
FOCUSING QUANTUM MANY-BODY DYNAMICS:
THE RIGOROUS DERIVATION OF THE 1D FOCUSING CUBIC

NONLINEAR SCHRÖDINGER EQUATION

XUWEN CHEN AND JUSTIN HOLMER

Abstract. We consider the dynamics of N bosons in one dimension. We assume that
the pair interaction is attractive and given by Nβ−1V (Nβ ·) where

∫
V 6 0. We develop

new techniques in treating the N−body Hamiltonian so that we overcome the diffi culties
generated by the attractive interaction and establish new energy estimates. We also prove the
optimal 1D collapsing estimate which reduces the regularity requirement in the uniqueness
argument by half a derivative. We derive rigorously the one dimensional focusing cubic NLS
with a quadratic trap as the N → ∞ limit of the N -body dynamic and hence justify the
mean-field limit and prove the propagation of chaos for the focusing quantum many-body
system.
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1. Introduction

In 1925, Einstein predicted that, at low temperatures, non-interacting bosons in a gas
could all reside in the same quantum state. This peculiar gaseous state in trapped interacting
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atomic clouds, a Bose-Einstein condensate (BEC), was produced in the laboratory for the
first time in 1995 using the laser-cooling methods [4, 21]. E. A. Cornell, W. Ketterle, and C.
E. Wieman were awarded the 2001 Nobel Prize in physics for observing BEC. Many similar
successful experiments [20, 35, 47] were performed later. These condensates exhibit quantum
phenomena on a large scale, and investigating them has become one of the most active areas
of contemporary research.
Let t ∈ R be the time variable and xN = (x1, x2, ..., xN) ∈ RnN be the position vector of N

particles in Rn. Then BEC naively means that the N -body wave function ψN (t,xN ) satisfies

ψN(t,xN) ∼
N∏
j=1

φ(t, xj)

up to a phase factor solely depending on t, for some one particle state φ. In other words, every
particle is in the same quantum state. Equivalently, there is the Penrose-Onsager formulation
of BEC: if we define γ(k)N to be the k-particle marginal densities associated with ψN by

(1.1) γ
(k)
N (t,xk;x

′
k) =

∫
ψN(t,xk,xN−k)ψN(t,x′k,xN−k)dxN−k, xk,x

′
k ∈ Rnk

then, equivalently, BEC means

(1.2) γ
(k)
N (t,xk;x

′
k) ∼

k∏
j=1

φ(t, xj)φ̄(t, x′j).

It is widely believed that the one particle state φ in (1.2), also called the condensate wave
function since it describes the whole condensate, satisfies the cubic nonlinear Schrödinger
equation (NLS)

i∂tφ = Lφ+ µ |φ|2 φ,

where L is the Laplacian −4 or the Hermite operator −4+ ω2 |x|2. Such a belief is one of
the motivations for studying the cubic NLS. Here, the nonlinear term µ |φ|2 φ represents a
mean-field approximation of the pair interactions between the particles: a repelling interaction
gives a positive µ while an attractive interaction yields a µ < 0. Gross and Pitaevskii proposed
such a description of the many-body effect. Naturally, the validity of the cubic NLS needs to
be established rigorously from the many body system which it is supposed to characterize
because it is a phenomenological mean-field type equation.
In a series of works [40, 1, 22, 24, 25, 26, 27, 10, 16, 11, 17, 6, 18, 31], it has been proven

rigorously that, for a repelling interaction potential with suitable assumptions, relation (1.2)
holds, moreover, the one-particle state φ satisfies the defocusing cubic NLS (µ > 0).
It is then natural to wonder, whether BEC happens (whether relation (1.2) holds) when

the interaction potential is attractive, and whether the condensate wave function φ satisfies a
focusing cubic NLS (µ < 0) if relation (1.2) does hold. In contemporary experiments, both
positive [36, 48] and negative [20] results exist. To present the mathematical interpretations
of the experiments, we investigate the procedure of laboratory experiments of BEC subject
to attractive interactions according to [20, 36, 48].
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Step A. Confine a large number of bosons, whose interactions are originally repelling, inside a
trap. Reduce the temperature of the system so that the many-body system reaches
its ground state. It is expected that this ground state is a BEC state / factorized
state. This step corresponds to the following mathematical problem.

Problem 1. Show that if ψN,0 is the ground state of the N-body Hamiltonian HN,0

defined by

(1.3) HN,0 =

N∑
j=1

(
−1

2
4xj +

ω20
2
|xj|2

)
+

1

N

∑
16i<j6N

NnβV0
(
Nβ (xi − xj)

)
where V0 > 0, then the marginal densities

{
γ
(k)
N,0

}
associated with ψN,0, defined in

(1.1), satisfy relation (1.2).

Here, the factor 1/N is to make sure that the interactions are proportional to
the number of particles, the pair interaction NnβV0(N

β·) is an approximation to the
Dirac δ function so that it matches the Gross-Pitaevskii description of BEC that
the many-body effect should be modeled by a strong on-site self-interaction, and the
quadratic potential ω20 |x|

2 represents the trapping since [20, 36, 48] and many other
experiments of BEC use the harmonic trap and measure the strength of the trap with
ω0. This step is exactly the same as the preparation of experiments with repelling
interactions and satisfactory answers to Problem 1 have been given in [40].

Step B. Strengthen the trap (increase ω0) to make the interaction attractive and observe the
evolution of the many-body system. This technique which continuously controls the
sign and the size of the interaction in a certain range is called the Feshbach resonance.1

The system is then time dependent. In order to observe BEC, the factorized structure
obtained in Step A must be preserved in time. Assuming this to be the case, we then
reset the time so that t = 0 represents the point at which this Feshbach resonance
phase is complete. The subsequent evolution should then be governed by a focusing
time-dependent N -body Schrödinger equation with an attractive pair interaction
V subject to an asymptotically factorized initial datum. Moreover, the confining
strength is different from Step A, and we denote it by ω. A mathematically precise
statement is the following:

Problem 2. Let ψN (t,xN) be the solution to the N − body Schrödinger equation

(1.4) i∂tψN =
N∑
j=1

(
−1

2
4xj +

ω2

2
|xj|2

)
ψN +

1

N

∑
16i<j6N

NnβV
(
Nβ (xi − xj)

)
ψN

where V 6 0, with ψN,0 from Step A as initial datum. Prove that the marginal densities{
γ
(k)
N (t)

}
associated with ψN (t,xN) satisfies relation (1.2).2

1See [20, Fig.1], [36, Fig.2], or [48, Fig.1] for graphs of the relation between ω and V .
2Since ω 6= ω0, V 6= V0, one could not expect that ψN,0, the ground state of (1.3), is close to the ground

state of (1.4).
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In the experiment by Cornell and Wieman et.al [20], once the interaction is tuned attractive,
the condensate suddenly shrinks to below the resolution limit, then after ∼ 5ms, the many-
body system blows up. That is, there is no BEC once the interaction becomes attractive.
Moreover, there is no condensate wave function due to the absence of the condensate.
Whence, the current NLS theory, which is about the condensate wave function when there
is a condensate, cannot explain this 5ms of time or the blow up. This is currently an open
problem in the study of quantum many systems.
In [36, 48], the particles are confined in a strongly anisotropic cigar-shape trap. That is,

the confinement is very strong in two spatial directions to simulate a 1D system. In this
case, the experiment is a success in the sense that one obtains a persistent BEC after the
interaction is switched to attractive. Moreover, a soliton is observed in [36] and a soliton
train is observed in [48]. The solitons in [36, 48] have different motion patterns.
In this paper, we consider the 1D model in [36, 48]: we take n = 1 in (1.4). We derive

rigorously the 1D cubic focusing NLS from a 1D quantum many-body system. We establish
the following theorem.

Theorem 1.1 (Main Theorem). Assume that the pair interaction V is an even Schwartz
class function, which has a nonpositive integration, that is,

∫
R V (x)dx 6 0, but may not

be negative everywhere. Let ψN (t,xN) be the N − body Hamiltonian evolution eitHNψN(0),
where

(1.5) HN =
N∑
j=1

(
−1

2
∂2xj +

ω2

2
x2j

)
+

1

N

∑
16i<j6N

NβV
(
Nβ (xi − xj)

)
for some ω ∈ R which could be zero and for some β ∈ (0, 1) , and let

{
γ
(k)
N

}
be the family

of marginal densities associated with ψN . Suppose that the initial datum ψN(0) verifies the
following conditions:
(a) the initial datum is normalized, that is

‖ψN(0)‖L2 = 1,

(b) the initial datum is asymptotically factorized, in the sense that,

(1.6) lim
N→∞

Tr
∣∣∣γ(1)N (0, x1;x

′
1)− φ0(x1)φ0(x′1)

∣∣∣ = 0,

for some one particle wave function φ0 s.t.
∥∥∥(1− ∂2x + ω2x2)

1
2 φ0

∥∥∥
L2(R)

<∞.
(c) the initial datum has finite kinetic energy and variance each particle3

(1.7) sup
j,N

〈
ψN(0),

(
−∂2xj + ω2x2j

)
ψN(0)

〉
<∞.

Then ∀t > 0, ∀k > 1, we have the convergence in the trace norm or the propagation of chaos
that

lim
N→∞

Tr

∣∣∣∣∣γ(k)N (t,xk;x
′
k)−

k∏
j=1

φ(t, xj)φ(t, x′j)

∣∣∣∣∣ = 0,

3Finite variance can be dropped when ω is zero.
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where φ(t, x) is the solution to the 1D focusing cubic NLS

i∂tφ =

(
−1

2
∂2xj +

ω2

2
x2j

)
φ− b0 |φ|2 φ in R1+1(1.8)

φ(0, x) = φ0(x)

and the coupling constant b0 =
∣∣∫
R V (x)dx

∣∣ .
Theorem 1.1 is equivalent to the following theorem.

Theorem 1.2 (Main Theorem). Assume that the pair interaction V is an even Schwartz
class function, which has a nonpositive integration, that is,

∫
R V (x)dx 6 0, but may not be

negative everywhere. Let ψN (t,xN) be the N − body Hamiltonian evolution eitHNψN(0) with
HN given by (1.5) for some ω ∈ R which could be zero and for some β ∈ (0, 1) , and let{
γ
(k)
N

}
be the family of marginal densities associated with ψN . Suppose that the initial datum

ψN (0) is normalized and asymptotically factorized in the sense of (a) and (b) in Theorem 1.1
and verifies the following energy condition:
(c’) there is a C > 0 independent of N or k such that

(1.9)
〈
ψN(0), Hk

NψN(0)
〉
< CkNk, ∀k > 1.4

Then ∀t > 0, ∀k > 1, we have the convergence in the trace norm or the propagation of chaos
that

lim
N→∞

Tr

∣∣∣∣∣γ(k)N (t,xk;x
′
k)−

k∏
j=1

φ(t, xj)φ(t, x′j)

∣∣∣∣∣ = 0,

where φ(t, x) is the solution to the 1D focusing cubic NLS (1.8).

The equivalence of Theorems 1.1 and 1.2 for asymptotically factorized initial data has been
used in all defocusing works. In the main part of this paper, we prove Theorem 1.2 in full
detail. For completeness, we discuss briefly how to deduce Theorem 1.1 from Theorem 1.2 in
Appendix B.
To our knowledge, Theorems 1.1 and 1.2 offer the first rigorous derivation of the focusing

cubic NLS (1.8) from the N -body dynamic (1.4).5 The main tool used in establishing
Theorem 1.2 is the analysis of the focusing Bogoliubov—Born—Green—Kirkwood—Yvon hierarchy

(BBGKY) hierarchy of
{
γ
(k)
N

}N
k=1

asN →∞.With our definition, the sequence of the marginal

4Here, the energies
〈
ψN (0), H

k
NψN (0)

〉
are allowed to be negative. Estimate (4.1), in which we use (1.9),

does not depend on the signs of
〈
ψN (0), H

k
NψN (0)

〉
. This is not surprising because we are working in one

dimension.
5If one replaces the Hermite operator with −4 or (1−4) 12 in (1.4), assumes the Coulomb interaction,

and let β = 0, then there are works by Erdös and Yau [23], Michelangeli and Schlein [42], and Ammari and
Nier [2, 3] which derive the corresponding focusing Hartree equations. The techniques in treating the three
dimensional focusing Coulomb potential do not apply here. We need new ideas to handle the attractive delta-
potential, because it cannot be squared (the square of the Coulomb potential, on the other hand, is bounded
by the kinetic energy). For works on defocusing Hartree dynamic (β = 0), see [28, 39, 44, 32, 33, 15, 8].
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densities
{
γ
(k)
N

}N
k=1

associated with ψN solves the 1D BBGKY hierarchy with a quadratic
trap

i∂tγ
(k)
N =

[
−1

2
4xk + ω2

|xk|2

2
, γ

(k)
N

]
+

1

N

∑
16i<j6k

[
NβV

(
Nβ (xi − xj)

)
, γ

(k)
N

]
(1.10)

+
N − k
N

k∑
j=1

Trk+1

[
NβV

(
Nβ (xj − xk+1)

)
, γ

(k+1)
N

]
.

