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Abstract

Smart manufacturing systems transmit out streaming data from loT devices to cloud computing; however, this
could bring about several disadvantages such as high latency, immobility, and high bandwidth usage, etc. As
for streaming data generated in many loT devices, to avoid a long path from the devices to cloud computing,
Fog computing has drawn in manufacturing recently much attention. This may allow loT devices to utilize the
closer resource without heavily depending on cloud computing. In this research, we set up a three-blade fan as
loT device used in manufacturing system with an accelerometer installed and analyzed the sensor data through
cyber-physical models based on machine learning and streaming data analytics at Fog computing. Most of the

Approximation Algorithms; Streaming Data Analytics

previous studies on the similar subject are of pre-processed data open to public on the Internet, not with
real-world data. Thus, studies using real-world sensor data are rarely found. A symbolic approximation
algorithm is a combination of the dictionary-based algorithm of symbolic approximation algorithms and
term-frequency inverse document frequency algorithm to approximate the time-series signal of sensors. We
closely followed the Bayesian approach to clarify the whole procedure in a logical order. In order to monitor a
fan's state in real time, we employed five different cyber-physical models, among which the symbolic
approximation algorithm resulted in about 98% accuracy at a 95% confidence level with correctly classifying
the current state of the fan. Furthermore, we have run statistical rigor tests on both experimental data and the
simulation results through executing the post-hoc analysis. By implementing micro-intelligence with a trained
cyber-physical model unto an individual loT device through Fog computing we may alienate significant amount
of load on cloud computing; thus, with saving cost on managing cloud computing facility. We would expect
that this framework to be utilized for various loT devices of smart manufacturing systems.

Keywords: Cyber-Physical Model; Smart Manufacturing; loT; Fog computing; Machine Learning; Symbolic

Introduction

Smart manufacturing with IoT brings about rapid
manufacturing by networking machines, sensors, and
actuators as a whole [1-3]. The economics of Indus-
trial ToT is expected to grow up to $6.2 trillion by
2025 [4]. IoT structure can be divided into three lev-
els: ToT device (embedded computing), Fog comput-
ing, and Cloud computing. Each level is distinguished
by the use of the three different data analytics shown in
Fig. 1. Fog computing is facility that uses edge devices
to carry out fast streaming data analytics [5—8]. The
characteristics of Fog computing are a) low latency,
b) low data bandwidth, and c) sensor heterogeneity
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[9, 10]. Cloud computing with big data analytics de-
mands much expensive computing resources; therefore,
downsizing the process being sent to cloud computing
may be quite beneficial.

What smart manufacturing concerns most is to ac-
cess the state of installed devices in real-time. Imple-
menting any complexity of intelligence that can rec-
ognize the state of devices into embedded computing
is often not possible due to its lack of built-in com-
puting resources. This calls for a cyber-physical model
(CPM) [11, 12] that can make an important decision
on its own at Fog computing. However, no matter how
simple an IoT device operates in a certain way, it is
very difficult to create a CPM that can accurately tell
the state on its own subject to unknown external or
internal elements.
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Yet another difficult issue can be how to process
enormous streaming data from sensors with great ef-
ficiency. This type of data is called time series (TS),
which is a collection of ordered values over time. Since
TS has a temporal structure, it needs to be treated
differently from other types of data [13]. One big
challenge in dealing with TS is its vast size [14]. In
general, by applying approximation or transformation
to data, some amount of size and noise can be cut
down. Being used as a baseline algorithm for TS, K-
Nearest Neighbors (KNN) with Dynamic Time Warp-
ing (DTW) is quite slow and requires much computing
resources [15]. Recently, two Symbolic Approximation
Algorithms that serve to transform a TS into symbols
have drawn good attention: One is Symbolic Aggre-
gate approXimation (SAX) [16]. The other is Symbolic
Fourier Approximation (SFA) [17], through which we
carried out simulations in this study. SFA consists of
Discrete Fourier Transform (DFT) for approximation
and Multiple Coefficient Binning (MCB) for quantiza-
tion.

Given TS, time series classification (TSC) is of de-
termining to which of a set of designated classes in
this TS belongs to, the classes being defined by mul-
tiple set of training data [18, 19]. As the heart of the
intelligence of IoT, CPM is evolving in such a way
that it can manipulate the physical processes based on
the domain-specific knowledge on its own, not blindly
transmitting data to a cloud system for a request for
an important decision. Recently, a couple of interest-
ing algorithms for TSC have been rolled out: the BOSS
model [20] and the WEASEL MUSE model [21] both
apply a supervised symbolic representation to trans-
form subsequences to words for classification. Several
machine learning techniques have been used such as lo-
gistic regression, support vector machine, random for-
est, artificial neural networks (ANN) [22], and LSTM
[23]. In this study, we employed the BOSS model as an
algorithm for the CPM. Furthermore, we adopt an ex-
tended algorithm: BOSS VS (Bag-Of-Symbolic Fourier
Symbols in Vector Space) based on a term-frequency
inverse-term-frequency vector for each class [24, 25].

