
This is a postprint version of the following document:

Sarrigiannis, I., Contreras, L. M., Ramantas, K., Antonopoulos, A. y
Verikoukis, C. (2020). An Intelligent Edge-based Digital
Twin for Robotics. IEEE Network, 34 (5), pp. 120-126.

DOI: https://doi.org/10.1109/MNET.111.2000476

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

__

Ioannis Sarrigiannis and Kostas Ramantas are with Iquadrat Informatica; Luis M. Contreras is with Telefónica I+D / Global CTIO Unit;

Angelos Antonopoulos and Christos Verikoukis are with CTTC/CERCA.

Fog-enabled Scalable C-V2X Architecture for Distributed
5G and Beyond Applications

ABSTRACT

The Internet of Things (IoT) ecosystem, as
fostered by fifth generation (5G) applications,
demands a highly available network
infrastructure. In particular, the internet of
vehicles use cases, as a subset of the overall IoT
environment, require a combination of high
availability and low latency in big volumes
support. This can be enabled by a network
function virtualization architecture that is able to
provide resources wherever and whenever
needed, from the core to the edge up to the end
user proximity, in accordance with the fog
computing paradigm. In this article, we propose a
fog-enabled cellular vehicle-to-everything
architecture that provides resources at the core,
the edge and the vehicle layers. The proposed
architecture enables the connection of virtual
machines, containers and unikernels that form an
application-as-a-service function chain that can
be deployed across the three layers. Furthermore,
we provide lifecycle management mechanisms
that can efficiently manage and orchestrate the
underlying physical resources by leveraging live
migration and scaling functionalities.
Additionally, we design and implement a 5G
platform to evaluate the basic functionalities of
our proposed mechanisms in real-life scenarios.
Finally, the experimental results demonstrate
that our proposed scheme maximizes the accepted
requests, without violating the applications’
service level agreement.

INTRODUCTION

The Internet of Things (IoT) ecosystem is a
collection of billions of devices, such as sensors, that
are connected among them and with the Internet.
According to Ericsson’s mobility report, the 10.8
billion IoT connections of 2019 are expected to reach
the number of 24.9 billion by the end of 2025, which
means a compound annual growth rate (CAGR) of
15 percent [1]. When it comes to cellular networks,
and as the fifth generation of wireless

communications (5G) is being gradually introduced,
the amount of 1.3 billion cellular IoT connections of
2019 is expected to experience an even higher CAGR
of 25 percent, reaching the number of 5 billion by the
end of 2025.

Vehicle-to-everything (V2X) communications is a
major area of IoT that will enable communication
between vehicles and between vehicles and
infrastructure. The cellular V2X (C-V2X)
application layer model includes the vehicle-to-
vehicle (V2V), vehicle-to-infrastructure (V2I) and
vehicle-to-network (V2N) operational modes that
require a combination of high reliability and low
latency. C-V2X was initially introduced by the 3rd
Generation Partnership Project (3GPP), under the
Release 14 [2], using LTE-based radio access
network (RAN) for V2X communications, while
Release 16 is anticipated to feature 5G support for
the V2X services.

The national highway traffic safety administration of
the United States (U.S.) predicts that by fully
adopting only two V2X safety applications, 1000
lives per year could be saved and a half million
crashes could be prevented in the U.S., while a
reduction of 14 percent of the global greenhouse
emissions, due to transportation, could be also
achieved [3]. Therefore, it is imperative to create an
intelligent transportation system (ITS), or an internet
of vehicles (IoV) environment, in order to provide
crucial and non-crucial services.

Traffic safety, reduced air pollution and regulation of
vehicle traffic flows, are only few examples for
improving the quality of life. Traffic management
applications, for example, could collect real-time
weather information from road condition sensors,
such as surface conditions (e.g., temperature,
humidity, salinity, and so on.). A traffic safety
application will have to take into consideration the
aforementioned metrics and, along with sensors on
the vehicles (e.g., proximity or break sensors), issue
an action that could be a warning (e.g., information

Ioannis Sarrigiannis, Luis M. Contreras, Kostas Ramantas, Angelos Antonopoulos and Christos Verikoukis

for cooperative road safety), or an immediate action
(e.g., emergency break for collision avoidance).

Depending on the service, V2X crucial services (e.g.,
autonomous driving) can tolerate a maximum
latency between 10 ms and few seconds, while non-
crucial services (e.g., vehicle software update) can
tolerate up to few minutes of latency [4]. LTE RAN
is unable to support such low latency values in big
volumes, which makes the 5G RAN the perfect
enabler for C-V2X applications [5]. The majority of
the published works propose edge computing
solutions where processing power becomes available
at the edge of the network. These proposals often
refer to multi-access edge computing (MEC)-
enabled architectures [6], where processing power is
offered both at the core and edge network. Moreover,
applications, in accordance with the network
function virtualization (NFV) paradigm (i.e., the
virtualization of the physical infrastructure), are
considered as virtual network functions (VNFs) that
can be executed at these two layers [7]. While these
solutions are able to offer the required low latency
for many C-V2X applications to function properly,
they struggle to guarantee the ultra-low latency
requirements (i.e., equal or less than 10 ms) in big
volumes for some crucial services [5].

