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Abstract. I n G e  limit of geometrical optics, when the wavenumber zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk becomes infinite, the 
nth moment I" of the intensity I = / $ I z  of a random wave $ diverges when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 2 as 

- 
I" - k'n 

(apart from possible logarithmic factors). We call Y. the nth critical exponent. The 
divergence indicates strong non-Gaussian fluctuations (twinkling) in $, and arises from 
caustics (focusing) of the associated family of rays. We compute v,, from the Thom- 
Arnol'd classification of caustics as catastrophes (generic singularities of gradient map- 
pings). A crucial transformation is to study the caustics not in space-time but on the torus 
whose coordinates are the N random phases & .  . . 0, for members of the ensemble of 
functions describing the phase screen or inhomogeneous medium responsible for the 
disorder of the wave. 

The results indicate the following 'universality': when N + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACQ (Gaussian random 
medium) the exponents Y, depend only on whether the waves propagate in two or three 
space dimensions. For two space dimensions all v. are calculated; for three space 
dimensions v, are calculated for n 13, and some uncertainties arise from the in- 
completeness of the classification of catastrophes of corank 2. When N is finite the higher 
exponents zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY ,  differ from the universal values. The simplest case is N = 1, corresponding 
to a (non-random) sinusoidal phase screen, and we show that the analysis of 7 based on 
caustics is very accurate when compared with an exact treatment. 

Experimental tests of the theory are feasible, and measurements of critical exponents 
could provide means of probing deeply into the structure of random media. 

1. Introduction 

This paper is about intensity fluctuations in a monochromatic plane wave with strong 
phase variations introduced by encounter with a random medium. The refracting 
irregularities of the medium may be confined to its boundary (as with the surface of 
the sea) or distributed throughout its volume (as with turbulence in the atmosphere). 

For a complex wave 4 the intensity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI is defined by 141' and those statistics not 
involving correlations are described by the probability distribution P ( I )  as embodied 
in the moments 

, n q p  (1) 

where the bar denotes an average over whatever ensemble defines the randomness of 
the medium. In one case commonly considered (Beckmann and Spizzichino 1963), 
Re 4 and Im J/ are distributed with Gaussian (Ga) statistics, and 

- 
I(&)= n ! ( l ) " .  (2) 
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This arises in weakly irregular media, or at great distances beyond finite slabs of media 
with irregularities of arbitrary strength, whatever their statistics (Mercier 1962); it is a 
kind of ‘universality’. By contrast, as the phase variations get stronger so do the 
intensity fluctuations, and the moments zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 1) exceed the values given by the equa(2). 
In numerical calculations of the second moment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA71 this non-Gaussian behaviour was 
discovered by Mercier (1962) (see also Bramley and Young 1967); it was observed 
experimentally in twinkling starlight by Jakeman er zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 (1976) and in turbulent liquid 
crystals by Pusey and Jakeman (1975). The purpose of this paper is to draw attention 
to a different kind of universality that emerges in the limit of infinitely strong phase 
variations. 

For a given medium that is not highly dispersive, one way to produce strong phase 
variations is by increasing the wavenumber k (=2?r/wavelength, A )  of the incident 
radiation. Therefore the limit being discussed is the geometrical optics limit k -j CO (or 
for quantum waves the classical limit). In this limit the wave is dominated by the 
caustics of the associated family of rays. Caustics are focal surfaces, that is, envelopes 
of the rays; more recently it has been appreciated that they can be classified in terms 
of catastrophes, that is singularities of gradient mappings (Thom 1969, 1975, Duis- 
termaat 1974, Arnol’d 1975, Berry 1976). On caustics I is infinite according to 
geometrical optics, and it was realised by Salpeter (1967) that this implies that all 
moments except the first are infinite. His argument ran as follows: let x be a 
coordinate running through the caustic from its dark side (x < 0) to its bright side 
( x  > 0). Then, for the simplest caustic, the intensity according to geometrical optics 
varies as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I ( x ) a  Re zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx-l” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3) 

so that the contribution of this caustic to the nth moment is 

where a is some estimateof the spacing between caustics. Obviously the integrals 
diverge for n > 1, giving I”+oo. 

Salpeter (1967) also argued that for finite k diffraction would soften the singulari- 
ties at caustics, the effect being to replace the lower limit in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) by a k-dependent 
cut-off. For the second moment this leads to the estimate 

Fa In k. (5 1 
This result has been confirmed, and the proportionality constant derived, in intricate 
analyses by Shishov (1971), Buckley (1971), Taylor and Infosino (1975) and Jakeman 
and McWhirter (1977). 

These authors did not make use of the concept of caustics, but instead worked with 
the diffraction integral for 4 given by the random phase screen model. On this model 
the random medium is confined to the plane z = 0, and impresses a phase 4(& v ,  t )  on 
a plane wave of unit intensity travelling in the positive z direction (6, q are coor- 
dinates in the plane z = 0 and t is time). It is convenient here to write 

446, T ,  t )  = W, 77, t ) -  ut, (6) 
where u(=ck) is the angular frequency of the incident wave, so that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-f is 
approximately the deviation from the plane z = 0 that the screen produces in the 
wavefront at 5, q, t. In the simple case where the slopes laf/aSl, idf/aq1 are small 
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(paraxiality) and af/at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<< w/k (quasi-monochromaticity) it is shown in appendix 1 that 
at points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( x ,  y, z, t) beyond the screen the wave is 

J d t  J dq  exp[ik(f(t+x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq + y ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA52 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“ 2 )  
- ik ei(kr-or)  

2TZ c 2cz 2cz (cI(x, Y ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz, t )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+q] 22 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(I > 0). (7) 

The authors quoted above proceeded by taking f as a smooth Gaussian random 
function and calculating the ensemble average of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ(cII4. (On this model the first 
moment Is trivially unity, a result that is also a consequence of the conservation of 
energy.) This direct method is difficult enough for fz but appears quite hopeless for 
higher moments because of the high-order multiple integrals involved. 

