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Abstract

In this paper, we present Fodina, a process discovery technique with a strong

focus on robustness and flexibility. To do so, we improve upon and ex-

tend an existing process discovery algorithm, namely Heuristics Miner. We

have identified several drawbacks which impact the reliability of existing

heuristic-based process discovery techniques and therefore propose a new

algorithm which is shown to be better performing in terms of process model

quality, adds the ability to mine duplicate tasks, and allows for flexible con-

figuration options.
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1. Introduction

The digital revolution that is taking place is significantly changing the

way industry and people manage, store and analyze the vast amounts of

data that is being generated and processed. Naturally, the challenge in this

“big data” environment is to be able to extract value and insights from these
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information repositories in an effective manner. In the context of business

process management, where processes are responsible for the correct under-

taking of system functionalities, end users hence desire to extract process-

oriented aspects that can enable a better understanding of the reality ob-

served. The field of Process Mining aims to offer solutions to tackle this core

task: starting from so called “event logs”, containing footprints or “traces”

of real process executions, process mining techniques aim at discovering,

analyzing and enhancing process models (van der Aalst, 2011).

From its arising, the process mining field has evolved into several di-

rections, with process discovery perhaps being the most challenging task, as

demonstrated by the large amount of techniques available nowadays. What

makes process discovery difficult is the fact that derived process models

should perform well over four quality dimensions: fitness (ability of the

model to reproduce the traces in the event log), precision (how precise is

the model in representing the behavior in the log), generalization (is the

model able to generalize for behavior not in the log) and simplicity (the

well-known Occam’s Razor principle). Doing so is difficult as event logs

can contain noise and erroneous behavior, in which case a robust discov-

ery algorithm should be able to deal with such behavior. Additionally, users

oftentimes want to impose criteria regarding the layout or quality focus of

discovered models (e.g. in terms of precision version generalization), so that

flexibility of configuration is a desireable but hard-to-achieve trait in process

discovery as well. In this work, we present Fodina, a process discovery tech-

nique with a strong focus on robustness and flexibility. The primary contri-

bution of this paper is not to propose another process discovery technique,

but rather to pragmatically improve upon a class of existing process dis-

covery algorithms, namely the so-called “heuristic” miners (Weijters et al.,
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2006), adding some particular interesting features to make the approach

more robust to noisy data, add the ability to discover duplicate activities, and

allow for flexible configuration options to drive the discovery according to

end user input. Heuristics Miner is one of the best known and most used

process discovery algorithms both by practitioners and researchers, and has

also proven its worth in benchmarking studies illustrating the technique’s

ability to discover high-quality models (De Weerdt et al., 2012). However,

we have identified various problematic issues, which negatively impact the

reliability of the technique. As such, we perform a thorough review of the

existing Heuristics Miner with all its variants to identify a list of issues and

consequently propose a new implementation of a heuristic process miner

which retains the ability to discover high-quality models in a fast manner,

whilst being more robust to noise, can discover duplicate activities, and

contains configuration options to drive the discovery according to end user

input.

The remainder of this paper is structured as follows. Section 2 provides

an overview of related work in the literature and introduces preliminary

concepts. Section 3 lists the identified issues present in existing works. Next,

we introduce Fodina. Section 5 compares the new implementation with

other techniques based on an experimental evaluation. Section 6 concludes

the paper.

2. Preliminaries

2.1. Literature Overview and Related Work

In the area of process discovery, the α-algorithm can be regarded as one

of the most fundamental techniques; Van der Aalst et al. prove that the tech-
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nique is able to learn an important class of workflow nets (structured work-

flow nets) from event logs (van der Aalst et al., 2004), provided that the

given event log is sufficiently complete and that the event log does not con-

tain any noise. In order to deal with the problem of noise of the α-algorithm

class of techniques, Weijters et al. developed Heuristics Miner (Weijters et al.,

2006). This technique extends the α-algorithm in that it applies frequency

information with regard to relationships between activities in an event log

and is able to mine a wider set of process model constructs. Invisible ac-

tivities (task present in the model but not in the event log), however, are

not mined directly as such, but the mined “Heuristics net” does not specif-

ically require the presence of invisible activities to model activity skips or

complex routing constructs (after conversion to a Petri net, the model will

then contain the invisible activities necessary to represent these constructs).

Duplicate activities (tasks in the model logged under the same event label)

are also not mined. Note that other process discovery techniques also make

use of Heuristics nets to represent mined process models, most notably Ge-

netic Miner (Alves de Medeiros et al., 2007), although this technique is not

regarded as a typical heuristic process discovery algorithm as it applies an

evolutionary optimization strategy to derive a fitting process model, rather

than applying frequency-based dependency measures. In 2010, Burattin and

Sperduti proposed an adaptation of the Heuristics Miner algorithm, Heuris-

tics Miner++, which extends the former by considering activities with time

intervals, i.e. having a starting and ending time instead of being logged as

an atomic, zero-duration event (Burattin and Sperduti, 2010). The same au-

thors have also proposed a modified Heuristics Miner which is able to deal

with streaming event data (Burattin et al., 2012).

Weijters and Ribeiro have also created a modified version of their Heuris-
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tics Miner algorithm, Flexible Heuristics Miner (Weijters and Ribeiro, 2011),

which outputs the mined model as a Causal net (van der Aalst, 2011). Al-

though this representation is very similar to Heuristics nets, an important

difference exists in the way input and output bindings are expressed for

each task.

2.2. Definitions

Process discovery starts from a so-called event log and outputs a pro-

cess model using a particular representational language. In order to ob-

tain a usable event log, it is assumed that it is possible to record events so

that each event refers to an activity (e.g. “sign order”), a process instance

(e.g. “PI101”) and that the events are ordered, either based on an absolute

time stamp or on the basis of relative ordering (a sequence number). In

some cases, the specific state transition of the activity is also recorded in the

event, for example to denote when an activity was started versus its time

of completion. As mentioned above, some process discovery algorithms,

like Heuristics Miner++, do take into account the duration of an activity

(e.g. to determine if an activity’s execution overlaps with another one), but

most discovery algorithms only consider a process instance as a sequence of

(atomic) events. As such, we will make use of the following notation.

Definition 1. Event Logs—Let event log L be defined as a multiset of traces

(process instances). The cardinality (or size) of an event log |L| denotes the

total number of traces in the log. |
⋃
L| represents the size of the set over

the event log, i.e. the number of unique traces, not counting duplicates. A

trace σ ∈ L is a finite sequence of events with length |σ| and with σi the

event at position i in trace σ. The number of times a trace σ appears in L

is called the multiplicity of the trace. Since an ordering is explicitly defined
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between events in a sequence and the related process instance can be left

implicit, the events themselves can simply be denoted based on their activity

name, e.g. σ = 〈a, b, c, d〉. The set of activities occurring in the event log is

then denoted as TL = {σi|σ ∈ L, i = 1 . . . |σ|} (the activity alphabet of the

event log).

Process models mined by heuristic dependency-based process discovery

techniques are frequently expressed in the form of a Causal net (C-net).

Definition 2. Causal Nets—A Causal net is a tuple CN = (TC , ts, te, I, O)

where TC is a finite set of tasks modeled by the Causal net, I : TC 7→

{X ⊆ P(TC)|X = {∅} ∨ ∅ /∈ X} defines the set of possible input bindings

per task (an input binding is a set of sets of activities) and O : TC 7→ {X ⊆

P(TC)|X = {∅}∨∅ /∈ X} defines the set of possible output bindings per task.