Figure 2 shows a workflow, on which we divided it
into three phases: observation, machine learning, and
status update. In the observation phase, streaming
data is being stored for 37 sec. Once it passes 3T sec,
then Machine Learning trains the model for 27" sec. It
should be noted that even while learning the model,
the new data is still coming in to be stored. As soon
as the training is up, the model conducts classification
over new data for T sec. It is important to note that
Machine Learning and Status Update must be com-
pleted within 37 sec, otherwise, this process can be
out of work. This completes a single process loop in
the repetitive process for classification.
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In this study, we built a three-blade fan with an ac-
celerometer installed on it. We defined three states of
the fan for classification: normal state, counter-wind
state, and mechanical failure state. Fog computing is
set up with a system: Intel Core i3-8100 CPU 3.60 GHz
at 4 GB memory, and the OS being Ubuntu 20.04.1
LTS.

In summary, herein we pursued three objectives:
along with real-world experimental data of the fan,
we proposed a cyber-physical model that meets the
following requirements:

e To be able to efficiently process streaming data,

e To be able to accurately classify the state of the

fan,

e To complete classification within the designated

time at Fog computing.

Cyber-Physical Models for loT Device

In probabilistic modeling, we pay good attention to
a model for real-world phenomena with uncertainty.
Unlike with well-organized and preprocessed data, the
complexity of the real-world phenomenon as shown in
Fig. 3 can easily go out of the bound of our com-
prehension. For example, such are air velocity, rota-
tion, vibration, counter-wind occurrence, and pressure
changes, etc. This is because there are too many un-
knowns relating physical interactions for even a simple
IoT device like a fan.

We have sought a cyber-physical model that can
classify the state (or class) of a fan. The class set
C = {C4, - ,Ck} with K being the number of the
classes, which the classes are normal, counter-wind,
and mechanical failure states of the fan in this study.
Fast Streaming data from sensors can be regarded as
time series. A time series T; is defined as an ordered
sequence T; = {t1,...,t,}. The multivariate time se-
ries have several features, that is Vj,¢; € R4, where
d is the number of features. The model is expected
to provide a relatively simple function f : T — C,
where T = {T1,...,Tn}, and is expressed as a joint
probability distribution p(C,T).

A prime purpose of the use of the Bayesian approach
is to infer probability for what we are interested in. As
shown in Fig. 3, because the inference in such a phe-
nomenon is quite complex, the model demands a huge
amount of training data. For such a practical reason,
the number of cases within the model of the joint prob-
ability must be drastically reduced. That is, firstly we
worked with the joint probability distribution p(C, T)
of the class C and a time series T. We wanted to cal-
culate how likely a given data is. Thus, we defined the
posterior p(C|T) to infer the hidden structure with
Bayesian inference:
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f(T) = argmax p(C|T)
Cec

o WTIOR(O)
= AN o T[C)p(C)dC M)

x argmax p(T|C)p(C)
CceC

By marginalizing the joint probability distribution
over C we are not interested in, then we can make the

resulting marginal distribution p(T) = [ p(T|C)p(C)dC.

This calls for the conditioning on the joint probability
and prior: p(T|C)p(C). Once given the training data
set, the likelihood p(T|C) in Eq. (1) can be calculated.
Thereby, we can then answer: given the data T, what
are the most likely parameters of the model or class C?
With the help of the Bayesian approach, we may come
up with a logical procedure empolyed in the present
study.

Classification refers to labeling a new time series
Q={q, - ,qn}yand Vi, ¢; € R% for i = 1...m with
d being the feature shown in Eq.(2). In other words,
classification indicates the calculation of p(C|Q) sub-
jected to new streaming data Q = {Q1,...,Qn}:

label(Q) = argmax p(C|Q)
CreC

= argmax p(Q|C)p(C) (2)
Crec

Symbolic Fourier Approximation (SFA)
This section introduces Symbolic Fourier Approxima-
tion (SFA) used in the BOSS VS model. SFA consists
of Discrete Fourier Transformation (DFT), and Mul-
tiple Coefficient Binning (MCB).

Discrete Fourier Transformation (DFT)
Discrete Fourier Transform (DFT) extracts Fourier co-
efficients from each time series 7"

DFT(T) = {a1,b1,...,Gm,bm} (3)

where a; and b; are the real and the imaginary element
of Fourier coefficients. Figure 4 shows that low-pass
filtering and smoothing of a sample of acceleration in
x-axis upon Discrete Fourier Transform (DFT), where
DFT result is obtained by taking first two Fourier co-
efficients in Eq.(3).

Multiple Coefficient Binning (MCB)
Next, the Multiple Coefficient Binning (MCB) quanti-
zation is carried out with training data. M matrix is
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constructed using the Fourier transform of N training
time series with the first [ of Fourier coeflicients being
equivalent to an SFA word of length [ as defined in
Eq.(4).