Here, however, we do want to study these higher moments, to establish just how 
they diverge as k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+CO. The divergences will be described by critical exponents ZJ,, 

defined as 

Y, = lim d(ln p ) / d  In k. 
k-m 

This definition is insensitive to factors In k in 7 and gives for on the basis of 
equation ( 5 )  a critical exponent of zero, completely failing to describe the large-k 
behaviour for this case. But the higher v, are not zero and there is some evidence 
suggesting that logarithmic factors occur only occasionally, if at all, when n > 2, so that 
(8) can be written as 

- k + m  
I -- C,,kUn. (9) 

The critical exponents will be derived not from global diffraction integrals like 
equation (7) but directly from the catastrophe structure of the geometrical rays as 
softened by diffraction, on principles explained in § 3. First, however, it is necessary 
to set up the problem in terms of the parameters of the ensemble defining the random 
medium; this formulation, which illuminates the relation between ensemble and other 
averages, constitutes 9 2. For media whose disorder depends on infinitely many 
parameters (e.g. a Gaussian random phase screen) the moments possess universality in 
that the Y, depend only on whether the system is spatially two-dimensional (e.g. a 
‘corrugated’ phase screen) or three-dimensional. The two-dimensional case ( Q  4) is 
relatively straightforward and calculated Y, are shown in table 1. However, the 
three-dimensional case (§ 5 )  depends on the extensive but still incomplete 
classifications of catastrophes developed by Arnol’d (1973, 1974, 1975) and the 
calculations of Y, (table 3) only reach n = 13. The constants C, in equation (9) are not 
universal but depend on the details of the random medium. When the random 
medium is specified by a finite number ofeparameters the higher critical exponents 
differ from the universal values. The simplest case corresponds to the (non-random) 
sinusoidal phase screen specified by a single parameter; 7 for this system is calculated 
in § 6 on a ‘catastrophe’ basis and found to agree very well with an exact calculation. 
In Q 7 the experimental implications of the theory are discussed. 

The theory presented here is strongly evocative of the ‘renormalisation group’ 
technique developed by Wilson (1975) for problems in statistical mechanics. Wilson’s 
theory also deals with critical exponents that are universal for each dimension and 
certain ‘relevant’, ‘irrelevant’ and ‘marginal’ variables appear for which we shall find 
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analogues in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd 3. It appears that Gaussian random wave fields correspond to 'mean- 
field' many-particle systems, while the short-wave limit considered here corresponds 
to many-particle systems approaching their critical points; some support for these 
analogies can be found in a review by Jona-Lasinio (1975) about connections between 
the renormalisation group and the breakdown of the central limit theorem of pro- 
bability theory. 

2. The torus of random phases 

For definiteness the discussion of the random media will be in terms of the function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f(& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt )  appearing in equations (6) and (7) of the phase screen model. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf be a 
stationary random function with Fourier expansion 

Let the ensemble for f have fixed amplitudes fi, wavenumbers ui and v i  and frequen- 
cies ai and let members of the ensemble correspond to different choices of the 
independent random phases zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAel.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. which can range from -T to 7~ with equal 
probability. The phases thus inhabit an N-dimensional torus TN each point of which 
defines a function f in the ensemble. If N tends to infinity and ut, v i  and ai become 
densely distributed while fi tends to a smooth function of U ,  v and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs2 then f(6, 7 ,  t )  
becomes a Gaussian random function (Rice 1944,1945, Longuet-Higgins 1956). The 
simplest random function, however, is not Gaussian but has N = 2 and at least one of 
the ratios u1/u2,  v1/u2,  nl/f12 irrational. 

For each member of the ensemble the diffraction integral (7) defines a wave 
4 ( x ,  y, z ,  t ;  . . . O N )  and ensemble averaging consists of integrating over T,, 
whatever function is to be averaged. Thus the moments (1) are 

where x ,  y, z and t are held fixed. Thus the wave intensity is considered as a function 
on T,, rather than in space-time. This can be pictured as followsithe wave at x ,  y, z, t 
is painted on T N  with a density equal to 1412"/(2~)N, and then I" equals the mass of 
this decorated torus. 

Because the randomness of f is stationary in ,f, 7 and t, the wave i,b will be a 
stationary random function of t for fixed x ,  y, z and a stationary random function of 
x ,  y for fixed t and z, so that alternative ways of writing the ensemble average (1 1) are 
as time or space averages over any single member of the ensemble: 

- +T/2  1 +L /2  +L /2  

I"= lim - drl$12" = L+= lim - L2 L L / 2  dx dY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 * 1 2 " ,  (12) 
T+m T -T/Z 

where now 81 . . ON are fixed. The relation between (11) and (12) can be understood 
by inspecting (7) and (10). Time averaging corresponds to averaging along the 
following path on T N  : 

ei = - f l i t .  (13) 

This path winds round the torus and as t + w  covers it densely and uniformly if the 
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frequencies sZi are incommensurable as they generically will be (Arnol’d and Avez 
1968, appendix 1, Born 1960, appendix 1). Space averaging corresponds to averaging 
over the following surface on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATN:  

(14) ei zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuiX + uiy. 

This surface will fill T N  densely and uniformly if the ui and the vi are incommensur- 
able (this is obvious for T3 considered as a cell of a lattice in 818203 with spacing 27r, in 
which case (14) is an irrationally oriented plane). It should not be forgotten, however, 
that the time and space averages (12) are valid only when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf is a stationary random 
function, whereas the average (11) over the parameters of the ensemble is more 
fundamental and holds when (12) breaks down (e.g. when the random medium is 
illuminated with a spherical wave, or is rigidly translating or rotating or changing in 
some other determinate fashion). 

The advantage of the formulation in terms of T N ,  which will be crucial in extracting 
the short-wave behaviour, is that it transforms a random function @ of the infinite- 
range variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ,  y, r into a deterministic function on the compact manifold zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATN. The 
randomness arises during repeated irrational windings described by equations (1 3) 
and (14). 