Causal nets must have a start task ts ∈ TC for which I(ts) = {∅} and one

end task te ∈ TC for which O(te) = {∅}. For each task t ∈ TC , �t =
⋃
(I(t))

takes the union of all subsets in I(t) and denotes the set of all input tasks,

whereas t� =
⋃
(O(t)) denotes the set of output tasks of t. Based on this,

a dependency graph (TC , D) can be defined as a relation on TC , with D the

set of pairs: {(a, b)|a ∈ TC ∧ b ∈ TC ∧ (a ∈ �b∨ b ∈ a�)}. All tasks t ∈ TC in

the graph (TC , D) should lie on a path from the starting to the ending task.

The set of sets of tasks denoting the input and output bindings (I and O re-

spectively) are interpreted as a disjunction (between the sets of activities) of

conjunctions (between the activities within a set). The output bindings for

each task create obligations whereas input bindings resolve obligations. A

“binding sequence” models an execution path through a Causal net starting

and ending with the start and end task respectively and while removing all

obligations created during execution. As an example, consider a task t with
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I(t) = {{a}, {b}} and O(t) = {{c, d}, {e}}, meaning that this activity can

only be executed when it is preceded by a or b (disjunction between sets),

and that its execution creates the obligation that the task should be followed

with c and d (conjunction within sets), or just e.

Further details on the semantics of Causal nets can be found in (van der

Aalst et al., 2011). Three important remarks should still be mentioned,

however. First, note that the semantics of Causal nets are non-local, as an

output binding may create the obligation to execute an activity much later

in the process. In addition, in the case of an output binding consisting of

multiple sets of sets of tasks, it is not clear at the time of executing the task

at hand which of the possible conjunctive AND sets will be resolved later on.

As such, during execution, a state must be kept represented by multi-sets of

pending obligations which still need to be resolved. Second, note that some

descriptions and implementations of heuristic, dependency-based process

discovery algorithms, such as Heuristics Miner (Weijters et al., 2006), de-

rive models in a similar representational language, i.e. a Heuristics net, but

impose an inverted interpretation on the input and output bindings, namely

as a conjunction of disjunctions, meaning that O(t) = {{c, d}, {e}} then

denotes that t must be followed by e and either c or d. This representa-

tion introduces some issues which will be discussed in more detail below.

Finally, we remark that although Causal nets represent a well-defined and

formal representational language for process models, they are nevertheless

converted to Petri nets (another formal representational language for con-

current models) in most practical applications (van der Aalst et al., 2011).

The main reason behind this being that most process mining techniques and

implementations offer more mature support for Petri net analysis than for

Causal nets.
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2.3. Heuristic Dependency-based Process Discovery

This section outlines the (core) workings of existing heuristic dependency-

based process discovery algorithms such as Heuristics Miner (Weijters et al.,

2006) and Flexible Heuristics Miner (Weijters and Ribeiro, 2011). Put broadly,

the steps of these discovery algorithms all execute the following four steps.

First, counts of “basic relations” between activities in the event log are de-

rived. Following information can trivially be abstracted from the event log

(assume a and b are activities ∈ TL): |a|: the number of times activity a

appears in the event log (the frequency of a); |a > b|: the direct succession

count between a and b (the number of times that a is directly followed by b);

|a >> b|: the repetition count between a and b (the number of times that a

is directly followed by b and b again followed by a); |a >>> b|: the indirect

succession count between a and b (the number of times that a is eventually

followed by b, but before the next appearance of a or b). Note that every

direct succession is also counted towards the indirect succession count.

Next, a dependency graph is constructed using “dependency measures”

or “causal metrics”, describing the basic causal semantics between activities

(follows and precedes relations). Based on user-defined thresholds, a de-

pendency (an arc between two activities) is added in the dependency graph

between two activities when a dependency measure exceeds this threshold.

Various suitable measures have been proposed in the literature, either in the

context of a heuristic dependency-based process discovery algorithm (Wei-

jters et al., 2006; Weijters and Ribeiro, 2011), or in related work where the

concept of activity dependencies is also utilized, e.g. in (Maruster et al.,

2006), where such metrics are used as the inputs to construct a data set to

be used in a rule learning task.

Third, the semantic information, i.e. the sets of input and output bind-
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ings per activity (representing the XOR and AND splits and joins) is mined.

In the original definition of the Heuristics Miner algorithm (Weijters et al.,

2006), a separate measure is applied to derive confidence towards two tasks

occurring in parallel. In the Flexible Heuristics Miner algorithm, XOR and

AND relations are mined in a different manner (Weijters and Ribeiro, 2011).

Simply put, for an activity awith depending activities b and c, counts are cal-

culated corresponding with the number of times a was followed by b only,

c only or by both b and c. Based on the frequency of the different possi-

ble “patterns” (i.e. {{b}, {c}} and {{b, c}}), an output binding is chosen.

The exact procedure on how this final decision is made is left unspecified

in (Weijters and Ribeiro, 2011); available implementations of the discovery

algorithm include all discovered split and join patterns in the final causal

net, making the approach less robust to noise.

In a final, optional step, the long-distance dependencies are mined. To

do so, another dependency metric and threshold are defined, using the value

of |a >>> b|. However, many activity-pairs exist for which this metric will

return a high value (e.g. between the starting activity and many other ac-

tivities), although no additional dependency should be added. Therefore,

a check is typically performed to see whether it is possible to go from task

a to the ending task in the dependency graph without having visited b. If

this is possible then the additional long-distance dependency is added to the

dependency graph (rendering it more precise).

3. Identified Issues

The value of the existing (Flexible) Heuristics Miner algorithm should

not be understated, due to its robustness to noise, ease-of-interpretation
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and speed. As of now, it remains one of the most often applied and best

performing process discovery algorithms (De Weerdt et al., 2012). How-

ever, several issues can still be identified which open up opportunities for

solid improvements. Some of these issues are due to a vague or incomplete

definition, whereas other lie in an incorrect implementation. We order the

issues based on whether they relate to the discovery of the model, the se-

mantics of the Heuristics nets model itself, or due to other implementation

aspects. We base our discussion on the implementation found in the latest

versions of ProM 6.6.

3.1. Model Discovery: Unconnected Tasks

(Flexible) Heuristics Miner includes an “all tasks connected” heuristic,

ensuring that each task in the dependency graph has at least one incoming

and outgoing arc (except for the start and end tasks). To do so, the best

candidate task (i.e. using the highest |a > b| value) is taken to determine the

primal causal and dependent task. However, even when using this approach,

the particular complexity of several event logs (such as the “hospital log”

used in the BPI 2011 Challenge1) causes some tasks to remain unconnected

with the rest of the model.

3.2. Model Discovery: Duplicate Tasks

No current heuristic process discovery algorithm is able to mine du-

plicate activities. The ability to detect duplicate tasks could nevertheless

greatly improve the understandability and structural clarity of the obtained

process model. To illustrate why this is the case, Figure 1 shows a compari-

son between an original Petri net model and the (correctly converted) Petri

1DOI: doi:10.4121/d9769f3d-0ab0-4fb8-803b-0d1120ffcf54.



3.3 Model Discovery: Long-distance Dependencies 11

a end
e

d
a astart

b

c

(a) Original Petri net model.

e

d

b

end

c

astart
(b) More complex Petri net model

after converting mined Heuristic

net.

