
The basic ‘macro-circuit’ of the vertebrate visual 
system
�e transformation of visual sensory inputs into motor 

and endocrine responses requires specialized neural 

proces sing, often distributed across multiple structures 

or pathways in the brain. A classical and still vigorous 

branch of neuroscience, best referred to as ‘functional 

neuroanatomy’, assigns functions to specific areas in the 

brain. �e interconnectivity of multiple areas involved in 

a particular sensory or behavioral task are often 

represented using a set of boxes, connected by arrows. 

�e most famous such wiring diagram identified roughly 

40 visual processing areas in primates [1]. Similar ‘macro-

circuits’ have been drawn up for the visual pathway of 

‘lower’ vertebrates [2]. In toads, a detailed circuit under-

lying prey capture behavior has been derived from heroic 

work over three decades involving tract tracing and 

electrophysiological mapping [3] (Figure 1a). However, 

none of these studies has generated a comprehensive list 

of essential circuit components (cell types and their 

connections) for a specific behavior or the processing of a 

specific visual stimulus. �is gap in our knowledge of 

‘micro-circuitry’ is a major obstacle to understanding the 

mechanisms of perception and behavior.

�e zebrafish has emerged as a valuable model system 

with which we can hope to close this gap [4-7]. Ten 

different anatomical areas have been identified that serve 

as targets for the retinal ganglion cell (RGC) axons that 

connect the eye to the brain [8] (Figure 1b). �ese ten 

arborization fields, referred to as AF1 to AF10, probably 

correspond to the primary visual nuclei identified in 

adult teleost fish and are homologous to areas in 

mammals, such as the suprachiasmatic nuclei (AF1), the 

pretectal nucleus of the optic tract (AF9) and the superior 

colliculus/optic tectum (AF10). Not very much is known 

about the behavioral functions of these arborization 

fields in zebrafish or other fish species (with the exception 

of the optic tectum - see below), but it is clear that 

specific visual functions are initiated by activation of a 

fixed complement of one or very few of these nuclei [9]. 

Table 1 contains a comprehensive list of visually evoked 

behaviors reported for zebrafish.

Here, we focus on the larval zebrafish tectum (AF10), a 

structure suitable for circuit analyses. �e tectum sits at 

the surface of the brain (its name means ‘roof ’ in Latin) 

and is therefore accessible to electrophysiology, laser 

ablations, optical imaging, and control of neuronal 

activity with optogenetic effectors. �e tectum’s broad 

function is known; it is involved in tasks that require a 

map of visual space, such as phototaxis, the approach of 

prey or the avoidance of obstacles (Table 1, third 

column). �e tectum converts a visuotopic sensory map 

into a map of directed motor outputs. An intact tectum is 

dispensable for measurements of ambient light levels or 

for reflexes to broad moving stimuli, such as optomotor 

or optokinetic responses, visual background adaptation, 

the dorsal light reflex or photo-entrainment of circadian 

rhythms. In the laboratory, these behaviors can serve as 
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negative controls for the specificity of tectum manipu-

lations. �e tectum’s cellular architecture is beginning to 

be understood, providing an opportunity to match the 

structure of its micro-circuitry to its function. �e 

zebrafish tectum is amenable to genetic manipulations. 

Some of the mutants and transgenic lines useful for 

analysis of tectal visuomotor function are summarized in 

Tables 2 and 3.

Important contributions to the renaissance of interest 

in the tectum’s inner workings have also been made in 

Xenopus tadpoles. We will be lumping efforts in fish and 

frog together here, as they are truly complementary, each 

capitalizing on specific experimental advantages of the 

two systems.

