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We report a general framework capable of describing the focusing of electromagnetic waves with spatially vary-
ing coherence and polarization properties in optical systems of arbitrary numerical aperture and Fresnel num-
ber. We also investigate the reduction of the dimensionality of the requisite integrals by use of a coherent mode
expansion. We find that coherent mode expansions treating each component of the electric field vector indi-
vidually are unsuitable for describing focusing systems because of the inter-component mixing that can occur
in high numerical aperture systems. In addition, we show that the assumption of harmonic angular depen-
dence allows the azimuthal integration to be performed analytically, providing further simplification of the
analysis. We also find that the effective degree of spectral coherence of an electromagnetic beam is unchanged
upon focusing. Finally, as an illustration of the developed framework, we calculate the transverse and axial
focal distributions for a partially coherent source formed by incoherent superposition of radially and azimuth-
ally polarized Laguerre—Gauss modes. © 2009 Optical Society of America

OCIS codes: 030.1640, 260.5430.

1. INTRODUCTION

Focusing in optical systems has been researched in ear-
nest for myriad different scenarios. Focusing of coherent
light under a scalar approximation has been well under-
stood for many years (see, for example, [1]), while even as
early as 1919 focusing of coherent, fully polarized electro-
magnetic waves could be described by what is now known
as the Debye—Wolf diffraction integral [2—5]. In more re-
cent years attention has slowly turned toward focusing of
partially coherent light in both scalar [6-9] and vectorial
[10,11] regimes due to its potential use in lithography, la-
ser fusion, and microscopy [12-15]. Consideration of the
full electromagnetic problem has, however, been limited
to homogeneous (partial) polarization across the pupil of
the focusing lens. A full and general treatment of the fo-
cusing of inhomogeneous, partially coherent, partially po-
larized waves is therefore lacking, an omission that is ad-
dressed in this article.

In Section 2 we first introduce the scaled Debye—Wolf
diffraction integral, which describes focusing in systems
of arbitrary numerical aperture and Fresnel number. The
scaled Debye—Wolf integral is then applied to focusing of
arbitrary partially coherent, partially polarized light in
Section 3. The general result derived in Section 3 requires
evaluation of a fourfold integral; however, by using a co-
herent mode expansion the dimensionality of the problem
can be reduced, as discussed in Section 4 for both scalar-
and vector-based mode expansions. Further simplifica-
tions can be made when the coherent modes possess a
harmonic angular dependence, since the azimuthal inte-
gration can be evaluated analytically, as shall be demon-
strated in Section 5. Finally, in Section 6 we give numeri-
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cal results for two examples of practical importance,
namely, radially and azimuthally polarized beams formed
from Laguerre—Gauss modes.

2. SCALED DEBYE-WOLF DIFFRACTION
INTEGRAL

The scaled Debye—Wolf diffraction integral can be used to
describe focusing of quasi-monochromatic, coherent light
in optical systems with an arbitrary, albeit finite, Fresnel
number and arbitrary numerical aperture and is given by

[16]
zfz exp(tk®y)
Nf+2) f j

ds,ds,

E(r) = e(sx,sy)

~<Nz

Xexp(iks - P)

(1)
4

where P=(R cos ¢,R sin ¢,Z) represents the position vec-

tor r=(p cos ¢, p sin ¢,z) of a point of observation in the fo-

cal region, in a transformed coordinate system with

R——f (2)
f+Zp7

Z——f (3)
_f+zz'

s=(sy,sy,s,)=(sin O cos ¢,sin §sin ¢,cos 6) is a unit vector
describing the direction of a ray (see Fig. 1), f is the focal
length of the lens, k=27/A=w/c is the wavenumber of
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Gaussian reference sphere

Fig. 1. (Color online) Coordinate system and geometry of the
scaled Debye—Wolf diffraction integral.

light of wavelength \ and frequency w,

P> —2fz
2(f+2)’