Figure 1: An original Petri net model and result after mining on generated event log and

converting to Petri net with Heuristics Miner.

net model after running Heuristics Miner. The fact that all activities sharing

the same label are treated as a single task in the process model leads to the

creation of extra arcs and dependencies and thus more structurally complex

results. Even although the mined Petri net does perfectly fit the behavior in

the event log, the ability to discover duplicate tasks would greatly improve

the understandability and clarity of discovered process models.

3.3. Model Discovery: Long-distance Dependencies

The way long-distance dependencies are constructed differs somewhat

in the actual implementation of Heuristics Miner compared to the approach

as described in the literature (Weijters and Ribeiro, 2011). In the implemen-

tation, the |a >>> b| count between two tasks is only incremented once

within the same trace, although multiple occurrences of the same a >>> b

pattern can exist within the same trace. Furthermore, the current long-

distance dependency definition in Heuristics Miner is somewhat overly sen-
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sitive regarding the actual setting of the threshold to be applied. That is,

lowering the threshold allows to discover more long-distance dependencies,

but also causes redundant long-distance dependencies to show up in the re-

sulting process model, for instance between the starting task and another

task, making the resulting net harder to interpret.

3.4. Model Discovery: Split and Join Semantics

The way splits and joins are mined in the currently available set of

heuristic discovery algorithms also warrants some attention. Although the

recommended method to mine the AND and XOR relations in the input and

output bindings is to make use of pattern-based techniques as described

in (Weijters and Ribeiro, 2011), one implementation of the Heuristics Miner

(“Mine for a Heuristics Net using Heuristics Miner” in ProM 6.6) uses the

non-flexible metric-based technique as indicated in Section 2.3. A second

implementation (“Mine for a Causal Net using Heuristics Miner” which is

hidden in the UI in ProM 6.6) does use pattern-based frequency counting to

discover and annotate the split and join semantics, but includes each seen

pattern in the resulting Causal net, which makes the implementation sensi-

tive to noise in this regard.

3.5. Model Semantics: ICS Fitness Calculation

The manner by which fitness is reported for mined Heuristics nets is

not particularly well described; the fitness reported in the implemented

Heuristics Miner is often referred to in literature as the Improved Contin-

uous Semantics (ICS) fitness. To be exact, the fitness measure reported is

the PFcomplete measure as described by (Alves de Medeiros, 2006), with

traces being parsed using a continuous semantics token game, meaning that
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the execution of a trace is continued after the occurrence of a non-fitting

activity. The exact manner however how this parsing (or replay) of traces

occurs is not clearly described in literature. In addition, there is another

implementation-related aspect which warrants mentioning in this context:

after calculating the ICS fitness, a final operation is performed (“disconnec-

tUnusedElements()”), which changes the structure of the net and can also

influence the fitness of the Heuristics net. The ICS fitness is, however, not

recalculated to reflect these changes.

3.6. Implementation: Incorrect Conversion to Petri Nets

Heuristic nets are frequently converted to Petri nets for additional analy-

sis, such as e.g. determining the level of conformance between an event log

and the model, as most process mining techniques offer more mature sup-

port for Petri net analysis than for other model representations. The current

implementation of Heuristics Miner contains a faulty implementation of a

Heuristics net to Petri net convertor (“Convert Heuristics net into Petri net”,

ProM 6.6). The reason behind this issue is an erroneous interpretation of the

semantics of the input and output bindings for Heuristics nets, which differ

from those found in Causal nets; within the Heuristics net, the input and

output bindings of an activity represent a conjunctive set of disjunctive sub-

sets. In addition, there is another intricacy present regarding the semantics

of Heuristic nets which is oftentimes forgotten: selecting an activity in one

subset also implies the selection of the same activity if it appears in other

subsets. E.g. an activity a with output bindings {{b, e}, {c, e}} should be

interpreted as “(one-of b XOR e) AND (one-of c,e)”, but disallows choosing

combinations where e only appears in one of the subsets and where “e AND

e” is reduced to “just e”.
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4. Robust and Flexible Heuristic Process Discovery with Fodina

Based on a thorough literature study, containing a breakdown of all

available and currently applied heuristic process discovery variants (Sec-

tion 2) and inspecting the issues present in these variants (Section 3) as

outlined above, we propose a new heuristic process discovery algorithm,

named Fodina, which aims to provide a robust iteration of this set of tech-

niques in order to mine Causal nets, including also some new features which

will be discussed in the remainder of this section.

4.1. Process Discovery with Fodina

An overview of the steps performed by Fodina to mine a Causal net is

given as follows:

1. Convert the event log to a “task log”. Contextual information is used

to (optionally) mine duplicates;

2. Derive counts of “basic relations” between activities in the event log;

3. Construct a basic dependency graph using dependency measures;

4. Set the start and end task in the dependency graph;

5. Resolve binary conflicts in the dependency graph (optional);

6. Assure each task is reachable in the dependency graph (optional);

7. Mine long-distance dependencies in the dependency graph (optional);

8. Mine the semantic information, i.e. the sets of input and output bind-

ings per activity to convert the dependency graph to a Causal net.

4.1.1. Steps 1 and 2: Construct Task Log and Derive Basic Relations

In the first step, the given event log is converted to a “task log”, where

each activity in the event log (i.e. in TL) is mapped to a task to-be included
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in the resulting Causal net (i.e. to TC). Without mining duplicate tasks, this

mapping is trivial (TC = TL). When the option is set to mine duplicates, the

same activity in the event log can be mapped to multiple tasks in TC . To de-

termine which activities should be duplicated, we apply a strategy inspired

by Genetic Miner (Alves de Medeiros, 2006). In this technique, it is assumed

that duplicate tasks can be distinguished based on their local context, mean-

ing the set of input and output elements of the duplicates. The aim of Ge-

netic Miner is then to mine process models in which duplicates of a same

task do not have input or output elements in common. This approach has

a couple of benefits. For example, parsing Causal nets with duplicate tasks

remains relatively simple, because the context (the prefix and postfix in the

trace) of an event is sufficient to choose which duplicate task to fire. Similar

approaches have also been applied before, e.g. in (Lu et al., 2016). Based on

this, we have included a procedure which directly infers the duplicate tasks

from the given event log, applying the same principle of a local context. Say

that we are trying to derive if an activity a in the event log L should be du-

plicated. We construct a set of contexts C = {(σi−1, σi, σi+1)|σ ∈ L, σi = a}.

Next, we construct the set of grouped contexts C = {C ′ ∈ P(C)|∀(x, y, z) ∈

C ′ : @(i, j, k) ∈ C\C ′ : j = y ∧ (i = x ∨ k = z), which corresponds with

the duplicate tasks to be placed in the Causal net. As an example, con-

sider the event log: {〈start, a, b, c, a, d, e, a, end〉, 〈start, a, c, b, a, d, e, a, end〉,

〈start, a, b, c, a, e, d, a, end〉, 〈start, a, c, b, a, e, d, a, end〉}. The set of contexts

for activity a is then equal to {(start, a, b), (start, a, c), (c, a, d), (b, a, d), (c, a,

e), (b, a, e), (e, a, end), (d, a, end)}. The set of grouped contexts is constructed

so that the local contexts of a are separated so that they do not overlap with

one another: {{(start, a, b), (start, a, c)}, {(c, a, d), (b, a, d), (c, a, e), (b, a, e)},

{(e, a, end), (d, a, end)}}, representing three duplicate tasks.
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Note that deriving duplicate tasks like this might indeed lead to the du-

plication of activities which could nevertheless be kept as a single task in the

process model without impacting fitness or heavily affecting understand-

ability. However, the choice is made to ignore this, as these “redundant”

duplicate tasks still remain easy to interpret in the final process model.