DFT(T})
M: .
DFT(T)
(a1,b1)1 ... (a2, b2
= : : : (4)
(a1,b1)n ... (ay2,by2)N

where M being j—th column of M matrix for all of N
training data. M; is then divided into intervals of ¢ and
is sorted by value and then divided into ¢ bins of equi-
depth policy. That is, the ¢ — th row of M corresponds
to the Fourier transform of the 7th time series T;. With
the columns M; for j = 1,...,1, and an alphabet space
Al of size ¢, the breakpoints 3;(0) < --- < B;(c) for
each column M are generated. Each bin is labeled by
applying the ath symbol of the alphabet A’ to it. For
all combination of (j,a) with j = 1,...,] and a =
1,..., ¢, the labeling symbol(a) for M; can be done by

[8j(a = 1), 5(a)] = symbol(a) ()

It is noted that this process in Eq.(5) applies to all
training data.

SFA Working Example

SFA word can be obtained from SFA(T) = s1,...,s8
with DFT where DFT(T) = t{,...,t; and t's are trans-
formed time series with Fourier transform. That is,
SFA: R! — A!, where A! is the alphabet set of which
size is c¢. For a working example, in Fig. 5, we set [ = 1
and ¢ = 2. Six samples as shown Fig. 5(a) are ran-
domly selected from the experimental data. The data
then is transformed via DFT, resulting in the Fourier
coefficients for each sample. A vector of the Fourier co-
efficient values of the first sample reads (-1.352, 5.043)
as shown in Fig. 5(b). Next, MCB is conducted with
an alphabet set A' = {aa,ab,ba,bb} as shown in
Fig. 5(c). Thereby, an SFA word of the first sample
is mapped into a word ab shown in Fig. 5(d). Like-
wise, the other samples can be transformed into their
respective SFA words.

BOSS: Bag-of-SFA-Symbols model

The Bag-Of-SFA-Symbols (BOSS) model is of the time
series representation with the structure-based repre-
sentation of the bag-of-words model. The sequence of
SFA words for six samples in Fig. 5(d) reads as follows:
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S = {ab, ba, bb, aa, aa, bb} (6)

The values that count the apperance of SFA words in
Eq.(6) are expressed upon numerosity reduction:

B:aa=2,ab=1 ba=1, bb=2 (7)

It is noted that SFA words in Eq.(6) now results in
the BOSS hisgogram shown in Eq.(7). Therefore, the
BOSS model B can be regarded as a random variable,
that is, B : S — N. The probability mass function
p(B) can be addressed by p(B = aa) = 1/3, p(B =
ab) = 1/6, p(B = ba) = 1/6, and p(B = bb) =
1/3. This provides us with quite important information
about the structure of the samples, which structure is
being used as features for machine learning.

BOSS VS: Bag-of-SFA-Symbols in Vector Space

BOSS VS model is an extented BOSS model. A time
series T' = {t1,...,t,} of length n is divided into slid-
ing windows of length of w is S;., where w € N.
The SFA word is defined as SFA(S;,) € Al, with
i=1,2,...,(n—w+1), where A is the SFA word space
and [ € N is the SFA word length. The BOSS his-
togram B(S) : A" — A. The number in the histogram
is the count of appearance of an SFA word within T’
upon numerosity reduction. BOSS VS model allows
frequent updates, such as fast streaming data analyt-
ics. As shown in Fig. 6(a) and Fig. 6(b), the BOSS VS
model operates sliding windows unto each time series
resulting in multiple windowed subsequences. Next,
each subsequence is tranformed into the SFA words
shown in Fig. 6(c). All of the subsequences eventu-
ally then result in the BOSS histogram shown in Fig.
6(d). However, since the BOSS histogram itself is not
suitable for performing multiple of matrix calculations,
it is vectorized through Term Frequency Inverse Doc-
ument Frequency (TF-IDF) algorithm shown in Fig.

6(e).

TF-IDF: Term Frequency Inverse Document
Frequency

The BOSS VS model employs Term Frequency Inverse
Document Frequency (TF-IDF) algorithm to weight
each term frequency in the vector. This assigns a
higher weight to signify words of a class. The term fre-
quency tf for SFA words S of a time series T' within
class C is defined as

t£(S, C)

~J1+log (X rec B(S)), if YrecB(S) >0 (8)
N 0, otherwise
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where B(S) is the BOSS histogram in Eq.(7). The in-

verse document frequency idf is given by
C|

{C|T € Cn B(S) > 0}|

idf(S, C) = log (9)

In this study, for classification purposes, we em-
ployed three different states of a running fan, which
is presented as a set of classes (states) C. The ele-
ments of the set are C = {C1,Cs,C5}. Tt is noted
that each element Cj for k = 1,2, 3 represents a cer-
tain state of the fan. As for the human-readable for-
mat, we have assigned name-tags to each class such
as C; = “Normal”, Cy = “Counter Wind’, and
C3 = “Mechanical Failure”, respectively. The in-
verse document frequency indicates the frequency of
an SFA word in a class C. Therefore, in this study,
the numerator of Eq.(9) of |C| denotes a numeric value
3. Multiplying Eq.(8) by Eq.(9), the tfidf of an SFA
word S within class C is defined as

tfidf(S, C) = t£(S, C) - idf(S, C)

1+ log (Z B(S))

TeC
C|
[{C|T € CnB(S) > 0}]

(10)

log

The result of t£idf (S, C) on three states is displayed
in Fig. 6(e). It is noted that a high weight in Eq.(10) is
obtained by a high term frequency in the given class.

