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Abstract

Background: The scattering of H- and E-polarized plane waves by a two-dimensional (2-D) parabolic reflector

made of graphene and placed in the free space is studied numerically.

Methods: To obtain accurate results we use the Method of Analytical Regularization.

Results: The total scattering cross-section and the absorption cross-section are computed, together with the field

magnitude in the geometrical focus of reflector. The surface plasmon resonances are observed in the H-case. The focusing

ability of the reflector is studied in dependence of graphene’s chemical potential, frequency, and reflector’s depth.

Conclusions: It is found that there exists an optimal range of frequencies where the focusing ability reaches maximum

values. The reason is the quick degradation of graphene’s surface conductivity with frequency.
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Background

Graphene, which is a monolayer (1 nm) or a very thin

(2-3 nm) stack of a few layers of graphite ([1–3], see

Fig. 1-c in [3]), is a non-conventional material famous

for being electrically conductive, mechanically strong

and optically transparent. Due to the inductive nature of

the associated complex-valued surface impedance, it can

support the Surface Plasmon (SP) wave [1]. This wave

can be strongly reflected back from the edges of pat-

terned graphene so that natural SP modes (standing

waves) can occur, in the Fabry-Perot type manner. This

phenomenon has been observed at the frequencies vary-

ing from the infrared for the nano-size flat graphene

samples [3] to the THz range for the micro-size ones [2].

It is already exploited in the nanosensor devices [3, 4].

Important feature of graphene is that its conductivity can

be controlled by applying an external electrostatic biasing

field which modifies graphene’s chemical potential. Usually

this requires a dielectric substrate although suspended gra-

phene is also realizable [5]. Therefore in the modeling, one

can consider a curved graphene strip located in the free

space, and assume that the d-c bias is still present. Note also

that the edge effects become important only if a graphene

strip width is smaller than 100 nm. For wider strips one can

disregard the edge effects and use the electron conductivity

model developed for infinite graphene layer. In the THz

range this requirement is well satisfied for micro-size strips.

One of the interesting questions in this area is how well

the THz wave can be focused with a curved reflector made

of graphene. The goal of this paper is to answer this question

for a 2-D parabolic reflector as depicted in Fig. 1. We per-

form such a study using the electromagnetic boundary value

problem (BVP), which includes the resistive-sheet boundary

condition originally derived for thinner-than-skindepth

imperfect (partially transparent) metal layers [6, 7].

We consider both the H- and the E-polarization cases

where electric field is in the plane of reflector’s cross-

section and in parallel to reflector, respectively. It should

be noted that, similarly to the full-wave modeling of

perfectly electrically conducting (PEC) reflectors, finite-

difference time-domain method can be considered as one

of possible computational instruments. However it leads

to huge number of unknowns due to the discretization of

large physical domain and also has a disadvantage in the
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inability to satisfy the far field radiation condition. The

method of moments (MoM) procedure can be also ap-

plied to treat singular integral equations (SIE) derived for

arbitrary reflectors. However conventional MoM with

local basis and testing functions has overall accuracy at

the level of 2-3 digits even when treating the medium size

reflectors (10 wavelengths). If better accuracy is needed or

larger reflectors are interested in, one hits non-realistic

computation times or complete failure of the code be-

cause of the quick growth of the matrix condition number.

Another alternative is the high frequency techniques like

geometrical and physical optics, which work much faster

however do not produce accurate full-wave results.

All mentioned above is especially important in the case of

H-polarization where the associated SIE has hyper-type sin-

gularity. Attractive way out of that pitfall is offered by the

method of analytical regularization (MAR) [8]. With MAR,

the kernel of the associated SIE for the current on the re-

flector is presented as a sum of two parts, a more singular

part (usually static) and a remainder. Then the more singu-

lar part is analytically inverted by using some special tech-

nique like the Riemann-Hilbert Problem (RHP) method [7,

9, 10]. The remainder leads to the Fredholm second-kind

matrix equation that provides a convergent numerical solu-

tion. The same can be achieved by choosing the global ex-

pansion functions that are orthogonal eigenfunctions of the

hyper-singular part of SIE operator and using them in a

MoM-like Galerkin projection algorithm [11]. In either case

the SIE-MAR technique enables accurate and economic

full-wave analysis of electromagnetic scattering problems for

both PEC and imperfect reflectors. For instance, in [9], the

H-wave scattering and the focusing were studied for the re-

sistive 2-D reflectors having elliptical contours.