In the classical setting, deriving mean-field type equations by studying the limit of the
BBGKY hierarchy was proposed by Kac and demonstrated by Landford’s work on the
Boltzmann equation. In the quantum setting, the usage of the BBGKY hierarchy was
suggested by Spohn [46] and has been proven to be successful by Elgart, Erdös, Schlein,
and Yau in their fundamental papers [22, 24, 25, 26, 27]6 which rigorously derives the 3D
cubic defocusing NLS from a 3D quantum many-body dynamic without trapping. The
Elgart-Erdös-Schlein-Yau program7 consists of two principal parts: in one part, they consider
the sequence of the marginal densities

{
γ
(k)
N

}
and prove that its appropriate limit as N →∞

solves the 3D defocusing Gross-Pitaevskii (GP) hierarchy

(1.11) i∂tγ
(k) =

[
−1

2
4xk , γ

(k)

]
+ b0

k∑
j=1

Tr
k+1

[δ(xj − xk+1), γ(k+1)], b0 > 0.

In another part, they show that hierarchy (1.11) has a unique solution which is therefore a
completely factorized state. However, the uniqueness theory for hierarchy (1.11) is surprisingly
delicate due to the fact that it is a system of infinitely many coupled equations over an
unbounded number of variables. In [38], by assuming a space-time bound on the limit of{
γ
(k)
N

}
, Klainerman and Machedon gave another uniqueness theorem regarding (1.11) through

a collapsing estimate originating from the multilinear Strichartz estimates and a board game
argument inspired by the Feynman graph argument in [25].
Later, the method in Klainerman and Machedon [38] was taken up by Kirkpatrick, Schlein,

and Staffi lani [37], who derived the 2D cubic defocusing NLS from the 2D quantum many-body
dynamic; by Chen and Pavlovíc [9, 10], who considered the 1D and 2D 3-body repelling
interaction problem and the general existence theory of hierarchy (1.11); by X.C. [16, 17],
who investigated the defocusing problem with trapping in 2D and 3D; and by X.C. and J.H.
[18], who proved the effectiveness of the 3D to 2D reduction problem. In [12, 13], Chen,
Pavlovíc and Tzirakis worked out the virial and Morawetz identities for hierarchy (1.11) and
showed the blow up for hierarchy (1.11) in 2D and 3D in the case of negative energy initial
data and negative b0. In [29], Gressman, Sohinger, and Staffi lani have obtained a uniqueness
theorem of solution to hierarchy (1.11) in 3D subject to periodic boundary condition.
Recently, in [11], for the 3D defocusing problem without traps, Chen and Pavlovíc showed

that, for β ∈ (0, 1/4), the limit of the BBGKY sequence satisfies the space-time bound

6Around the same time, there was the 1D defocusing work [1].
7See [6, 31, 43] for different approaches.
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assumed by Klainerman and Machedon [38] as N →∞. In [17], X.C. extended and simplified
their method to study the 3D trapping problem for β ∈ (0, 2/7]. X.C. and J.H. [19] then
extended the β ∈ (0, 2/7] result by X.C. to β ∈ (0, 2/3) using Xb spaces and Littlewood-Paley
theory.
We use the Klainerman-Machedon framework for the uniqueness argument in this paper.

While the known uniqueness theorems [1, 9, 10] regarding the 1D GP hierarchy need H
1
2
+ε

smoothness, i.e. more than the continuity in 1D, our Theorem 3.1 requires merely Hε

regularity to establish uniqueness. To achieve this reduction, we prove the optimal 1D
collapsing estimate which has been open for a while.

Theorem 1.3. 8Let U (k) (τ) =
k∏
j=1

e
iτ∂2yj e

−iτ∂2
y′
j and R(k)ε =

∏k
j=1

〈
∂yj
〉ε 〈

∂y′j

〉ε
. Define the

collision operator Bj,k+1 by

Bj,k+1u
(k+1) = Trk+1

[
δ (yj − yk+1) , u(k+1)

]
.

Given any finite time T and any ε > 0, there is a constant CT > 0 independent of j, k and
φ(k+1), such that∥∥∥R(k)ε Bj,k+1U

(k+1)(τ)φ(k+1)
∥∥∥
L2TL

2
y,y′
6 CT

∥∥∥R(k+1)ε φ(k+1)
∥∥∥
L2
y,y′

.

This estimate is optimal in the sense that it fails whenever T =∞ or ε = 0.

It is surprising that the 1D scale-invariant global-in-time collapsing estimate (T =∞ and ε = 0)

fails while the scale-invariant global-in-time estimates are true in 2D [16, 5] and 3D [38]. The
failure of Theorem 1.3 when T = ∞ for any ε ≥ 0 indicates that we do not have enough
decay in time in 1D. Since collapsing estimates like Theorem 1.3 determine many features of
the corresponding GP hierarchies, we wonder if this is related to the fact that there is no L2

small data scattering theory for the ordinary 1D focusing GP hierarchy

i∂tγ
(k) =

[
−1

2
4xk , γ

(k)

]
− b0

k∑
j=1

[
δ(xj − xk+1), γ(k+1)

]
.

Specifically, we can write down a tensor product of 1D NLS solitons arbitrarily small in
any unweighted Hs norm, s ≥ 0, which shows the lack of small data scattering for GP. If
we conjecture that in a general setting, scale-invariant global-in-time collapsing estimates
from [38, 16, 5] could be part of a proof of small data scattering, then the above mentioned
lack of scattering in 1D implies the nonexistence of global-in-time collapsing estimates in
1D. This heuristically implies the optimality of Theorem 1.3. On the other hand, the known
global-in-time collapsing estimates in 2D and 3D could eventually be used to prove small data
scattering for 2D and 3D GP. All of these remarks pertain to unweighted Sobolev spaces at or
above the critical (scale invariant) level; in the setting of weighted Sobolev spaces, small-data
scattering for 1D cubic NLS is known [34].

8For more estimates of this type, see [38, 37, 30, 14, 16, 5, 29]
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Theorem 1.3 also reduces the regularity requirement by 1/2 for the current local existence
theory [9] of the GP hierarchy (1.11) subject to general initial data in 1D. In fact, plugging
Theorem 1.3 into [9] yields the following corollary.

Corollary 1.1. For every initial data in Hε which is not necessarily factorized, there is a
time T > 0 such that there exists a unique solution in Hε for t ∈ [0, T ] to the GP hierarchy
(1.11) in 1D regardless of the sign of b0.

1.1. Organization of the Paper. We first review the lens transform and its relevant
properties in §2. It aids in the proof of the main theorem in the sense that it links the analysis
of −∂2x + ω2x2 to the analysis of −∂2y which is easier to deal with using the Fourier transform.
With the lens transform, we then outline the proof of our main theorem, Theorem 1.2, in §3.
The components of the proof are in §4, 5, and 6.
In §4, we prove the needed energy estimate for the focusing N -body Schrödinger evolution.

The key obstacle here, compared to earlier versions of such estimates in the defocusing works
[1, 22, 24, 25, 26, 27, 10, 16, 11, 17, 18], is to accommodate the negativity of the potential.
We first observe a new decomposition of the Hamiltonian HN given by

N−1HN + ‖V ‖2L1 + 1 =
1

2N(N − 1)

∑
1≤i,j≤N

H+ij

where

H+ij = S2i + S2j +
N − 1

N
NβV (Nβ(xi − xj)) + 2‖V ‖2L1

and

Sj = (1− 1
2
∂2xj + 1

2
ω2x2j)

1/2

In the expansion of (N−1HN + ‖V ‖2L1 + 1)k, the terms that occur most frequently are of the
form

H+i1j1 · · ·H+ikjk

with all i1, j1, . . . , ik, jk distinct. Since these operators pairwise commute, we can exploit the
positivity of each H+ij. In particular, we have

H+ij ≥ 1
2
(S2i + S2j )

We justify the above heuristic by induction.
In §5, we use the energy estimates derived in §4 and duality to prove weak* compactness

and convergence of the corresponding BBGKY hierarchy. This follows the similar procedure
in the defocusing works.
Finally, in §6, we prove Theorem 1.3, the optimal 1D collapsing estimate. As discussed

previously, we need to include a time-localization. On the Fourier side, the time localization
mollifies the resulting surface measure and makes it integrable. Without the time localization,
the surface measure remains unmollified and is not integrable, and the estimate fails. The
optimality statement essentially follows.
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2. Lens Transform

In this section, we review the lens transform and its relevant properties. Everything here
comes from [17]. (See also [7, 16].) We include it solely for completeness. The lens transform
aids in the proof of the main theorem in the sense that it links the analysis of −∂2x + ω2x2 to
the analysis of −∂2y which is a better understood operator. We remark that the lens transform
is exactly the identity when ω = 0 i.e. this section is trivial when ω = 0.
We denote (t, x) the space-time on the Hermite side and (τ , y) the space-time on the

Laplacian side. We define the lens transform in Definitions 1 and 2. We then explain how
the lens transform acts on the BBGKY hierarchy and the GP hierarchy via Lemmas 2.1 and
2.2. Finally, we relate the trace norms and the energies of the two sides of the lens transform
through Lemmas 2.3 and 2.4.

Definition 1 ([17]). Let xN ,yN ∈ RN . We define the lens transform for L2 functions
MN : L2(dyN)→ L2(dxN) and its inverse by

(MNuN) (t,xN) =
e−iω tanωt

|xN |2
2

(cosωt)
N
2

uN(
tanωt

ω
,
xN

cosωt
)

(
M−1

N ψN
)

(τ ,yN) =
e
i ω2τ
1+ω2τ2

|yN |2
2

(1 + ω2τ 2)
N
4

ψN(
arctan (ωτ)

ω
,

yN√
1 + ω2τ 2

).

MN is unitary by definition and the variables are related by

τ =
tanωt

ω
, yN =

xN
cosωt

.

Definition 2 ([17]). Let xk,x′k,yk,y
′
k ∈ Rk. We define the lens transform for Hilbert-Schmidt

kernels Tk : L2(dykdy
′
k)→ L2(dxkdx

′
k) and its inverse by(

Tku
(k)
)

(t,xk;x
′
k)

=
e−iω tanωt

(|xk|2−|x′k|
2)

2

(cosωt)k
u(k)(

tanωt

ω
,
xk

cosωt
;
x′k

cosωt
)

(
T−1k γ(k)

)
(τ ,yk;y

′
k)

=
e
i ω2τ
1+ω2τ2

(|yk|2−|y′k|
2)

2

(1 + ω2τ 2)
k
2

γ(k)(
arctan (ωτ)

ω
,

yk√
1 + ω2τ 2

;
y′k√

1 + ω2τ 2
).

Tk is unitary by definition as well and the variables are again related by

τ =
tanωt

ω
, yk =

xk
cosωt

and y′k =
x′k

cosωt
.
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In particular, if uN(τ ,yN) = M−1
N (ψN) , then

{
u
(k)
N = T−1k γ

(k)
N

}
is exactly the family of

marginal densities associated with uN .

Lemma 2.1 ([17]). Write VN (x) = NβV
(
Nβx

)
.
{
γ
(k)
N

}
solves the 1D BBGKY hierarchy

with a quadratic trap (1.10) in [−T0, T0] if and only if
{
u
(k)
N = T−1k γ

(k)
N

}
solves the hierarchy

i∂τu
(k)
N =

[
−1

2
4yk , γ

(k)
N

]
+

1

(1 + ω2τ 2)

1

N

∑
16i<j6k

[
VN(

yi − yj
(1 + ω2τ 2)

1
2

), u
(k)
N

]
(2.1)

+
N − k
N

1

(1 + ω2τ 2)

k∑
j=1

Trk+1

[
VN

(
yj − yk+1

(1 + ω2τ 2)
1
2

)
, u
(k+1)
N

]

in
[
− tanωT0

ω
, tanωT0

ω

]
.

Lemma 2.2 ([17]).
{
γ(k)
}
solves the 1D focusing GP hierarchy with a quadratic trap

(2.2) i∂tγ
(k) =

[
−1

2
4xk + ω2

|xk|2

2
, γ(k)

]
− b0

k∑
j=1

[
δ(xj − xk+1), γ(k+1)

]
,

in [−T0, T0] if and only if
{
u(k) = T−1k γ(k)

}
solves the focusing hierarchy

(2.3) i∂τu
(k) =

[
−1

2
4yk , u

(k)

]
− 1

(1 + ω2τ 2)
1
2

b0

k∑
j=1

[
δ(yj − yk+1), u(k+1)

]
,

in
[
− tanωT0

ω
, tanωT0

ω

]
.

Lemma 2.3 ([17]). If K(yk,y
′
k) is the kernel of a self-adjoint trace class operator on

L2
(
Rk
)
, then the eigenvectors of the kernel (TkK) (xk,x

′
k) are exactly the lens transform of

the eigenvectors of the kernel K(yk,y
′
k) with the same eigenvalues. In particular, we have

Tr |TkK| = Tr |K| .

Lemma 2.4 ([17]). There is a C > 0 such that〈
uN(τ),

k∏
j=1

(
1− ∂2yj

)
uN(τ)

〉
6 Ck

〈
ψN(t),

k∏
j=1

(
1− 1

2
∂2xj +

1

2
ω2x2j

)
ψN(t)

〉

for all ψN(t,xN), where uN(τ ,yN) = M−1
N (ψN). In particular, if u(k)N = T−1k γ

(k)
N , we have

Tr

(
k∏
j=1

(
1− ∂2yj

) 1
2

)
u
(k)
N (τ)

(
k∏
j=1

(
1− ∂2yj

) 1
2

)

6 Ck Tr

(
k∏
j=1

(
1− 1

2
∂2xj +

1

2
ω2x2j

) 1
2

)
γ
(k)
N (t)

(
k∏
j=1

(
1− 1

2
∂2xj +

1

2
ω2x2j

) 1
2

)
.
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Notation 1. From here on out, to make formulas shorter, we write

Lj =
(

1− ∂2yj
) 1
2
, Sj =

(
1− 1

2
∂2xj +

1

2
ω2x2j

) 1
2

,

L(k) =
k∏
j=1

Lj, S
(k) =

k∏
j=1

Sj,

g(τ) =
(
1 + ω2τ 2

)− 1
2 , VN,τ (y) = Nβg(τ)V (Nβg(τ)y).