Classification
Classification of new data () can be carried out using
the cosine similarity metric CosSim:

CosSim(Q, C)
> seq t£(S,Q) - t£idi(S, C) (11)

- \/ZSGQ t£2(S, Q)\/ZSGC t£1d£2(S, C)

It is noted that in Eq.(11) t£(S,Q) is of the term
frequency of Q as shown in Fig.7(b), which is the
BOSS histogram of Q. Then, CosSim(Q, C) is calcu-
lated in Eq.(11). Upon maximizing the cosine similar-
ity, a query Q is thus classified into the class C} as
shown in Eq.(12):

label(Q) = arg Dax (CosS8im(Q, Ck)) (12)

In conclusion, BOSS VS algorithm of which founda-
tion is composed of two notions: Bag-of-words and TF-
IDF. What makes BOSS VS be different from other
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algorithms is a way of taking features of data. This
algorithm does not construct a loss function like other
machine learning algorithms but simply use Bag-of-
Words instead. With time series are transformed into
sequences of symbols, Bag-of-words approaches are
then used to extract features from these sequences.
Time series are presented as histograms with desig-
nated symbols. And then each histogram is trans-
formed into TF-IDF vectors for classification. What
we have discussed for building a model is quite in-
volved, thereby we sorted out the procedure step by
step with a lookup table. Table 1 displays the lookup
table for the probabilistic models and corresponding
algorithms.

Results and Discussion
Experiments
An experimental apparatus is a three-blade fan on the
wheels with a low-power digital accelerometer made in
Analog Device (ADXL345 GY-80) installed as shown
in Fig. 8. The dimension of the apparatus is the width
18.5 mm, length of 12.3 mm, and height of 30 mm. For
classification, we considered three of the most probable
states of the fan we can think of in a real-world situ-
ation: The normal state where the fan running with-
out any noticeable event (see left pane in Fig. 8), the
counter-wind state in which occurrence of intermit-
tency of counter-wind against the fan takes place (see
center pane in Fig. 8), and the mechanical failure state
where one of the blades is broken off (see right pane
in Fig. 8). The average rotational speed of the fan was
114 rpm at normal state, 41 rpm at counter-wind state,
and 107 rpm at mechanical-failure state, respectively.
Each sample was collected at a sampling rate of
100 Hz for 3 seconds from the accelerometer, so the
length of each sample is 300. For example, 900 sam-
ples for each state of the fan were collected via x
and y channels, so the number of data points sums
900 samples x 2 channels x 300 x 3 states = 1, 620, 000.
It took 2 hours and 15 minutes for collecting 1,620,000
of data points at each measurement. The samples of
the experimental data are shown as a set of time series
along with mean and strandard deviation into three
states in Fig.9.

Exploratory Data Analysis

Exploratory Data Analysis (EDA) is carried out to
identify the property of data. In Fig. 9, the raw data,
its rolling mean, and the standard deviation are over-
laid. Since raw data contains much noise, it is neces-
sary to filtered out for a better analysis. The rolling
mean is one such filtering tool. The standard deviation
can be used for estimating variance of data.
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In addition, we need to know how much trends, rep-
etition over intervals, white noise, and another un-
certainty are. These characteristics of data should be
never taken lightly because the authenticity of the ex-
periment can be determined by them. We employed
the Augmented Dickey-Fuller (ADF) test with the null
hypothesis of whether it being stationarity. The test
results of p-value < 0.05 as shown in Table 2 for the
three states with all six time-series from experimental
data; therefore, we can reject the null hypothesis at
a 95% confidence level. Thus, we may affirm that the
experiment data is stationary.

Comparison of Models

We empoyed five diferent models: WEASEL MUSE,
BOSS VS, random forest (RF), logistic regression
(LR), and one-nearest neibor DTW (1-NN DTW). Ta-
ble 3 describes characteristics of five models according
to temporal structure (Temporal), low-pass filtering
(Filter), transformation (Transform), and key features
(Features). Only 1-NN DTW keeps the temporal struc-
ture of data, and the others do not consider the order
of data points over time. Algorithms for feature extrac-
tion are y? test for WEASEL MUSE, Term-Frequency
Inverse Document Frequency algorithm for BOSS VS,
Entropy for RF, the cost function for LR, and Eu-
clidean distance for 1-NN DTW.