In the E-polarization case, the associated SIE has a

logarithmically singular kernel [12] and hence is already

a Fredholm second kind equation. This guarantees

convergence of discretization schemes. Still projecting it

on the set of entire-domain expansion functions brings

additional advantages and makes the resulting numerical

algorithm more economic. The E-polarized beam scat-

tering and collimation by parabolic resistive reflectors

was analyzed in this manner in [12].

Note that the scattering and absorption of THz waves by

a single flat graphene strip and finite graphene-strip grat-

ings was reduced to SIE and its Nystrom type solution was

built in [13, 14]. Infinite graphene-strip grating in the free

space was also studied by the MAR-RHP technique in [10].

In these works, the field characteristics were investigated

as a function of graphene and grating parameters showing

the presence of SP resonances. In more recent works [4,

15], the bulk refractive index sensitivities of the THz range

SP resonances were studied for a micro-size graphene strip

and a dielectric tube covered with graphene, respectively.

Following the mentioned and other works, we simulate

graphene with the aid of the resistive-sheet boundary con-

dition together with the Kubo formula for the graphene

Fig. 1 Cross-sectional geometry of a parabolic graphene reflector in the free space, illuminated with a plane wave
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electron conductivity. We derive a corresponding SIE

from the electromagnetic BVP and solve it using the

RHP-based MAR solution. This type of algorithm

provides us accurate data for the quantifications of the

scattering, absorption and focusing characteristics. As a

result, we obtain the frequency scans of the total scatter-

ing and absorption cross sections (TSCS and ACS) of a

2-D parabolic graphene reflector and in the H-case iden-

tify the SP resonances. Then we perform a study of the

focusing ability of such a curved strip as a 2-D reflector

for various graphene parameters.

Preliminary results of such analysis were reported at a

conference [16]; here we present new and more

complete numerical study and obtain better insight into

the studied effects.

Methods

The problem geometry of a 2-D parabolic graphene re-

flector frontally illuminated by a plane wave is presented

in Fig. 1. Reflector’s contour M is defined as a finite

parabolic profile. An auxiliary closed contour denoted as

C is the contour M completed with the circular arc S,

which must have the same curvature as the reflector at

the latter’s edge points. Such a smooth contour C is

necessary for obtaining the regularized (i.e. Fredholm

second kind) matrix equation - see [9, 12].

The rigorous formulation of the considered BVP

involves the Helmholtz equation, the Sommerfeld radi-

ation condition far from the reflector, the resistive

boundary condition on M, and an edge condition such

that the field power is limited in any finite domain

around the reflector edge. Collectively, these conditions

guarantee the uniqueness of the problem solution.

The resistive boundary condition on a zero-thickness

sheet is a well-established model of a thin penetrable sheet,

e.g. a metal thinner than skin depth or a very thin dielectric

layer. In view of “atomic” thickness of graphene, the same

boundary condition can also be used for a flat or curved

graphene surface, avoiding introduction the thickness of

graphene of 2-3 nm that generates meshing troubles in the

use of purely numerical codes like COMSOL. It can be

written as the following two equations valid at r!∈M:

E
!þ

tan þ E
!−

tan

� �

=2 ¼ Z n!� H
!þ

tan−H
!−

tan

� �

; E
!þ

tan ¼ E
!−

tan;

ð1Þ

where the subscript “tan” indicates the tangential field, the

superscripts “- “ and “+” relate to the front and back faces

of reflector, respectively, and n! is understood as the unit

vector normal to the concave side of reflector. The jump in

the tangential magnetic field, J
!

