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ABSTRACT

With seismic interferometry one can retrieve the response

to a virtual source inside an unknown medium, if there is a

receiver at the position of the virtual source. Using inverse

scattering theory, we demonstrate that, for a 1D medium, the

requirement of having an actual receiver inside the medium

can be circumvented, going beyond seismic interferometry.

In this case, the wavefield can be focused inside an unknown

medium with independent variations in velocity and density

using reflection data only.

INTRODUCTION

There are different ways to reconstruct the wavefield excited by a

hypothetical source in the interior of an unknown medium. First,

with seismic interferometry (Weaver and Lobkis, 2001; Wapenaar

et al., 2005; Curtis et al., 2006; Schuster, 2009) it is possible to

retrieve the response to a virtual source inside the medium with

a receiver at the position where the virtual source is to be created,

assuming the medium is surrounded by uncorrelated sources. The

medium parameters need not be known. Second, in this paper, we

show that, with 1D inverse scattering theory (Chadan and Sabatier,

1989; Gladwell, 1993; Colton and Kress, 1998), the response to a

virtual source inside the medium can be obtained from reflected

waves recorded at one side of the medium. We demonstrate that,

in 1D media, this is possible without knowing the medium para-

meters. This is fascinating because it allows one to obtain the same

virtual source response as with seismic interferometry (including all

multiples), but without the need to have a receiver at the virtual

source location. An essential element of this approach is to build

an incident wave that is designed to collapse onto a point inside

the medium at a specified time. The reconstructed wavefield can

be used to illuminate the medium under a complicated overburden,

and the extracted Green’s function can be used for imaging.

In this paper, the term focusing (Rose, 2001, 2002b) refers to the

technique of finding an incident wave that collapses to a spatial del-

ta function δðz − z0Þ at the location z0 and at a prescribed time t0
(i.e., the wavefield is focused at z0 at t0). In a 1D medium, we deal

with a one-sided problem when observations from only one side of

the perturbation are available (e.g., due to the practical considera-

tion that we can only record reflected waves); otherwise, we call it

a two-sided problem when we have access to both sides of the

medium and account for reflected and transmitted waves.

WAVEFIELD FOCUSING

Figure 1 shows the velocity and density profiles of a 1D acoustic

medium. Note that velocity and density vary independently in

depth. We simulate a numerical scattering experiment where an im-

pulsive source is placed at the position z ¼ 2.44 km. The acoustic

wave equation is LGðz; zVS; tÞ ¼ −δðz − zVSÞ
d
dt
δðtÞ, with the

differential operator L ≡ ρðzÞ d
dz
ðρðzÞ−1 d

dz
Þ − cðzÞ−2 d2

dt2
. Here,

zVS ¼ 2.44 km and the initial condition is Gðz; zVS; t < 0Þ ¼ 0.

The incident wavefield propagates toward the discontinuities in

the model, interacts with them, and generates scattered waves.

We use a time-space finite-difference code with absorbing boundary

conditions to simulate the propagation of the 1D waves and to pro-

duce the numerical examples shown in this section. For computa-

tional purposes, the source function −δðz − zVSÞ
d
dt
δðtÞ is convolved

with a band-limited wavelet sðtÞ. The computed wavefield shown in

Figure 2 represents the causal Green’s function of the system G

convolved with sðtÞ. Causality ensures that the wavefield is nonzero
only in the region delimited by the first arrivals (i.e., the direct

waves) and we refer to it as the “causal region.”

Due to practical limitations in field experiments, we usually are

not able to place a source inside the medium we want to probe.

However, when there are receivers inside the medium, seismic in-

terferometry allows us to determine the wavefield as if there was a

source at the position of any of the receivers, e.g., at z ¼ 2.44 km.
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This technique allows one to reconstruct the wavefield that propa-

gates between a virtual source and other receivers located inside the

medium (Wapenaar et al., 2005). This technique yields a combina-

tion of the causal wavefield G and its time-reversed versionGa (i.e.,

anticausal). This is due to the fact that the reconstructed wavefield

propagates between a receiver and a virtual source. Conceptually

speaking, without a real (physical) source, one must have nonzero

incident waves on a receiver to create waves that emanate from

that receiver. The fundamental equation to reconstruct the Green’s

function is (Wapenaar and Fokkema, 2006)

Gðz; zVS; tÞ þ Gðz; zVS;−tÞ

∝
X

z 0¼zS1;zS2

Gðz; z 0; tÞ % GðzVS; z
0;−tÞ; (1)

where zVS ¼ 2.44 km, and zS1 and zS2 are the coordinates of

impulsive sources located at both sides of the perturbation (a total

of two sources in 1D) as shown at the bottom of Figure 1. Between

zS1 and zS2, the causal part of the wavefield estimated by this

Green’s function reconstruction technique is consistent with the

wavefield shown in Figure 2.