Classification with BOSS VS

Table 4 shows the numerical expression of the trained
model p(C|T) in Table 1, which is the result of vector
t£idf(S, C) calculated using training data. The sym-
bolic algorithm SFA converts the whole training data
to S = {aa,ab, ba,bb}. For example, the features of
the normal state (C) are aa, ab, ba, and bb with
the numerical values (3.5649, 3.5649, 3.5649, 3.6390)
as displayed in Table 4. For the counter-wind state
(Cy), the value reads (3.1972, 2.9459, 3.3025, 3.3025),
which is clearly distinguished from those of the normal
state.

Table 5 shows the classifier p(C|Q) in Table 1 for
Q. For example, the first sample @, is predicted as
the normal state because of the largest value of 0.9990
throughout the column to which it belongs. In the
same fashion, the classification is performed for the
remaining time series such as the counter-wind state
for 2, and the mechanical failure state for Q5 and so
on.

Post-Hoc Analysis

Often in many studies, the results tend to be presented
without statistical rigor. However, it is important to
check if it being statistically significant before further
discussion, which is called Post-Hoc analysis.
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As shown in Table 6, the BOSS VS model indicates
the highest accuracy for all data sizes. In addition,
even though the number of data is increased from 180
k to 1.6 million, it shows a little change in accuracy,
so we may conclude that the BOSS VS model is not
significantly affected by the size of data. The smaller
the number of data used, the shorter the run time,
but on the other hand, the model tends to be over-
fitted to the data. For example, in scenario I, 180,000
data points was used; for the BOSS VS model, the
accuracy turned out 100%. This can clearly indicates
overfitting, where too little data was used for training.
If the number of data is increased, the time for pre-
processing and calculation also increases accordingly.
Therefore, it is necessary to manipulate the data size
so that Fog computing may handle a whole process
within a designated time. In this study, we put a time
limit on the simulation, where the processing time ¢y,
does not exceed 1/10 of the data collection time t,ps.

Table 6 does not tell whether the difference in the
accuracy of each model is statistically meaningful. An-
other ambiguity arises in the results of the run time.
Thus, we carried out the ANOVA (Analysis of Vari-
ance) test that provides statistical significance among
differences. Table 7 shows the ANOVA test result for
accuracy with F' = 60.8, and p-value < 0.05 at a 95%
confidence level. This indicates that the null hypothe-
sis is rejected. Therefore, it can be said that the mean
values for the accuracy of each model differ signifi-
cantly. In addition, the difference in run time for each
model is statistically significant, with F' = 4.58, and
p-value = 0.008. In conclusion, the simulation over five
scenarios for accuracy and run time with five models
can be confirmed to be statistically significant.

However, the ANOVA test results shown in Table 7
alone cannot tell which model is different in accuracy
and run time from those of others. Thereby, another
test should be carried out to see which model is signifi-
cantly different from the others. We employed Tukey’s
Honest Significant Difference test (Tukey Test) for all
pariwise comparisons while controlling multiple com-
parisons. In this study, the suitability of models was
sought statistically in two aspects: accuracy and scal-
ability.

Accuracy

The result of the Tukey Test, which being multiple
comparisons of means of accuracy from five models, is
summarized in Table 8. It is noted that two cases, 1-
NN DTW vs WEASEL MUSE and LR vs RF, are not
statistically significant upon a 95% confidance level.
This implies that two cases may have a great simi-
larity in the way to make poor predictions. On the
contrary, all pairwise comparisons with the BOSS VS
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model are proven statistically significant at a 95% con-
fidence level. Figure 10 shows yet another aspect of
the trend of accuracy over run time for all five models,
where the BOSS VS model outputs a far great perfor-
mance in both accuracy and run time.

Scalability

In general, a scalable model shows consistently good
performance despite an increase in the amount of data.
Multiple comparisons of run time for five models are
summarized in Table 9. All pairwise cases for 1-NN
DTW model vs the other models turn out to be signif-
icant. Thus, we may conclude that 1-NN DTW model
is far less scalable. Figure 11 shows the scalability of
models in which except the 1-NN DTW model the
other models keep relatively small changes in the run-
time subject to increasing data size. Figure 12 shows
the comparison of the 95% confidence interval (CI) of
accuracy of each model using experimental data of dif-
ferent sizes. The accuracy of the BOSS VS model fell
into CI = 0.987240.0073, of which statistical behavior
is much better compared to CI = 0.8205 4+ 0.1319 in
the second-place RF model. Moreover, the deviation
0.0073 of the BOSS VS model is quite small compared
to 0.1319 that of the RF model. This explains good
scalability, which indicates that the BOSS VS model
is robust to changes in data size.

Conclusion

Analyzing a huge amount of data transmitted in real
time from a networked IoT device, which is a core of
smart manufacturing, to properly classify the state of
the device is interesting and practically important. Re-
cently, there has been a growing tendency to solve this
problem not only in cloud computing but rather at Fog
computing close to IoT devices. To this end, two issues
must be resolved: one is is of a cyber-physical model
that can represent the state of an IoT device, and the
other is about how to properly process streaming sen-
sor data in real-time.