Dy=f+z+ (4)

and e(s,,s,) describes the field distribution on the Gauss-
ian reference sphere located in the exit pupil of the sys-
tem centered on the geometrical focus of the lens. Noting
that an element of solid angle over the reference sphere is
given by

ds,ds,

Sz

=sin 6d6d ¢, (5)

the scaled Debye—Wolf integral can be rewritten as

. B if? exp(ik®,) fz” f“ ,
(P,(P,Z)—_ )\(f+Z) . . e( ’d))

xexp[ikR sin 6 cos(¢ — @)l <= ¥ sin 6d 6d.p,
(6)

where « is the semi-angle of convergence of the lens. For
systems of large Fresnel numbers (whereby R~p and Z
=~z) the scaled Debye—Wolf integral reduces to the more
familiar Debye—Wolf integral [4,5]

If 27 pra
E(P,(P,Z)=_ If f e(0’¢)
0 0

xexplikp sin 0 cos(¢ — ¢)Je"* % Y sin 6d6d .
(7)
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3. FOCUSING OF PARTIALLY COHERENT,
PARTIALLY POLARIZED LIGHT

Partially coherent light is generally described by using its
second-order statistical properties. For example, when
considering scalar fields, one may use either the mutual
coherency function or the cross-spectral density function
[17]. For electromagnetic fields the natural treatment is a
matrix formulation, with the second-order properties in
the space—time domain being described by a mutual co-
herency matrix, first introduced by Wiener [18,19], al-
though also independently later introduced by Wolf [20].
More recently an alternative space-frequency domain for-
malism has been developed. The correlation matrix of in-
terest is then often referred to as the cross-spectral den-
sity matrix (CSDM), which is itself a Fourier transform of
a mutual coherency matrix [21]. It is worth noting that
not only does the CSDM describe spatial coherence prop-
erties of a stochastic field (i.e., correlations between the
field at two different points in space), but it also describes
partial polarization as encapsulated in the off-diagonal el-
ements, which measure the correlation between orthogo-
nal field components. Consequently the work that follows
applies to focusing of stochastic electromagnetic fields
with arbitrary coherence and polarization properties.

Throughout this work we shall denote the CSDM in the
focal region of a lens as

Xx-7(1‘131'2’(")) = <E(r17w)E?(r2sw)>7 (8)

where T denotes the Hermitian adjoint operator and (-
denotes the ensemble average over many monochromatic
statistical realisations, E(r,w), of the electromagnetic
field. For brevity the frequency dependence of all quanti-
ties will be dropped for the remainder of this article. The
CSDM over other domains in the optical system, e.g., over
the reference sphere, can be expressed in a similar man-
ner. Table 1 gives a summary of the notation used for the
CSDM and other related quantities at different points in
the focusing system.

Given Eq. (8) and the scaled Debye—Wolf integral [Eq.
(6)] it is a simple matter to determine the CSDM for light
focused by a lens. By substitution we have

27 27 @ @
W(ry,rs) = KlK;f J f f (e(0y,p1)e’ (65, b))
o Jo Jo Jo

XexplikAiglexplik(Z; cos 6; — Zy cos by)]
Xsin 01 sin 02d01d02d¢1d¢2, (9)

Table 1. Summary of Notation

Gaussian Reference

Sphere Back Focal Plane Focal Region
Coordinates {6, ¢} {0, ¢} r={p,p,z}
Electric field vector e(6, ) E(g’ &) E(r)
Cross-spectral density matrix w(6y,p1, 0z, o) W0y, ¢y, Oy, o) W(ry,ry)
Scalar-based coherent mode Y0, p) 700, ¢) C(r)
Vector-based coherent mode w,.(0,d) \i;n(g, ) Cn(r)
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where K;=-[(kf?)/127(f+2;) lexp(ikDy) and Aqg
=R sin 0] cos(p1—¢1)—Rs sin Oy cos(dpy—¢9). Knowledge
of the CSDM in a single transverse plane is sufficient to
calculate the CSDM on any transverse plane in the focal
region via, for example, the Wolf equations [21]. Hence-
forth we shall thus make the simplifying assumption that
Z1=Zy=7Z; i.e., we restrict attention to a single plane in
the focal region. Consequently we also have K;=Ky=K.