The only properties we need are 0 < g(τ) 6 1, and
∫
VN,τ (y)dy = b0.

3. Proof of the Main Theorem (Theorem 1.2)

We start by introducing an appropriate topology on the density matrices as was previously
done in [22, 23, 24, 25, 26, 27, 37, 10, 16, 17, 18, 19]. Denote the spaces of compact operators
and trace class operators on L2

(
Rk
)
as Kk and L1k, respectively. Then (Kk)′ = L1k. By the

fact that Kk is separable, we select a dense countable subset {J (k)i }i>1 ⊂ Kk in the unit ball
of Kk (so ‖J (k)i ‖op 6 1 where ‖·‖op is the operator norm). For γ(k), γ̃(k) ∈ L1k, we then define
a metric dk on L1k by

dk(γ
(k), γ̃(k)) =

∞∑
i=1

2−i
∣∣∣Tr J

(k)
i

(
γ(k) − γ̃(k)

)∣∣∣ .
A uniformly bounded sequence γ(k)N ∈ L1k converges to γ(k) ∈ L1k with respect to the weak*
topology if and only if

lim
N→∞

dk(γ
(k)
N , γ(k)) = 0.

For fixed T > 0, let C ([0, T ] ,L1k) be the space of functions of t ∈ [0, T ] with values in L1k
which are continuous with respect to the metric dk. On C ([0, T ] ,L1k) , we define the metric

d̂k(γ
(k) (·) , γ̃(k) (·)) = sup

t∈[0,T ]
dk(γ

(k) (t) , γ̃(k) (t)),

and denote by τ prod the topology on the space ⊕k>1C ([0, T ] ,L1k) given by the product of
topologies generated by the metrics d̂k on C ([0, T ] ,L1k) .
With the above topology on the space of marginal densities, we can begin the proof of

Theorem 1.2. We divide the proof into four steps.

Step I (Energy estimate) Before we apply the lens transform to our problem, we first establish,
through an elaborate calculation in Theorem 4.1, that one can absorb the negativity
of the interaction in (1.5). Henceforth we transform the energy condition (1.9) into
a H1 type bound. Due to the fact that the quantity

〈
ψN(0), Hk

NψN(0)
〉
in (1.9) is

conserved by the evolution, we deduce the a priori bound on the marginal densities

sup
t

TrS(k)γ
(k)
N (t)S(k) 6 Ck.
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In Corollary 4.1, we then combine the above bound and Lemma 2.4 to obtain the H1

bound

(3.1) sup
τ∈[− tanωT0

ω
,
tanωT0

ω ]
TrL(k)u

(k)
N (τ)L(k) 6 Ck, if T0 <

π

2ω
,

where u(k)N = T−1k γ
(k)
N .

Step II (Compactness and Convergence) Fix T0 < π
2ω
and employ (3.1), we prove, in Theorem

5.1, that the sequence ΓN(τ) =
{
u
(k)
N

}N
k=1

which satisfies the 1D BBGKY hierarchy

(2.1) is compact with respect to the product topology τ prod. Moreover, we prove, in
Theorem 5.2, that if Γ(τ) =

{
u(k)
}∞
k=1

is a limit point of ΓN(τ) with respect to the
product topology τ prod, then Γ(τ) is a solution to the focusing GP hierarchy (2.3)
subject to initial data u(k) (0) = |φ0〉 〈φ0|

⊗k and the coupling constant is given by b0 =∣∣∫ V (x) dx
∣∣ . This is a well-known argument used in [22, 23, 24, 25, 26, 27, 37, 10, 16,

17, 18], we include the proof in §5 for completeness since it is the first time such an
argument is used in the focusing setting.

Step III (Uniqueness) When u(k) (0) = |φ0〉 〈φ0|
⊗k, we know that there is a special solution to

the focusing GP hierarchy (2.3), namely

(3.2) u(k)(τ ,yk,y
′
k) =

k∏
j=1

φ̃(τ , yj)φ̃(τ , y′j)

where φ̃ solves

i∂τ φ̃ = −∂2y φ̃− g(τ)b0

∣∣∣φ̃∣∣∣2 φ̃(3.3)

φ̃(0, y) = φ0.

A suitable uniqueness theorem regarding (2.3) will then identify all limit points of
ΓN(τ) obtained in Step II with (3.2) for us. The Klainerman-Machedon scheme,
introduced in [38] and used in [37, 10, 16, 17, 18, 19], transforms Theorem 1.3 into
the following uniqueness theorem.

Theorem 3.1. Let R(k)ε and Bj,k+1 be defined in Theorem 1.3. Suppose that
{
u(k)
}∞
k=1

solves
the 1D focusing GP hierarchy (2.3) subject to zero initial data and the space-time bound

(3.4)
∫ T

0

∥∥R(k)ε Bj,k+1u
(k+1)(τ , ·; ·)

∥∥
L2
y,y′

dτ 6 Ck

for some ε, C > 0 and all 1 6 j 6 k. Then ∀k, τ ∈ [0, T ],∥∥R(k)ε u(k)(τ , ·; ·)
∥∥
L2
y,y′

= 0.

Proof. Once we prove Theorem 1.3, Theorem 3.1 follows from the proof of [17, Theorem 6]
line by line. �
To apply Theorem 3.1, we need to check (3.4). As the spatial dimension is one, the following

trace lemma and (3.1) takes care of (3.4) for us.9

9Verifying (3.4) in 3D is highly nontrivial and is merely partially solved so far. See [11, 17, 19]
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Lemma 3.1 ([10, Theorem 4.3]). For α > 1
2
, we have∥∥R(k)α Bj,k+1u

(k+1)
∥∥
L2
y,y′
6 C

∥∥R(k+1)α u(k+1)
∥∥
L2
y,y′

.

Step IV (Conclusion) By Step III, the compact sequence {ΓN(τ)} has only one limit point,
thus it converges, that is, as trace class operators kernels,

u
(k)
N (τ)→

k∏
j=1

φ̃(τ , yj)φ̃(τ , y′j) weak* as N →∞, ∀τ ∈
[
0,

tanωT0
ω

]
.

Notice that the above weak* limit is an orthogonal projection, the argument in the
bottom of [27, p. 296] which uses the Grümm’s convergence theorem [45, Theorem
2.19]10 then implies the strong convergence in trace norm

lim
N→∞

Tr

∣∣∣∣∣u(k)N (τ ,yk,y
′
k)−

k∏
j=1

φ̃(τ , yj)φ̃(τ , y′j)

∣∣∣∣∣ = 0, ∀τ ∈
[
0,

tanωT0
ω

]
.

Recall γ(k)N = Tku
(k)
N and φ = M1φ̃, we utilize Lemma 2.3 and infer that

lim
N→∞

Tr

∣∣∣∣∣γ(k)N (t,xk,x
′
k)−

k∏
j=1

φ(t, xj)φ(t, x′j)

∣∣∣∣∣ = 0, ∀t ∈ [0, T0] ,

where φ solves (1.8). So far, we have proved Theorem 1.2 for every T0 < π
2ω
, a

bootstrapping argument then establishes Theorem 1.2 for all time. Thence we
conclude the proof of Theorem 1.2.

4. Energy Estimates for the Focusing N-body Hamiltonian

Theorem 4.1. Let HN be defined as in (1.5). For every k, there exists N0(k) such that, we
have

〈ψ,
(
HN +N ‖V ‖2L1 +N

)k
ψ〉 ≥ 2−kNk‖S(k)ψ‖2L2 ,

for all N ≥ N0(k) and ψ ∈ L2s(RN) with ‖ψ‖L2 = 1.

We prove Theorem 4.1 in §4.1. At the moment, we present the following corollary of
Theorem 4.1.

Corollary 4.1. Let ψN(t,xN) = eitHNψN(0) for some β ∈ (0, 1) subject to initial ψN(0)

which satisfies energy condition (1.9). If uN(τ ,yN) = M−1
N ψN , where M

−1
N is the inverse

lens transform for functions in Definition 1, then there is a C > 0, for all k > 0, there exists
N0 (k) such that 〈

uN(τ),

k∏
j=1

L2juN(τ)

〉
6 Ck,

10One can also use the argument in [17, Appendix A].
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for all N > N0 and all τ ∈
[
− tanωT0

ω
, tanωT0

ω

]
provided that T0 < π

2ω
. Thus, for u(k)N = T−1k γ

(k)
N ,

the inverse lens transform of γ(k)N ,

sup
τ∈[− tanωT0

ω
,
tanωT0

ω ]
TrL(k)u

(k)
N (τ)L(k) 6 Ck

where the inverse lens transform for kernels is given by Definition 2.

Proof. By Lemma 2.4, we have〈
uN(τ),

k∏
j=1

L2juN(τ)

〉
6 Ck

〈
ψN(t),

k∏
j=1

S2jψN(t)

〉
.

With Theorem 4.1 and the conservation law, we get〈
uN(τ),

k∏
j=1

L2juN(τ)

〉
6 Ck

Nk
〈ψN(t),

(
HN +N ‖V ‖2L1 +N

)k
ψN(t)〉

=
Ck

Nk
〈ψN(0),

(
HN +N ‖V ‖2L1 +N

)k
ψN(0)〉

The binomial theorem and (1.9) give

〈ψN(0),
(
HN +N ‖V ‖2L1 +N

)k
ψN(0)〉(4.1)

=
k∑
j=0

(
k

j

)(
N ‖V ‖2L1 +N

)j 〈ψN(0), Hk−j
N ψN(0)〉

6
k∑
j=0

(
k

j

)(
N ‖V ‖2L1 +N

)j
Ck−jNk−j

=
(
CN +N ‖V ‖2L1 +N

)k
6 CkNk.

Thus 〈
uN(τ),

k∏
j=1

L2juN(τ)

〉
6 Ck

Nk
CkNk 6 Ck,

as claimed. �

4.1. Proof of Theorem 4.1. For convenience, we let α = ‖V ‖2L1 and rewrite the desired
estimate as

(4.2) 〈ψ,
(
N−1HN + 1 + α

)k
ψ〉 > 2−k‖S(k)ψ‖2L2 .

Note that estimate (4.2) is trivial for k = 0. To establish estimate (4.2) for general k, we first
prove the k = 1 case which is already nontrivial in §4.1.1, we then prove estimate (4.2) for
k + 2 assuming that it holds for k in §4.1.2, thence a two-step induction based on the k = 0

and k = 1 cases proves (4.2) for all k.
The only technical tool we need is the 1D estimate: for f(x)

(4.3) ‖f‖L∞x ≤ ‖f
′‖L1x
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which is a direct consequence of the fundamental theorem of calculus. We also utilize the
ordinary Sobolev estimates:

‖f‖L∞x 6 C‖Sxf‖L2x for f(x),(4.4)

‖f‖L∞xy 6 C‖SxSyf‖L2xy for f(x, y).(4.5)

when the sizes of the controlling constants do not matter.11 We will use the shorthand L1cL
∞
x2

for L1x1x3x4···xNL
∞
x2
. Here, c stands for “complementary coordinates”.

4.1.1. The k = 1 Case. Recall VN(x) = NβV (Nβx) and

Sj =

(
1− 1

2
∂2xj +

1

2
ω2x2j

) 1
2

.

We write

HN +N =
N∑
j=1

S2j +
1

2N

∑
i,j=1,...,N

i 6=j

VN(xi − xj).

We next introduce a convenient decomposition of HN +N . Let

Hij = S2i + S2j +
N − 1

N
VN(xi − xj)

Note that Hij = Hji because V is even, and

HN +N =
1

2(N − 1)

∑
i,j=1,...,N

i 6=j

Hij.

It follows that

(4.6) N−1HN + 1 + α =
1

2N(N − 1)

∑
i,j=1,...,N

i 6=j

(Hij + 2α)

Lemma 4.1. Recall α = ‖V ‖2L1, we have

(H12 + 2α) > 1
2
(S21 + S22)

Proof. Apply the well-known change of variable y1 = x1 − x2, y2 = x1 + x2 which is also
compatible with the Hermite operator, then

H12 = 2− ∂2y1 − ∂
2
y2

+ ω2 |y1|2 + ω2 |y2|2 + (1−N−1)VN(y1)

= Ky1 + 2− ∂2y2 + ω2 |y1|2 + ω2 |y2|2

where
Ky = −∂2y + (1−N−1)VN(y).