3. Catastrophes on the torus 

As k + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00 the principal contributions to 1/1 come from the rays of geometrical optics. 
On the random phase screen model the rays for given x ,  y, 2, t ;  81 . . . ON come from 
those points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5; 77 on the screen for which the phase in the integral of equation (7) is 
extremal. Denoting by U that part of the phase not involving k, i.e. 

the rays are defined by 

In the language of catastrophe theory (Poston and Stewart 1976) U is a ‘potential 
function’, and (16) defines a ‘gradient mapping’ between the ‘state variables’ 5; 77 and 
the ‘control parameters’ x ,  y, z ,  t, 81 . . . ON. In the ensemble averaging over TN oly the 
phases Bi, vary, and x ,  y, z, t can be omitted from the list of control variables (in fact 
x,  y and t can be set equal to zero in view of (13) and (14)). Caustics on TN occur for 
+values for which the mapping is singular so that in addition to (16) the equation 

holds. According to Janich (1974) the Hamiltonian nature of ray propagation ensures 
that caustics will be determined by a similar formalism in spatially inhomogeneous 
media where the phase screen model does not apply. 

The caustics dominate the integral over TN in the ensemble average (1 1). To work 
out how they contribute as k + it is necessary to understand their structure, and 
here we quote results from catastrophe theory (Thom 1975, Arnol’d 1975). In the 
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generic case (i.e. for ‘almost all’ potential functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv )  the caustics are singularities on 
TN in the form of ‘surfaces’ of dimension d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= N - 1. These ‘surfaces’ are themselves 
singular on ‘lines’ with d = N - 2. The ‘lines’ have singularities with d = N - 3 and the 
hierarchy extends to the highest generic singularities which are points in TN with 
d = 0. The codimension K of each singularity is defined by 

K = N - d  (18) 

and measures the dimension of submanifolds on TN that may typically intersect the 
singularities in isolated points. Thus TN can have singularities with codimensions 1 to 
N. 

Near any singularity two new state variables X and Y, and K new control variables 
a l . ,  . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOK related to the original variables by a smooth transformation (a diffeomor- 
phism), can be found, taking v into one of a list of normal forms, or catastrophes, 
denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt; and expanded thus: 

The new controls O1 can be considered as K canonical local coordinates on TN normal 
to the singularity of codimension K. On the singularity itself all 01 vanish and the 
potential function is the ‘germ’ Gj which for the simpler catastrophes is the sum of two 
monomials in X and Y, i.e. 

(20) Gi(X, y )  = XPli yq1i + XPZi YQZi 

(more complicated cases, involving more terms, arise from ‘modality’ (Arnol’d 1975) 
and will be discussed in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 5 ) .  The linear terms in 01 describe how the catastrophe 
‘unfolds’ away from the singularity on TN, and the U, are monomials, i.e. 

V,(X, Y )  = Xal,Ybli. (21) 

The exponents p ,  q, a and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb are all non-negative integers. 
The jth catastrophe gives a separate contribution F to the nth moment I” as k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+cc 

provided the catastrophe is ‘local’ in a sense to be described below. To evaluate this 
contribution from the diffraction integral (7) and the ensemble average (ll), set up 
coordinates on TN such that 61. . . 6 ~  are locally ‘normal’ to the singularity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj and 
& + I . .  . 6, are locally ‘parallel’ to it. Then transform 6 1 . .  . 6~ into the canonical 
a . . . OK appearing in the normal form (19) and 6, q into the canonical X, Y. Then 
I; can be written as 

2n 

F = B j /  d O 1 .  . . / dOKl k / d X /  d Y  exp(ikVi(X, Y ;  0 1 . .  . @,))I , (22) 

where Bj corresponds to the ‘measure’ of the jth catastrophe on TN and results from 
transforming variables and integrating over 6 ~ + ~  . . . t?N along the singularity. (It is 
assumed that Bj is finite.) 

substitutions 

where 

It is now only a matter of algebra to extract the k 

X = k-wiX’, y = k-Aiyr  

dependence of (22). The 

(23) 
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effect the transformation 

kGj(X, Y )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Gj(X', Y') .  (25) 

This follows from equation (20) and has the effect of eliminating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk from the germ of 
the integrand of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. This leaves within the modulus signs in (22) the factor k'', where 

Arnol'd (1973) called the number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApi the 'singularity index' of the catastrophe j and 
evaluated it for many cases; the calculations have been simplified by Varchenko 
(1976). It is a measure of the 'strength' of diffraction at a caustic locally equivalent to 
the jth catastrophe, and is defined in general by 

d ln  4 pi = lim - 
k-rm d In k 

where 4 is evaluated at a point on the catastrophe. 
The moments, however, depend not only on the 'strength' of the catastrophe but 

also on its 'width', because of the 0 integrations in the ensemble average (22). The 
transformation ( 2 3 )  sends this into the following expression, which is a consequence of 
(19) and (21):  
- 2 n  
I;=Bjk2"'f/ d e 1 . .  , deK/ / d X ' 1  dY'exp(iV,(X', Y'; k""01.. . k " " ' @ ~ ) ) /  , 

(28) 

(29)  

where 

Ulj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 1 - Fjal j  -hjblj. 

Usually qj will be positive and we shall say that Ol is a 'relevant' variable for a reason 
soon to become apparent. Then (28) shows that as k + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00 9 oscillates increasingly 
rapidly as the phases 01 vary, and the diffraction pattern 'condenses' onto the caustic. 
The k dependence can be extracted by the obvious transformation 

el = k-"i)@; 

and (28)  becomes, finally - 
I n  = BJ k2"6i-Yi, 

in  

where 

and 

For each catastrophe the numbers An, pi and yj are invariant under the equivalence of 
unfoldings, but the numbers Bi depend on how the catastrophe is embedded in TN, i.e. 
Bj are not invariants under equivalence of unfoldings. 

The exponent in equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3 l), namely 

vnj = 2npj - yj, (34) 
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gives the contribution of the jth catastrophe to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI”. The dominant contribution to the 
nth moment comes from the catastrophe for which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvnj is largest. Therefore the 
quantities towards the evaluation of which the whole analysis has been directed, the 
critical vn defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8) and (9), are given by 

v, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= max(vnj), (35) 

and we have arrived at the central result of this paper. Given a list of all catastrophes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj 
with codimension K less than or equal to the number N of random phases defining the 
medium on which the wave is incident, the indices plj, p z j ,  qli, qzi characterising the 
germ (equation (20)) and the indices alj, blj characterising the unfolding (equation 
(21)) can be determined by inspection. Then pj and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhi (equation (24)) and the 
singularity index pi (equation (26)) can be computed as well as yj (equation (32)) and 
finally vnj from equation (34). 