Finally, defining the CSDM on the Gaussian reference
sphere in a way analogous to Eq. (8) such that
‘“(61 s &1, 02, ¢2) (e( 01, ¢1)eT(62 ’ ¢2)> gives

W(ry,ry) = |K|2f J ff‘“(91,¢1,92,¢2)

XexplikAqylexplikZ(cos 6; — cos )]
Xsin 01 sin 92d01d02d¢1d¢2. (10)

In some applications it may be more useful to define
the focused CSDM in terms of the CSDM in the back focal
plane of the lens, which we denote @'(01, b1, 05, do)
=(E(6y, $1)E'(6y, ¢o)). Since the exit pupil of the focusing
lens is located at infinity when viewed from the second
principal focal plane, it is legitimate to use an infinite
boundary condition to relate the electric field vectors on
the reference sphere and in the back focal plane and
hence also the associated CSDMs. An infinite boundary
condition is equivalent to a geometrical (A — 0) boundary
condition, and hence it is possible to use the generalized
Jones matrix formalism [22,23] to give (assuming an ideal
lens and neglecting skew rays)

e(6,4)=a(OR(¢) - L(6) - R(¢) - E(6,¢) = P(0.¢) - E(6, ),

(11)
where P(6,¢)=a())R™(¢)-1.(6)-R(¢),
cos¢ sing 0
R(¢)=|—-sin¢ cos¢ 0 (12)
0 0 1

decomposes the field into s and p field components that lie
perpendicular and parallel to the meridional plane, re-
spectively, (see Fig. 1), while

cosf 0 siné

1L(6) = 0 1 0 (13)
—-sinf® 0 cos 6

describes the deflection of a ray by the lens. The scalar
factor a(6) is an apodization factor that ensures that en-
ergy is conserved when projecting from the reference
sphere to a plane. For example a(6)= \s’m or a(f)=1 if
the lens satisfies the sine or Herschel condition respec-
tively [24]. Hence

w(By, b1, O, o) = P(61, 1) - WOy, by, o, b) - P (65, ¢b).
(14)

Substituting Eq. (14) in Eq. (10) yields
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27 ;27 pa pa
W(ry,ry) = |K|2f f f f expikAiy]
0 0 0 Yo

XP(6y, 1) - W(6y, by, O, ) - PT (8, o)
X explikZ(cos 6; — cos 6)]
X sin 01 sin 02(1 01d 02d¢1d¢2 . (15)

Equations (10) and (15) are the key results for this paper.
In what follows we consider various cases under which
the integrals simplify from the fourfold integrals given to
separable twofold integrals (Section 4) or, even under cer-
tain symmetry assumptions, single integrals (Section 5).

4. COHERENT MODE REPRESENTATIONS

Scalar coherent mode expansions in optical coherence
theory (see e.g., [21] for a fuller discussion) were perhaps
first pioneered by Wolf [25] but have seen fervent use by
other authors, e.g., [12,26,27]. It should, however, be
noted that all such theories derive from Karhunen—Loeéve
theory [28,29] which has been employed in statistics since
the 1940s. Karhunen—Loéve theory tells us that given a
(Hermitian, nonnegative definite, square integrable) sca-
lar correlation function over a closed domain D, such as
the cross-spectral density function W(ry,ry,w), it is pos-
sible to expand it in terms of an infinite, orthonormal set
of coherent modes, i,(r,w), viz.

