y0, θ0,κ0]
T and goal vehicle state Xf =

[xf ,yf ,θf ,κf ]
T . (x, y), θ and κ specify position, heading

and curvature (implies its steering angle) respectively.

The gradient-based shooting method proposed in [7] can

solve for the unknown parameters efficiently. Note that the

number of explicit constraints (bold parameters) must equal

the number of unknown parameters in P to have a unique

solution.

B. Parametric Velocity Generation

Instead of using linear velocity profiles, as did many prior

works, we specify velocity as a cubic function of time to

be capable of generating an acceleration-continuous profile,

which is important for smooth low-speed driving.

v(t) = q0 + q1t+ q2t
2 + q3t

3 (9)

Given the start velocity v0 and acceleration a0, final

velocity vf and acceleration af , and the path length sf , the

unknown parameters [tf , q0, q1, q2, q3]
T of velocity are given

analytically by solving the following equations.

v(0) = v0 = q0
a(0) = a0 = q1
v(tf ) = vf = q0 + q1tf + q2t

2
f + q3t

3
f

a(tf ) = af = q1 + 2q2tf + 3q3t
2
f

s(tf ) = sf = q0tf + 1

2
q1t

2
f + 1

3
q2t

3
f + 1

4
q3t

4
f

(10)

Note that we still retain the capability of generating a

linear velocity profile (e.g. urgent stop) by enforcing q2 =
q3 = 0.

C. Focused Trajectory Sampling and Evaluation

1) Sampling: With the path/velocity generation schemes

described above, the reference trajectory is used to conduct

focused spatiotemporal sampling. Three factors determine

the sampling process: lookahead horizon, path endpoints and

velocity endpoints. Fig. 7 illustrates the idea.

(s
i
,v

i

max
) (s

i+1
,v

i+1

max
)

t
i

min
t
i+1

min

(s0,v0
max )

t0
min ≡ 0

p
0

opt

p
i

opt
p
i+1

opt

Fig. 7: Trajectory Sampling near Reference Trajectory

Approximating the velocity to be linear between points,

we can estimate the earliest arrival time (EAT) tmin
i of each

point p
opt
i by sequentially calculating

tmin
i+1 = tmin

i +
2 · (si+1 − si)

(vmax
i+1

+ vmax
i )

(11)

Given the lookahead time T , the trajectory horizon is

chosen at the point whose EAT is the closest to T . This

provides a principled way of sampling that guarantees (at

least) T seconds of validity. Following determination of the

horizon, the path set is sampled by selecting several end

points slightly laterally offset to either side of the lookahead

point p
opt
i on the reference trajectory. At last, for each

sampled path, a few velocity profiles are sampled by ranging

the end velocity from 0 to the maximum reference velocity

vmax
i at point p

opt
i .

2) Evaluation: The sampled trajectory is first checked

against both static and obstacles explicitly to guarantee

safety. The evaluation is then performed measuring both

spatial and temporal closeness of the candidate trajectories

to the reference. The trajectory with the minimum cost is

selected:

cost = wspatial · Cspatial + wtemporal · Ctemporal

where Cspatial is the cumulative lateral distance offset with

respect to the reference path, and Ctemporal is the cumulative

time offset with respect to the reference trajectory. The

weights wspatial and wtemporal can be adjusted to give the

relative importance of spatial and temporal closeness.

V. RESULTS

Experiments on a challenging route were conducted in our

high-fidelity simulation environment.
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Fig. 8: Tight Turns

Fig. 8(a) shows the optimized path for the snake-like road

segment. The result is a smoother, more human-like path,

which is easier to track compared to those methods [17]

that directly follow the centerline. In Fig. 8(b), the curvature

plots of the centerline (black) and the optimized path (red)

are shown. The optimized curvature curve is more tightly

bounded, and smoother.
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Fig. 9: Obstacle Avoidance

An obstacle avoidance path was also generated in a

challenging scenario with both turns and straight road (Fig.

9(a)). The curvature plot of the optimized path in Fig. 9(b)

demonstrates smooth avoidance maneuvers.

It can be seen in both Fig. 8(c) and Fig. 9(c) that

since there is a sequence of lateral swerves in front, the

optimized velocity profile (red blended region) reflects this

oncoming driving context and reduces the temporal sampling

space. This benefits the trajectory sampling and evaluation

process by focusing the velocity sampling. [13], [14] conduct

uniformly-spaced velocity sampling up to the speed limit as

demonstrated by the light grey circles, while our approach

samples the same number of points, but focuses them in the

allowable regions, as shown by the dark dots. This results in

less invalid velocity sampling and overall more human-like

trajectories.

The proposed approach as currently implemented provides

a roughly five-fold computation reduction compared to the

method described in [14]. For the Tracking Trajectory Plan-

ner (TTP), the number of velocity samples is the same, but

the number of longitudinal and lateral samples is reduced

respectively from 7 to 3 and from 19 to 5, yielding an

approximate nine-fold reduction. The combined required

computation time for the steps in the Reference Trajectory

Planner (RTP) is comparable to that of the TTP, cutting

the reduction in half to roughly five-fold. The computation

time can be even further reduced, given the current naive

implementation of the optimization schemes in the RTP.

VI. CONCLUSIONS

We propose a novel approach addressing on-road planning

by conducting focused spatiotemporal search. Our scheme

retains most of the performance advantages of exhaustive

sampling approaches. Furthermore, the search is focused to

a reachable/desirable subset of the vast spatiotemporal space

to reduce irrelevant sampling. While significantly reducing

computation, the optimization techniques can also generate

one human-like and easy-to-tune reference trajectory that can

efficiently account for road geometry, obstacles and higher-

level directives.

Future work includes increasing computation speed further

by training a neural network to perform path optimization in

a way that approximates the nonlinear optimization routine.

Also, with the many tuning parameters designed in this paper,

we can make use of machine learning techniques to train for

individual preference.

The proposed approach assumes well-regulated traffic

conditions. A safer planning system would also require

evasive maneuver planning that deals with hazardous driving

scenarios. Explicit spatiotemporal planning and a deeper

synthesis of planning and control are needed.

Our proposed planning architecture has been partially

implemented in our autonomous vehicle system. More tests

on the methods used will be conducted on-vehicle to verify

and perfect a few design choices, like the path primitive type

and sampling pattern.
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