To mitigate against noise leading towards the derivation of undesired

duplicate tasks (consider for example an activity which is inserted at a ran-

dom position in the event log and is thus likely to be surrounded by an

unseen context), we introduce a “duplicate task threshold”, which works

as follows: when a duplicate task is created with a frequency which is be-

low the duplicate task threshold ratio tdup (the frequency of this particular

duplicate task over the frequency of all duplicate tasks), the duplicate task

for this particular context is removed and merged with the duplicate task

having the greatest frequency. Note that an alternative strategy consists of

ignoring such noisy events altogether, though we consider such “cleaning”

of event logs (i.e. removing infrequent activities in the traces altogether) as

a pre-discovery task which should be executed before invoking Fodina (or

any other discovery algorithm).

In addition, an option was added to better allow the duplication of activ-

ities which also repeat. Consider for example again the trace 〈start, a, a, a, b,

a, a, a, end〉. Based on this, the following set of grouped contexts would be

constructed for a: C = {{(start, a, a), (a, a, a), (b, a, a), (a, a, end)}}, i.e. the

context (a, a, a) causes that no duplicate tasks can be found for activity a.

Therefore, we allow to “collapse” repeated tasks during the derivation of du-

plicates, so that the two duplicate tasks for a can then be discovered (before

b and after b, i.e. based on the collapsed trace 〈start, a,−,−, b, a,−,−, end〉,

we derive C = {{(start, a, b)}, {(b, a, end)}).
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For the remainder of this paper, we assume a mapper function µ : TL 7→

TC which is able to unambiguously map activities occurring in traces in an

event log to a task occurring in the causal net. Given the way duplicate tasks

are dealt with, µ is able to map an activity to one single task in the causal

net by inspecting the local context of this activity.

The second step (derivation of basic relation counts) is performed com-

pletely similar as done in Heuristics Miner (see Subsection 2.3), making

sure, however, to correctly derive the |a >>> b| information, i.e. by count-

ing multiple occurrences of an a >>> b pattern in the same trace.

4.1.2. Steps 3 to 6: Construction of the Dependency Graph

Using TC , µ and basic relation counts, a dependency graph can be con-

structed. Algorithm 1 provides a formal overview of these steps. In lines 1-8,

arcs are introduced for length one loops, normal dependencies and length

two loops respectively. Note that for normal dependencies, we do apply a

different measure compared to Heuristics Miner (line 3), as we argue that

the direct succession of a task b after a is not always suitable direct counter-

evidence against the direct succession of b after a. (The metric now also

lies in the range [0, 1].) For length one and length two loops, we retain the

measures of Heuristics Miner.

All associated thresholds in Fodina (tl1l, td and tl2l) operate separately

from each other during the construction of the dependency graph, which

is not the case in the Heuristics Miner implementation, where changing

one threshold might have no effect without also lowering other thresholds,

which in turn might cause other undesired dependencies to show up. We

have also removed the “positive observations” and “relative-to-best” thresh-

olds in Fodina, as it was observed that their impact is negligible in most
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Algorithm 1 Steps 3 to 7 of Fodina: construction of the dependency graph

(continued on next page).
Input: An event log L with activity set TL, a set of tasks TC with mapping µ : σ ∈ L 7→ TC ,

basic relations |a > b|, |a >> b|, and |a >>> b|, settings td, tl1l, tl2l, tld (thresholds),

noL2lWithL1l, noBinaryConflicts, connectNet, and mineLongDependencies.

Output: A dependency graph D with start and end tasks ts and te; a set ldeps indicating

which dependencies are long distance.

1: D ← {}

2: ∀a ∈ TC : |a>a|
|a>a|+1

≥ tl1l, D ← D
⋃
{(a, a)}

3: ∀a, b ∈ TC : |a>b|
|a>b|+|b>a|+1

≥ td, D ← D
⋃
{(a, b)}

4: ∀a, b ∈ TC : |a>>b|+|b>>a|
|a>>b|+|b>>a|+1

≥ tl2l ∧ (¬noL2lWithL1l ∨ (a, a) /∈ D ∨ (b, b) /∈ D),

D ← D
⋃
{(a, b), (b, a)}

5:

6: ts ← argmaxx∈TC
∑
σ∈L:x=µ(σ1)

1

7: te ← argmaxx∈TC
∑
σ∈L:x=µ(σ|σ|)

1

8: ∀a ∈ TC , D ← D \ {(a, ts), (te, a)}

9:

10: if noBinaryConflicts then

11: for a, b ∈ TC : (a, b) ∈ D ∧ (b, a) ∈ D do

12: D ← D \ {(a, b), (b, a)}

13: if |a >> b| > 0 then D ← D
⋃
{(a, a)}

14: if |b >> a| > 0 then D ← D
⋃
{(b, b)}

15: for c ∈ TC : c 6= a ∧ c 6= b do

16: if (c, a) ∈ D ∨ (c, b) ∈ D then D ← D
⋃
{(c, a), (c, b)}

17: if (a, c) ∈ D ∨ (b, c) ∈ D then D ← D
⋃
{(a, c), (b, c)}

cases (or covered by the other thresholds). During the discovery of length

two loops to add to the dependency graph, users have the option to pro-

hibit a length two loop dependency between a and b (i.e. from a to b and b

to a) when these two tasks are both already involved in a length one loop

with themselves (noL2LWithL1L in line 4). This can be beneficial in cases
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18: if connectNet then

19: repeat

20: % US, UE is the set of unconnected activities from the start/end task respectively

21: if US 6= ∅ then

22: (bestin, un)← argmax(c,u):c∈TC ,u∈US∧(c,u)/∈D∧c6=te∧u6=ts
|c>u|

(|c>u|+|u>c|+1)

23: D ← D
⋃
{(bestin, un)}

24: if UE 6= ∅ then

25: (un, bestout)← argmax(u,c):c∈TC ,u∈UE∧(u,c)/∈D∧u6=te∧c6=ts
|u>c|

(|c>u|+|u>c|+1)

26: D ← D
⋃
{(un, bestout)}

27: until All tasks lie on path from start to end

28:

29: ldeps← {}

30: if mineLongDependencies then

31: for a, b ∈ TC : 2|a>>>b|
|a|+|b|+1

− 2||a|−|b||
|a|+|b|+1

≥ tld do

32: if PathExistsFromToWithoutV isiting(ts, te, a)∧

33: PathExistsFromToWithoutV isiting(ts, te, b)∧

34: PathExistsFromToWithoutV isiting(a, te, b) then

35: D ← D
⋃
{(a, b)}

36: ldeps← ldeps
⋃
{(a, b)}

where both activities are length one loops and both are depending in an

AND relation on the same, third activity, leading to observations such as

〈start, a, b, a, a, a, b, b, a, b, b, b, end〉. This trace can then be configured to be

modeled in two ways, either with a length two loop (and a XOR split/join

for start and end) or without a length two loop (with an AND split/join

being inferred for start and end in step 8). In the fourth step, the start and

end tasks are set in the dependency net (based on start/end frequency in the

traces of the log; all incoming and outgoing arcs of start and end activities

respectively are removed from the dependency graph, lines 6-8). If desired,

users can first pre-process an event log L to add artificial starting and end-
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start a b

end

(a) Dependency net obtained without mining for

duplicate tasks and allowing for “binary conflicts”.