Wi(ry,r) = E )\nl;b;;(rl) (1), (16)
n=0

where the coherent modes and associated expansion coef-
ficients \,,(w) are found by solution of the Fredholm inte-
gral equation:

f Wi(ry,re) g, (ry)dry =N, ¢, (rs). %))
D

Extension of existing scalar results to a treatment of
the full electromagnetic problem is, however, more contro-
versial, with two opposing schools of thought debating the
appropriate form of coherent mode expansions for (two-
and) three-dimensional fields. In what follows we shall
consider both of the alternative formalisms in turn and
shall denote them the scalar- and vector-based formal-
isms.

The first, scalar-based, interpretation applies the sca-
lar formulation described above to each field component
individually, hence requiring the solution of (two) three
uncoupled Fredholm integral equations of the form of Eq.
(17). Accordingly, the individual elements of a general
CSDM are expressed in the form [21]

0

E }\g)‘ﬁg)*(rl)‘ﬁg)(rz)
n=0
Wij(rl,l‘2) =) =

> > AD Y ey fori #

n=0 m=0

fori=j,

(18)

where W;;(r1,ry) is the (i,7)th element of W(r;,r9) and the
expansion coefficients for off-diagonal terms, Ai%, are
found according to the integral
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AD = f f P Wiiry,ro) ) (rp)drydry.  (19)

Alternatively, the vector-based formalism solves the
Fredholm integral equation with matrix-valued kernel

f Wi(rl’rZ)‘I’n(rl)drl = )\nq’n(rZ) (20)
D

to find vectorial coherent modes [30,31], such that

%

W(ry,rg) = ) N, W, ()W) (ry). (21)
n=0

Although this approach is more mathematically involved,
since it requires the solution of (two) three coupled scalar
Fredholm integral equations, it does express the off-
diagonal elements more concisely.

Motivated by the analytic advantages frequently af-
forded by use of coherent mode expansions, we now use
them in our description of focusing of partially polarized,
partially coherent light. Furthermore, we shall consider
expansions of the CSDMs w(6;, ¢1, 65, o) on the reference

sphere and W( 01, b1, 69, o) in the back focal plane.
Consider first the scalar-based expansion of
w(6y,¢1,0,d). Using Eq. (10) we immediately have

Wii(ry,19) = K[> Y

2 2 a a
x f f f f U (01, )1 (05, o)
0 0 0 0

XexplikAqlexp[ikZ(cos 6; — cos 65)]
Xsin 01 sin 02d01d02d¢1d¢2.

for i=j and
le(rl’rZ) ‘K| E E A(U)
n=0 m=0

27 27 @ a
x f f f f U (01, b1 YL (2, )
0 0 0 0

XexplikAqylexplikZ(cos 6; — cos 6,)]
Xsin 0]_ sin 92(1 01d02d(l)1d¢2.

for i #j. Letting

27 ra
CO(r) = Kf f (), pexplikR; sin 6, cos(¢y — @))]
o Jo

X et <03 0 gin 6,d 6,d (22)
gives
> ACH () C P (ry) for i =j,
n=0
Wij(l'l,rz) =

E E ADCI (e)CYxy) fori ).

nm=n
n=0 m=0

(23)
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For a vector-based expansion of w(6;,ddq, 60, in
terms of the set of coherent modes W, (0, ¢), we similarly
find

©

W(ry,ry) = 2 \,C,(r))C} (ry), (24)

n=0

where

27 ra
C,(r)= Kj f W, (6;, p)explikR; sin 6; cos(¢; — ¢))]
o Jo

Xeikz cos 6 sin 01d0[d¢l. (25)

Comparing Eqgs. (23) and (25) to the definition of the
scalar- and vector-based expansions given by Eqgs. (23)
and (24), respectively, it is apparent that the scalar (vec-
tor) coherent modes in the focal region can be found by fo-
cusing the coherent modes on the reference sphere by use
of the scaled Debye—Wolf integral with scalar (vector) ker-
nel. This result is expected, because by construction the
modes are fully spatially and temporally coherent in ad-
dition to being statistically independent. Consequently,
each coherent mode can be propagated independently us-
ing more familiar ideas from coherent optical theories. It
should, however, be noted that