Before carrying out this programme in the next two sections some remarks must be 
made. First, for the general random phase screen varying in (, v and t the associated 
catastrophe theory involves just two state variables 6 and 7. Therefore catastrophes 
whose ‘corank’4.e. number of ‘essential’ state variables (see Arnol’d 1975)-ex- 
ceeds two can be ignored. This result also holds in three-dimensional spatially 
inhomogeneous time-varying media, since a ray passing through x ,  y, z, t can be 
labelled with the two coordinates (, 77 of the point where it intersected any fixed 
reference plane prior to striking the medium. If, however, the medium is translation- 
ally invariant in one direction, say 7 (e.g. a random phase screen corrugated along () 
then the wave propagates essentially in two space dimensions x and z;  there is just 
one essential state variable and the only catastrophes that need be considered are 
those with corank unity, for which a complete list exists so that all critical exponents v, 
can be computed (0  4). 

Second, for some catastrophes of corank two (to be studied in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 5 )  one or more of 
the indices c q j  (equation (29)) is negative. In these cases it follows from equation (28) 
that the corresponding control parameters 01 do not contribute to the variation of the 
wave across TN as k +CO. We shall call such 01 ‘irrelevant’ variables since they do not 
contribute to the ‘weight’ of the catastrophe and should be transferred to the set of 
variables OK+1 . . . ON whose integration ‘along’ the caustic contributes to the 
constant Bi in equation (22). The negative q from these irrelevant variables must be 
omitted from the summation (32) for yj. Occasionally an index qi is zero. We shall 
call the corresponding 01 a ‘marginal’ variable; its effect on the variation of the wave 
across the catastrophe does not depend on k, and so does not contribute to the critical 
exponents v,. 

Third, if our picture of the shorkwave limit is to be valid the catastrophe j that 
satisfies (35) and thus dominates I“ must indeed condense onto the appropriate 
singularity in TN as k +CO. To ensure this it is not sufficient that the indices uli are 
positive: the catastrophe must also be ‘local’, in that the ‘weight’ integral Ji, (equation 
(33)) must converge, that is it must not be dominated by large values of the variables 
01. For corank two catastrophes such convergence seems very difficult to analyse, but 
in P 4 we show that for catastrophes of corank unity the integrals do in fact converge 
for the j satisfying (35). 

Fourth, the critical exponents depend on the number N of random phases. For a 
Gaussian random medium N = 0;) and all catastrophes contribute to the hierarchy of 
exponents. We prove in the next section that for catastrophes of corank unity 
the cndimension K of the dominant catastrophe increases with the order n of the 
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moment considered. The results of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 suggest that catastrophes of corank two behave 
similarly. This means that when N is finite the lower-order moments have the same 
critical exponents as in the ‘universal’ Gaussian random medium case. However there 
is a certain order n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= n, for which the dominant catastrophe has codimension K = N. 
Higher moments n > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, are dominated by the same catastrophe and so their critical 
exponents will be smaller than in the Gaussian random medium case. In &ese 
circumstances (at least for the random phase screen problem) the dependence of 1” on 
the extra control parameter z,  which we have not emphasised until now, becomes 
important, for there will be one value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz equal to the smallest radii of curvature of 
the initial wavefront, at which catastrophes of codimension N + 1 occur, altering the 
critical exponents. Section 6 will contain an example of this. (The dependence on z 
noted by previous workers in the Gaussian medium case corresponds to variations in 
the geometric factor Bj in equation (22) rather than changes in critical exponents and 
reflects the different densities of caustics in x y  planes with different z.) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATwo space dimensions 

Here only catastrophes of corank unity can occur; these are the cuspoids. The first 
four members of this family are the fold, cusp, swallowtail and butterfly in the list of 
Thom (1975). In the more extensive classification of Arnol’d (1974, 1975) the 
cuspoid catastrophes are denoted by Ai and their potential function (equation (19)) is 

j-1 

/ = 1  

Vj(X, Y ;  01,. . oi-l)=xi+l+ Y 2 +  c 0IX’ 

The suffix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj denotes the ‘multiplicity’ of the catastrophe; this is the number of rays 
touching at the most singular place @/ = 0 on the caustic, i.e. the degree of degeneracy 
of the germ G,, The codimension of A ,  is K = j  - 1. It is only as a matter of 
convenience that the ‘inessential’ term Y 2  has been included in equation (36); this 
cannot affect the unfolding of the catastrophes (since Y 2  has only a single non- 
degenerate extremum) but it enables the formalism of § 3, in terms of two state 
variables, to be employed here without modification. 

By inspection of (36) the indices defined in equations (20) and (21) have the values 

Pli = j + 1, q1i = 0, ~ 7 . j  = 0, q2j = 2, ali = I, blj =o, (37) 

pi = l / ( i  + A . = L  I 2 ,  (38) 

so that pi and Ai (equation (24)) are 

From equation (26) the singularity index is 

j - 1  K pi=-- 
2(j  + 1) - 2(K +2)’ 

while equation (32) leads to 

(39) 

(all cli (equation (29)) are positive so that all are relevant variables). Therefore the 
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exponent governing the contribution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 is, from equation (34), 

(41) 
(j-l)(2n-j-2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- K(2n-K-3)  - 

2(K + 2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU,, = 

- 2(i + 1) 

From the graph of vnj as a function of K it is obvious that as k + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcc I“ will contain 
contributions from catastrophes with codimensions 1 to 2n - 3. The maximum on the 
graph occurs at 

K = Kmax(n)= 2 ( G -  1). 