All splits and joins are in a XOR relation.

start

a

b
end

(b) Dependency net obtained without mining for

duplicate tasks and with the “resolve binary

conflict” option enabled, converting the length

two loop to an AND split/join.

start a b a end

(c) Dependency net obtained with mining for

duplicate tasks enabled.

Figure 2: Different dependency graph outcomes obtained with the Fodina miner under vari-

ous configurations for the trace 〈start, a, a, a, b, a, a, a, end〉.

ing activities, which are prepended and appended respectively to each trace

in the event log.

As stated above, during the discovery of length two loops, users may

prohibit a length two loop dependency when the two associated tasks are

both already involved in a length one loop with themselves. Additionally,

applying the concept of “binary conflicts” as described in (Günther, 2009),

users have the option to enable Fodina to try to convert all length two loops

to a single AND relation whenever possible (lines 10-17). As such, the trace

〈start, a, a, a, b, a, a, a, end〉, for example, can now be mined in three differ-

ent ways, as depicted by Figure 2, all of which fit the given trace.

The following, optional, step assures that each task in the dependency

graph is connected, as is a requirement for a valid Causal net (lines 18-27).

This is not implemented by checking if each task has at least one input and

output arc in the dependency graph, similar as done by Heuristics Miner,
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but rather by continuing to add the next-best dependency graph edge (i.e.

the edge with the highest dependency measure connecting the unconnected

task with another task) until all tasks lie on a path between the start and

end activity. This approach is more time consuming than the simple check

performed by Heuristics Miner, but prevents the discovery of nets containing

disconnected elements.

The final step of mining long-distance dependencies is also optional

(lines 29-36), and is performed here before the mining of the semantic

AND and XOR relations. We use the same dependency measure as the one

described for Flexible Heuristics Miner (Weijters and Ribeiro, 2011), i.e.(
2×(|a>>>b|)
|a|+|b|+1

)
−
(
2×abs(|a|−|b|)
|a|+|b|+1

)
. To better avoid the mining of unnecessary

long-distance dependencies, we not only perform a check to see whether it is

possible to go from a to the end task without visiting b (if b is always visited,

the long-distance dependency is unnecessary), but also evaluate whether it

is possible to go from the start to end task without visiting a or without vis-

iting b (similarly, if a or b is always visited, the long-distance dependency is

unnecessary, see lines 32-34). Only if all these checks pass, the candidate

long-distance dependency is introduced in the Causal net.

4.1.3. Step 8: Mine Split and Join Semantics

Finally, the dependency graph is converted to a Causal net by mining the

AND and XOR relations to construct the input and output bindings. Algo-

rithm 2 describes our approach, which is comparable to the pattern-based

approach of Flexible Heuristics Miner, but adds configurable options to make

the discovery more robust to noise.

To construct the output binding for a task, for example, we count the

number of times each pattern (i.e. a possible, particular subset of out-
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Algorithm 2 Step 8 of Fodina: mining split and join semantics (continued

on next page).
Input: An event log L with activity set TL, a dependency graph D with a set of tasks TC

with mapping µ : σ ∈ L 7→ TC and with ts, te start and end tasks; a set ldeps indicating

which dependencies are long distance. Threshold tpat between -1 and 1.

Output: Input and output bindings It, Ot for each task t ∈ TC .

1: for t ∈ TC do

2: It ← FINDPATTERNS(t, input)

3: Ot ← FINDPATTERNS(t, output)

4:

5: function FINDPATTERNS(t, dir)

6: PS ← {} % Set of extracted patterns

7: if dir = input then C ← {x ∈ TC |(x, t) ∈ D} % Set of connected tasks

8: else if dir = output then C ← {x ∈ TC |(t, x) ∈ D}

9: for σi ∈ σ, σ ∈ L : µ(σi) = t do

10: % Task found: construct input/output pattern at this position

11: P ← {}

12: for c ∈ C do

13: if dir = input then

14: CO ← {x ∈ TC |(c, x) ∈ D} % Set of output tasks for candidate input task

15: cp← max {j ∈ [i− 1 . . . 0]|µ(σj) = c}

16: if cp ∧ @k ∈ [cp+ 1 . . . i− 1] : µ(σk) = t ∨ (µ(σk) ∈ CO ∧ (c, t) /∈ ldeps) then

17: P ← P
⋃
{c}

18: else if dir = output then

19: CI ← {x ∈ TC |(x, c) ∈ D} % Set of input tasks for candidate output task

20: cp← min {j ∈ [i+ 1 . . . |σ|]|µ(σj) = c}

21: if cp ∧ @k ∈ [cp− 1 . . . i+ 1] : µ(σk) = t ∨ (µ(σk) ∈ CI ∧ (t, c) /∈ ldeps) then

22: P ← P
⋃
{c}

23: PS ← PS
⋃
{P} % Add the constructed pattern to PS

24: Increment pattern count |P | by one or set to zero if first time seen

25: return FILTERPATTERNS(t, PS, C)
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26: function FILTERPATTERNS(t, PS, C)

27: PF ← {} % Set of retained patterns

28: if |PS| > 0 then

29: tr ←
∑
P∈PS

|P |
|t|×|PS| % |P | indicates the number of times this pattern was seen,

|t| indicates the number of times this activity occurs in the log, |PS| indicates the total

number of patterns found

30: if tpat ≤ 0 then tr ← tr + tpat ∗ tr

31: elsetr ← tr + tpat ∗ (1− tr)

32: for P ∈ PS : |P ||t| ≥ tr do

33: PF ← PF
⋃
{P}

34: for c ∈ C : @P ∈ PS : c ∈ P do

35: PF ← PF
⋃
{{c}}

36: return PF

put tasks) was found after the occurrence of this task, but (i) only up

until the next occurrence of the task under consideration and (ii) where

the task under consideration was also the nearest input task for every task

in the pattern (lines 6-26). For instance, consider a simple dependency

graph D = {(s, a), (a, a), (a, b), (a, c), (b, c).(b, e), (c, e)} and a single trace

σ = 〈s, a, a, b, c, a, c, b, e〉. We now wish to count the number of times each

pattern occurred for the outputs of a. We hence loop over every occurrence

of a in the trace and inspect its output pattern up until the next occur-

rence of a. For the first occurrence, we hence check 〈s, a �, a, b, c, a, c, b, e〉.

The only output task occurring up until the next occurrence of a is a it-

self, and the current a is also the closest input task for that a, so we in-

crease the count with one for pattern {a}. For the next occurrence, we

check 〈s, a, a �, b, c, a, c, b, e〉. Here, b, c and a all occur as outputs. For

b and a, the currently inspected a is the closest input task, but for c, b

lies closer, so that the resulting output pattern is {a, b}. Finally, we check



4.2 Heuristic Execution Semantics for Causal Nets 24

〈s, a, a, b, c, a �, c, b, e〉; b and c occur as output tasks here, both of them

now having a as their nearest (working backwards from their position) in-

put task, so that the final pattern is {b, c}. The output bindings in the Causal

net are hence O(a) = {{a}, {a, b}, {b, c}} based on this single trace.