Spatial patterning of information �ow in the optic 
tectum
�e zebrafish larval tectum is roughly divided into two 

regions, a deep cell body layer, the stratum peri-

ventriculare (SPV), and a superficial neuropil area, which 

contains the dendrites and axons of tectal neurons, a 

sparse assortment of tectal interneurons and afferent 

axons arriving at the tectum, chiefly from the retina 

(Figure 1b; colored circles indicate the diverse tectal cell 

types - see next section). Tectal processing begins with 

visual signals transmitted via the axons of RGCs. �ese 

axons enter the zebrafish tectal neuropil from the 

anterior end at six levels corresponding to the six 

retinorecipient laminae (Figure 1b) [10]. A similar pattern 

Figure 1. Classical and neoclassical methods of parsing the visual system. (a) Neural network underlying prey capture in anuran amphibians 

[3]. Anatomical studies from 1969 to 1999 were compiled to show the complex interconnectivity of visual and olfactory inputs, forebrain and 

midbrain contributions, and motor outputs. The retina is boxed in blue, and retinorecipient regions are boxed in red. Such schemes provide a 

framework for further study but do not address the pathways’ micro-circuitry. A, anterior thalamus; PT, pretectum; OT, optic tectum; R, retina; V, 

ventral thalamus. Modi�ed from [3]. (b) Scheme showing the major retinofugal connections in the larval zebra�sh. Colored circles are stand-ins for 

diverse cell types, already known or yet to be discovered. The quantities in parentheses are estimates of the number of cell types (data compiled 

from work on zebra�sh and other cyprinids). The retina comprises three cellular layers with �ve types of photoreceptors (4 cones, 1 rod), at least 11 

bipolar cell types, about 70 amacrine cell types [100], and so on. The number of tectal neuron types is also large. Distinct RGC types (colors) likely 

have speci�c roles and connections with ten retinorecipient arborization �elds (AF1 to AF9 plus AF10, which is the tectum) in the brain. Some 

anatomical details (as far as known): the RGCs that are connected to AF7 project a collateral to SO; RGC axons projecting to SAC/SPV in the tectum 

are routed through AF9. Abbreviations: AC, amacrine cell; AF, arborization �eld; BC, bipolar cell; GC, ganglion cell; HC, horizontal cell; INL, inner 

nuclear layer; IPL, inner plexiform layer; OPL, outer plexiform layer; PhR, photoreceptor; PVN, periventricular neuron; SAC, stratum album centrale; 

SFGS, stratum �brosum et griseum super�ciale; SGC, stratum griseum centrale; SIN, super�cial interneuron; SO, stratum opticum; SPV, stratum 

periventriculare.

Table 1. ‘Ethogram’ of zebra�sh related to vision

Behavior Description Tectum involved? Selected references

Visual startle Sudden fast start following sudden changes in ambient light levels Unknown [62-64]

Photomotor response Muscle contractions in response to very bright light No [65]

Visual background  Neuro-endocrine response of melanophore pigment cells to ambient light No; probably AF1 [66,67] 
adaptation levels; melanin granules aggregate in bright light

Circadian  Responses in physiology and behavior to the natural light-dark cycle No; probably AF1 [68,69] 
photoentrainment

Phototaxis Swimming and turning toward a light source Yes [70-72]

Scototaxis Preference for a dark compartment Unknown [73]

Dorsal light response Tilting of the body axis toward a light source No [74]

Optokinetic response Slow eye movements following the motion of a large stimulus; punctuated by  No; possibly AF9 [62,67,70,75,76]; 
 saccades  F Kubo and HB,  
   unpublished work

Optomotor response Turning and swimming in the direction of a large moving stimulus No [67,77-79]

Visually mediated Keeping a minimum distance to other �sh larvae Unknown AB Arrenberg and HB,  
dispersal   unpublished work

Visual obstacle avoidance Fast start to prevent collision with approaching object Yes [80]

Visual escape response Escape turn away from any large moving object Yes [81]

Prey capture Complex behavior involving J turns, slow tracking swims and fast capture swims  Yes [16,82-84] 
 in pursuit of small prey

Predator avoidance Complex escape behavior; probably requires predator recognition Yes [85,86]

Shoaling Grouping with conspeci�cs; shown by juvenile and adult �sh Unknown [87-91]