We thus have two different ways to obtain the same wavefield,

but often we cannot place any sources or receivers inside the med-

ium. We next assume that we only have access to reflected waves

RðtÞ measured above the perturbation, i.e., the reflected impulse

response measured at z ¼ 0 km due to an impulsive source placed

at z ¼ 0 km. This limitation raises another question: Can we recon-

struct the same wavefield shown in Figure 2 having knowledge only

of the reflected waves RðtÞ? For this 1D problem, the answer to this

question is given by the Marchenko equation (Lamb, 1980; Chadan

and Sabatier, 1989). Its solution provides a particular incident wave

that collapses the wavefield to a spatial delta function at the desired

location after it interacts with the medium, and this incident wave

consists of a delta function added to the solution of the Marchenko

equation (Rose, 2001, 2002a).

The Marchenko integral equation is a fundamental relation of 1D

inverse scattering theory. It is an integral equation that relates the

reflected waves RðtÞ to the incident wavefield uðt; tfÞ, which cre-

ates a focus in the interior of the medium and ultimately gives the

perturbation of the medium. The 1D form of this equation is

0 ¼ Rðtþ tfÞ þ uðt; tfÞ þ

Z
tf

−∞

Rðtþ t 0Þuðt 0; tfÞdt
0; (2)

where tf is the one-way traveltime from z ¼ 0 to the focusing loca-

tion. We numerically solve the Marchenko equation and construct

the particular incident wave that focuses at t ¼ 0 s at a location spe-

cified by tf ¼ 3 s. Any appropriate numerical method to solve in-

tegral equations can be used to compute uðt; tfÞ (e.g., an iterative

method). Note that solving equation 2 does not require any knowl-

edge of the medium: All that is needed is the reflection response

RðtÞ and the one-way traveltime tf , which specifies the location

of the focus. Next, we inject the particular incident wave

δðtþ tfÞ þ uð−t; tfÞ at z ¼ 0 km and compute the time-space dia-

gram shown in the top panel of Figure 3. This shows the wavefield

when the incident wave is injected at z ¼ 0 into the model. We

define this wavefield as Kðz; tÞ. The time-space diagram shown

in Figure 3 is computed using the true model, but this is done only

to illustrate the physics of the focusing process. The bottom panel of

Figure 3 shows a cross section of the wavefield at time t ¼ 0 s: The

wavefield vanishes except at location z ¼ 2.44 km. For this parti-

cular model, tf ¼ 3 s corresponds to spatial focusing at the same

location where we placed the virtual source in Figure 1. We empha-

size that this method is data driven, hence the true model is not

needed to build the particular incident wavefield.

Figure 3 does not yet resemble the wavefield shown in Figure 2.

In fact, in Figure 3 waves cross the solid line at t ¼ 0 s for locations

z ≤ 2.44 km, whereas in Figure 2 waves cross the same solid line

only at the virtual source location z ¼ 2.44 km. However, denoting

as Kðz;−tÞ the time-reversed version of Kðz; tÞ, we obtain the wa-

vefield shown in Figure 4 by adding Kðz; tÞ and Kðz;−tÞ. With this

summation, we create the response to a virtual source located at

zVS ¼ 2.44 km, namely Gðz; zVS; tÞ þ Gðz; zVS;−tÞ (convolved

with sðtÞ). This step is the main result of this paper. Note that

the trace at z ¼ 0, Kð0; tÞ þ Kð0;−tÞ, has been obtained without

any information about the model. As in Figure 3, the remainder

of Figure 4 is based on the true model and is only shown to explain

the physics of the focusing process. In Figure 4, the wavefield out-

side the causal region is zero because the portion of Kðz; tÞ outside
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Figure 1. Top: Velocity profile of the 1D model (solid line). The
perturbation in the velocity is located between z ¼ 1.3–3.5 km
and c0 ¼ 1 km∕s. Middle: Density profile of the 1D model (dashed
line). The perturbation in the density is located between
z ¼ 2.0–3.5 km and ρ0 ¼ 1 g∕cm3. Bottom: Locations of the real
and virtual sources for seismic interferometry; zS1 and zS2 indicate
the two real sources and zVS shows the virtual source location.
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Figure 2. Response to a source located at z ¼ 2.44 km. The traces
are recorded by receivers located at each location in the model
(shown in Figure 1) with a spacing of 40 m. Waves are emanating
from the line t ¼ 0 s only at z ¼ 2.44 km.
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the causal region is antisymmetric in time and hence cancels in the

sum Kðz; tÞ þ Kðz;−tÞ. With this process, we effectively go from

one-sided to two-sided illumination because in Figure 4 waves are

incident onto the focusing location from both sides for t < 0 s. The

incident waves are non zero for −6 s < t < −3 s, but to facilitate a

comparison with Figure 2 this time interval is not completely in-

cluded in the figure. According to Figure 4, we create a focus at

a location inside the inhomogeneous medium without having a

source or a receiver at such a location and without any knowledge

of the medium properties; we only have access to the reflected im-

pulse response measured above the perturbation. With an appropri-

ate choice of sources and receivers, this experiment can be done in

practice, e.g., in an acoustics laboratory (Rose, 2002a). Burridge

(1980) shows diagrams similar to Figures 3 and 4 and explains

how to combine such diagrams using causality and symmetry prop-

erties. The wavefield for positive times t > 0 (causal region) in

Figure 4 corresponds to the causal Green’s function G and the

wavefield for negative times t < 0 represents the anticausal Green’s

function Ga (defining the anticausal region). A small amount of en-

ergy is outside of the causal and anticausal regions due to numerical

inaccuracies in our solution of the Marchenko equation (this is also

visible in the bottom panel of Figures 3 and 4). The causal part of

the trace at z ¼ 0 km is the virtual source response Gð0; zVS; tÞ that
we obtained without using the model.