If one of the output tasks is a long-distance dependent task, however,

the nearest input criterion is skipped for this task (lines 17 and 22), as

the task under consideration can never be the nearest input (by definition).

This edge-case of including long-distance dependencies in the calculation

of split and joins is not included in the description of the Flexible Heuris-

tics Miner. Another improvement relates to the way patterns are selected

for inclusion in the Causal net. First, every pattern with a frequency ra-

tio exceeding a configurable threshold is selected (instead of all found pat-

terns, lines 27-34). Next, the remaining output tasks in the dependency

graph which are not included in any output binding (in the thus-far selected

patterns) are added as singleton subsets to the output binding (lines 35-

37). Increasing the thresholds thus leads to the selection of less patterns

(only the frequent patterns are selected), with potentially more output ac-

tivities remaining which are then added as singleton subsets. Fodina has

been implemented as a ProM 6 plugin and is available with source code at

http://www.processmining.be/fodina.

4.2. Heuristic Execution Semantics for Causal Nets

Next to the process discovery task, the process mining research field de-

scribes a second important analysis task, denoted as conformance checking,

where existing process models are compared with behavior as captured in

event logs so as to measure how well a process model performs with respect

to the actual executions of the process at hand. As such, the “goodness” of
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a process model is typically assessed over the quality dimensions of fitness

(or: recall, sensitivity), precision (or: appropriateness), generalization, and

simplicity (or: structure, complexity).

In order to determine the quality of process models mined with Fod-

ina in accordance with the given event log (or a new log), we define an

execution semantic for Causal nets, similar to the semantics used by the Im-

proved Continuous Semantics (ICS) measure in Heuristics Miner (Alves de

Medeiros, 2006). That is, we implement a heuristic, greedy replay procedure

as follows. This procedure is less permitting (i.e. not non-local) than the

theoretical case of finding a possible binding sequence for a trace (van der

Aalst et al., 2011), though much faster and, due to the nature of heuristic

discovery algorithms, not limiting in practice. During the replay, a state is

kept, representing a set of pending obligations which must be fulfilled by

future tasks. Each obligation is expressed as a tuple of the form (t, o), i.e.

the obligation to resolve the set of output bindings o that followed after

the execution of t, so that state S = {(t, o)|t ∈ TC , o ⊆ O(t)}. As such,

S is initially empty when replaying a trace σ. Next, all events σi ∈ σ are

iterated and fired. Each time an event is fired, the matching task among

the duplicates in the Causal net is chosen (i.e. µ(σi)). Then, for the se-

lected task which is to be fired, the best input binding i ∈ I(µ(σi)) is de-

termined based on the amount of unsatisfied (i.e. “missing”) input tasks

being present. An input task x for an input binding is unsatisfied when

@(t, o) ∈ S|t = x ∧ µ(σi) ∈
⋃
(o) with

⋃
(o)2. Naturally, the most optimal

input binding is one which has no missing input tasks and can thus fire with-

2The union operator here defines the flattening of a set of sets, e.g.
⋃
({{a, b}, {a, c}}) =

{a, b, c}.
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out error; in the case where multiple input bindings can be satisfied, the one

containing the largest amount of tasks is selected. If there are missing input

tasks, we continue but indicate the execution of this activity as being “force

fired”, i.e. with errors.

After firing, a successor state is generated as follows. First of all, the fired

task µ(σi) is removed from all pending obligations which contain the fired

task in one of their output bindings: ∀(t, o) ∈ S, b ∈ o|µ(σi) ∈
⋃
(o), update

binding b := b \ µ(σi) if µ(σi) ∈ b, ∅ elsewise. Note that output bindings

which do not contain the fired task are emptied altogether, as they represent

a part of the disjunction of obligations that cannot be resolved anymore (this

emphasizes the greedy nature of the replay). Before moving on to the next

event in the trace, the state is updated with a new obligation containing the

output bindings of the event which was fired, i.e. S = S∪{(µ(σi), O(µ(σi))}.

At the end of trace replay, it is possible that the final state contains leftover,

pending obligations, either due to the local nature of the replay algorithm

or due to the discovered Causal net not being sound. It is up to the replay

measure used whether to punish on this aspect.

We emphasize that the replay procedure described here is greedy and

hence heuristic. Nevertheless, for Causal nets mined with Fodina (and other

heuristic miners), this replay semantic is able to correctly parse the traces

contained in the event log. As a simple example, consider the dependency

graph in Figure 2(b). The trace 〈start, a, a, a, b, a, a, a, end〉 is now replayed

as follows (the chosen best input binding is indicated in bold face):
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Task σi I(σi) O(σi) S after firing σi
start {{∅}} {{a, b}} {(start, {{a, b}})}
a {{start}, {a}} {{a}, {end}} {(start, {{b}}), (a, {{a}, {end}})}
a {{start}, {a}} {{a}, {end}} {(start, {{b}}), (a, {{a}, {end}})}
a {{start}, {a}} {{a}, {end}} {(start, {{b}}), (a, {{a}, {end}})}
b {{start}} {{end}} {(a, {{a}, {end}}), (b, {{end}})}
a {{start}, {a}} {{a}, {end}} {(b, {{end}}), (a, {{a}, {end}})}
a {{start}, {a}} {{a}, {end}} {(b, {{end}}), (a, {{a}, {end}})}
a {{start}, {a}} {{a}, {end}} {(b, {{end}}), (a, {{a}, {end}})}
end {{a,b}} {{∅}} {}

Using the event-local execution semantics for Causal nets, various con-

formance checking measure can be defined. First of all, we can apply the Im-

proved Continuous Semantics (ICS) measure to be used with our defined ex-

ecution semantics. The actual definition of the ICS measure itself is equal to

the one applied by Heuristics Miner and its variants, i.e. equal to the fitness

measure PFcomplete as described by Alves de Medeiros (Alves de Medeiros,

2006). As we have defined event-local execution semantics, the possibility

also exists to re-utilize existing conformance checking measures which de-

pend only on such semantics (i.e. determining whether an activity in a trace

can be parsed by the model or not). These measures can directly be applied

to our proposed approach, since our defined execution semantics allow to

determine for each a ∈ TL, given a list of pending obligations, whether this

activity can be executed fittingly or not. Finally, recall that the discovered

Causal nets can be converted to Petri nets (van der Aalst et al., 2011), which

allows for a multitude of other conformance checking measures available in

literature to be applied.

5. Experimental Evaluation

We perform an experiment evaluation to benchmark the robustness and

performance of our approach using 50 different event logs (see Table 1).

Logs “a10skip” to “l2lskip” are commonly used synthetic event logs (Alves

de Medeiros, 2006). Logs “prAm6” to “prGm6” are also synthetic and have
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been utilized in a benchmarking study by Munoz-Gama et al. (Munoz-Gama

et al., 2013). Next, logs “permlXaY” contain all permutations (with repe-

tition) of length X with number of activity types equal to Y (not including

distinct start/end activities); the log size is hence Y X . The best model for

these logs is obviously a “flower model” which allows any sequence of activ-

ities, but these logs will be used to perform robustness checks by iterating

over and mining each trace separately. Logs “randpmsXdY” are logs with

size X generated from a randomly constructed process model3 with depth Y.