A major goal in this study is to build a good cyber-
physical model with significant accuracy in classifica-
tion. Taking advantage of machine learning and sta-
tistical inference with a vast amount of data, data-
driven modeling approach can alienate quite a burden
of such complicated theoretical domain-specific knowl-
edge. While most literature publishes the results of the
simulation using well-preprocessed public data, in this
study, we implemented noisy real-world data. A three-
blade fan with an accelerometer installed is considered
for an IoT device to create a cyber-physical model that
can classify the state of the fan into three states. Using
several algorithms including the most recent out ones,
upon the classification performance of five models with
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real-world data; we achieved an accuracy of about 98%
with BOSS VS model.

For further studies, we need to challenge a cou-

ple of tasks for better accuracy and scalability. Thus,
more studies should be conducted for efficient models
and algorithms with machine learning against ever-
increasing sensors at smart manufacturing, in order
not to wholly depending on cloud computing.
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Figures

Figure 1 Three levels of loT system. As the top-level, loT
employing cloud system associated with big data analytics.
Fog computing resides in the middle equipped with fast
streaming data analytics. At the bottom level, loT devices
such as sensors are located with consecutive temporal data
requiring real-time data analytics.

Figure 2 The workflow of Fog computing in the present study.
Fog computing is composed of three distinctive modes in a
single time sequence: observation, machine learning, and
status update. Observation phase executes streaming data
storing. Machine Learning phase does data processing and
learning the model. Status update phase carries out a
classification of a fan status with the trained model. A red box
refers to a sliding window corresponding to a process of the
workflow on the timeline. For example, the box which is on the
second from the left indicatese data storing. Likewise, the fifth
box from the left is of learning the model.
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Figure 3 A cyber-physical model is expected to well explain
the effect of real-world elements such as acoustic noise,
mechanical failure, temperatue change, revolution (rpm),
pressure distribution of blades, vibration, counter-wind
occurence, and wind velocity etc.

Figure 4 Low-pass filtering and smoothing of a sample of
acceleration in x-axis upon Discrete Fourier Transform (DFT).
In this plot, DFT result is obtained by taking only first two
Fourier coefficients.
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Figure 5 A pictorial diagram of symbolic Fourier
approximation (SFA) procedure: a) Incoming sensor data of six
time-series, b) The data is then transformed via Fourier
transform, c) The Fourier coefficients are quantizied via
Multiple Coefficient Binning (MCB), and d) Each time series
has been mapped into its respective SFA word.

Figure 11 Scalability comparison of five models. As the
amount of data is increased, the 1-NN-DTW model shows the
worst scalability. On the contrary, the other models show
reasonable scalability. The BOSS VS model performs excellent
scalability yet keeping the best accuracy.

Figure 6 BOSS model and BOSS VS: a) Samples are being
scanned with a sliding window, b) multiple windowed
subsequences are generated, c) all of the subsequences are
transformed into SFA words, d) SFA words are summarized in
the form of BOSS histogram (BOSS model), and e) the BOSS
histogram is vectorized through Term Frequency Inverse
Document Frequency (TF-IDF) model, which finally results in
TF-IDF vectors for training data.

Figure 7 Schematic diagram of classification with the consine
similarity: a) New data for query is first transformed into SFA
words, b) the SFA words of the new data is tranformed into
the BOSS histogram, c) the trained model in the form of tf-idf
algorithm is given, and d) the classificaiton is carried out
through calculating the cosine similarity between the trained
model and the query.

Figure 8 Photos of the three-blade fan in the three states:
Normal state (left), Counter-wind state (center), and
Mechanical failure state (right). The counter-wind state
indicates the state where counter-wind being blown by another
fan in front of the fan. The mechanical failure refers to the
state in which one of the blades having been removed off.

Figure 9 Experimental time series data for three states of the
fan: Normal state (top row), counter-wind state (middle row),
and mechanical failure state (bottom row). Raw data from the
accelerometer overlaid with the rolling mean and standard
deviation. Each row represents both x (left) and y (right)
acceleration in g unit.

Figure 12 The result of comparing the 95% confidence
interval (Cl) of the accuracy of five models using five scenarios
of data size. This illustates the scalability of each model's
performance in classification. The accuracy of the BOSS VS
model fell into Cl = 0.9872 + 0.0073 resulting in the best
performance.

Figure 10 Accuracy comparison of five models (WEASEL
MUSE, BOSS VS, Random Forest, Logistic Regression, and
1-Nearest-Neighbor DTW). 1-NN DTW model shows the
worst performance both in accuracy and run time. On the
contrary, the BOSS VS model shows excellent accuracy over
the others. Note: the upper left being the overall best
performance.
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Tables

Table 1 Lookup table for the probabilistic models and corresponding algorithms.