J f C;(x)C,,(r)R, AR d e, = |KI* 8y, (26)
o Jo

where §,,, is the Kronecker delta, meaning that to main-
tain orthonormality it is necessary to normalize the co-
herent modes by the factor |K]|, which yields the alterna-
tive, albeit equivalent, expansion

%

W(ry,ry) = 2 M |K12C,,(r) Cl(ry), (27)
n=0

where Cn(r) denotes a renormalized coherent mode.
Finally, we consider coherent mode expansions of the

cross-spectral density W(6;,d;, 6y, ¢s) in the back focal
plane. The scalar- and vector-based coherent modes are

denoted Jff)(ﬂ, ¢) and l’Iv'n(ﬂ, @), respectively. To formulate
this problem we need only relate the coherent modes on
the reference sphere to those in the back focal plane. For
the vector-based expansion Eq. (14) gives W, (6,¢)

=]P(0’¢)-‘~I'fn(0,¢). When considering the scalar-based ex-
pansion, however, the mixing of the elements of the
CSDM caused by the transformation of Eq. (14) means
that the focused CSDM cannot be expressed in the form of
Eq. (23). The lack of a simple, analytic correspondence be-
tween the coherent modes in the back focal plane and
those in the focal region hence suggests that a scalar-
based coherent mode expansion is unsuitable for focusing
in electromagnetic problems. Consequently, we shall con-
sider only vector-based expansions in the derivations of
Section 5.

At this juncture it is convenient to define a number of
different metrics that are commonly used to describe par-
tially coherent light. There is again much dispute regard-
ing the appropriateness and meaning of these quantities;
however, here we refrain from such discussions but in-
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stead examine the implications of focusing in terms of
each metric. In particular, we consider the degree of spec-
tral coherence defined in [32] as

tr[ W(ry,rp)

2 _
T r) S D e W] 28

and the degree of spectral coherence defined in [31] as

2 ) ||W(r1,r2)|\§~ (29)
r,ry) = - - ,
T Wy, T Werz,rp)]
where tr[---] and |- --|r denote the matrix trace and the

Frobenius norm respectively. Analogous definitions hold
for the light before focusing. Since the CSDM will in gen-
eral change upon focusing, then so too will the associated
degrees of spectral coherence 7 and ¢. Numerical ex-
amples of this will be given in Section 6; however, it is in-

formative to consider the effective degree of coherence, ¢,
over the domain D for a general CSDM, as defined in [31]

by
f f HW(I‘l,rz)”I%*drldrz
_ DJD

2= . (30
f tr[ W (r1,1‘1)]d1'1j tr[ W(ry,ry)Jdry
D

D

Before and after focusing, 2 evaluates to
Ez=o7\3/ [=r_o\.J% and it is therefore possible to conclude
that the effective degree of spectral coherence { is un-
changed upon focusing. Unfortunately, no conservation
rule holds for 77 that could be defined in an analogous
way.

5. HARMONIC ANGULAR DEPENDENCE

Further simplifications of the focusing integrals of Eqs.
(10) and (15) can be made if certain symmetry conditions
hold. In particular we shall analytically evaluate the azi-
muthal integration when the coherent modes (on either
the reference sphere or the back focal plane) have a har-
monic angular dependence, i.e., ¥,(6, ¢)=W,(6)sin m¢ or
W, (6)cos m¢ and similarly for li’n(ﬂ, ¢), where m e 7.