Logs “randsAlBmCaD” are also randomly generated, but purely by choosing

random activities out of an activity alphabet with size D (not including dis-

tinct start/end activities) to construct A traces with mean length B and stan-

dard deviation C, i.e. not simulated from a (random) process model. Logs

“realX” encompass four real life logs. Table 1 also provides an overview of

the structural characteristics for the event logs included in the experiment.

For our experimental evaluation, we include Heuristics Miner (Weijters

and Ribeiro, 2011), using the “Mine for a Heuristics Net using Heuristics

Miner” plugin (HM) in ProM 6.6, as well as the Flexible Heuristics Miner,

using the “Mine for a Causal Net using Heuristics Miner” plugin in ProM

6.6 (FHM). These are benchmarked against Fodina (F), with FD describing

a configuration with duplicate task mining being enabled as well.

Using this setup, we first evaluate the robustness of our technique. One

might expect that a process discovery algorithm would be able to return a

perfectly fitting process model in case where the given event log only con-

tains one single trace variant. Considering for a moment that duplicate ac-

tivities could be mined, such a process model could indeed simply model the

3Using the Process Log Generator, see: http://www.processmining.it/sw/plg
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Event Log |TL| |L| |
⋃
(L)| Event Log |TL| |L| |

⋃
(L)|

a10skip 12 300 6 perml10a3 5 59049 59049
a12 14 300 5 perml3a10 12 1000 1000
a5 7 300 13 perml3a3 5 27 27
a6nfc 8 300 3 perml3a5 7 125 125
a7 9 300 14 perml5a10 12 100000 100000
a8 10 300 4 perml5a3 5 243 243
betasimplified 13 300 4 perml5a5 7 3125 3125
choice 12 300 16 randpms10000d1 8 10000 2
driverslicense 9 2 2 randpms10000d2 16 10000 4724
driverslicenseloop 11 350 87 randpms10000d3 38 10000 2906
herbstfig3p4 12 32 32 randpms1000d1 7 1000 17
herbstfig5p19 8 300 6 randpms1000d2 14 1000 12
herbstfig6p18 7 300 153 randpms1000d3 51 1000 998
herbstfig6p31 9 300 4 randpms100d1 9 100 3
herbstfig6p36 12 300 2 randpms100d2 18 100 55
herbstfig6p38 7 300 5 randpms100d3 20 100 54
herbstfig6p41 16 300 12 rands10000l20m8a10 12 10000 10000
l2l 6 300 10 rands1000l10m4a5 7 1000 999
l2loptional 6 300 9 rands100l5m2a3 5 100 90
l2lskip 6 300 8 realdocman 70 12391 1411
prAm6 363 1200 1049 realhospital 626 1143 981
prBm6 317 1200 1126 realincman 18 24770 1174
prCm6 311 500 500 realoutsourcing 7 276599 3151
prDm6 429 1200 1200
prEm6 275 1200 1200
prFm6 299 1200 1200
prGm6 335 1200 1200

Table 1: Structural log characteristics for event logs included in experimental setup.

sequence of events as they occur in the trace variant to obtain such a fitting

model. Therefore, we perform a basic analysis where, for each event log,

each trace is mined separately by the discovery algorithm under considera-

tion, after which the trace is replayed on the mined model to verify whether

a fitting model was constructed. An end score is then obtained for each log

representing the percentage of traces for which such a fitting model could

be mined. To replay each trace on its associated mined model, we apply

each discovery algorithm’s “native” replay semantics. For Heuristics Miner,

we apply the replay semantics as utilized by the Improved Continuous Se-

mantics (ICS) measure. For Causal Nets mined by Flexible Heuristics Miner,

we align each trace on its “Flex net” (the implementation in ProM denotes

Causal Nets mined by this miner as “flexible nets”; a plugin is available to
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Robustness Analysis
Event Log HM FHM F and FD Event Log HM FHM F and FD
perml10a3 0.18 0.64 1.00 rands10000l20m8a10 0.23 0.79 1.00
perml5a10 0.97 1.00 1.00 rands1000l10m4a5 0.42 0.83 1.00
perml5a3 0.76 0.94 1.00 rands100l5m2a3 0.76 0.93 1.00
perml5a5 0.89 0.98 1.00 realdocman 1.00 1.00 1.00
randpms10000d2 0.91 1.00 1.00 realhospital 0.54 0.82 1.00
randpms10000d3 0.91 0.99 1.00 realincman 1.00 1.00 1.00
randpms1000d3 0.81 0.95 1.00 realoutsourcing 0.93 1.00 1.00
randpms100d2 0.90 1.00 1.00 driverslicenseloop 0.81 0.95 1.00

herbstfig6p18 0.86 0.86 1.00

Table 2: Robustness results for the evaluated discovery algorithms. For each event log, each

trace is mined separately using the lowest dependency thresholds possible for each miner,

after which the trace is replayed on the mined model to verify whether a fitting model was

constructed. An end score is then obtained for each log representing the percentage of traces

for which such a fitting model could be mined. Event logs for which each miner was able to

obtain a perfect (1.00) result are omitted.

replay event logs by means of alignment). For Fodina, we apply the heuris-

tic replay semantics as described in Section 4.2). Table 2 lists the results of

this operation. The results show that Fodina is able to mine all single traces

correctly. Note also that we relied here on the most relaxed configuration pa-

rameters regarding dependency thresholds for each miner, i.e. all dependency

thresholds were set to their lowest values (zero) for all miners.

Next, we execute a standard benchmark comparison where each miner

is applied on the event log as a whole, after which recall and precision of

the discovered models is assessed. To evaluate the discovered models in a

fair manner, we first perform a conversion to a Petri net. Note that we have

modified the conversion procedure in the case of Heuristics Miner to ensure

a correct conversion. We then execute the following conformance checking

measures: Behavioral Recall (Goedertier et al., 2009) (rB), to evaluate fit-

ness, and Behavioral Weighted Precision (vanden Broucke et al., 2014) (pwB)

to evaluate precision. Both work on an event-granular level and hence allow

for a robust comparison among the different miners. Both metrics are com-
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bined using the F1 measure (the harmonic mean of precision and recall),

which has been previously applied in a process mining context, see (Weerdt

et al., 2011).

Table 3 lists the results of the benchmarking experiment. For 36 out of

50 event logs, Fodina is able to achieve the highest F1 result; for 8 logs,

only a limited number of results could be obtained within the set time limit.

Note that Fodina is able to obtain much higher recall results if guided by

the end-user to do so (i.e. in the low-threshold configurations). The results

for herbstfig6p38 show an interesting case where Heuristics Miner is able to

significantly outperform Fodina. Note that this result would not be achieved

when using the default Petri net conversion available for Heuristics Miner

(in which case the results drop significantly).