Probability ~ p(T|C) p(C) p(C|T) p(QIC) p(ClQ)
Algorithm  t£(S,C) 1idf(S,C) t£idf(S, C) t£(Q, C) CosSim(Q, C)
Note Model Prior Trained Model  Transformed Classifier

Table 2 Augmented Dickey-Fuller (ADF) Test Results: The results show that all of six time-series are found to be stationary of being
statistically significant owing to p-value < 0.05 (95% confidence level), which indicates evidence against the null hypothesis Hg.

Time Series ADF statistic P-value  Critical Value (5%)

x-acc (Normal) -4629 1.1x107% -2.871
y-acc (Normal) -6.137 8.1 x 1078 -2.871
x-acc (Counter Wind) -6.486 1.2 x 1078 -2.871
y-acc (Counter Wind) -5.839 3.8x 1077 -2.871
x-acc (Mechanical Failure) -4.577 1.4 x107% -2.871
y-acc (Mechanical Failure) -4.459 23 x107% -2.871

Table 3 Comparison of characteristics of five models via conducting normalization (Norm.), keeping temporal structure (Temporal),
carrying out low-pass filtering (Filter), executing transformation (Transform), and key features (Features).

Temporal  Filter  Transform Features
WEASEL MUSE No Yes Yes X2 test
BOSS VS No Yes Yes Term Frequency
RF No No No Entropy
LR No No No Cost
1-NN DTW Yes No No Distance

Table 4 The trained model p(C|T) with equivalent of TF-IDF vector tfidf(S, C) for the training data. S = {aa, ab, ba, bb} is the
SFA words and C = {C1,C2,C3} is three states of the fan.

Class 4 Ca Cs
Normal  Counter Wind  Mechanical Failure
aa 3.5649 3.1972 2.9459
ab 3.5649 2.9459 2.3862
ba 3.5649 3.3025 2.0986
bb 3.6390 3.3025 2.3862

Table 5 The classifier p(C|Q) with equivalent to Cosine similarity between the trained model p(C|T) for each class and new samples

Q={Q1,...,Qs} as a query. C = {C1,C>,C3} is three states of the fan. The similarity resutls in the prediction for the new samples.
The maximum value of the cosine similarity for each sample is boldfaced.
Q1 Q2 Qs Q4 Qs Qs
Normal 0.9990 0.9958 0.9987 0.9963 0.9943 0.9970
Counter Wind 0.9964 0.9977 0.9988 0.9942 0.9909 0.9991

Mechanical Failure 0.9908 0.9791 0.9924 0.9855 0.9985 0.9868
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Table 6 Comparison of performace of five models according to five scenarios: The number of data points is increased from 180k up to
1.6 Million. As for Fog computing: The processor: Intel Core i3-8100 CPU 3.60GHz at 4GB memory, and the OS being Ubuntu 20.04.1

O Joy b WN

LTS. BOSS VS model shows excellent scalability while keeping the highest accuracy among the other models.

Scenario  Data points (samples) Model tobs (sec)  tarr (sec)  Accuracy
WEASEL MUSE 900 0.398 0.200
BOSS VS 900 0.464 1.000
180,000 (300) RF 900 0.443 0.567
LR 900 0.253 0.633
1-NN DTW 900 10.409 0.266
WEASEL MUSE 2,700 1.009 0.333
BOSS VS 2,700 1.422 0.977
I 540,000 (900) RF 2,700 1.163 0.822
LR 2,700 2.540 0.655
1-NN DTW 2,700 89.546 0.377
WEASEL MUSE 4,500 1.810 0.346
BOSS VS 4,500 2.456 0.986
11 900,000 (1,500) RF 4,500 1.961 0.906
LR 4,500 7.153 0.740
1-NN DTW 4,500 246.794 0.400
WEASEL MUSE 5,400 2.193 0.366
BOSS VS 5,400 2.966 0.983
\% 1,080,000 (1,800) RF 5,400 2.472 0.877
LR 5,400 12.921 0.766
1-NN DTW 5,400 352.067 0.411
WEASEL MUSE 8,100 3.851 0.370
BOSS VS 8,100 4.667 0.988
\Y 1,620,000 (2,700) RF 8,100 3.910 0.929
LR 8,100 32.183 0.711
1-NN DTW 8,100 793.221 0.388
Table 7 ANOVA test result of accuracy and run time among five models.
Sumgq df F PR(>F)
Algorithms (Accuracy) 164 40 60.80 6.56x 10~11
Residual 0.13  20.0 - -
Algorithms (Run time)  346268.91 4.0 4.58 0.008631
Residual 377628.33  20.0 - -
Table 8 Multiple Comparison of Means of Accuracy - Tukey HSD test
Groupl Group2 meandiff  p-adj lower upper  reject
1-NN DTW BOSS VS 0.614 0.001 0.458 0.770 True
1-NN DTW LR 0.328 0.001 0.172 0.484 True
1-NN DTW RF 0.447 0.001 0.292 0.603 True
1-NN DTW  WEASEL MUSE -0.049 0.862 -0.205 0.106 False
BOSS VS LR -0.286 0.001 -0.441 -0.130 True
BOSS VS RF -0.166 0.032 -0.322 -0.011 True
BOSS VS WEASEL MUSE -0.663 0.001 -0.819 -0.508 True
LR RF 0.119 0.187 -0.036 0.274  False
LR WEASEL MUSE -0.377 0.001 -0.533 -0.222 True
RF WEASEL MUSE -0.497 0.001 -0.652 -0.341 True
Table 9 Multiple Comparison of Means of run time - Tukey HSD
Groupl Group2 meandiff  p-adj lower upper  reject
1-NN DTW BOSS VS -296.01 0.020 -556.08 -35.93 True
1-NN DTW LR -287.39 0.025 -547.47 -27.32 True
1-NN DTW RF -296.41 0.020 -556.49 -36.34 True
1-NN DTW  WEASEL MUSE -296.55 0.020 -556.62 -36.48 True
BOSS VS LR 8.61 0.900 -251.45 268.68 False
BOSS VS RF -0.405 0.900 -260.47 259.66 False
BOSS VS WEASEL MUSE -0.542 0.900 -260.61 259.53 False
LR RF -9.02 0.900 -269.09 251.05 False
LR WEASEL MUSE -9.15 0.900 -269.23 250.91 False
RF WEASEL MUSE -0.137  0.900 -260.21 259.93  False