To consider the assertion of harmonic angular depen-
dence on the reference sphere, it is sufficient to consider
the C,(r;) integrals of Eq. (25) such that

K

11 n,X,¢ n,y,s - \n,zZ,C
C,(r)=—| —055, 5 -057 5 +107

2
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. 2w ra sin m ¢, ) )
C,r)=K w.(6) cos mdy explikR; sin 6,
0o Jo

Xcos(¢y — @) Je?*% <5 % sin 6,d 6,d ;. (31)

Employing the well-known identity [33]

2"{sinma} {sinmﬁ}
f explia cos(a - B)|da=2m™ J(a),
cosma cosmp

0
(32)

where o/, (a) is the Bessel function of the first kind of or-
der m, yields

sin mg;
Cl(r) = 2m'mK{ }
cos mey

XJ ‘Fn(gl)Jm(le sin Gl)eikz s % gin 01d 01.
0

(33)

Alternatively, when considering coherent modes on the
back focal plane we have

27 pra
C{LI(I‘Z) =Kf f ]P(Ol’ (rbl)ﬁ’n(al)
0 0

sinmdey| . )
X eszl sin 6 COS(¢[-(pl)elkZ cos 6 sin Hld aldd)l .

cosmdgy
(34)
Expanding P(0, ¢) gives
p1+pacos2¢  pysin2¢  pscos @
a(0) . )
]P(Qd;):T p2sin2¢  p;—pgcos2¢ pssing |,
—-p3cos ¢ -pssin ¢ P4
(35)
where
pi=cos 6+1, (36a)
pa=cos H-1, (36b)
ps=2sin 6, (36¢)
pa=2cos 6. (36d)

Again using Eq. (32) we can perform the integration over
¢ to give

n,x,s ny,c + 1,28 n,x,s *\,2,S n,x,S ny,c
e2,-m,2 - 82,—m,2 -0 5+ 260,m,1 +19173 = Yomat 62,m,2

n,y,8 . \nzc n,x,c n,y,8
+2007,7 - 107755+ 05755 + 0305 (37)

CONYS T ONYC n,2,8 _ 2ON.X,S * \LLY,C
1017, 5 — 10T, 5+ 20075 — 1075 +1077,5

for a sinusoidal angular dependence or

,m
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o~ 5 O+ 10T, 5+ 2005, + 015 - O, - O3
Cllr) = i 0552+ 0575 2 + 1017, 3+ 20055 +107775 - 0575+ 0555 (38)

- \1,X,C c\1,Y,8 n,z.c - \1,X,C c V1,8
=107, s =101 s+ 20075, — 107,55 - 10775

for a cosinusoidal angular dependence, where

sin(qg +m)e, « -
Oy i (1) = 277i*'"{ l} f a()V;(6)p,

cos(gxm)e | J

Xsin 0 . (RR; sin 6™ % <5 Od g, (39)

where ¥° denotes the vth component of W, and the sin
(cos) term is taken for t=s (c¢). Evaluation of the single in-
tegrals of Eq. (39) is all that is necessary to calculate the
CSDM of focused, inhomogeneous, partially polarized,
partially coherent light for which the coherent modes
have a harmonic angular dependence.

In coherence calculations the assumption of a circularly
symmetric CSDM is often made (whereby either
(01, b1, 0o, o) =w(01, 02) or W(60y, b1, Oz, o) =W(6, 65)) be-
cause it allows the dimensionality of analysis to be re-
duced. Circularly symmetry in the CSDM is inherited by
the coherent modes, and hence this frequently considered
scenario is given as a special case (m=0) of the preceding
analysis. We have demonstrated that even under less
stringent assumptions the dimensionality of the problem
can still be reduced. Finally, it should be noted that in the
preceding analysis it was assumed that each field compo-
nent of the vector-based coherent modes had the same
harmonic behaviour. This assumption is, however, not re-
quired since Eq. (32) can still be used to form a family of
integrals similar to that defined by Eq. (39). An example
of this type is considered in the next section.