Visual mate choice Preference of particular shapes as reproductive stimuli by adult �sh Unknown [92]
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has been observed in adult teleosts [11]. As a strict rule, 

each RGC axon is targeted to a single lamina and 

arborizes exclusively in this lamina [12]. Most (80%) RGC 

axons innervate three sublayers of the stratum fibrosum 

et griseum superficiale (SFGS). A smaller number (15%) 

innervate the most superficial stratum opticum (SO). �e 

remaining RGC axons (5%) project into the stratum 

griseum centrale (SGC) and into the interface between 

the stratum album centrale and the SPV (SAC/SPV). 

Each retinorecipient lamina is topographically organized: 

retinal axons project into the plane of each layer in a 

visuotopic order, such that the retinotectal map is in fact 

an array of six parallel maps stacked on top of each other. 

Objects in the forward visual field of the contralateral eye 

are represented in anterior tectum, whereas objects 

behind the fish are mapped to the posterior tectum. 

Objects in the upper visual field activate the dorsal 

(medial) tectum, whereas the ventral (lateral) tectum 

responds to visual stimuli from below the fish. �is fine-

grained map is thought to allow the localization of a 

stimulus in the visual field.

Several general rules govern information processing in 

the fish tectum. Information flows primarily from the 

superficial layers to the deeper layers. �e vast majority 

of retinal afferents enter the superficial layers of the 

tectum, where they make excitatory (glutamatergic) 

synap tic connections with the dendrites of tectal inter-

neurons. �e information then travels along the vertically 

oriented dendrites of the periventricular neurons (PVNs) 

to the deeper layers [13]. As a demonstration of this, 

Kinoshita et al. [14] labeled tectal slices of adult rainbow 

trout with a voltage-sensitive dye and imaged the 

Table 2. Zebra�sh mutants used for the analysis of visuomotor function

Mutant Alleles Phenotype Gene Gene product References

lakritz lakth241c Absence of RGCs and complete blindness; no  atoh7 Atonal homolog 7 [66]
  known developmental defect outside the retina (ath5)

blumenkohl blutc257z, blus391 Synaptic transmission defect in retinotectal axons;  slc17a6b Vesicular glutamate [16]
  enlarged tectal receptive �elds; reduced visual  (vglut2a) transporter 2a
  acuity

belladonna beltv42, bels385, belb700 Incomplete crossing of retinal axons, reversed eye  lhx2b LIM-domain homeobox [67,93,94]
  movements, ‘looping’ swim behavior  factor 2b 

double indemnity didys390, didys552 Reversible depletion of saccadic eye movements scn1lab Voltage-gated sodium  [60]
    channel NaV1.6

Table 3. Transgenic lines used for the analysis of tectum structure or function in zebra�sh

Short name Full name Description References

Pou4f3:mGFP (Brn3c:mGFP), 
Pou4f3:Gal4 (Brn3c:Gal4)

Tg(pou4f3:gap43-gfp)s356t, 
Tg(pou4f3:gap43-gfp)s273t, 
Tg(pou4f3:gal4-vp16)s311t

Labels a subset (40%) of RGCs; projection into SO, SFGS
D
 and SFGS

F
[10,12, 22,95]

BGUG Tg(pou4f3:gal4-vp16, 
UAS:gap43-gfp)s314t, 
Tg(pou4f3:gal4-vp16, 
UAS:gap43-gfp)s318t

Labels a random subset of Pou4f3-positive RGCs with membrane-
bound GFP; also drives GFP expression in random cells within any 
Gal4 pattern (‘genetic Golgi’)

[12,20,21]

Ath5:GFP  
(Atoh7:GFP), 
Ath5:mGFP, 
Ath5:mRFP, 
Ath5:GCaMP1.6, 
Ath5:Gal4

Tg(atoh7:gfp), 
Tg(Atoh7:gap43-GFP)cu1, 
Tg(Atoh7:gap43-RFP)cu2, 
Tg(atoh7:gcamp1.6), 
Tg(atoh7:gal4-vp16)