Therefore the dominant catastrophe has codimension [Kmax(n)] or 1 + [Kmax(n)] 
(using square brackets to denote ‘the integral part of’) and the critical exponent is, 
from equation ( 3 9 ,  

Although Y, cannot be expressed in analytic form its determination for any n 
involves only two elementary arithmetic computations. Table 1 shows Y, for n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd 13 
together with the codimension K of the dominant catastrophe AK+l; the values of vn  
against n are plotted on figure 1.  An analytic approximation to v,, obtained by 
substituting Kmax(n) into equation (41), is 

v, (approx) = n - 2 4 4  + $. (44) 

Table I. Catastrophes of corank unity. For the moment 7, K is the codimension of the 

dominant catastrophe(s), v, the critical exponent and Y, (approx) the value given by 

equation (44). 

n 2 3 4 5 6 7 8  9 10 11 12 13 

K 1 1 2 2 3 3 3 a n d 4  4 4 4 a n d 5  5 5 

vn(approx) 0.051 0.388 0.758 1.257 1.810 2.401 3.023 3.669 4.336 5.019 3.718 6.429 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvn O f 3 4 5  5 3  y u 5  Y ?  3 5 9 1 2  

Values of v,(approx) are also shown on table 1 and as the continuous curve on figure 
1; the approximation is clearly very accurate. It appears from table 1 that higher 
catastrophes dominate more moments I“ than lower ones, and indeed it follows from 
equation (42) that as K + CD the number of moments dominated by the catastrophe of 
codimension K is K/2. Occasionally two catastrophes give equal exponents; for 
example 7 is dominated by the swallowtail ( K  = 3) and the butterfly ( K  = 4). 

These calculations of Y, are valid only if the contributing catstrophes are ‘local’, 
that is if the ‘weight’ integral J;., (equation (33)) converges. To establish convergence 
it is sufficient to study the behaviour of the integral along the manifolds of slowest 
decay away from the origin in the space of control parameters al.. .OK. These 
manifolds are lines of codimension K - 1, defined in terms of the potential function 
(36) by 
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n 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Critical exponents for two space dimensions (lower points) and three space 
dimensions (upper points). The full curve is the approximation (44). 

The last of these equations (s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK)  gives 

X=X,=*( ( K  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-20K 2)(K + 1) Y2 ' 

and then the penultimate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(s = K - 1) and earlier (s = K - 2, K - 3 . . .) equations lead 
successively to 

Therefore the manifolds of slowest decay of the catastrophes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAK+l are cusped lines 
approaching O1 = 0 in the plane OK, O K - ~ ;  an example is the cusp-shaped line of cusp 
edges (K  = 2) in the swallowtail catastrophe (K = 3). 

For Ol on these cusped lines, Vi in (33) has a stationary point of order K - 1 (i.e. K 
coalescing zeros) at X ,  (equation (46)) so that the integral over X ,  Y can be evaluated 
using the expansion 

(X-X,)K+' aK"v,(Xc) 
axK+' =constant + Y' + 

K !  
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This gives 

5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdX/ d Y  exp(iV,(X, Y; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA01.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 0 ~ ) ) = 0 ( X ,  K 1 (49) 
-1/(K+1)) = 0 ( 0 - 1 / 2 ( K + 1 )  

where the 01 are related by (47). Therefore the contribution to Jjn (equation (33)) 
arising from integration along the cusped lines is 

Inspection oftable 1 or reasoning based on equation (42) shows that the catastrophe 
dominating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI“ always has K < n - 1 so that Jjn is always finite and the catastrophe does 
indeed have the necessary ‘local’ property, except for the anomalous case n = 2 (cf § 1, 
especially (5)) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5. Three space dimensions 

Here catastrophes of corank two occur in addition to those of corank unity. The 
classification of normal forms Vi is still incomplete and greatly complicated by the 
phenomenon of ‘modality’. This is the generic occurrence of germs Gj (equation (19)) 
depending smoothly on one or more ‘moduli’ a in such a way that the unfoldings for 
different values of a are not equivalent under a diffeomorphism, although they do 
have a weaker topological equivalence. 

We illustrate this by an imaginary example (not structurally stable) in which a 
two-dimensional caustic surface in T3 has a cusped edge, along which a is the 
coordinate and normal to which 0 2  and O3 are coordinates, and where the cusped 
sections of the caustic have equations 

C ( a )  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa ( a )  being smooth functions and CY > 1. If .(a) were constant (e.g. $ as for 
the standard cusp) then the sections for different a would be equivalent under 
diffeomorphism. But this will not be the case if .(a) is not constant, even though each 
section still has the topology of a cusped curve (i.e. it reverses direction at a point 
where it crosses its tangent). (For a discussion based on a realistic example see 
pp 69-73 of Poston and Stewart (1976).) 

In table 2 we list all the 43 catastrophes with codimension K 4 1 1 ,  extracted from 
the lists of Amol’d (1973, 1974, 1975). Of these Ai, Dj, E6, E7 and E8 have no 
modulus a and the rest are unimodal. For K a l 2  some catastrophes are bimodal, 
trimodal, etc and we shall not consider them. Sometimes Arnol’d employs different 
symbols to denote the same catastrophe; in table 2 we use what seems the simplest 
notation in these cases. The unfolding monomials Ulj (equations (19) and (21)) in 
table 2 are taken from Arnol’d (1974) with the exception of those for which were 
worked out using techniques explained by Poston and Stewart (1976). No distinction 
is made between catastrophes equivalent under complex transformations of variables 
even though their caustics may be topologically different (e.g. the elliptic and hyper- 
bolic umbilics D4); in the present application this will not lead to error. 
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Table 2. Catastrophes of corank unity and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo and codimension zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK S 11  . Gi is the germ, 

Pi the singularity index, U, the unfolding monomials and yi the index defined by equation 

(32). All these catastrophes are either non-modal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor else have the single modulus a. 

j-1 A i ( i 3 2 )  XI+' + Y2 

j - 1  

5 
6 
7 

7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
j + 3  
8 
j + 2  

j - 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj 2 -  2j + 2  
Di(j24) X 2 Y +  Yi-' x, Y. . . Yi-2 

x3+ Y 4  d x, xu, X Y 2 ,  Y,  Y Z  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F X 3 + X Y 3  