¼ H
!þ

tan−H
!−

tan, is unknown

function of the electric surface-current density, and the co-

efficient Z is graphene’s surface impedance [1–5].

Note also that the surface impedance is related to the

graphene surface electron conductivity σ as Z = 1/σ, and

the conductivity can be found as the Kubo sum of intra-

band and interband contributions [1–6]. As condition

(1) was derived for infinite planar layer, in the modeling

of the wave-scattering by finite surfaces it must be com-

bined with the edge condition to provide the uniqueness

of the BVP solution.

In the H-wave case, on using the boundary condition

(1) we obtain a hyper-singular SIE for the surface

current Jt on the reflector. On integrating by parts, it

can be cast to the following form:
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∂
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Z
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0
� �

� �
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M
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0

� �
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� �

−ξ r!
0

� �h i

G r!; r!
0

� �

dl0

¼
iZ0

k

∂H in
z

∂n
;

ð2Þ

where the 2-D Green’s function G is a Hankel function

of zero order and first kind satisfying the radiation con-

dition, i.e. G r!; r!
0

� �

¼ i=4ð ÞH0 1ð Þ koRð Þ , R ¼ r!− r!
0

�

�

�

�

�

� ,

and the angle ξ(φ) is between the normal on M and the

x-direction.

Now, we assume that the curve M can be character-

ized with the aid of the parametric equations x = x(φ), y

= y(φ), where 0 ≤ |φ| ≤ θ, in terms of the polar angle, φ.

Besides, we denote the differential length in the tangen-

tial direction at any point on M as ∂l = aβ(φ)∂φ. We

introduce also a function β(φ) = r(φ)/[a cos γ(φ)], where

γ(φ) is the angle between the normal on M and the

radial direction. Then we extend the surface-current

density Jt with zero value to arc S and cast IE (2) to a

dual equation on the arcs S and M [9].

To continue with the MAR, we add and subtract, from

the integral kernels in (2), similar functions at a full

circular contour of the same radius as S. The latter oper-

ators can be inverted analytically while the remaining

ones have smooth kernels,

A φ;φ0ð Þ ¼ H
1ð Þ
0 kRð Þ−H

1ð Þ
0 2ka sin φ−φ0j j=2ð Þ½ �; ð3Þ

B φ;φ0ð Þ ¼ cos ξ φð Þ−ξ φ0ð Þ½ �β φð Þβ φ0ð ÞH0
1ð Þ k r! φð Þ− r!

0
φ0ð Þ

�

�

�

�

�

�

h i

−β2 φð ÞH
1ð Þ
0 2ka sin φ−φ0j j=2ð Þ½ �

ð4Þ

For the inversion of the singular operators, all func-

tions including the incident field should be expanded in

terms of the Fourier series in φ. Note that the functions
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A and B are continuous and have also continuous first

derivatives, while their second derivatives with respect to

φ and φ’ have only logarithmic singularities and hence

belong to L2. Therefore on the curve C their Fourier co-

efficients in φ decay fast enough with larger indices and

hence can be efficiently computed by the Fast Fourier

Transform algorithm. Then the discretized version of

the SIE and the zero current condition on the aperture S

give us a dual series equation. Its semi-inversion, based

on the MAR approach using the RHP technique [7, 10],

finally produces an algebraic equation set [9]. This infin-

ite matrix equation is of the Fredholm second kind

hence the Fredholm theorems guarantee the existence of

the unique solution and also the convergence of the

approximate numerical solutions when truncating the

set with progressively larger orders.