Labels 100% of RGCs and some retinal interneurons [42,96-98]

Isl2b:GFP,  
Isl2b:mCherry-CAAX, 
Isl2b:mGFP

Tg(-17.6isl2b:GFP)zc7, 
Tg(-17.6isl2b:mCherry-HsHRAS)zc23, 
Tg(-17.6isl2b:gap43-GFP)zc20

Labels all or the vast majority of RGCs [99]

Pou4f1: GFP (Brn3a:GFP), 
Pou4f1:Gal4 (Brn3a:Gal4)

Tg(pou4f1-hsp70l:gfp)rw0110b Labels RGCs. Also labels many PVNs, including glutamatergic PVPNs 
with ipsilateral axons to the hindbrain and GABAergic neurons with 
tectotectal axons 

[27]

Gal4s1013t Et(-1.5hsp70l:gal4-vp16)s1013t Drives expression in all neurons and glia of the tectum [20]

Gal4s1038t Et(fos:gal4-vp16)s1038t Drives expression in PVPNs of the posterior tectum [20]

Gal4s1156t Et(-1.5hsp70l:gal4-vp16)s1156t Drives expression in very few tectal neurons, including most SINs [54]

Gal4s1101t Et(e1b:gal4-vp16)s1101t Drives expression in almost all neurons of the CNS; ‘pan-neural’ [55,59,60]

CNS, central nervous system.
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propagation of activity as current was applied to the 

anterior pole of the SO and SFGS. �is cross-sectional 

view of the working tectum confirmed that the wave of 

depolarization proceeds in a stereotyped pattern. Fast 

depolarization travels anterior to posterior in the SO and 

SFGS, presumably along the paths of RGC axons. At each 

point along the anterior-posterior axis, a slower vertical 

depolarization is triggered, proceeding radially to the 

deeper SGC and SAC.

In the deeper neuropil layers, information is trans-

mitted from the axons of interneurons to other inter-

neurons or to tectal projection neurons that send axons 

to premotor areas in the midbrain and hindbrain. Intra-

tectal connections are inhibitory (releasing the neuro-

transmitter γ-aminobutyric acid (GABA) and thus called 

GABAergic) or excitatory (releasing glutamate; glutama-

tergic). In addition, a small percentage of PVNs are 

cholinergic (releasing acetylcholine). Tectal outputs from 

the deeper neuropil layers are wired to the appropriate 

combination of premotor nuclei to govern behavioral 

responses. �e cell bodies of most tectal neurons are 

spatially removed from the site of actual processing, 

which seems to take place exclusively in the neuropil. �e 

cell body is not required as an intermediate between 

input and output because of the peculiar ‘monopolar’ 

morphology of fish tectal cells, which are reminiscent of 

insect neurons. �e dendritic segments of the neurites 

are contiguous with the axonal segments. In the voltage-

sensitive dye recordings mentioned above [14], the SPV 

was not detectably activated, suggesting that the bulk of 

activity ‘fades’ in the proximal neurites before it reaches 

the cell bodies.

�is cellular architecture probably has functional 

impli cations. Bollmann et al. [15] imaged individually 

dye-loaded tectal neurons in Xenopus tadpoles. �eir 

study demonstrated that visually evoked dendritic 

calcium elevations are unevenly elicited across individual 

dendritic trees in a pattern consistent with the retinotopic 

map. Given that many tectal neurons have axons that 

emerge from among the dendritic branches, different 

levels of activation across the dendritic arbor might influ-

ence neuronal output differently. If so, dendrites nearer 

the initial axon segment would have more influence than 

more distal branches in spike generation. It is not clear 

how this bias, favoring certain retinotopic positions over 

others, might contribute to the shape of the PVN’s 

receptive field.