11The only place in which we apply (4.3) is the proof of Lemma 4.1. We use (4.3) to determine α = ‖V ‖2L1 .
With the elementary inequality: |ab| 6 εa2 + ε−1b2, one can use (4.4) instead and get another α, namely,
α = C ‖V ‖2L1 for some C depending on the controlling constant in (4.4). We are not using (4.4) because we
would like to give an exact α and keep track of one less constant.
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We claim that

(4.7) (K + 2α) ≥ −1

2
∂2y

Indeed,

〈Kφ, φ〉 > ‖φ′‖2L2 − ‖VN‖L1‖|φ|2‖L∞y
> ‖φ′‖2L2 − ‖V ‖L1‖∂y(|φ|2)‖L1y
> ‖φ′‖2L2 − 2‖V ‖L1‖φ′‖L2‖φ‖L2

> ‖φ′‖2L2 − (
1

2
‖φ′‖2L2 + 2‖V ‖2L1‖φ‖2L2)

=
1

2
‖φ′‖2L2 − 2‖V ‖2L1

from which (4.7) follows.
We clearly have

2− ∂2y2 + ω2 |y1|2 + ω2 |y2|2 > 1− 1

2
∂2y2 +

1

2
ω2 |y1|2 +

1

2
ω2 |y2|2 .

By this and (4.7), we have

H12 + 2α = (Ky1 + 2α + 2− ∂2y2 + ω2 |y1|2 + ω2 |y2|2)

> −1

2
∂2y1 + 1− 1

2
∂2y2 +

1

2
ω2 |y1|2 +

1

2
ω2 |y2|2

= 1− 1

4
∂2x1 −

1

4
∂2x2 +

1

4
ω2 |x1|2 +

1

4
ω2 |x2|2

= 1
2
(S21 + S22).

�

In light of (4.6), symmetry, and Lemma 4.1, we readily see that

2〈ψ, (N−1HN + 1 + α)ψ〉 = 〈ψ, (H12 + 2α)ψ〉(4.8)

> 1
2
〈ψ, (S21 + S22)ψ〉

= ‖S1ψ‖2L2 .

Thus we have proved (4.2) for k = 1.

4.1.2. The k + 2 Case. For convenience, let us introduce some notation. For any function f ,
let

fNij = Nβf(Nβ(xi − xj))
Also, let

(4.9) H+ij = Hij + 2α = S2i + S2j + (1−N−1)VNij + 2α

Then (4.6) can be written more compactly as

(4.10) N−1HN + 1 + α =
1

2N(N − 1)

∑
i,j=1,...,N

i 6=j

H+ij =
1

N(N − 1)

∑
1≤i<j≤N

H+ij
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Before delving into the proof of the k + 2 case, we give an idea for why (4.2) is true for all
k. Note that we have

2k(N−1HN + 1 + α)k =
1

Nk(N − 1)k

∑
1≤i1,j1,...,ik,jk≤N
i1 6=i2,...,ik 6=jk

H+i1j1 · · ·H+ikjk

The dominant term in this expression occurs when all indices i1, j1, . . . , ik, jk are distinct,
since it occurs with frequency ∼ N2k. The other terms occur with lower frequency —for
example, the terms in which exactly two of the indices are equal and all others are distinct
occur with frequency ∼ N2k−1. By symmetry, the terms in which all indices are distinct can
be rearranged so that formally, we have

(4.11) 2k〈ψ, (N−1HN + 1 + α)kψ〉 ≈ 〈H+12 · · ·H+(2k−1)(2k)ψ, ψ〉
Moreover, by symmetry

(4.12) 2−k〈ψ,
k∏
i=1

(S22i−1 + S22i)ψ〉 = ‖S(k)ψ‖2L2

Since H+ij ≥ 2−1
(
S2i + S2j

)
for each i, j by Lemma 4.1, Lemma A.2 implies

H+12 · · ·H+(2k−1)(2k) ≥ 2−k
k∏
i=1

(S22i−1 + S22i)

This, together with (4.11) and (4.12) suggest (not rigorously) that a statement like (4.2)
should hold.
We now establish (4.2) for k + 2 rigorously, assuming it holds for k. To be precise, we will

prove that, if (4.2) holds for k, then

2k+2〈ψ, (N−1HN + α + 1)k+2ψ〉(4.13)

>
(
1− Ck+2Nβ−1) (∥∥S(k+2)ψ∥∥2

L2
+N−1

∥∥S1S(k+1)ψ∥∥2L2)
We remind the reader that we already have the k = 0 case which is trivial and the k = 1 case
proved in §4.1.1, thus (4.2) is proved for all k once we prove that (4.13) holds as long as (4.2)
is true for k.
Using the induction hypothesis, we arrive at

2k+2〈ψ, (N−1HN + α + 1)k+2ψ〉(4.14)

= 4(2k〈(N−1HN + α + 1)ψ, (N−1HN + α + 1)k(N−1HN + α + 1)ψ〉)
> 4〈S(k)(N−1HN + α + 1)ψ, S(k)(N−1HN + α + 1)ψ〉.

We start with the following decomposition of the rightmost sum in (4.10):

(4.15) (N−1HN + α + 1) =
1

N(N − 1)

∑
1≤i<j≤N

i≤k

H+ij +
1

N(N − 1)

∑
1≤i<j≤N

i>k

H+ij.

Note that in the first term i ≤ k and j can be either ≤ k or > k. We have ordered the indices
i1 < j1 and i2 < j2 for convenience. In the unordered setting, the above decomposition would
be characterized as follows: the first sum consists of terms in which at least one index is ≤ k,
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and the second term consists of terms in which both indices are > k. The decomposition
(4.15) is similar to the one used in the [22, Proposition 1], although the authors of [22] do
not use the Hij decomposition of the Hamiltonian. There are ∼ N terms in the first sum
and ∼ N2 terms in the second sum. Note that in the k = 0 case, the decomposition (4.15)
contains only the second term since the first term is an empty sum.
Plug the decomposition (4.15) into the end of (4.14) to obtain

2k+2〈ψ, (N−1HN + α + 1)k+2ψ〉 ≥ A1 + A2 + A3

where

A1 =
4

N2(N − 1)2

∑
1≤i1<j1≤N
1≤i2<j2≤N

such that i1>k, i2>k

〈S(k)H+i1j1ψ, S
(k)H+i2j2ψ〉,

A2 =
4

N2(N − 1)2

∑
1≤i1<j1≤N
1≤i2<j2≤N

such that i1≤k, i2>k

2 Re〈S(k)H+i1j1ψ, S
(k)H+i2j2ψ〉,

A3 =
4

N2(N − 1)2

∑
1≤i1<j1≤N
1≤i2<j2≤N

such that i1≤k, i2≤k

〈S(k)H+i1j1ψ, S
(k)H+i2j2ψ〉

=
4

N2(N − 1)2
〈S(k)

∑
1≤i<j≤N

i6k

H+ijψ,
∑

1≤i<j≤N
i6k

S(k)H+ijψ〉 > 0.

Since A3 ≥ 0, we drop this term to obtain

(4.16) 2k+2〈ψ, (N−1HN + α + 1)k+2ψ〉 ≥ A1 + A2.

Note that A1 contains ∼ N4 terms and the cross term A2 contains ∼ N3 terms.12 In other
words, A1 is the dominant term and A2 is the error term. In below, we deal with A1 and A2
one by one.
In A1, we can commute both terms H+i1j1 and H+i2j2 with S

(k). Then

(4.17) A1 =
4

N2(N − 1)2

∑
1≤i1<j1≤N
1≤i2<j2≤N

such that i1>k, i2>k

〈S(k)ψ, H+i1j1H+i2j2S
(k)ψ〉

We decompose

(4.18) A1 = A11 + A12 + A13

where

• A11 consists of those terms for which all indices i1, j1, i2, j2 are different. There are
1
4
aN,kN

4 such terms, where

aN,k
def
= N−4(N − k)(N − k − 1)(N − k − 2)(N − k − 3)

12In the case k = 0, A2 = 0 and A3 = 0 since they are both empty sums.
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• A12 consists of those terms for which exactly one pair of indices i1, j1, i2, j2 are the
same. There are bNN3 such terms, where

bN,k
def
= N−3(N − k)(N − k − 1)(N − k − 2)

• A13 consists of those terms for which exactly two pairs of indices i1, j1, i2, j2 are the
same. There are 1

2
cNN

2 such terms, where

cN,k
def
= N−2(N − k)(N − k − 1)

Note that
1− CkN−1 ≤ aN,k ≤ 1 + CkN

−1

for some13 Ck, and similarly for bN,k, cN,k. Likewise, the coeffi cient in (4.17) satisfies

4N−4(1− CN−1) ≤ 4

N2(N − 1)2
≤ 4N−4(1 + CN−1)

The O(N−1) corrections are easily absorbed into the error term in (4.13) and we drop them
in the calculations that follow, for expositional convenience.
By symmetry, we have

A11 = 〈H+(k+1)(k+2)S
(k)ψ,H+(k+3)(k+4)S

(k)ψ〉

A12 = 4N−1〈H+(k+1)(k+2)S
(k)ψ,H+(k+2)(k+3)S

(k)ψ〉

A13 = 2N−2〈H+(k+1)(k+2)S
(k)ψ,H+(k+1)(k+2)S

(k)ψ〉
Since

(4.19) A13 > 0

we can discard it. By Lemmas 4.1 and A.2, we have

A11 > 1
4
〈
(
S2k+1 + S2k+2

)
S(k)ψ,

(
S2k+3 + S2k+4

)
S(k)ψ〉

By integration by parts and symmetry, we obtain

(4.20) A11 > ‖S(k+2)ψ‖2L2 .

Plugging in the definition (4.9) of H+ij and expanding

(4.21) A12 = A121 + A122 + A123

where
A121 = 4N−1〈

(
S2k+1 + S2k+2

) (
S2k+2 + S2k+3

)
S(k)ψ, S(k)ψ〉

A122 = 8 ReN−1〈
(
S2k+1 + S2k+2

)
(VN(k+2)(k+3) + 2α)S(k)ψ, S(k)ψ〉

A123 = 4N−1〈(VN(k+1)(k+2) + 2α)(VN(k+2)(k+3) + 2α)S(k)ψ, S(k)ψ〉
For A121, we only need to keep one term:

(4.22) A121 > 4N−1‖S2k+2S(k)ψ‖2L2 = 4N−1‖S1S(k+1)ψ‖2L2 .

13We allow that Ck changes from one line to the next.
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For A122, integration by parts gives

A122 = 8N−1〈(VN(k+2)(k+3) + 2α)S(k+1)ψ, S(k+1)ψ〉
+8N−1〈(VN(k+2)(k+3) + 2α)Sk+2S

(k)ψ, Sk+2S
(k)ψ〉

+8 ReNβ−1〈(V ′)N(k+2)(k+3) S(k)ψ, Sk+2S(k)ψ〉

where we used the fact that ∂xj is the only thing inside Sj which needs the Leibniz’s rule.
Estimating,

|A122| . N−1
∥∥VN(k+2)(k+3)∥∥L1xk+3 ∥∥S(k+1)ψ∥∥2L2cL∞xk+3 +N−1α‖S(k+1)ψ‖2L2

+N−1
∥∥VN(k+2)(k+3)∥∥L1xk+3 ∥∥Sk+2S(k)ψ∥∥2L2cL∞xk+3 +N−1α‖Sk+2S(k)ψ‖2L2

+Nβ−1
∥∥∥(V ′)N(k+2)(k+3)

∥∥∥
L1xk+3

∥∥S(k)ψ∥∥
L2cL

∞
xk+3

∥∥Sk+2S(k)ψ∥∥L2cL∞xk+3
. Nβ−1

(∥∥S(k+1)ψ∥∥2
L2cL

∞
xk+3

+ ‖S(k+1)ψ‖2L2 +
∥∥S(k)ψ∥∥2

L2cL
∞
xk+3

)
.

By the 1D estimate (4.4), Cauchy-Schwarz, and symmetry, we have

|A122| 6 CNβ−1 (‖S(k+2)ψ‖2L2 + ‖S(k+1)ψ‖2L2
)

(4.23)

6 CNβ−1‖S(k+2)ψ‖2L2 .

For A123,

|A123| 6 CN−1
∥∥VN(k+1)(k+2)∥∥L1xk+1 ∥∥VN(k+2)(k+3)∥∥L1xk+3 ∥∥S(k)ψ∥∥2L2cL∞xk+1L∞xk+3

+CN−1
∥∥VN(k+1)(k+2)∥∥L1xk+1 ∥∥S(k)ψ∥∥2L2cL∞xk+1 + CN−1

∥∥S(k)ψ∥∥2
L2
.

Using (4.4) twice, we obtain

|A123| 6 CN−1(‖S(k+2)ψ‖2L2 + ‖S(k+1)ψ‖2L2 +
∥∥S(k)ψ∥∥2

L2
)(4.24)

6 CN−1‖S(k+2)ψ‖2L2 .

By (4.21), (4.22), (4.23), and (4.24),

(4.25) A12 > 4N−1‖S1S(k+1)ψ‖2L2 − CNβ−1‖S(k+2)ψ‖2L2 .

Collecting (4.18), (4.19), (4.20), and (4.25), we have the estimate for A1:

(4.26) A1 >
(
1− CNβ−1) (‖S(k+2)ψ‖2L2 + 4N−1‖S1S(k+1)ψ‖2L2

)
The above estimate yields the positive contribution on the right-side of (4.13).
Next we turn our attention to estimating A2. We will prove that

A2 > −CNβ−1 (‖S(k+2)ψ‖2L2 +N−1‖S1S(k+1)ψ‖2L2
)
.