6. NUMERICAL EXAMPLES

A. Radially Polarized Laguerre-Gauss Modes

By way of example we consider a beamlike source formed
by the superposition of mutually uncorrelated, radially
polarized Laguerre—Gauss modes located in the back focal
plane of a lens. Radially polarized beams are becoming in-
creasingly popular for two reasons: first, upon focusing
they give a focal spot narrower than the Rayleigh
diffraction limit [34], and second, Laguerre—Gauss modes
are obtained for typical laser cavities with circular

geometries. In this scenario the CSDM in the back
focal plane is of the form  W(6;,d1, 60, ds)

=37 N, (01, 6)W) (6, bo), where

cos ¢
W,,(6,¢) =V, (0)| sin ¢
0

(40)

and

5 2 \¥2 [2sin?0 sin® ¢
\I’n(ﬂ) i ) Ln -3 exp| — b} . (41)
L M M

L, represents the nth-order Laguerre polynomial and u is
a frequency-dependent parameter. We further consider
the case discussed in [35] for which \,=m(1-¢%)q?"/2u?
for 0<g<1. The parameter u is a measure of the beam
diameter measured in focal lengths, while ¢ determines

the effective degree of spectral coherence via 2=(1
-q?)/(1+q?), with the limits ¢ —0 (¢—1) giving a fully
spatially (un)correlated source. The beam diameter as
specified by u will be held constant throughout the re-
mainder of this work to avoid extraneous effects resulting
from a different apodization of the beam.

Following the analysis given in Section 5, the focused
coherent modes are found to be

(98,1,1 - 93,-1,2)005 ¢

Cﬁ’(rz) =K| (6g11- 65 _19)sin ¢ |, (42)
-i07 13
where
05 1.1(r) =27 f a(6)¥,(6;)(cos 6+ 1)
0
Xsin GlJl(le sin Gl)eikz €08 ald 0], (433)
1 T T T T T .
I (b) (©) 03]
0.6
> 081 . ° 047
£ 0.2 |
3 0
£ o6}
g
= (d)
8 o0af )
= 0
£
[e}
Z o2}
(a)
(b)
o ‘ L () ‘ ‘
0 2 4 6 8 10

k psina

Fig. 2. (Color online) Radial line scans (¢=0) and full trans-
verse focused intensity distributions for a radially polarized
beam source for (a) =0 (=0, coherent), (b) =1/3 (¢=0.62), and
(¢) £=2/3 (g=0.89). (d), (e), (f) Similar line scans for an azimuth-
ally polarized beam. For numerical calculations we assumed an
aplanatic lens of numerical aperture 0.97. Furthermore, the val-
ues u=1 and A=405 nm were used. Note that peak intensity has
been normalized to unity in all cases for easy comparison.
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03 _1o(r) =—2mi f a(6)¥,(6,)(cos 6,— 1)
0

Xsin 6J1(ER; sin 6))e*% s %idg,, (43b)

(23

07 _15(r) =~ 47Tif a(6)V,(6)
0

XSil’l2 01J0(le sin 0l)eikz cos Bld 01. (430)

Using these coherent modes it is possible to calculate the
focal intensity distribution for sources of differing effec-

tive degree of spectral coherence £. In Fig. 2 we have plot-
ted transverse line scans (¢=0, Z=0) for sources with

=0, 1/3 and 2/3. Although there is little effect on the
width of the transverse profile, we note with reference to
Fig. 3 that there is a modest extension in the depth of
field as the source becomes more incoherent. There is also
a slight increase in the energy density in the wings of the
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transverse profile. We note that due to the apodization
over the pupil, the focal spot is broader than that for uni-
form intensity since the contribution from the longitudi-
nal field component, responsible for the narrow spot for
the unapodized case, is reduced.

Figures 4(a) and 4(c) show plots of the degrees of spec-
tral coherence, 7 and ¢, between points located along the
positive x axis (¢;=¢9=0) in the focal plane. Unity degree
of coherence between two points implies that were the
field from these points brought together, the resulting in-
terference fringes would have a visibility of unity. Conse-
quently if r;=ry (dashed line) then 7 automatically evalu-
ates to unity, as can be seen in Fig. 4(a). However, this is
not in general true for the ¢, since this also measures the
correlations between individual components of the elec-
tric field. The rotation of the electric field vector by a lens
can introduce differing stochastic behavior in orthogonal
field components, hence resulting in the possibility of
{(r,r)# 1 as can be seen along the diagonal in Fig. 4. The
differences between the two metrics are more fully dis-
cussed in [32].