Studies of genetic mutants have helped to identify 

mechanisms that govern the processing of visual infor-

mation in the zebrafish tectum (Table 2). One example is 

the blumenkohl mutant, which shows a selective deficit in 

the capture of small prey items (but not large ones). �is 

impairment is due to a deletion of vesicular glutamate 

transporter 2, encoded by the vglut2a gene. In response 

to decreased levels of glutamate at retinotectal synapses, 

the arbors of retinal axons become enlarged, resulting in 

an increase of the receptive fields of tectal neurons [16]. 

Accurate processing of visual stimuli requires spatially 

precise vertical streams of activity that subsequently 

recruit small subpopulations of projection neurons to 

initiate a motor response. In blumenkohl mutants, these 

parallel processing streams are less precisely aligned 

owing to a greater overlap of receptive fields among 

neighboring tectal PVNs. �is seems to degrade either 

visual acuity or motor control (or both).

Cell type diversity and complexity of tectal 
responses
Early electrophysiological recordings found heterogene-

ous responses among tectal neurons in adult zebrafish 

[17]. Some neurons were responsive to looming stimuli, 

others to moving edges or to objects of a certain size 

range. �e colored circles in the schematic drawing in 

Figure 1b represent this diversity. Calcium imaging 

studies refined this work, showing that these distinct 

tuning properties arise early and are largely constant 

during embryonic and early larval development [18]. For 

these studies, larvae had their tecta loaded with a calcium 

indicator dye and were mounted with a miniature liquid-

crystal display (LCD) screen for projecting images to the 

eye, and calcium signals from tectal cells were recorded 

by two-photon laser-scanning microscopy. PVNs could 

be sorted into numerous types according to their tuning 

profiles. Although some were broadly responsive, show-

ing spontaneous and sustained activity in the dark, others 

were altogether unresponsive to the visual stimuli tested. 

However, the majority of PVNs were sensitive to spots in 

the visual field, with optimal responses to either station-

ary flashing spots, moving spots regardless of their size 

or direction, or small spots moving in particular 

directions. �us, PVN ensemble activity probably encodes 

information about the location, size and movement of 

small objects in the visual field, evidently supporting the 

behavioral functions of the tectum.

A landmark neuro-anatomical study, using the Golgi 

labeling technique, in adult goldfish, a species closely 

related to zebrafish (both are in the family Cyprinidae), 

catalogued tectal neuron types on the basis of cell body 

location and neurite arborization pattern [19] (Figure 2a). 

(Golgi-labeling is a classical neuroanatomical technique 

for sparsely labeling neurons; it shares a name - from the 

physician scientist Camillo Golgi - with the cellular 

compartment, but is functionally unrelated.) Anatomical 

surveys of transgenically labeled neurons have now 

extended this classical work to larval zebrafish. In a 

screen, our group [20,21] identified three enhancer trap 

lines with strong and fairly specific expression of our 

Gal4 trap construct in tectal cells (Table 3). To examine 
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individual neuron morphologies, we crossed these fish 

with carriers of a highly variegated UAS:mGFP construct 

contained within the Brn3c:Gal4, UAS:mGFP (BGUG) 

transgene (Table 3; GFP refers to green fluorescent 

protein and Brn3c to a member of the POU domain 

transcription factor family that is expressed in specific 

neurons). �is method allows the visualization of single 

or sparse neurons with a membrane-targeted GFP. A 

distinct subset of these tectal neurons has been further 

characterized using a Dlx4/5:GFP transgenic reporter 

(ER, SJ Smith and HB, unpublished work). Together with 

single-cell electroporations labeling random subsets of 

tectal neurons with GFP [22], such ‘genetic Golgi’ stains 

have yielded a preliminary catalog of neuron types in 

larval zebrafish tectum (Figure 2b). Importantly, many of 

these neuron types resemble miniature versions of those 

described in the adult goldfish (compare Figure 2a and 

2b) and other teleosts [23,24].

A quarter of the neurons in our survey [20,21] have cell 

bodies in the SPV, radially oriented dendrites that reach 

to the superficial, retinorecipient layers and a local axon. 