Recall that in the case k = 0, A2 = 0, so we can assume k ≥ 1. We decompose

(4.27) A2 = A21 + A22 + A23

where
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• A21 contains those terms with j1 ≤ k. There are ∼ N2 such terms. (In the case k = 1,
there are no terms of this type, so A21 = 0)
• A22 contains those terms with j1 > k, and (j1 = i2 OR j1 = j2). There are ∼ N2 such
terms.
• A23 contains those terms with j1 > k, j1 6= i2 and j1 6= j2. There are ∼ N3 such
terms.

By symmetry of ψ and H+ij = H+ji,

A21 = N−2〈S(k)H+12ψ, S
(k)H+(k+1)(k+2)ψ〉

A22 = N−2〈S(k)H+1(k+1)ψ, S
(k)H+(k+1)(k+2)ψ〉

A23 = N−1〈S(k)H+1(k+1)ψ, S
(k)H+(k+2)(k+3)ψ〉

First, we address A21. We decompose

(4.28) A21 = A211 + A212 + A213,

where
A211 = N−2〈H+12S

(k)ψ,H+(k+1)(k+2)S
(k)ψ〉

A212 = N−2〈[S1, H+12]S2 · · ·Skψ,H+(k+1)(k+2)S
(k)ψ〉

A213 = N−2〈S1[S2, H+12]S3 · · ·Skψ,H+(k+1)(k+2)S
(k)ψ〉

= N−2〈[S2, H+12]S3 · · ·Skψ,H+(k+1)(k+2)S1S
(k)ψ〉.

By Lemmas 4.1 and A.2,

(4.29) A211 > 0.

Since [S1, H+12] = Nβ(V ′)N12, integrating by parts half the Hermite terms in H+(k+1)(k+2)

and using symmetry,

A212 = 2Nβ−2〈(V ′)N12S2 · · ·SkSk+1ψ, S(k+1)ψ〉
+2αNβ−2〈(V ′)N12S2 · · ·Skψ, S(k)ψ〉
+Nβ−2〈(V )N(k+1)(k+2)(V

′)N12S2 · · ·Skψ, S(k)ψ〉
Estimating

|A212| 6 CN
3β
2
−2 ‖V ′‖L2x1 ‖S2 · · ·SkSk+1ψ‖L2cL∞x1

∥∥S(k+1)ψ∥∥
L2

+CN
3β
2
−2 ‖V ′‖L2x1 ‖S2 · · ·Skψ‖L2cL∞x1

∥∥S(k)ψ∥∥
L2

+CN
3β
2
−2 ‖V ‖L1xk+1 ‖V

′‖L2x1 ‖S2 · · ·Skψ‖L2cL∞x1L∞xk+1
∥∥S(k)ψ∥∥

L2cL
∞
xk+1

Using (4.4) and symmetry,

|A212| 6 CN
3β
2
−2
(∥∥S(k+1)ψ∥∥2

L2
+
∥∥S(k)ψ∥∥2

L2
+
∥∥S(k+1)ψ∥∥2

L2

)
(4.30)

6 CN
3β
2
−2 ∥∥S(k+1)ψ∥∥2

L2

For A213, we use [S2, H+12] = −Nβ(V ′)N12 to get

A213 = −Nβ−2〈(V ′)N12S3 · · ·Skψ,H+(k+1)(k+2)S1S
(k)ψ〉
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Split up the terms of H+(k+1)(k+2) via integration by parts and use symmetry to obtain

A213 = −2Nβ−2〈(V ′)N12S3 · · ·SkSk+1ψ, S1S(k+1)ψ〉
−2αNβ−2〈(V ′)N12S3 · · ·Skψ, S1S(k)ψ〉
−Nβ−2〈VN(k+1)(k+2)(V ′)N12S3 · · ·Skψ, S1S(k)ψ〉

We now implement the same estimates used to treat A212 but carry a factor N−1/2 with
S1S

(k)ψ and S1S(k+1)ψ

|A213| 6 CN
3β
2
− 3
2 ‖V ′‖L2x1 ‖S3 · · ·SkSk+1ψ‖L2cL∞x1 N

−1/2 ∥∥S1S(k+1)ψ∥∥L2
+CN

3β
2
− 3
2 ‖V ′‖L2x1 ‖S3 · · ·Skψ‖L2cL∞x1 N

−1/2 ∥∥S1S(k)ψ∥∥L2
+CN

3β
2
− 3
2 ‖V ‖L2xk+1 ‖V

′‖L2x1 ‖S3 · · ·Skψ‖L2cL∞x1L∞xk+1 N
−1/2 ∥∥S1S(k)ψ∥∥L2cL∞xk+1

Arguing as above using (4.4) and symmetry

|A213| 6 CN
3β
2
− 3
2

∥∥S(k)ψ∥∥
L2
N−1/2

∥∥S1S(k+1)ψ∥∥L2(4.31)

+CN
3β
2
− 3
2

∥∥S(k−1)ψ∥∥
L2
N−1/2

∥∥S1S(k)ψ∥∥L2
+CN

3β
2
− 3
2

∥∥S(k)ψ∥∥
L2
N−1/2

∥∥S1S(k+1)ψ∥∥L2
6 CN

3β
2
− 3
2

(∥∥S(k)ψ∥∥2
L2

+N−1
∥∥S1S(k+1)ψ∥∥2L2)

By (4.28), (4.29), (4.30), and (4.31), we obtain

(4.32) A21 > −CN
3β
2
− 3
2

(∥∥S(k+1)ψ∥∥2
L2

+N−1
∥∥S1S(k+1)ψ∥∥2L2)

Next, we address A22. Recall

A22 = N−2〈S(k)H+1(k+1)ψ,H+(k+1)(k+2)S
(k)ψ〉

Decompose

(4.33) A22 = A221 + A222

where
A221 = N−2〈H+1(k+1)S

(k)ψ,H+(k+1)(k+2)S
(k)ψ〉

A222 = N−2〈[S1, H+1(k+1)]S2...Skψ,H+(k+1)(k+2)S
(k)ψ〉

For A221, plug in the definition (4.9) of H+ij to obtain the decomposition

A221 = A2211 + A2212 + A2213 + A2214

where
A2211 = N−2〈

(
S21 + S2k+1

)
S(k)ψ,

(
S2k+1 + S2k+2

)
S(k)ψ〉

A2212 = N−2〈
(
S21 + S2k+1

)
S(k)ψ, (VN(k+1)(k+2) + 2α)S(k)ψ〉

A2213 = N−2〈(VN1(k+1) + 2α)S(k)ψ,
(
S2k+1 + S2k+2

)
S(k)ψ〉

A2214 = N−2〈(VN1(k+1) + 2α)S(k)ψ, (VN(k+1)(k+2) + 2α)S(k)ψ〉
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Note that A2211 ≥ 0, so we can discard this term. Integrating by parts,

A2212 = N−2〈S1S(k)ψ, (VN(k+1)(k+2) + 2α)S1S
(k)ψ〉

+N−2〈S(k+1)ψ, (VN(k+1)(k+2) + 2α)S(k+1)ψ〉
+Nβ−2〈S(k+1)ψ, (V ′)N(k+1)(k+2) S(k)ψ〉

Putting every instance of V or V ′ in L∞, we obtain the estimate

|A2212| 6 CNβ−2 ∥∥S1S(k)ψ∥∥2L2 + CNβ−2 ∥∥S(k+1)ψ∥∥2
L2

+CN2β−2 ∥∥S(k+1)ψ∥∥
L2

∥∥S(k)ψ∥∥
L2

Using that max
(
N2β−2, Nβ−2) ≤ Nβ−1,

|A2212| 6 CNβ−1(N−1
∥∥S1S(k)ψ∥∥2L2 +

∥∥S(k+1)ψ∥∥2
L2

)

By integration by parts,

A2213 = N−2〈(VN1(k+1) + 2α)S(k+1)ψ, S(k+1)ψ〉
−Nβ−2〈(V ′)N1(k+1) S(k)ψ, S(k+1)ψ〉

+N−2〈(VN1(k+1) + 2α)Sk+2S
(k)ψ, Sk+2S

(k)ψ〉

Putting every instance of V or V ′ in L∞,

|A2213| 6 CNβ−2 ∥∥S(k+1)ψ∥∥2
L2

+ CN2β−2 ∥∥S(k+1)ψ∥∥
L2

∥∥S(k)ψ∥∥
L2

+CNβ−2 ∥∥S(k+1)ψ∥∥2
L2

6 CN2β−2 ∥∥S(k+1)ψ∥∥2
L2

For A2214, we put both V terms in L∞ to obtain

|A2214| 6 CN2β−2‖S(k)ψ‖2L2

This completes the bound for A221. Specifically,

(4.34) A221 > −CNβ−1(
∥∥S(k+1)ψ∥∥2

L2
+N−1

∥∥S1S(k)ψ∥∥2L2)
For A222, substitute [S1, H+1(k+1)] = Nβ(V ′)N1(k+1) and plug in the definition (4.9) of

H+(k+1)(k+2) to obtain

A222 = A2221 + A2222 + A2223

where

A2221 = Nβ−2〈(V ′)N1(k+1)S2...Skψ, S2k+1S(k)ψ〉

A2222 = Nβ−2〈(V ′)N1(k+1)S2...Skψ, S2k+2S(k)ψ〉

A2223 = Nβ−2〈(V ′)N1(k+1)S2...Skψ, (VN(k+1)(k+2) + 2α)S(k)ψ〉
For A2221, we apply Hölder in x1 as follows:

|A2221| 6 Nβ−2‖(V ′)N1(k+1)‖L2x1‖S2...Skψ‖L2cL∞x1‖S
2
k+1S

(k)ψ‖L2
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By (4.4) and symmetry,

|A2221| 6 CN
3
2
β− 3

2‖V ′‖L2‖S(k)ψ‖L2N−1/2‖S1S(k+1)ψ‖L2
6 CN

3
2
β− 3

2

(
‖S(k)ψ‖2L2 +N−1‖S1S(k+1)ψ‖2L2

)
.

Argue the same for A2222, we get

|A2222| 6 Nβ−2‖(V ′)N1(k+1)‖L2x1‖S2...Skψ‖L2cL∞x1‖S
2
k+2S

(k)ψ‖L2

6 CN
3
2
β− 3

2‖V ′‖L2‖S(k)ψ‖L2N−1/2‖S1S(k+1)ψ‖L2
6 CN

3
2
β− 3

2

(
‖S(k)ψ‖2L2 +N−1‖S1S(k+1)ψ‖2L2

)
.

For A2223, we use Hölder in xk+1 to obtain

Nβ−2〈(V ′)N1(k+1)S2...Skψ, (VN(k+1)(k+2) + 2α)S(k)ψ〉

|A2223| 6 CNβ−2 ∥∥(V ′)N1(k+1)
∥∥
L1xk+1

∥∥VN(k+1)(k+2) + 2α
∥∥
L∞xk+1

×‖S2...Skψ‖L2cL∞xk+1
∥∥S(k)ψ∥∥

L2cL
∞
xk+1

6 CN2β−2 ∥∥S(k)ψ∥∥
L2

∥∥S(k+1)ψ∥∥
L2

6 CN2β−2 ∥∥S(k+1)ψ∥∥2
L2
.

This completes the estimate for A222. Specifically, collecting the estimates for A2221 ∼ A2223,
we obtain

(4.35) A222 > −CNβ−1(
∥∥S(k+1)ψ∥∥2

L2
+N−1‖S1S(k+1)ψ‖2L2)

By (4.33), (4.34) and (4.35), we complete the estimate for A22 as

(4.36) A22 ≥ −CNβ−1(
∥∥S(k+1)ψ∥∥2

L2
+N−1‖S1S(k+1)ψ‖2L2)

Finally, for A23, we have

A23 = N−1〈S(k)H+1(k+1)ψ, S
(k)H+(k+2)(k+3)ψ〉

(4.37) A23 = A231 + A232

where
A231 = N−1〈H+1(k+1)S

(k)ψ,H+(k+2)(k+3)S
(k)ψ〉

A232 = N−1〈[S1, H+1(k+1)]S2...Skψ,H+(k+2)(k+3)S
(k)ψ〉

By Lemmas 4.1 and A.2,

(4.38) A231 > 0,

so we discard it. For A232, we plug in [S1, H+1(k+1)] = Nβ(V ′)N1(k+1), the definition (4.9) of
H+(k+2)(k+3), integrate by parts and use symmetry to obtain

A232 = 2Nβ−1〈(V ′)N1(k+1)S2...SkSk+2ψ, Sk+2S(k)ψ〉
+2αNβ−1〈(V ′)N1(k+1)S2...Skψ, S(k)ψ〉
+Nβ−1〈(V ′)N1(k+1)S2...Skψ, VN(k+2)(k+3)S(k)ψ〉
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For the first two terms, we apply Hölder in xk+1, and for the third term, we apply Hölder in
both xk+1 and xk+2 to obtain

|A232| 6 CNβ−1 ‖V ′‖L1xk+1 ‖S2...SkSk+2ψ‖L2cL∞xk+1
∥∥Sk+2S(k)ψ∥∥L2cL∞xk+1

+CNβ−1 ‖V ′‖L1xk+1 ‖S2...Skψ‖L2cL∞xk+1
∥∥S(k)ψ∥∥

L2cL
∞
xk+1

+CNβ−1 ‖V ′‖L1xk+1 ‖V ‖L1xk+2 ‖S2...Skψ‖L2cL∞xk+1L∞xk+2
∥∥S(k)ψ∥∥

L2cL
∞
xk+1

L∞xk+2
.