E8 x 3 +  Y 5  15 x, XY.  . . XY ' ,  Y . .  . Y' % 
X9 x ~ + x ' Y ' + ~ Y ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 x, x2, xu, X Y 2 ,  X 2 Y ,  Y, Y 2  I 
q + 5 ( j p 5 )  X ' + X ~ Y ~ + ~ Y '  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx.. . x3, xv, Y .  . . Yi-' - 2 

JI o x 3 + x 2 y 2 + a y 6  1 x, X Y . .  . X Y 3 ,  Y . .  . Y4 4 
Ji+.,(j 2 1 1 )  X 3  + X 2  Y 2  + aY' $ x, xu, X Y 2 ,  Y .  . . Yi-' 4 

2(i-  1) W - 1 )  

x, xu, Y. . . Y4 4 
7 

E6 

- 
E7 

p + q - 1  ~ , . , ( 5 ~ p ~ q )  X P + X 2 Y 2 + a Y q  f 

9 2 1  1 x ' Y + Y ~ + ~ x Y ~  A 
10 2 1 2  x ~ Y + x Y ~ + ~ x ~ Y ~  

11  2 1  3 X ~ Y +  y 6 + a x y 5  
10 w12 x4+ y 5 + a x 2 y 3  8 

9 - 
11  w13 x4 +XY"+ a y 6  16 

- 11 
10 E12 x3+ Y 7 + a x Y 5  21 

11  E13 x.' + xy5 + a ya  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi$ 

x .  . . x p - l  , xu, Y .  . . Yq-' 

x, X 2 , X Y . .  . XY' ,  Y . .  . Y 4  
x, x2, X Y .  . . XY' ,  

X 2 Y , X 2 Y 2 ,  Y . . .  Y 3  
x, x2, X Y . .  . X Y 4 ,  Y . ,  . Y 5  
x, x2, X Y . .  . X Y 3 ,  X 2 Y ,  

X 2 Y 2 ,  Y . .  . Y 3  
x, x2, xu, X Y 2 ,  X 2 Y ,  X 2 Y 2 ,  

Y . . .  Y 5  
X , X Y . .  . X Y 4 ,  Y . .  . Y5 

x, X Y . .  . X Y 3 ,  Y . .  . Y 7  

- 77 
16 

9 
z1 
15 

The contribution vnj of the catastrophe j to depends on the indices pi and yj 
defined by equations (26) and (32), and these quantities are shown on table 2. For the 
zero-modal catastrophes the calculation of pi and yj is straightforward as described in 
0 3, and there are no irrelevant or marginal variables. The unimodal germs each have 
three terms and it is not obvious which pair to choose in order to define the indices p 
and q in equation (20). Moreover the modulus a, although not a control parameter in 
the sense of catastrophe theory, is nevertheleg a variable on TN and must be 
integrated over in the ensemble averaging for I". In fact the correct procedure is 
simply to ignore the terms involving a, thus making the calculation of pi and yi 
straightforward as before. Of course this requires justification which will now be 
given. 

Consider first the catastrophe 211. The indices in equation (24) are p =h and 
Y = 4, so that the transformation (23) changes the modal term as follows: 

(52) k a X Y 4  = k - 1 ' 1 5 ~ X f  Yr4. 

Therefore the modal term becomes insignificant as k + 00 and a is an irrelevant 
variable in the sense explained in 0 3 and so does not contribute to vni. All control 
parameters 01 are relevant variables. If instead of X 3 Y  + Y' either of the pairs of 
monomials in Gi involving a had been chosen, then after the transformation (23) the 
remaining monomial would have been multiplied by a positive power of k and could 
not be neglected as k + 43. These results for Zl1 apply also to 2 1 2 ,  2 1 3 ,  W I Z ,  W 1 3 r  Elz  
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and E13, thus justifying the corresponding entries in table 2. (The apparent alter- 
native choices in the cases of W13 and E13 of X Y 4 +  a Y 6  and X Y 5  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ a Y S  respectively, 
for which the terms X4 and X 3  respectively would appear irrelevant, are in fact 
forbidden since the resulting integrals over X, Y are divergent when Or = 0.) 

The remaining catastrophes are those of ‘hyperbolic’ type, and make up the 
families X,  J and Y on table 2. The simplest two are X9 and Jl0, for which the 
transformation (23) neatly eliminates k from the modal terms aY4 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa y 6 .  There- 
fore a is a marginal variable in the sense explained in § 3; all control parameters 01 are 
relevant. (For Jlo Arnol’d (1974) gives a ninth unfolding monomial X Y 4 ;  the cor- 
responding control parameter would be marginal.) In the remaining hyperbolic 
catastrophes application of (23) shows that a is an irrelevant variable. However if the 
modal term is simply ignored the integral over X,  Y (with 01 = 0) diverges, and this 
state of affairs cannot be avoided by choosing one of the two pairs of monomials in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGi 
involvini a instead of the pair not involving zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. A careful analysis shows that the term a 
does not affect the singularity index but contributes a factor In k to the asymptotic 
behaviour of I) when Ol = 0. For Xi+=,, Ji+4, Yp,g the control parameters multiplying 
respectively Y4, Y6 and Y2p’p-2 are marginal, while those multiplying higher powers 
of Y are irrelevant. 

This is as far as we can go in justifying the entries in table 2. A complete 
justification would involve an analysis of the convergence of the integrals Jin (equation 
(33)) similar to that carried out for the catastrophes of corank unity at the end of § 4.  It 
seems very difficult to do this, especially for the hyperbolic catastrophes, so that the 
remainder of this section is conjecture. 

Each critical exponent v,, is the result of competition between all the catastrophes j 
in table Laccording to (35) and (34). Some catastrophes do not contribute to any 
moment I” since for any two catastrophes j and j ’  if pi >pi,  and yi yi, then vni > vni, 

for all n. For example, this criterion eliminates E12 in favour of W12, E13 in favour of 
W13, and the families J and Y in favour of the family X. The surviving catastrophes 
determine v,, by the following geometric construction. Plot vni (equation (34)) as a 
function of n for each j ;  then v,, is the highest envelope of the resulting family of 
straight lines. In practice this is difficult to carry out with sufficient accuracy, and it is 
easier to proceed by inspection. The result is table 3 and the upper line of points on 
figure 1. 