We call this group the periventricular interneurons 

(PVINs). Little is known about their function. A sub-

stantial fraction of PVINs are GABAergic (the rest being 

glutamatergic or cholinergic), and these may filter incom-

ing signals by inhibiting responses to non-salient stimuli. 

Feedforward inhibitory connections need to be in place 

for gain control given the high ratio of retinotectal axons 

Figure 2. Cell type diversity and (some) functional connectivity of the �sh optic tectum. (a) Cells described from classical Golgi studies in 

the adult gold�sh tectum [19]. Fourteen types of neuron were identi�ed on the basis of cell body position and morphology. Modi�ed from [19]. 

(b) A sampling of neuron morphologies observed in the larval zebra�sh tectum using ‘genetic Golgi’ methods. These include: radial glia (RG), 

periventricular projection neurons (PVPNs), periventricular interneurons (PVINs) and super�cial interneurons (SINs). Retinorecipient laminae in the 

tectum are indicated by shading. Note the diverse dendrite morphologies of both projection neurons and interneurons in the tectum. In particular, 

PVINs have been observed containing arbors that are non-strati�ed (nsPVINs), mono-strati�ed (msPVINs) or bi-strati�ed (bsPVINs). (c) Hypothetical 

neural circuit responsible for size tuning of PVNs in the optic tectum [36]. Retinal a�erents targeting the super�cial layers of the SO and SFGS form 

excitatory synapses onto PVINs containing super�cial dendrites and an axonal arbor in a deeper layer. These PVINs may mediate the vertical �ow 

of excitation in response to small visual stimuli by activating PVPNs with dendrites located in deeper neuropil layers. In contrast, large visual stimuli 

additionally activate SIN cells, which inhibit the PVIN-mediated vertical �ow of information to PVPNs.

Type

Type

(b) (c)

Projections to
reticular formation,
raphe, and medulla

(a) Cell types in adult goldfish tectum

Cell types in larval zebrafish tectum Tectal micro-circuit for size tuning
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to tectal efferents (neurons projecting from the tectum), 

estimated to be between 30:1 and 100:1 [25]. Most other 

periventricular neurons (70%) have axons exiting the 

tectum, reaching the hindbrain reticular formation, the 

medulla or the Raphe nucleus [20]. As a rule, these peri-

ventricular projection neurons (PVPNs) have dendrite 

arbors in the deep and intermediate regions of the 

neuropil, but not in the superficial SO/SFGS zone 

[20,25,26]. �is morphology reinforces the observation 

that information flows chiefly from superficial to deep 

[13] and further suggests that processed, rather than raw, 

visual information governs tectal output.

A study [27] of efferent projections from the deep 

layers of the tectal neuropil to the hindbrain suggests that 

spatially patterned tectal outputs may help coordinate 

motor responses. �e tectobulbar tract is composed of 

ipsilateral and contralateral projections to premotor 

struc tures in the hindbrain reticular formation. Hind-

brain target neurons, in turn, project to primary motor 

neurons in the spinal cord. Sato et al. [27] used a clever 

combination of Gal4/UAS and Cre/LoxP systems to label 

small numbers of PVPNs, allowing a direct comparison of 

retinotopic position of tectal cell bodies with the hindbrain 

targets of their axons. Each mini-region of the tectum 

projects axons to a wide array of hindbrain segments 

(rhombomeres); for example, one area the size of a single 

retinotectal arbor had projections to almost all 

rhombomeres. �ese observations support a model in 

which tectal output from a small region reaches multiple 

premotor sites in order to coordinate a full body response.