In the E-wave case, on using the boundary condition

(1) we obtain the following log-singular IE for the

surface current Jz on the reflector:

Z J z−ikZ0

Z

M

J z r!
0

� �

G r!; r!
0

� �

dl0 ¼ Ein
z ; ð5Þ

As mentioned, convergence of usual discretizations of

this equation is guaranteed by its Fredholm second-kind

nature. Therefore we apply the projection to the set of

entire-domain angular exponents [12]. In either

polarization case we adapt the matrix truncation number

to provide the 4-digit or better accuracy of computations.

The scattered electromagnetic field in the far zone of

reflector is a cylindrical wave with functions H zsc or Ezsc

(depending on the polarization) reduced to (2/iπkr)1/2 eikr

ϕ(φ), where ϕ(φ) is the angular scattering pattern. Then

TSCS can be obtained by using the following expression:

σ tsc ¼
2

πk

Z

0

2π

ϕ φð Þj j2 dφ; ð6Þ

and ACS of a lossy graphene reflector can be found from

the optical theorem,

σabs ¼ −
4

k
Reϕ 0ð Þ−σ tsc ð7Þ

Results and discussion

The numerical accuracy and convergence of the

explained above in-house algorithms have already been

verified in [9, 12]. In the current work, we apply it to the

analysis of both the plane-wave scattering and absorp-

tion and the effect of focusing by the graphene reflector.

Therefore, besides of TSCS and ACS defined above,

we also calculate another parameter, which serves as a

simple figure of merit of the focusing ability (FA), in the

plane-wave focusing by a parabolic graphene reflector.

In view of the unite-amplitude plane wave incidence, FA

can be reasonably defined as the total field magnitude at

the geometrical-focus point of parabola.

In Fig. 2, the values of ACS and TSCS are plotted as a

function of frequency for two graphene reflectors with

the fixed size of d = 200 μm (small-size reflector) and d

= 1000 μm (medium-size reflector), respectively, the

both having the same fixed focal ratio f/d.

The oscillations observed on the plots are due to the

SP resonances, especially well visible in ACS behavior.

Note also that the absorption is by an order of magni-

tude smaller than the scattering, and the both drop with

frequency because of the growth of surface impedance.

Fig. 2 H-case: Wave scattering and absorption by parabolic graphene

reflectors versus the frequency in the THz range, for small-size reflector,

d = 200 μm (a) and medium-size reflector, d = 1000 μm (b) Solid lines

(black) and dashed lines (blue): ACS and TSCS for μc =1 eV. Dash-dotted

lines (red): TSCS for the PEC reflector. The other parameters are the

relative focal distance f/d = 0.3, the temperature T = 300 K, and the

electron relaxation time τ = 1 ps

Oguzer et al. Journal of the European Optical Society-Rapid Publications  (2017) 13:16 Page 4 of 8



The frequency scans of FA are plotted in Fig. 3 for the

same two reflectors as in Fig. 2. It can be seen that the

growth in μc increases FA at all frequencies. This

happens because higher values of chemical potential μc
lead to the lower values of the surface impedance of

graphene that makes it less transparent. Then the curves

get closer to the PEC case however still depart from it if

the frequency becomes higher.

Periodic ripples on the plots of FA are explained by the

free-space interference of the waves scattered by the edges

of reflector: this explanation is becomes evident if one takes

into account that their period is the same for the PEC and

the graphene cases and is determined by reflector’s size.

To obtain a fuller vision of the focusing ability of

graphene reflector, we present a color map of this

quantity as a function of two parameters: the focal ratio

f/d and the frequency in the THz range – see Fig. 4. One

can see that the optimal value of f/d, which provides

maximum FA, is slightly below the value of 0.25 known

to be optimal for PEC reflectors. New feature, as visible

both from Figs. 3 and 4, is existence of an optimal

frequency range where the focusing ability reaches max-

imum. This is apparently explained by the fact that, if

the frequency grows, then the initial positive effect of

increasing the electrical size of reflector becomes grad-

ually overweighed by the negative effect of increasing

the absolute value of graphene’s impedance. Location

and width of the optimal frequency band depends on

the chemical potential, i.e. on graphene’s doping.