10

Fig. 3.

15 20 30
2
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(Color online) Normalized axial focal intensity distributions (¢=0) for partially coherent radially polarized collimated sources

with differing effective degrees of spectral coherence as specified by {=0 (top), /=1/3 (center) and {=2/3 (bottom). Other simulation

parameters used were the same as in Fig. 2.
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Fig. 4. (Color online) Plots of the degrees of coherence, | 7| (top) and ¢ (bottom) between two points x; and x, on the positive x axis in the
focal plane for focused partially coherent radially (left) and azimuthally (right) polarized collimated light. A value of ¢=0.62 was used,

while other simulation parameters were the same as in Fig. 2.

B. Azimuthally Polarized Laguerre-Gauss Modes
Azimuthally polarized beams are equally seeing attention
in the literature and upon focusing produce a focal ring
useful, for example, in STED microscopy [36]. In this case
the vectorial coherent modes are of the form

sin ¢
W,(0,4)=V,(0)| —cos ¢, (44)
0

which in the focal region yields

(66‘,1,1 + Gg’_l,z)sin @
CfLI(rl) =K| - (98,1,1 + 93,—1,2)005 ¢ (45)
0

Again, transverse line scans of the focal intensity distri-
bution are shown in Fig. 2, while the axial intensity dis-
tribution is shown in Fig. 5. Conclusions similar to those
made for the radially polarized source can be drawn for
an azimuthally polarized source; however, the augmenta-
tion of the wings of the transverse intensity profile is
more pronounced.

Figures 4(b) and 4(d) again show plots of the degrees of
spectral coherence, 7 and ¢, between points located along
the positive x axis in the focal plane. For azimuthally po-

larized illumination the resulting plots are very similar,
because along the x axis the focused coherent modes are
purely y polarized.

7. CONCLUSIONS

This work was undertaken with a view to developing a
general description of focusing of partially polarized, par-
tially coherent electromagnetic waves capable of handling
spatially inhomogeneous statistical properties across the
pupil of the focusing lens(es). This objective has been
achieved by use of the scaled Debye—Wolf diffraction inte-
gral, which places few constraints on the system geom-
etry since it is valid for high numerical aperture lenses of
arbitrary Fresnel number. Furthermore, we have shown
that by employing a coherent mode representation of the
CSDM it is possible to reduce the four-dimensional inte-
grals to two-dimensional ones. This allows substantial
computational gains to be made. Analysis of the focusing
operation has been performed in terms of the CSDM
across both the Gaussian reference sphere and the back
focal plane in terms of scalar- and vector-based coherent
modes, since both are frequently used in optical calcula-
tions. It was found, however, that due to mixing of differ-
ent components of the electric field that occurs in high-
numerical-aperture  optical systems, scalar-based
coherent mode expansions can be unsuitable. We were
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Fig. 5. (Color online) Normalized axial focal intensity distributions in the same manner as Fig. 3 for partially coherent azimuthally
polarized collimated sources with differing effective degrees of spectral coherence.

also able to show that the effective degree of spectral co-

herence ¢ of an electromagnetic beam is unchanged upon
focusing.

In addition, although the imposition of circular symme-
try is often made in the analysis of optical systems to
make calculations more mathematically tractable and to
reduce the dimensionality of the problem, we have shown
that these benefits are still realizable with the less strin-
gent requirement of a harmonic angular dependence of
the coherent modes. A couple of examples were also
briefly discussed to highlight our mathematical method.

As a final comment we are mindful that we have con-
centrated solely on the second-order statistical properties
as encapsulated by the CSDM. That said, it is in principle
possible to extend Egs. (10) and (15) to calculate higher-
order statistical moments of focused light. Since knowl-
edge of all the moments of a random process, provides a
full description of the process, it is thus possible to fully
account for the effect of focusing on randomly fluctuating
electromagnetic waves within the framework discussed.
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