Again, use (4.4),

|A232| 6 CNβ−1 ∥∥S(k+1)ψ∥∥
L2

∥∥S(k+2)ψ∥∥
L2

(4.39)

+CNβ−1 ∥∥S(k)ψ∥∥
L2

∥∥S(k+1)ψ∥∥
L2

+CNβ−1 ∥∥S(k+1)ψ∥∥
L2

∥∥S(k+2)ψ∥∥
L2

6 CNβ−1 ∥∥S(k+2)ψ∥∥2
L2

Collecting (4.37), (4.38), and (4.39), we obtain

(4.40) A23 ≥ −CNβ−1 ∥∥S(k+2)ψ∥∥2
L2
.

By (4.27), (4.32), (4.36), and (4.40), we obtain

(4.41) A2 ≥ −CNβ−1 (‖S(k+2)ψ‖2L2 +N−1‖S1S(k+1)ψ‖2L2
)

Finally, combining (4.16), (4.26), and (4.41), we complete the proof of (4.13) (assuming (4.2)
for k). Whence, we have proved (4.2) for all k and established Theorem 4.1.

5. Proof of Compactness and Convergence

Theorem 5.1 (Compactness). For T ∈
[
− tanωT0

ω
, tanωT0

ω

]
, the sequence

ΓN(τ) =
{
u
(k)
N

}N
k=1
∈
⊕
k>1

C
(
[0, T ] ,L1k

)
,

which satisfies the 1D BBGKY hierarchy (2.1) subject to energy condition (3.1) is compact
with respect to the product topology τ prod. For any limit point Γ(t) =

{
u(k)
}N
k=1

, γ(k) is a
symmetric nonnegative trace class operator with trace bounded by 1, and it verifies the energy
bound

(5.1) sup
τ∈[0,T ]

TrL(k)u(k) (τ)L(k) 6 Ck.

Theorem 5.2 (Convergence). Let Γ(τ) =
{
u(k)
}∞
k=1

be a limit point of ΓN(τ) =
{
u
(k)
N

}N
k=1

,

the sequence in Theorem 5.1, with respect to the product topology τ prod, then Γ(τ) is a solution
to the focusing GP hierarchy (2.3) subject to initial data u(k) (0) = |φ0〉 〈φ0|

⊗k with coupling
constant b0 =

∫
V (x) dx, which, written in integral form, is

(5.2)

u(k) (τ) = U (k)(τ)u(k) (0) + ib0

k∑
j=1

∫ τ

0

U (k)(τ − s) Trk+1
[
g(s)δ (yj − yk+1) , u(k+1) (s)

]
ds.



26 XUWEN CHEN AND JUSTIN HOLMER

Proof of Compactness. By the standard diagonalization argument, it suffi ces to show the
compactness of u(k)N for fixed k with respect to the metric d̂k. By the Arzelà-Ascoli theorem,
this is equivalent to the equicontinuity of u(k)N , and by [27, Lemma 6.2], this is equivalent to
the statement that for every observable J (k) from a dense subset of Kk and for every ε > 0,
there exists δ(J (k), ε) such that for all τ 1, τ 2 ∈ [0, T ] with |τ 1 − τ 2| 6 δ, we have

sup
N

∣∣∣Tr J (k)u
(k)
N (τ 1)− Tr J (k)u

(k)
N (τ 2)

∣∣∣ 6 ε .

We select the observables J (k) ∈ Kk which satisfy∥∥LiLjJ (k)L−1i L−1j
∥∥
op

+
∥∥L−1i L−1j J (k)LiLj

∥∥
op
<∞,

where Lj =
(
1− ∂2j

) 1
2 . Assume 0 6 τ 1 6 τ 2 6 T , hierarchy (2.1) yields∣∣∣Tr J (k)u

(k)
N (τ 1)− Tr J (k)u

(k)
N (τ 2)

∣∣∣
6

k∑
j=1

∫ τ2

τ1

∣∣∣Tr J (k)
[
−∂2j , u

(k)
N (s)

]∣∣∣ ds
+

1

N

∑
16i<j6k

∫ τ2

τ1

∣∣∣Tr J (k)
[
g(s)VN,s (yi − yj) , u(k)N (s)

]∣∣∣ ds
+
N − k
N

k∑
j=1

∫ τ2

τ1

∣∣∣Tr J (k)
[
g(s)VN,s (yi − yj) , u(k+1)N (s)

]∣∣∣ ds
6

k∑
j=1

∫ τ2

τ1

Ids+
1

N

∑
16i<j6k

∫ τ2

τ1

IIds+
N − k
N

k∑
j=1

∫ τ2

τ1

IIIds.

For I, we have, by (3.1), that,

I =
∣∣∣Tr J (k)L2ju

(k)
N (s)− Tr J (k)u

(k)
N (s)L2j

∣∣∣
=

∣∣∣TrL−1j J (k)LjLju
(k)
N (s)Lj − TrLjJ

(k)L−1j Lju
(k)
N (s)Lj

∣∣∣
6

(∥∥L−1j J (k)Lj
∥∥
op

+
∥∥LjJ (k)L−1j ∥∥op)TrLju

(k)
N (s)Lj

6 CJ .

Lemma A.1 and (3.1) will handle II and III. Write

Wij =
(
L−1i L−1j VN,s (yi − yj)L−1i L−1j

)
which, by Lemma A.1, is a bounded operator with the bound

‖Wij‖op 6 C ‖V ‖L1 ,
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uniformly in s. So then

II =
∣∣∣Tr J (k)g(s)VN,s (yi − yj)u(k)N (s)− Tr J (k)u

(k)
N (s) g(s)VN,s (yi − yj)

∣∣∣
= |g(s)| |TrL−1i L−1j J (k)LiLjWijLiLju

(k)
N (s)LiLj

−TrLiLjJ
(k)L−1i L−1j LiLju

(k)
N (s)LiLjWij|

6 C
(∥∥L−1i L−1j J (k)LiLj

∥∥
op

+
∥∥LiLjJ (k)L−1i L−1j

∥∥
op

)
‖V ‖L1 TrLiLju

(k)
N (s)LiLj

6 CJ

and

III =
∣∣∣Tr J (k)g(s)VN,s (yj − yk+1)u(k+1)N (s)− Tr J (k)u

(k+1)
N (s) g(s)VN,s (yj − yk+1)

∣∣∣
= |g(s)| |TrL−1j J (k)LjWj(k+1)LjLk+1u

(k+1)
N (s)LjLk+1

−TrLjJ
(k)L−1j LjLk+1u

(k+1)
N (s)LjLk+1Wj(k+1)|

6 C
(∥∥L−1j J (k)Lj

∥∥
op

+
∥∥LjJ (k)L−1j ∥∥op) ‖V ‖L1 TrLjLk+1u

(k)
N (s)LjLk+1

6 CJ .

Putting together the estimates of I, II, and III, we have

sup
N

∣∣∣Tr J (k)u
(k)
N (τ 1)− Tr J (k)u

(k)
N (τ 2)

∣∣∣ 6 C
(k)
J |τ 1 − τ 2|

which is enough to end the proof of Theorem 5.1. �

Proof of Convergence. By Theorem 5.1, passing to subsequences if necessary, we have

(5.3) lim
N→∞

sup
τ∈[0,T ]

Tr J (k)
(
u
(k)
N − u(k)

)
= 0, ∀J (k) ∈ Kk.

We test (5.2) against the observables J (k) in Theorem 5.1. We prove that the limit point
verifies

(5.4) Tr J (k)u(k) (0) = Tr J (k) |φ0〉 〈φ0|
⊗k ,

and

Tr J (k)u(k) = Tr J (k)U (k)(τ)u(k) (0)(5.5)

+ib0

k∑
j=1

∫ τ

0

Tr J (k)U (k)(τ − s)
[
g(s)δ (yj − yk+1) , u(k+1) (s)

]
ds.
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We use the BBGKY hierarchy (2.1) for this purpose. Written in the form we need here, it
becomes

Tr J (k)u
(k)
N = Tr J (k)U (k)(τ)u

(k)
N (0)

+
i

N

∑
16i<j6k

∫ τ

0

Tr J (k)U (k)(τ − s)
[
−g(s)VN,s(yi − yj), u(k)N (s)

]
ds

+i
N − k
N

k∑
j=1

∫ τ

0

Tr J (k)U (k)(τ − s)
[
−g(s)VN,s(yj − yk+1), u(k+1)N (s)

]
ds

= A+
i

N

∑
16i<j6k

B + i

(
1− k

N

) k∑
j=1

D.

We put a minus sign in front of VN,s so that the above takes the same form as (5.5) because
b0 = −

∫
VN,s(x)dx.

First of all, (5.3) yields

lim
N→∞

Tr J (k)u
(k)
N = Tr J (k)u(k)

lim
N→∞

Tr J (k)U (k)(τ)u
(k)
N (0) = Tr J (k)U (k)(τ)u(k) (0) .

Since

u
(1)
N (0) = γ

(1)
N (0)→ |φ0〉 〈φ0| strongly as trace operators,

we obtain through the argument on [40, p.64] that

u
(k)
N (0) = γ

(k)
N (0)→ |φ0〉 〈φ0|

⊗k strongly as trace operators.

So far, we have checked relation (5.4) and the left hand side and the first term on the right
hand side of (5.5) for the limit point. We will prove

lim
N→∞

B

N
= lim

N→∞

k

N
D = 0,

(5.6) lim
N→∞

D =

∫ τ

0

g(s) Tr J (k)U (k)(τ − s)
[
δ (yj − yk+1) , u(k+1) (s)

]
ds.

A computation similar to the estimate of II and III in the proof of Theorem 5.1 shows that
|B| and |D| are uniformly bounded for every finite time, thus

lim
N→∞

B

N
= lim

N→∞

k

N
D = 0.
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To acquire limit (5.6), we use Lemma A.3. Take a probability measure ρ ∈ L1 (R), define
ρα (y) = 1

α
ρ
(
y
α

)
. Use the short notation J (k)s−τ = J (k)U (k) (τ − s), we have∣∣∣Tr J (k)U (k) (τ − s)

(
−VN,s (yj − yk+1)u(k+1)N (s)− b0δ (yj − yk+1)u(k+1) (s)

)∣∣∣
6
∣∣∣Tr J

(k)
s−τ (−VN,s (yj − yk+1)− b0δ (yj − yk+1))u(k+1)N (s)

∣∣∣
+ b0

∣∣∣Tr J
(k)
s−τ (δ (yj − yk+1)− ρα (yj − yk+1))u(k+1)N (s)

∣∣∣
+ b0

∣∣∣Tr J
(k)
s−τρα (yj − yk+1)

(
u
(k+1)
N (s)− u(k+1) (s)

)∣∣∣
+ b0

∣∣∣Tr J
(k)
s−τ (ρα (yj − yk+1)− δ (yj − yk+1))u(k+1) (s)

∣∣∣
= E + F +G+H.

A direct application of Lemma A.3 and the energy condition (3.1) hands us

E 6 C

Nκβ (g(s))κ

(∥∥L−1j J (k)Lj
∥∥
op

+
∥∥LjJ (k)L−1j ∥∥op)TrLjLk+1u

(k+1)
N LjLk+1

6 CJ
Nκβ

→ 0 as N →∞, uniformly for s ∈ [0, T ] with T <∞.

Similarly, using Lemma A.3 and (3.1) and (5.1), we have

F 6 Cκα
κb0

(∥∥L−1j J (k)Lj
∥∥
op

+
∥∥LjJ (k)L−1j ∥∥op)TrLjLk+1u

(k+1)
N LjLk+1

6 CJα
κ → 0 as α→ 0,

H 6 Cκα
κb0

(∥∥L−1j J (k)Lj
∥∥
op

+
∥∥LjJ (k)L−1j ∥∥op)TrLjLk+1u

(k+1)LjLk+1

6 CJα
κ → 0 as α→ 0.

For G,

G 6 b0

∣∣∣∣Tr J
(k)
s−τρα (yj − yk+1)

1

1 + εLk+1

(
u
(k+1)
N (s)− u(k+1) (s)

)∣∣∣∣
+b0

∣∣∣∣Tr J
(k)
s−τρα (yj − yk+1)

εLk+1
1 + εLk+1

(
u
(k+1)
N (s)− u(k+1) (s)

)∣∣∣∣ .
The first term in the above estimate goes to zero as N →∞ for every ε > 0, since we have
assumed (5.3) and J (k)s−τρα (yj − yk+1) (1 + εLk+1)

−1 is a compact operator. Due to the energy
bounds on u(k+1)N and u(k+1), the second term tends to zero as ε→ 0, uniformly in N .
Combining the estimates for E − H, we have justified limit (5.6) and thus limit (5.5).