�e topographic organization of tectofugal projections 

to the reticular formation is functionally important, as 

shown in mammals, amphibians and fish [28-32]. In 

goldfish, anterior tectal efferents preferentially innervate 

midbrain sites that generate small horizontal eye 

movements, and posterior efferents innervate sites 

associated with large saccades (fast reset movements). In 

larval zebrafish, there is a similar mapping of tectal 

efferents onto the reticular formation [27]. Posterior 

tectal neurons are more likely to project to rhombomere 

2, whereas middle to anterior neurons are more likely to 

innervate rhombomere 6. �is suggests that the 

behavioral responses that are controlled by the reticular 

motor map are tailored to the location of the visual 

stimulus (as they should be). Although we do not know 

the identity or function of neurons in rhombomere 2 that 

receive input primarily from the posterior tectum, we 

predict that they have a role in executing a behavioral 

response, perhaps a large horizontal saccade or a turning 

response, to stimuli behind the animal.

Filtering of visual inputs by tectal micro-circuits
�e role of local inhibition in the tectum for visual 

discrimination has been brought to light in two studies. 

In the first, Ramdya and Engert [33] surgically removed 

one tectum from a developing zebrafish embryo, which 

resulted in bilateral retinal innervation of the remaining 

tectum. �is allowed them to characterize the binocular 

response properties of normally monocular tectal 

neurons. As in monocular tectum, binocular tectal 

neurons sometimes responded to motion in a direction-

selective manner. Even a stripped-down motion stimulus, 

consisting of a dot jumping between two movie frames 

from left to right, generated a response. �e authors 

exploited this unnatural binocular response to ask how 

motion sensitivity is generated in the tectum. �ey 

created an artificial ‘motion stimulus’ visible only to a 

binocular cell by parsing the dot’s jump between the two 

eyes: one movie frame was shown only to the right eye 

and the other frame only to the left eye. Interestingly, this 

two-frame movie was sufficient to stimulate direction-

sensitive tectal neurons. Given that neither retina’s signal, 

on its own, could encode motion direction - each was 

shown a flashing, stationary dot - it can be concluded 

that circuitry intrinsic to the tectum underlies this 

sensitivity. �ese results are consistent with a model in 

which a direction-sensitive cell responsive to motion in 

the anterior direction is flanked anteriorly by retino-

recipient cells that inhibit its activity. �e direction-

sensitive cell is therefore inhibited by its anterior neigh-

bors and shows reduced activity when activated by a 

stimulus moving in a posterior direction across its recep-

tive field, but responds more vigorously to an anteriorly 

moving spot. A similar model partially accounts for the 

directional selectivity seen in neurons of mammalian 

visual cortex [34,35]. �e Ramdya and Engert study [33] 

showed that such a direction-sensitive circuit exists in 

the zebrafish tectum and that it is probably hardwired 

(genetically specified).

�e role of a specific, anatomically identified class of 

tectal inhibitory interneurons has recently emerged in 

another calcium imaging study carried out in our labora-

tory [36]. �is work used the enhancer trap lines 

generated by Scott et al. [21] to express the genetically 

encoded calcium indicator GCaMP in specific popula-

tions of tectal cells in order to image response dynamics 

in different tectal layers. As previously observed in the 

superior colliculus of mammals and corroborated in the 

larval zebrafish [18] (see above), many tectal neurons 

respond most strongly to small spots or bars in visual 

space. �e new results identify a synaptic basis for this 

small-spot bias. When presented on a small LCD screen, 

all visual stimuli registered post-synaptic responses in the 

superficial neuropil (SO and SFGS), but only for spatially 

restricted stimuli were these signals fully propagated into 

the deeper neuropil (SGC and SAC). Tectal adminis-

tration of bicuculline eliminated this size selectivity - in 

the presence of this GABA antagonist, large (50°) stimuli 
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elicited responses in both superficial and deep neuropil. 

�is implicates GABA-based inhibition in tectal filtering 

[36].