Tsble 3. Catastrophes of corank two or less dominating the moment 7. The symbol 

identifies the catastrophe on the list in table 2, K is the codimension and Y, the critical 

exponent. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n 2 3  4 5  6 7 8 9 1 0  11 12 13 
Symbol A A2 and D4 0 4  D4 and E6 E6 and X X X X X and WI2 W12 WI2 W,, 
K 1 1 and3 3 3and5 5 and27  2 7  2 7  3 7  27and  10 10 10 11 

- 5 
V” 0 j 1 2  2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA; ; Y Y  

By comparison with table 1 it is clear that v, increases faster and less regularly 
than for waves in two space dimensions. There are several sources of uncertainty in 
table 3. First, in view of the difficulties already mentioned connected with the 
hyperbolic catastrophes it is not clear whether all or some members of the family X 
dominate the moments 7 to 7. Second, in view of the incompleteness of existing 
classifications of catastrophes of corank two it is possible that some catastrophe with 
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K > 11 might have a pi so large and a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyi so small as to overwhelm some or all of those 
in table 3 and dominate some or all moments of order n C 13; the trend of table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 
makes this seem unlikely. And third, the form of vn as n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+CO (cf equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(44)) is 
unknown, although since pi increases with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK and from (26) can never exceed unity we 
conjecture 

lim vn/n = 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n-w 

(53) 

(actually in the computations of Varchenko 1976, pi s? for catastrophes of corank 
two, so the highest critical exponents presumably come from the unclassified catas- 
trophes N at the end of the list of Arnol’d 1975). 

6. Example: the sinusoidal wavefront 

The simplest phase screen produces a stationary corrugated wavefront with a single 
Fourier component: 

f(5) = F C O S ( U ~  + e). (54) 

Ensemble averaging consists in integrating over the ‘torus’ T1, which in this non- 
random case is a circle with coordinate 8. The second moment 7 can be evaluated 
exactly using the diffraction integral (7) with the result 

where Jm denotes the ordinary Bessel function. Details of the calculation are given in 
appendix 2. 

The behaviour of 72 as k + 00 can be found for different regions z by direct 
asymptotic evaluation of ( 5 5 ) ;  it is more instructive, though, to employ a physical 
argument leading to the same result. With the single control parameter 8 we expect at 
worst fold catastrophe A2 for typical z. However as z varies through the ‘focal’ value 

a cusp catastrophe A3 occurs at 8 = 0 with three extrema of f(6) coalescing at 6 = 0. In 
space there are cusps at points x = 2 ~ l / u  (I integer), z = zf from which caustic lines 
recede to z = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+a. Here we restrict ourselves to z = zf, returning to more general z in 
the last paragraph of this section. 

On the assumption of 0 3 that the catastrophe is local on T1 as k +CO we expand 
the phase U([, 8) (equation (15)) for small 6 and 8, setting x = 0 without loss of 
generality. Then performing the trivial integration over 7 gives the following result 
(which is an instance of equation (22)): 

In real space this corresponds to integrating through the ‘cusp’ diffraction function of 
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Pearcey (1946). Scaling and evaluating the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 integral gives 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf is a number defined by 

S being the Dirac delta function. 

calculate that on this model the nth critical exponent is 
The expression (58) shows that the critical exponent v2 is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf and it is not hard to 

It is interesting to compare this with the exponents in table 1 for the Gaussian random 
corrugated phase screen. For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn d 9 the non-generic occurrence of infinitely many 
cusp points in the plane of observation z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zf causes the moments for the sinusoidal 
screen to exceed those for the Gaussian screen, but for n 2 10 this effect is outweighed 
by the higher catastrophes possible in the Gaussian case. 

To evaluate 9 (equation (59)) in terms of special functions, the following trans- 
formation is made: 

s=xx, -x , ,  t = x3 - x4 

Then use of the delta function gives 

where Ai is the Airy function (Abramowitz and Stegun 1964). Combining this with 
(58), integrating by parts and then performing an elementary numerical integration 
gives, finally 

a0 

p ( z f ) =  (2kF)1/4211’439/8 lo dz z”’Ai(z) IF = 1*2834(2kF)1’4. 
Z 

In figure 2 this short-wave asymptotic form is compared with the exact second 
moment (55) computed for z = zf by Dr M Tabor. The exact values lie close to a 
straight line whose intercept and slope fit formula (63) if the multiplier 1.2834 is 
replaced by 1-303 and the critical ex onent a by 0.247. This means that (63) as well as 
being the exact asymptotic form of I as 2kF+c0 is actually an extremely accurate 
approximation even when 2kF is of order unity. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

For z-values close to the plane of focus, that is 

z = zy(l+ h )  (lhl<< 11, (64) 
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In ( 2 k F )  

Figure 2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 in the focusing plane of a sinusoidal phase screen, as a function of the 
maximum phase shift 2W. The points are exact values computed from equations (55) by 

Dr M Tabor, and the line is the short-wave asymptotic form (63). 

-2 a similar analysis gives the short-wave limiting form of I as 

Of course when h = 0 this simply reproduces the result (63). But when Ihd(2kF)I >> 1, 
that is at distances from the focal plane that are large on the scale of variation of the 
‘cusp’ diffraction pattern, the form of 72 depend on the sign of h, and asymptotic 
analysis of equation (65) yields 

(h42kF)<< -1) 

For negative h, 72 does not depend on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk and so remains finite in the geometrical optics 
limit; this is because there are no caustics for z C tf. For positive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh the presence of 
caustic lines (fold catastrophes) emanating from the cusps causes 7 to diverge 
logarithmically as discussed in 0 1;  this corresponds to a critical exponent v 2  = 0 and 
since N = 1 the other critical exponents are given from equation (41)  as 

V” = f(n - 2) (2 > Zf) 

(cf equation (60)). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7. Discussion 

The analysis presented here reveals a quite extraordinary complexity in the short- 
wave asymptotic structure of the intensity moments of a random field. In addition to 
the dominant term which for most cases has the form of equation (9) there will be 
terms similar in form but with smaller exponents from the catastrophes that fail to 
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dominate. Moreover each of these terms will be the multiplier of an asymptotic series 
in falling powers of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk. If the multiplier C,, in the dominant term is small k must be 
extremely large before the dominance becomes3pparent; for k smaller (but still large 
enough for the asymptotic analysis to hold) I” will seem to be dominated by the 
catastrophe with largest zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvnj in the set with large multipliers. 