O Joy b WN

Choi

Additional Files

Additional files

Experimental Raw Data file (statefan.csv)
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Figure 1

Three levels of IoT system. As the top-level, loT employing cloud system associated with big data

analytics. Fog computing resides in the middle equipped with fast streaming data analytics. At the
bottom level, IoT devices such as sensors are located with consecutive temporal data requiring real-time
data analytics.
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The work ow of Fog computing in the present study. Fog computing is composed of three distinctive
modes in a single time sequence: observation, machine learning, and status update. Observation phase
executes streaming data storing. Machine Learning phase does data processing and learning the model.
Status update phase carries out a classification of a fan status with the trained model. A red box refers to
a sliding window corresponding to a process of the work ow on the timeline. For example, the box which
is on the second from the left indicatese data storing. Likewise, the fifth box from the left is of learning
the model.
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A cyber-physical model is expected to well explain the effect of real-world elements such as acoustic
noise, mechanical failure, temperatue change, revolution (rpm), pressure distribution of blades, vibration,
counter-wind occurence, and wind velocity etc.
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Low-pass filtering and smoothing of a sample of acceleration in x-axis upon Discrete Fourier Transform
(DFT). In this plot, DFT result is obtained by taking only first two Fourier coefficients.
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quantizied via Multiple Coefficient Binning (MCB), and d) Each time series has been mapped into its

respective SFA word.
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Figure 6

BOSS model and BOSS VS: a) Samples are being scanned with a sliding window, b) multiple windowed
subsequences are generated, ¢) all of the subsequences are transformed into SFA words, d) SFA words
are summarized in the form of BOSS histogram (BOSS model), and e) the BOSS histogram is vectorized
through Term Frequency Inverse Document Frequency (TF-IDF) model, which finally results in TF-IDF
vectors for training data.
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Figure 7

Schematic diagram of classification with the consine similarity: a) New data for query is first transformed
into SFA words, b) the SFA words of the new data is tranformed into the BOSS histogram, c) the trained
model in the form of tf-idf algorithm is given, and d) the classificaiton is carried out through calculating
the cosine similarity between the trained model and the query.

Normal Counter Wind Mechanical Failure

Figure 8

Photos of the three-blade fan in the three states: Normal state (left), Counter-wind state (center), and
Mechanical failure state (right). The counter-wind state indicates the state where counter-wind being



blown by another fan in front of the fan. The mechanical failure refers to the state in which one of the

blades having been removed off.
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Figure 9

Experimental time series data for three states of the fan: Normal state (top row), counter-wind state
(middle row), and mechanical failure state (bottom row). Raw data from the accelerometer overlaid with
the rolling mean and standard deviation. Each row represents both x (left) and y (right) acceleration in g

unit.
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Figure 10

Accuracy comparison of five models (WEASEL MUSE, BOSS VS, Random Forest, Logistic Regression, and
1-Nearest-Neighbor DTW). 1-NN DTW model shows the worst performance both in accuracy and run time.
On the contrary, the BOSS VS model shows excellent accuracy over the others. Note: the upper left being
the overall best performance.
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Figure 11

Scalability comparison of five models. As the amount of data is increased, the 1-NN-DTW model shows
the worst scalability. On the contrary, the other models show reasonable scalability. The BOSS VS model
performs excellent scalability yet keeping the best accuracy.
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The result of comparing the 95% confidence interval (Cl) of the accuracy of five models using five
scenarios of data size. This illustates the scalability of each model's performance in classification. The
accuracy of the BOSS VS model fell into Cl = 0:9872 + 0:0073 resulting in the best performance.
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