6. Conclusion

This paper has presented Fodina, a process discovery technique which

follows the generic idea of heuristic process discovery algorithms. Although

such techniques have proven themselves as robust process discovery algo-

rithms and able to deal with real life event logs containing a large amount of

variety of behavior, we identified some particular issues which limit the ro-

bustness and reliability of the technique. As such, we have set out to perform

a thorough literature review and evaluation of the existing heuristic process

discovery variants with their implementation to consequently propose a new

technique which was proven to be more robust via a comprehensive eval-

uation experiment. Furthermore, the proposed technique presents various

contributions, most notably the capability to mine duplicate tasks and the

ability to configure various options to guide the discovery algorithms.
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Miner
Event Log HM FHM F FD
perml10a3 0.94 (1.00 0.89) 0.80 (0.82 0.78) 0.94 (1.00 0.89) 0.94 (1.00 0.89)
perml3a10 0.54 (0.80 0.41) 0.63 (0.72 0.56) 0.64 (0.72 0.57) 0.65 (0.73 0.58)
perml3a3 0.75 (0.67 0.85) 0.74 (0.85 0.65) 0.79 (0.73 0.87) 0.77 (0.69 0.87)
perml3a5 0.66 (0.80 0.56) 0.68 (0.78 0.60) 0.72 (0.83 0.63) 0.72 (0.82 0.64)
perml5a10 0.71 (0.86 0.61) – (0.70 –) 0.80 (0.67 1.00) – (0.67 –)
perml5a3 0.87 (0.95 0.81) 0.78 (0.87 0.71) 0.87 (0.95 0.81) 0.87 (0.95 0.81)
perml5a5 0.79 (0.86 0.74) 0.73 (0.77 0.68) 0.79 (0.85 0.73) 0.79 (0.85 0.73)
randpms10000d1 1.00 (1.00 1.00) 1.00 (1.00 1.00) 1.00 (1.00 1.00) 1.00 (1.00 1.00)
randpms10000d2 0.96 (1.00 0.92) 0.96 (1.00 0.92) 0.96 (1.00 0.92) 0.96 (1.00 0.92)
randpms10000d3 0.96 (1.00 0.93) 0.96 (1.00 0.93) 0.96 (1.00 0.93) 0.96 (1.00 0.93)
randpms1000d1 1.00 (1.00 1.00) 1.00 (1.00 1.00) 1.00 (1.00 1.00) 1.00 (1.00 1.00)
randpms1000d2 0.91 (1.00 0.83) 0.91 (1.00 0.83) 0.91 (1.00 0.83) 0.91 (1.00 0.83)
randpms1000d3 0.83 (1.00 0.71) 0.83 (1.00 0.71) 0.83 (1.00 0.71) 0.83 (1.00 0.71)
randpms100d1 1.00 (1.00 1.00) 1.00 (1.00 1.00) 1.00 (1.00 1.00) 1.00 (1.00 1.00)
randpms100d2 0.94 (1.00 0.89) 0.94 (1.00 0.89) 0.94 (1.00 0.89) 0.94 (1.00 0.89)
randpms100d3 0.95 (1.00 0.90) 0.95 (1.00 0.90) 0.95 (1.00 0.90) 0.95 (1.00 0.90)
rands10000l20m8a100.29 (0.95 0.17) – (0.67 –) 0.28 (0.87 0.17) 0.28 (0.88 0.17)
rands1000l10m4a5 0.59 (0.91 0.44) 0.55 (0.77 0.43) 0.57 (0.90 0.42) 0.58 (0.93 0.43)
rands100l5m2a3 0.80 (0.92 0.71) 0.76 (0.88 0.67) 0.81 (0.97 0.70) 0.79 (0.90 0.70)
realdocman – – 0.56 (0.97 0.39) 0.56 (0.97 0.39)
realhospital – – – –
realincman 0.53 (0.80 0.40) 0.70 (0.95 0.56) 0.80 (0.96 0.68) 0.81 (0.97 0.70)
realoutsourcing 0.07 (0.04 0.62) 0.82 (0.76 0.90) 0.97 (1.00 0.95) 0.97 (1.00 0.95)
a10skip 1.00 (1.00 1.00) 1.00 (1.00 1.00) 1.00 (1.00 1.00) 1.00 (1.00 1.00)
a12 1.00 (1.00 1.00) 1.00 (1.00 1.00) 1.00 (1.00 1.00) 1.00 (1.00 1.00)
a5 1.00 (1.00 1.00) 1.00 (1.00 1.00) 1.00 (1.00 1.00) 1.00 (1.00 1.00)
a6nfc 0.93 (1.00 0.87) 0.96 (1.00 0.92) 0.89 (0.99 0.81) 0.89 (0.99 0.81)
a7 0.89 (1.00 0.80) 0.87 (0.98 0.77) 0.95 (0.94 0.95) 0.94 (0.94 0.94)
a8 1.00 (1.00 1.00) 1.00 (1.00 1.00) 1.00 (1.00 1.00) 1.00 (1.00 1.00)
betasimplified 0.92 (1.00 0.85) 0.92 (1.00 0.85) 0.92 (1.00 0.85) 0.92 (1.00 0.85)
choice 1.00 (1.00 1.00) 1.00 (1.00 1.00) 1.00 (1.00 1.00) 1.00 (1.00 1.00)
driverslicense 0.95 (1.00 0.90) 0.95 (1.00 0.90) 0.95 (1.00 0.90) 0.95 (1.00 0.90)
driverslicenseloop 0.94 (1.00 0.89) 0.94 (1.00 0.89) 0.94 (1.00 0.89) 0.94 (1.00 0.89)
herbstfig3p4 1.00 (1.00 0.99) 1.00 (1.00 0.99) 0.99 (1.00 0.98) 0.99 (1.00 0.98)
herbstfig5p19 0.95 (1.00 0.90) 0.95 (1.00 0.90) 0.95 (1.00 0.90) 0.95 (1.00 0.90)
herbstfig6p18 0.99 (1.00 0.97) 0.99 (1.00 0.97) 0.99 (1.00 0.97) 0.99 (1.00 0.97)
herbstfig6p31 0.72 (1.00 0.56) 0.72 (1.00 0.56) 0.72 (1.00 0.56) 0.72 (1.00 0.56)
herbstfig6p36 0.99 (1.00 0.98) 0.99 (1.00 0.98) 0.99 (1.00 0.98) 0.99 (1.00 0.98)
herbstfig6p38 0.86 (0.88 0.84) 0.80 (1.00 0.66) 0.74 (0.96 0.61) 0.74 (0.96 0.61)
herbstfig6p41 – (1.00 –) – (1.00 –) – (1.00 –) – (1.00 –)
l2l 1.00 (1.00 1.00) 1.00 (1.00 1.00) 1.00 (1.00 1.00) 1.00 (1.00 1.00)
l2loptional 1.00 (1.00 1.00) 1.00 (1.00 1.00) 1.00 (1.00 1.00) 1.00 (1.00 1.00)
l2lskip 1.00 (1.00 1.00) 1.00 (1.00 1.00) 1.00 (1.00 1.00) 1.00 (1.00 1.00)
prAm6 – (0.94 –) – (0.93 –) – (0.95 –) – (0.95 –)
prBm6 0.61 (0.98 0.44) – (0.97 –) – (0.96 –) – (0.96 –)
prCm6 0.07 (0.61 0.03) – (0.57 –) – (0.68 –) – (0.69 –)
prDm6 – (0.54 –) – – (0.60 –) – (0.59 –)
prEm6 0.08 (0.73 0.04) – (0.77 –) – (0.76 –) – (0.78 –)
prFm6 – (0.78 –) – (0.78 –) – (0.77 –) – (0.76 –)
prGm6 – (0.65 –) – (0.74 –) – (0.73 –) – (0.72 –)

Table 3: F1-measure results for the evaluated discovery algorithms. Recall and precision

scores are reported between parentheses. “–” results correspond with cases where the con-

formance checking procedure took too much time (more than two hours) and was aborted.
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