An experimental test of the ‘universal’ exponents would require a source of 
disorder with a continuous spectrum (and hence an infinite number of random phases) 
whose smallest scale is much larger than the largest wavelength employed. An 
obvious source of this type of disorder is turbulence in a refracting gas or liquid, and 
the illuminating wave could be light from a tunable laser or starlight viewed through a 
range of coloured filters on a night of ‘bad seeing’ (i.e. s t r o 9  presumably non- 
Gaussian intensity fluctuations). Such an experiment, in which I” was measured as a 
function of k, would provide a test of the predicted critical exponents for waves in 
three-dimensional space as listed in table 3. 

The assumption that the incident wave must be plane is necessary in practice 
rather than in principle. For an incoherent bundle of plane waves, such as light from 
the full zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3” width of the Sun’s disc, the caustics produced by refraction in a random 
medium move so rapidly that practical detectors are unable to respond to all the 
variations in intensity and therefore record a smoothed intensity whose moments will 
remain finite as k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00, unlike the moments I” of the true intensity. It is this ‘inco- 
herence’ effect, rather than the ‘diffraction’ discussed throughout this paper, that is 
responsible for the blurring of fine detail in the random caustic patterns on the bottom 
of swimming pools (Hannay 1976t, Berry and Nye 1977). The intensity moments 
from scintillating extended sources of radio waves were discussed by Salpeter (1967). 
If the random medium or phase screen is dispersive, any non-monochromaticity in 
the incident wave will cause blurring of the caustics in the direction of the incident 
wave (chromatic aberration) and will also reduce the moments observed with practical 
detectors; this effect is responsible for red stars appearing to twinkle more strongly 
than white ones (Minnaert 1954). 

The dependence of vn  on the dimensionality of TN could form the basis of an 
experimental technique for distinguishing media whose disorder has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa discrete spec- 
trum of wavenumbers U,  (equation (10)) from media whose disorder is Gaussian, 
with a continuous spectrum (N = a). However a delicate question of limits arises for 
media with disorder whose spectrum is continuous but sharply concentrated near a 
finite number (N) of U, v values. In such cases the critical exponents would have the 
universal values of table 2 or table 3, but these would appear only in the limit of large 
k ;  for k smaller (but still large) the moments would appear to have the critical 
exponents characteristic of media with N random phases. 

It should be obvious that the work described here is the beginning of a substantial 
programme rather than a finished theory. There are four directions in particular in 
which further study should be concentrated. First, the disposition of caustics on the 
tori TN should be studied in detail, starting with T, which is certainly tractable and 
corresponds to the simplest random phase screen (with two random phases and 
incommensurable wavenumbers). Second, techniques should be developed for cal- 
culating the measures of the different types of catastrophe on TN (i.e. Bj in equation 
(22)). Third, the convergence of the ‘weight’ integrals Jjn (equation (33)) should be 

t Hannay J H 1976 Paraxial Optics and Statistical Problems of Waoe Propagation, University of 
Cambridge, Hamilton Prize Essay, unpublished. 
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examined and those that converge should be computed. And fourth, the subtle 
question of which hyperbolic catastrophes X contribute to critical exponents in three 
space dimensions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 )  should be resolved. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Appendix 1 

This is the derivation of the formula (7) for the wave (I, beyond the random phase 
screen given by (6). All plane wave components of (I, either travel or decay towards 
z = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+co for z > 0, so zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 can be expanded in the form 

where R denotes ( x ,  y), Q denotes (Qx, Q,) and 

By Fourier inversion of (A.  1 )  at z = 0 and use of the boundary condition 

(I,@?, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 , t )  = exp[i(kf(x, Y ,  t ) -  4 1 ,  64.3) 

a (Q, R) is found to be 

(A.4) 
1 

a (Q, a) = 3 J d5 5 dv J d7 exp{i[kf(t, 7 ,~ ) -  QXt - Qyv + (a - )TI), 
(2.n) 

which when substituted into (A . l )  gives (I,. The paraxial approximation laf/a[I << 1 and 
laf/avI<< 1 means that all significant plane wave components travel in directions 
making small angles with the z direction, so that g, can be expanded as 

R Q2c 
42 =--- c 2 R '  

The Q integration in (A.l) is now elementary and gives 
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The integration over zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfl gives the derivative of a delta function and leads to 

(A.7) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r = r - z / c - ~ [ ( x - E ) 2 + ( y - ~ ~ ~ l / 2 c z )  

2rcz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI d5 J dv (i$exp[i(kf(t, v ,  r)--or)I) 

Now it is assumed that the phase screen shivers much more slowly than the wave 
travels, i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaf/ar zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<< o/k (quasi-monochromaticity) and then differentiating with 
respect to r immediately gives (7). 

Appendix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

This is the derivation of the expression ( 5 5 )  for the second moment beyond the 
sinusoidal phase screen whose form is given by equation (54). The diffraction integral 
(7) and ensemble average (1 1) give 

t2 00 ? = ~ - j  k 2  1 dB1 I d(exp[ik(Fcos(u(+B)+Z;)] I . (A.8) 
4 r z  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2r -'II -a 

On using the standard relation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
cn 

exp(ia cos p ) =  1 i"[exp(inp)]~,(a) 
n=-cn 

the 4 integration becomes elementary and leads to 

X Jn,(kF)Jn,(kF)Jn,(kF)J,(kF). (A.lO) 

The B integration gives a Kronecker delta over the n and rearranging the summations 
and setting nl - n2 = m gives 

(A. 11) 

The expression ( 5 5 )  follows immediately on using the standard relation 

f Jn(4)Jn+m(4)exp(ipn)=Jm (A.12) 
n = - a  
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