Finally, in Fig. 5 we present the total near-field pattern

for the graphene reflector with the aperture of d = 450 μm

Fig. 3 H-case: Focusing ability of graphene reflectors versus the

frequency in the THz range for small-size reflector, d = 200 μm (a) and

medium-size reflector, d = 1000 μm (b) Solid line (green): μc = 0.3 eV,

solid line (red): μc = 0.5 eV, solid line (blue): μc = 1 eV. Dashed line (black):

PEC reflector result. The other parameters are the same as in Fig. 2

Fig. 4 H-case: Color map of the focusing ability as a function of f/d

and frequency. Here, d = 1000 μm, μc = 1 eV, T =300 K, τ = 1 ps

Fig. 5 H-case: Color map of the near-zone total field. Here, f/d = 0.3,

d = 450 μm, μc = 1 eV, T = 300 K, τ = 1 ps and the frequency is 5 THz
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(this is 7.5λ). Note the splitting of the focal domain to two

bright spots along the axis of symmetry – this is a side ef-

fect, at the given frequency, of the finite size of reflector.

Besides, one can see clearly observable interference of the

waves scattered by the edges of the parabolic reflector in

front of it and the presence of shadow behind it. Still this

shadow is not very dark because the graphene reflector is

partially transparent.

The further Figs. 6, 7, 8, and 9 present the numerical

data analogous to in Figs. 2, 3, 4, and 5 however computed

for the E-polarized wave incidence. Note the absence of

the surface-plasmon resonances on the plots of ACS and

FA as a function of frequency in Fig. 6a (compare to

Fig. 2a) and Fig. 7a (compare to Fig. 3a), i.e. for a

small-size reflector.

One can notice obvious similarities between plots and

patterns for the H-case and the E-case if a graphene

reflector is at least medium-size and the frequency is

above 3 THz. This is apparently because the focusing of

waves by a finite parabolic reflector, even a semi-

transparent one, is essentially a high-frequency or quasi-

optical effect. The main parameter in this case is just the

electric size of reflector in terms of the free-space

wavelength. The effect of the surface plasmon reso-

nances is almost negligible at high frequencies, as well

as dependence on the polarization in general. Note that

in the E-polarization case the near-field portrait (Fig. 9)

shows only one bright spot close to he geometrical focus

of parabola.

Fig. 6 E-case: Wave scattering and absorption by parabolic

graphene reflectors versus the frequency in the THz range, for

small-size reflector, d = 200 μm (a) and medium-size reflector, d =

1000 μm (b) Solid lines (black) and dashed lines (blue): ACS and TSCS

for μc =1 eV. Dash-dotted lines (red): TSCS for the PEC reflector. The

other parameters are f/d = 0.3, T = 300 K, τ = 1 ps

Fig. 7 E-case: Focusing ability of graphene reflectors versus the

frequency in the THz range for small-size reflector, d = 200 μm (a) and

medium-size reflector, d = 1000 μm (b) Solid line (green): μc = 0.3 eV,

solid line (red): μc = 0.5 eV, solid line (blue): μc = 1 eV. Dashed line (black):

PEC result. The other parameters are the same as in Fig. 2
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Conclusion

To summarize, a micro-size 2-D graphene reflector with

parabolic profile, symmetrically illuminated by the H-

polarized and E-polarized plane waves has been analyzed

numerically using the MAR approach. The results show

that the focusing ability of such a reflector is on par with

a PEC reflector in the range of the frequency and the

graphene parameters where the surface impedance of

the latter is small. As follows from the Kubo formalism,

this entails a necessity of working with higher values of

chemical potential and electron relaxation time. This

also means that for every fixed size of reflector there ex-

ists a band of optimal THz frequencies and the focusing

ability is severely degraded at higher frequencies because

of degradation of graphene’s surface conductivity. The

surface-plasmon resonances are present at lower THz

frequencies in the H-wave case however their effect on

the performance of micro-size graphene reflectors is

small.
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