Hence, we have finished proving Theorem 5.2. �

6. Proof of the Optimal 1D Collapsing Estimate (Theorem 1.3)

We prove the optimality in §6.1. It suffi ces to prove Theorem 3.1 for k = 1. We aim to
prove that, for each ε > 0 and each bump function θ,

‖θ(τ)R(1)ε U (1)(−τ)B1,2U
(2)(τ)φ(2)‖L2τL2y,y′ ≤ Cε,θ‖R(2)ε φ(2)‖L2

y,y′
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which is equivalent to

‖θ(τ)R(1)ε U (1)(−τ)B1,2U
(2)(τ)R

(2)
−εφ

(2)‖L2τL2y,y′ ≤ Cε,θ‖φ(2)‖L2
y,y′

The space-time Fourier transform of the operator on the left side is (dropping the x′1 variable)∫∫
ξ2,ξ
′
2

〈ξ1〉εθ̂
(
η + (ξ1 − ξ2 − ξ′2)

2 − ξ21 + ξ22 − (ξ′2)
2
)

〈ξ1 − ξ2 − ξ′2〉ε〈ξ2〉ε〈ξ′2〉ε
φ̂(ξ1 − ξ2 − ξ′2, ξ2, ξ′2)dξ2dξ′2

where (η, ξ) is the space-time Fourier variable. By the usual Cauchy-Schwarz procedure, it
suffi ces to prove the boundedness (independent of η, ξ1) of

I(η, ξ1)
def
=

∫∫
ξ2,ξ
′
2

〈ξ1〉2ε|θ̂
(
η − 2ξ1 (ξ2 + ξ′2) + (ξ2 + ξ′2)

2
+ ξ22 − (ξ′2)

2
)
|

〈ξ1 − ξ2 − ξ′2〉2ε〈ξ2〉2ε〈ξ′2〉2ε
dξ2dξ

′
2.

Changing variables (ξ2, ξ
′
2) 7→ (u, v), where

u = ξ2 + ξ′2(6.1)

v = ξ2 − ξ′2
we obtain

I(η, ξ1) =

∫∫
u,v

|θ̂(η − 2ξ1u+ u2 + uv)| 〈ξ1〉2ε
〈ξ1 − u〉2ε〈u+ v〉2ε〈u− v〉2εdudv

Doing the dv integral first and change v 7→ w, where w = η
u
− 2ξ1 + u+ v, we obtain

I(η, ξ1) =

∫
u

〈ξ1〉2ε
〈ξ1 − u〉2ε

H(η, ξ1, u)du

=

∫
|u|<1

+

∫
|u|>1

= I1(η, ξ1) + I2(η, ξ1)

where

(6.2) H(η, ξ1, u) =

∫
w

|θ̂(uw)|
〈w − η

u
+ 2ξ1〉2ε〈w − 2u− η

u
+ 2ξ1〉2ε

dw

For convenience, we introduce

(6.3) σ(η, ξ1, u)
def
=
η

u
− 2ξ1

6.0.3. Treating I. We first address I1(η, ξ1). For |u| 6 1, we have by (6.2) and (6.3) that

H(η, ξ1, u) 6 C

∫
w

|θ̂(uw)|
〈w − σ〉4ε dw

6 C

∫
w

|θ̂(uw)|
|w − σ|4ε

dw.
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Change variables, we get

= C

∫
w

|θ̂(w)|∣∣w
u
− σ

∣∣4ε dw|u|
=

C

|u|1−4ε
∫
w

|θ̂(w)|
|w − uσ|4ε

dw.

Divide the integral into two pieces,

=
C

|u|1−4ε

(∫
|w−uσ|61

|θ̂(w)|
|w − uσ|4ε

dw +

∫
|w−uσ|>1

|θ̂(w)|
|w − uσ|4ε

dw

)

6 C

|u|1−4ε

(∫
|w−uσ|61

1

|w − uσ|4ε
dw +

∫
|w−uσ|>1

|θ̂(w)|dw
)
.

Thus
H(η, ξ1, u) . 1

|u|1−4ε .

Therefore, plugging the above into I1, we have

I1(η, ξ1) .
∫
|u|≤1

〈ξ1〉2ε
〈ξ1 − u〉2ε|u|1−4ε

du.

Since |u| 6 1, we have 〈ξ1〉2ε
〈u−ξ1〉2ε

∼ 1 and therefore

I1(η, ξ1) .
∫
|u|61

du

|u|1−4ε . 1.

6.0.4. Treating II. We turn our attention to I2(η, ξ1). For |u| > 1, by (6.2) and (6.3),

(6.4) H(η, ξ1, u) . 1

|u|〈σ〉2ε〈σ − 2u〉2ε

Indeed, in this case, the integral in (6.2) is effectively constrained to the small interval
|w| . |u|−1 ≤ 1, and the extra factors 〈σ〉2ε〈σ − 2u〉2ε in the denominator in (6.4) come from
the factors 〈w− σ〉2ε〈w− 2u− σ〉2ε in the denominator in (6.2). Plugging (6.4) into I2(η, ξ1),
we get

I2(η, ξ1) .
∫
|u|≥1

〈ξ1〉2ε
〈ξ1 − u〉2ε|u|〈σ〉2ε〈σ − 2u〉2ε du

If |ξ1| ≤ 1, then I2(η, ξ1) .
∫
|u|≥1

du
|u|1+2ε (by neglecting the two terms 〈σ〉

2ε〈σ − 2u〉2ε in the
denominator), and this integral converges. If |ξ1| ≥ 1, then 〈ξ1〉 ∼ |ξ1| and hence

I2(η, ξ1) .
∫
|u|≥1

|ξ1|2ε
|ξ1 − u|2ε|u||σ|2ε|σ − 2u|2ε du

Substituting (6.3),

I2(η, ξ1) .
∫
|u|≥1

|ξ1|2ε
|ξ1 − u|2ε|u|| ηu − 2ξ1|2ε|u+ ξ1 − η

2u
|2ε du

=

∫
|u|≥1

|ξ1|2ε
|ξ1 − u|2ε|u|1−4ε|η − 2ξ1u|2ε|u2 + ξ1u− η

2
|2ε du
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If η
2

+ ξ21
4
≥ 0, then let a, b be the roots of the quadratic u2 + ξ1u − η

2
(which are real). If

η
2

+ ξ21
4
< 0, then let a = b = − ξ1

2
. Then we obtain

I2(η, ξ1) .
∫
u

du

|u− ξ1|2ε〈u〉1−4ε|u− η
2ξ1
|2ε|u− a|2ε|u− b|2ε

The fact that this is bounded uniformly in ξ1 and η follows from Lemma 6.1.

Lemma 6.1. Suppose that 0 < ε < 1
8
. Then∫

du

|u− a|2ε|u− b|2ε|u− c|2ε|u− d|2ε〈u〉1−4ε

is bounded independently of a, b, c, d.

Proof. Call the given integral G(a, b, c, d). Let

(6.5) F (e)
def
=

∫ +∞

u=−∞

du

|u− e|8ε〈u〉1−4ε

We claim that

(6.6) G(a, b, c, d) ≤ F (a) + F (b) + F (c) + F (d)

To show (6.6), we might as well assume that

−∞ < a ≤ b ≤ c ≤ d < +∞

Divide the u-integration into the four intervals −∞ < u ≤ a+b
2
, a+b

2
≤ u ≤ b+c

2
, b+c

2
≤ u ≤ c+d

2
,

c+d
2
≤ u < +∞. For −∞ < u ≤ a+b

2
, it is evident that the integral is bounded by F (a). For

a+b
2
≤ u ≤ b+c

2
, the integral is bounded by F (b), etc.

Hence it suffi ces to show that F (e) is bounded independently of e. If |e| ≥ 1, then we use
that

F (e) ≤
∫
u

du

|u− e|8ε|u|1−4ε

and then change variables u 7→ x where u = ex to obtain

F (e) ≤ 1

|e|4ε
∫

dx

|x− 1|8ε|x|1−4ε . 1

If |e| ≤ 1, then dividing the integration in u in (6.5) into |u| ≤ 1 and |u| ≥ 1 gives two
integrals individually bounded independently of e. �

6.1. Proof of Optimality. We prove the failure of Theorem 1.3 for the T =∞ and ε > 0

case and the T <∞ and ε = 0 case separately. We remark that both cases deduce to the
fact that

∫
|u|61

1
|u|du =∞.
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6.1.1. The T =∞ and ε > 0 Case. We disprove the estimate:

(6.7) ‖R(1)ε B1,2U
(2)(τ)R

(2)
−εφ

(2)‖L2τL2y,y′ 6 C‖φ(2)‖L2
y,y′
.

By duality, it is equivalent to the estimate that

(6.8)

∣∣∣∣∫
R1+1

J (η, ξ1) g(η, ξ1)dηdξ1

∣∣∣∣ 6 C‖φ(2)‖L2y‖g‖L2ηL2ξ1

for all g ∈ L2ηL2ξ1 , where J (η, ξ1) is the space-time Fourier transform of R
(1)
ε B1,2U

(2)(τ)R
(2)
−εφ

(2)

(dropping the x′1 variable) which is

J (η, ξ1) =

∫ 〈ξ1〉εδ (η + (ξ1 − ξ2 − ξ′2)
2

+ ξ22 − (ξ′2)
2
)

〈ξ1 − ξ2 − ξ′2〉ε〈ξ2〉ε〈ξ′2〉ε
φ̂(ξ1 − ξ2 − ξ′2, ξ2, ξ′2)dξ2dξ′2

Write out the left hand side of (6.8).∫
R1+1

J (η, ξ1) g(η, ξ1)dηdξ1

=

∫
dξ1dξ2dξ

′
2φ̂(ξ1, ξ2, ξ

′
2)

×

∫ dη
〈ξ1 + ξ2 + ξ′2〉εδ

(
η + ξ21 + ξ22 − (ξ′2)

2
)

〈ξ1〉ε〈ξ2〉ε〈ξ′2〉ε
g(η, ξ1 + ξ2 + ξ′2)


Thus estimate (6.8) is equivalent to the estimate∫ 〈ξ1 + ξ2 + ξ′2〉2ε

〈ξ1〉2ε〈ξ2〉2ε〈ξ′2〉2ε
∣∣∣g(−ξ21 − ξ22 + (ξ′2)

2
, ξ1 + ξ2 + ξ′2)

∣∣∣2 dξ1dξ2dξ′2 6 C ‖g‖L2τ,ξ1
Performing the change of variables in (6.1) to the left hand side we get∫ 〈ξ1 + u〉2ε

〈ξ1〉2ε〈u+ v〉2ε〈u− v〉2ε
∣∣g(−ξ21 − uv, ξ1 + u)

∣∣2 dξ1dudv
=

∫ (∫ 〈ξ1〉2ε

〈ξ1 − u〉2ε〈u−
η+(ξ1−u)2

u
〉2ε〈u+ η+(ξ1−u)2

u
〉2ε

1

|u|du
)
|g(η, ξ1)|

2 dξ1dη.

Over the region |η| . 1, |ξ1| . 1, the du integral effectively becomes∫
1

〈u〉4ε
1

|u|du

which diverges to ∞. Whence, we have disproved estimate (6.7).

6.1.2. The T <∞ and ε = 0 Case. Here, we disprove the following estimate:

(6.9) ‖θ(τ)B1,2U
(2)(τ)φ(2)‖L2τL2y,y′ 6 C‖φ(2)‖L2

y,y′
.

We proceed as in the T =∞ and ε > 0 case. This time

J (η, ξ1) =

∫
θ̂
(
η + (ξ1 − ξ2 − ξ′2)

2
+ ξ22 − (ξ′2)

2
)
φ̂(ξ1 − ξ2 − ξ′2, ξ2, ξ′2)dξ2dξ′2
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and hence (6.9) is equivalent to the estimate that∫ ∣∣∣(θ̂ ∗ g) (−ξ21 − ξ22 + (ξ′2)
2
, ξ1 + ξ2 + ξ′2)

∣∣∣2 dξ1dξ2dξ′2 6 C ‖g‖L2τ,ξ1
for all g ∈ L2ηL2ξ1 . By the change of variables (6.1), the left side of the above estimate is∫ ∣∣∣(θ̂ ∗ g) (−ξ21 − uv, ξ1 + u)

∣∣∣2 dξ1dudv
=

∫ (∫
1

|u|du
) ∣∣∣(θ̂ ∗ g) (η, ξ1)

∣∣∣2 dξ1dη.
This disproves estimate (6.9). Together with the T =∞ and ε > 0 case, we have attained
the optimality of Theorem 1.3.

Appendix A. Basic Operator Facts

Lemma A.1 ([37, Lemma A.1]). Let xi, xj ∈ R,∥∥L−1i L−1j V (xi − xj)L−1i L−1j
∥∥
op
6 ‖V ‖L1

Lemma A.2. If A2 > A1 > 0, B2 > B1 > 0, and [Ai, Bj ] = 0, ∀i, j = 1, 2, i.e. all A-B pairs
commute. Then A2B2 > A1B1.

Proof. We compute directly that

〈u,A1B1u〉 =
〈
B

1
2
1 u,A1B

1
2
1 u
〉
6
〈
B

1
2
1 u,A2B

1
2
1 u
〉

=
〈
A

1
2
2 u,B1A

1
2
2 u
〉
6 〈u,A2B2u〉 .

�

Lemma A.3. Let ρ ∈ L1 (R) such that
∫
R ρ (x) dx = 1 and

∫
R 〈x〉 |ρ (x)| dx < ∞, and let

ρα (x) = 1
α
ρ
(
x
α

)
. Then, for every κ ∈ (0, 1), there exists Cκ > 0 s.t.∣∣Tr J (k) (ρα (xj − xk+1)− δ (xj − xk+1)) γ(k+1)

∣∣
6 C

(∫
|ρ (x)| |x|κ dx

)
ακ
(∥∥LjJ (k)L−1j ∥∥op +

∥∥L−1j J (k)Lj
∥∥
op

)
×TrLjLk+1γ

(k+1)LjLk+1

for all nonnegative γ(k+1) ∈ L1k+1.