The anticausal Green’s function Ga follows from G by

time-reversal, hence it satisfies LGa ¼ −δðz − zVSÞ
d

dð−tÞ δð−tÞ ¼
δðz − zVSÞ

d
dt
δðtÞ, where we used that L is invariant to time-reversal.

Adding the differential equations for G and Ga shows that Gþ Ga

satisfies the homogeneous equation: LðGþ GaÞ ¼ −δðz − zVSÞ
d
dt
δðtÞ þ δðz − zVSÞ

d
dt
δðtÞ ¼ 0. The term “homogeneous” suggests

that the sum of G and Ga is source-free. Hence, to focus the wave-

field at the virtual source location, there must be a particular

incident wavefield coming from another location. In fact, the

knowledge that Gþ Ga satisfies a homogeneous equation suggests

that a combination of the causal and anticausal Green’s functions is

needed to focus the wavefield at a location where there is no real

source (i.e., source-free), as shown in Figure 4. Oristaglio (1989)

shows a similar result, although he derives the difference (instead

of the sum) of the causal and anticausal Green’s functions due to a

different definition of the Green’s functions.

DISCUSSION

In the previous section, we use the one-way traveltime tf to de-

termine the depth zVS of the virtual source. In other words, the wa-

vefield focuses at the virtual source location zVS after it has

propagated inside the medium for a length of time equal to tf.

To directly choose a prescribed focusing location zVS (and not a

prescribed one-way traveltime tf), we need to know the average

velocity of the medium between the surface and the depth of the

focusing location. However, no information about either the density

or the details of the velocity profile is required.

This method also works when density and velocity vary indepen-

dently. This fact is a new contribution because the previous inverse

scattering theory of (Rose 2001, 2002b) and others (Aktosun and

Rose, 2002) does not deal with simultaneous changes in density

and velocity because one cannot retrieve two independent quantities

from one time series of reflected waves. We also add another step

beyond the work of Rose by forming the sum Kðz; tÞ þ Kðz;−tÞ,
which ensures that the wavefield vanishes outside the causal and

anticausal regions and creates the response of the virtual source.

We show that the interaction between causal and anticausal wavefields

is a key element to focus the wavefield where there is no real source.

We are currently investigating the application of the central ideas

of this work to wave propagation in two and three dimensions
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Figure 4. Top: Wavefield that focuses at z ¼ 2.44 km at t ¼ 0 s
without a source or a receiver at this location. This wavefield cor-
responds to Kðz; tÞ þ Kðz;−tÞ and consists of a causal (t > 0) and
an anticausal (t < 0) region. Bottom: Cross section of the wavefield
at t ¼ 0 s.
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Figure 3. Top: At z ¼ 0 km, we inject the particular incident wave
in the model and compute the time-space diagram by forward mod-
eling. We denote this wavefield as Kðz; tÞ. Waves cross the solid line
at t ¼ 0 s for locations z ≤ 2.44 km. Note that the waves continue to
propagate after 3 s. Bottom: Cross section of the wavefield at t ¼ 0 s.
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(Wapenaar et al., 2011). This extension allows us to focus the wave-

field to a point in the subsurface to simulate a source at depth and to

record data at the surface. This kind of application will be helpful

for full-waveform inversion (Brenders and Pratt, 2007) and subsalt

imaging (Sava and Biondi, 2004), where waves that have traversed a

strongly inhomogeneous overburden are of extreme importance. We

speculate that focusing the wavefield at a prescribed location in 2D

and 3D media requires an estimate of the primary traveltimes from

the virtual source location to the receivers (e.g., using a macro mod-

el). Wapenaar et al. (2012) give a first mathematical proof for a 2D

medium with density variations only.

CONCLUSIONS

There are three distinct ways to reconstruct the same physical

wave state. A physical source, seismic interferometry, and inverse

scattering theory allow one to create the samewave state that focuses

at a certain location zVS. Seismic interferometry tells us how to build

an estimate of thewavefieldwithout knowing themediumproperties,

if we have a receiver at the same location zVS of the real source in the

scattering experiment of Figure 2 and sources surrounding the med-

ium. Inverse scattering goes beyond this as it allows us to focus the

wavefield inside the medium without knowing its properties, using

only reflected waves RðtÞ recorded at one side of the medium.
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