Further work was able to identify the cell type 

responsible for the selectivity [36]. With another Gal4 

line, a type of interneuron called a superficial inhibitory 

neuron (SIN) could be labeled, whose cell body resides 

between SO and SFGS (Figure 2c). �ese cells have broad 

arbors in the SFGS, are GABAergic, and are probably 

homologous to Meek and Schellart’s type III neurons 

(Figure 2a) [19]. Calcium imaging showed that these cells 

have the unusual property of responding to full-screen 

stimuli (and not to small stimuli). �ese data raised the 

possibility that SINs may be mediating the small spot 

selectivity of tectal filtering. To demonstrate their 

necessity in this process, SINs were photo-ablated with 

KillerRed [37]. �is lesion had a similar effect to the 

application of bicuculline; deep tectal neuropil layers 

responded to large and small stimuli alike. Moreover, 

silencing of synaptic transmission by SINs with the 

tetanus toxin light chain impaired the fish’s prey capture 

behavior, but not optomotor responses, a behavior 

independent of the tectum [38]. �e new experiments 

[36] are the first elucidation of the role of a morpho-

logically and genetically designated cell type in tectal 

processing.

Remaining questions and emerging approaches
�e tectum integrates and processes visual information 

for export to premotor targets. Several steps in this 

sensori motor transformation are still mysterious. �e 

rules governing the PVIN to PVPN transmission are 

unknown, as are the contributions of afferent inputs to 

the tectum from diverse brain regions and sensory 

modalities [39-41]. And although efferent targets have 

been identified anatomically, we know little of the spatial 

or temporal patterns of tectal output activity. Even more 

mysteriously, tectal circuitry shows oscillations of activity 

in response to a periodic visual stimulus, which can 

continue long (tens of seconds) after the stimulus has 

stopped. �ese entrained mental ‘reverberations’ can 

even drive rhythmic motor activity [42]. We do not know 

which neuronal networks carry these oscillations, and 

whether they could potentially provide a substrate for 

work ing memory. A complete catalog of cell types, 

together with a comprehensive description of their 

connections within the tectum and beyond, will be useful 

to deduce this and other computations carried out by 

tectal micro-circuits.

Given the tectum’s superficial position in the dorsal 

brain and the transparency of larval zebrafish, these 

questions can now be addressed using in vivo imaging 

and emerging optogenetic tools (reviewed in [43]). A 

large number of genetically encoded fluorescent and 

luminescent indicators of calcium concentration 

[42,44-46], voltage [47-49] or neurotransmitter release 

[50-52] are available, some of which have already proven 

effective in zebrafish [53,54]. Activating proteins, such as 

channelrhodopsins and LiGluR, and silencing proteins, 

including halorhodopsin, have recently been used in 

zebrafish to link targeted neurons conclusively to their 

roles in simple behaviors [55-60]. To take full advantage 

of these methods, more specific lines expressing trans-

genes in subsets of tectal neurons will have to be 

generated. Extrapolating from the rapid pace of recent 

discoveries, we expect that many of the anatomical 

components of the tectal circuitry will soon be 

understood in terms of their function in visual perception 

and behavior.

�e mammalian superior colliculus also receives 

topographically organized retinal inputs and, like the 

tectum, has a stratified architecture that is principally 

visual in the superficial layers and multimodal with 

motor outputs in deeper layers [61]. Although extrinsic 

collicular circuits, including a number of command 

projections from the forebrain, are better characterized 

in mammals and birds than in zebrafish, understanding 

of the micro-circuitry is sketchy. In this way, investi-

gations in different vertebrate species are complementary, 

and findings from one enable targeted studies in the 

other. Mammalian equivalents to SINs would be an 

appealing first target. �e means by which PVINs and 

other tectal interneurons filter visual information could 

also be shared between fish and mammals, and as these 

processes are elucidated in the tectum, they will probably 

provide insights into collicular function.

More broadly, studies in the tectum have provided 

glimpses of how a three-dimensional array of neurons, 

whose architecture is simple by central nervous system 

standards, can filter input, represent visual space and 

detect motion. Genetic, behavioral and optical access to 

the tectum should allow the underlying cellular mecha-

nisms to be described in the coming years. As these 

details emerge, we will probably learn important funda-

mentals of how diverse neural networks function.
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