Proof. Kirkpatrick, Schlein, and Staffi lani stated a similar lemma ([37, Lemma A.2]) with
ρ > 0. Their proof, slightly modified, gives Lemma A.3. For completeness, we include the
details. It suffi ces to prove the estimate for k = 1. We represent γ(2) by γ(2) =

∑
j λj

∣∣ϕj〉 〈ϕj∣∣,
where ϕj ∈ L2 (R) and λj > 0. We write

Tr J (1) (ρα (x1 − x2)− δ (x1 − x2)) γ(2)

=
∑
j

λj
〈
ϕj, J

(1) (ρα (x1 − x2)− δ (x1 − x2))ϕj
〉

=
∑
j

λj
〈
ψj, (ρα (x1 − x2)− δ (x1 − x2))ϕj

〉
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where ψj =
(
J (1) ⊗ 1

)
ϕj. By Parseval, we find

|〈ψj, (ρα(x1 − x2)− δ(x1 − x2))ϕj〉|

= |
∫
ψ̂j(ξ1, ξ2)ϕ̂j(ξ

′
1, ξ
′
2) (ρ̂(α(ξ1 − ξ′1))− 1)

×δ(ξ1 + ξ2 − ξ′1 − ξ′2)dξ1dξ2dξ′1dξ′2|.

With
∫
ρ = 1, we rewrite

= |
∫
ψ̂j(ξ1, ξ2)ϕ̂j(ξ

′
1, ξ
′
2)ρ(x)(eiαx·(ξ

′
1−ξ1) − 1)

×δ(ξ1 + ξ2 − ξ′1 − ξ′2)dxdξ1dξ2dξ′1dξ′2|

6
∫
|ψ̂j(ξ1, ξ2)||ϕ̂j(ξ′1, ξ′2)|δ(ξ1 + ξ2 − ξ′1 − ξ′2)

×|
∫
ρ(x)(eiαx·(ξ

′
1−ξ1) − 1)dx|dξ1dξ2dξ′1dξ′2.

Using the inequality that ∀κ ∈ (0, 1)∣∣∣eiαx·(ξ′1−ξ1) − 1
∣∣∣ 6 ακ |x|κ |ξ1 − ξ′1|

κ

6 ακ |x|κ
(
|ξ1|

κ + |ξ′1|
κ)
,

we get

|〈ψj, (ρα(x1 − x2)− δ(x1 − x2))ϕj〉|

6 ακ(

∫
|ρ(x)| |x|κdr)

×
∫
|ξ1|κ|ψ̂j(ξ1, ξ2)||ϕ̂j(ξ′1, ξ′2)|δ(ξ1 + ξ2 − ξ′1 − ξ′2)dξ1dξ2dξ′1dξ′2

+ακ(

∫
|ρ(x)| |x|κdr)

×
∫
|ξ′1|κ|ψ̂j(ξ1, ξ2)||ϕ̂j(ξ′1, ξ′2)|δ(ξ1 + ξ2 − ξ′1 − ξ′2)dξ1dξ2dξ′1dξ′2

= ακ(

∫
|ρ(x)| |x|κdr)(I + II).

The estimates for I and II are similar, so we only deal with I explicitly. We rewrite I as

I =

∫
δ (ξ1 + ξ2 − ξ′1 − ξ′2)

〈ξ1〉 〈ξ2〉
〈ξ′1〉 〈ξ′2〉

∣∣∣ψ̂j (ξ1, ξ2)
∣∣∣

× 〈ξ′1〉 〈ξ′2〉
〈ξ1〉

1−κ 〈ξ2〉
∣∣ϕ̂j (ξ′1, ξ

′
2)
∣∣ dξ1dξ2dξ′1dξ′2.
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Apply Cauchy-Schwarz:

6 ε

∫
δ (ξ1 + ξ2 − ξ′1 − ξ′2)

〈ξ1〉
2 〈ξ2〉

2

〈ξ′1〉
2 〈ξ′2〉

2

∣∣∣ψ̂j (ξ1, ξ2)
∣∣∣2 dξ1dξ2dξ′1dξ′2

+
1

ε

∫
δ (ξ1 + ξ2 − ξ′1 − ξ′2)

〈ξ′1〉
2 〈ξ′2〉

2

〈ξ1〉
2(1−κ) 〈ξ2〉

2

∣∣ϕ̂j (ξ′1, ξ
′
2)
∣∣2 dξ1dξ2dξ′1dξ′2.

Rearrange terms:

= ε

∫
〈ξ1〉

2 〈ξ2〉
2
∣∣∣ψ̂j (ξ1, ξ2)

∣∣∣2 dξ1dξ2 ∫ 1

〈ξ1 + ξ2 − ξ′2〉
2 〈ξ′2〉

2dξ
′
2

+
1

ε

∫
〈ξ′1〉

2 〈ξ′2〉
2 ∣∣ϕ̂j (ξ′1, ξ

′
2)
∣∣2 dξ′1dξ′2 ∫ 1

〈ξ′1 + ξ′2 − ξ2〉
2(1−κ) 〈ξ2〉

2
dξ2

6 ε
〈
ψj, L

2
1L

2
2ψj
〉

sup
ξ

∫
R

1

〈ξ − η〉2 〈η〉2
dη

+
1

ε

〈
ϕj, L

2
1L

2
2ϕj
〉

sup
ξ

∫
R

1

〈ξ − η〉2(1−κ) 〈η〉2
dη.

When κ ∈ [0, 1] ,

sup
ξ

∫
R

1

〈ξ − η〉2(1−κ) 〈η〉2
dη < ∞,

sup
ξ

∫
R

1

〈ξ − η〉2 〈η〉2
dη < ∞,

hence we have ∣∣Tr J (1) (ρα (x1 − x2)− δ (x1 − x2)) γ(k+1)
∣∣

6 C

(∫
|ρ (x)| |x|κ dx

)
ακ
(
εTr J (1)L21L

2
2J

(1)γ(2) +
1

ε
TrL21L

2
2γ
(2)

)
= C

(∫
|ρ (x)| |x|κ dx

)
ακ

×
(
εTrL−11 L−12 J (1)L1L1J

(1)L−11 L1L
2
2γ
(2)L1L2 +

1

ε
TrL21L

2
2γ
(2)

)
6 C

(∫
|ρ (x)| |x|κ dx

)
ακ
(
ε
∥∥L−11 J (1)L1

∥∥
op

∥∥L1J (1)L−11 ∥∥op +
1

ε

)
×TrL21L

2
2γ
(2).

Let ε = ‖L1J (1)L−11 ‖−1op , we reach

6 C

(∫
|ρ (x)| |x|κ dx

)
ακ
(∥∥L−11 J (1)L1

∥∥
op

+
∥∥L1J (1)L−11 ∥∥op)

×TrL21L
2
2γ
(2)

as claimed. �
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Appendix B. Deducing Theorem 1.1 from Theorem 1.2

If ψN (0) satisfies (a), (b), and (c) in Theorem 1.1, then ψN (0) checks the requirements of
Lemma B.1. Thus we can define an approximation ψκN(0) of ψN (0) as in (B.2). Via (i) and
(iii) of Lemma B.1, ψκN(0) verifies the hypothesis of Theorem 1.2 for small enough κ > 0.

Therefore, for γκ,(k)N (t) , the marginal density associated with eitHNψκN(0), Theorem 1.2 gives
the convergence

(B.1) lim
N→∞

Tr

∣∣∣∣∣γκ,(k)N (t) (t,xk;x
′
k)−

k∏
j=1

φ(t, xj)φ(t, x′j)

∣∣∣∣∣ = 0.

for all small enough κ > 0, all k > 1, and all t ∈ R.
For γ(k)N (t) in Theorem 1.1, we notice that, ∀J (k) ∈ Kk, ∀t ∈ R, we have∣∣∣Tr J (k)

(
γ
(k)
N (t)− |φ (t)〉 〈φ (t)|⊗k

)∣∣∣
6

∣∣∣Tr J (k)
(
γ
(k)
N (t)− γκ,(k)N (t)

)∣∣∣
+
∣∣∣Tr J (k)

(
γ
κ,(k)
N (t)− |φ (t)〉 〈φ (t)|⊗k

)∣∣∣
= I+ II.

Convergence (B.1) then takes care of II. To handle I , part (ii) of Lemma B.1 yields∥∥eitHNψκN(0)− eitHNψN(0)
∥∥
L2

= ‖ψκN(0)− ψN(0)‖L2 6 Cκ
1
2

which implies

I =
∣∣∣Tr J (k)

(
γ
(k)
N (t)− γκ,(k)N (t)

)∣∣∣ 6 C
∥∥J (k)∥∥

op
κ
1
2 .

Since κ > 0 is arbitrary, we deduce that

lim
N→∞

∣∣∣Tr J (k)
(
γ
(k)
N (t)− |φ (t)〉 〈φ (t)|⊗k

)∣∣∣ = 0.

i.e. as trace class operators

γ
(k)
N (t)→ |φ (t)〉 〈φ (t)|⊗k weak*.

Then again, the Grümm’s convergence theorem upgrades the above weak* convergence to
strong. Thence, we have concluded Theorem 1.1 via Theorem 1.2.

Lemma B.1. Assume ψN (0) satisfies (a), (b), and (c) in Theorem 1.1. Let χ ∈ C∞0 (R) be
a cut-off such that 0 6 χ 6 1, χ (s) = 1 for 0 6 s 6 1 and χ (s) = 0 for s > 2. For κ > 0, we
define an approximation ψκN(0) of ψN (0) by

(B.2) ψκN(0) =
χ (κHN/N)ψN (0)

‖χ (κHN/N)ψN (0)‖ .

This approximation has the following properties:
(i) ψκN(0) verifies the energy condition

〈ψκN(0), Hk
Nψ

κ
N(0)〉 6 2kNk

κk
.
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(ii)
sup
N
‖ψκN(0)− ψN(0)‖L2 6 Cκ

1
2 .

(iii) For small enough κ > 0, ψκN(0) is asymptotically factorized as well

lim
N→∞

Tr
∣∣∣γκ,(1)N (0, x1;x

′
1)− φ0(x1)φ0(x′1)

∣∣∣ = 0,

where γκ,(1)N (0) is the marginal density associated with ψκN(0) and φ0 is the same as in
assumption (b) in Theorem 1.1.

Proof. Let us write χ (κHN/N) as χ and ψN (0) as ψN . This proof of Lemma B.1 closely
follows the proof of [26, Proposition 9.1 (i) and (ii)] and [25, Proposition 5.1 (iii)].
(i) is from definition. In fact, denote the characteristic function of [0, λ] with 1(s 6 λ). We

see that 1(HN 6 2N/κ)χ (κHN/N) = χ (κHN/N) . Thus〈
ψκN(0), Hk

Nψ
κ
N(0)

〉
=

〈
χψN
‖χψN‖

,1(HN 6 2N/κ)Hk
N

χψN
‖χψN‖

〉
6

∥∥1(HN 6 2N/κ)Hk
N

∥∥
op

6 2kNk

κk
.

We prove (ii) with a slightly modified proof of [26, Proposition 9.1 (ii)]. We still have

‖ψκN − ψN‖L2 6 ‖χψN − ψN‖L2 +

∥∥∥∥ χψN
‖χψN‖

− χψN
∥∥∥∥
L2

6 ‖χψN − ψN‖L2 + |1− ‖χψN‖|
6 2 ‖χψN − ψN‖L2 ,

where

‖χψN − ψN‖
2
L2 =

〈
ψN , (1− χ (κHN/N))2 ψN

〉
6

〈
ψN ,1(

κHN

N
> 1)ψN

〉
.

To continue estimating, we notice that if C > 0, then 1(s > 1) 6 1(s+ C > 1) for all s. So

‖χψN − ψN‖
2
L2 6

〈
ψN ,1(

κHN

N
> 1)ψN

〉
6

〈
ψN ,1(

κ (HN +Nα +N)

N
> 1)ψN

〉
.

With the inequality that 1(s > 1) 6 s for all s > 0 and the fact that

HN +Nα +N > 0

proved in Lemma 4.1, we arrive at

‖χψN − ψN‖
2
L2 6

κ

N
〈ψN , (HN +Nα +N)ψN〉

6 κ

N
〈ψN , HNψN〉+ (1 + α)κ 〈ψN , ψN〉 ,
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where
1

N
〈ψN , HNψN〉 =

〈
ψN ,

(
−∂2x1 + ω2x21

)
ψN
〉

+
1

N2

∑
16i<j6N

∫
NβV (Nβ (xi − xj)) |ψN |

2 dxN

6
〈
ψN ,

(
−∂2x1 + ω2x21

)
ψN
〉

+C ‖V ‖L1
∫ (
|ψN |

2 + |∂x1ψN |
2) dxN

6 C
〈
ψN ,

(
−∂2x1 + ω2x21

)
ψN
〉

+ C.

Using (a) and (c) in the assumptions of Theorem 1.1, we deduce that

‖χψN − ψN‖
2
L2 6 Cκ

which implies

‖ψκN − ψN‖L2 6 Cκ
1
2 .

(iii) does not follow from the proof of [26, Proposition 9.1 (iii)] in which the positivity of
V is used. (iii) follows from the proof of [25, Proposition 5.1 (iii)] which does not require V
to hold a definite sign.14 Notice that we are working in one dimension, we get a N

β
2 instead

of a N
3β
2 in [25, (5.20)] and hence we get a N

β
2
−1 in the estimate of [25, (5.18)] which goes to

zero for β ∈ (0, 1) . �
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