Addressing some of the core and edge limitations,
fog computing “distributes computing, storage,
control and networking functions closer to the users,
along a cloud-to-thing continuum” [8]. Fog takes
advantage of the infrastructure that lies along the
cloud-to-thing path, such as servers, routers,
switches, vehicles and smartphones. These devices,
previously limited to operate autonomously, can now
participate in a connected environment that
efficiently manages their resources. Therefore, the
ability to leverage all the available resources,
especially at the thing proximity, can guarantee the
ultra-low latency in big volumes that the C-V2X
applications require.

Another significant topic that has caught both
industry’s and academia’s attention is the VNF
placement problem in such distributed architectures.
On the one hand, there are various works that try to
tackle the placement problem within a generic MEC-
enabled environment considering a VNF either as a
virtual machine (VM) [7], an environment that fully
virtualizes a physical computer, or a container [9], a
lightweight virtual environment that enables

application-level virtualization. Compared with
unikernels, an even more shrunken virtualization
environment that contains only the minimum amount
of operating system (OS) services, kernel and
libraries for a specific application to run, VMs and
containers could add significant delay to the IoV
infrastructure, making them inappropriate for ultra-
low latency C-V2X services.

On the other hand, there are very few works focusing
on the service placement, specifically for C-V2X
communications. The authors in [10] consider the C-
V2X service placement problem in a MEC
architecture, taking into consideration the
computational resource availability at the nodes,
offering a low-complexity greedy-based heuristic
algorithm in order to solve this problem. Yet, they
are limited to a two-layer architecture and their
building block is considered to be the VM.
Furthermore, the authors in [11] provide a fog-
enabled platform in order to support the distribution
of IoV applications. While they leverage the fog
infrastructure, they are also limited to the container
as their virtualization environment.

Within the context of the fog computing paradigm,
we propose a new 3GPP compliant fog-enabled
architecture with three different layers of processing
power; the core, the edge and the vehicle. Our
architecture, apart from the V2N communications,
supports direct V2V communications, where,
combined with the processing power at the vehicle,
enables the execution of ultra-low latency
applications, saving, at the same time, resources for
the V2N communications. A distributed application
model is adopted, where applications consist of
virtual environments (i.e., VNFs) that can run as
VMs, containers or unikernels. The combination of
one or more heterogeneous virtual environments,
distributed across the three different processing
layers, creates an application-as-a-service function
chain (AaaSFC).

Supporting this architecture, we explain two
important lifecycle management (LCM)
functionalities, the live migration and the horizontal
scaling of the VNFs. Furthermore, we provide an
experimental 5G platform implementation, based on
open source software and common hardware, while
we enhance the shortcomings of an open source NFV
orchestrator (NFVO) in order to support migration
decisions. Additionally, we present four distinctive

examples of C-V2X use cases and we provide a
comprehensive guide that elaborates the main
properties of the three different virtualization
environments. To the best of our knowledge, there is
no other work that assumes such distributed
architecture, utilizing heterogeneous virtual
environments, in order to deploy, place and manage
a distributed AaaSFC within the premises of a three-
layered fog-enabled environment for C-V2X use
cases, supported by experimental results that are
based on an experimental platform implementation.

C-V2X USE CASES

The IoV aims to provide crucial and non-crucial
applications for an ITS. While in the V2V, V2N and
V2I operational modes the 5G base station (gNB) can
be used as the communication hub, there is also the
option for direct communication between the vehicle
and another vehicle or device. This direct channel
can be used when the latency requirements of a
service would be violated if the intermediate gNB
was used, or to save infrastructure and network
resources. In this section we will describe four C-
V2X use cases, as well as their latency requirements,
based on [[4],[12]].

Vehicle type warnings
A vehicle type warning service could be on
emergency situation to create awareness of the
presence of emergency vehicles in proximity. This
application allows a vehicle of an emergency service
(e.g., ambulance, police car, etc.) to indicate its
presence (event). The emergency vehicle notifies the
vehicles on its path about its presence (notification)
and the drivers should be warned to clear the road
(action). This will save important time for the
emergency services to reach their destination. The
maximum latency for such application is 100 ms,
from the occurrence of the event until the notification
of the involved vehicles [12].

Co-operative road safety
An emergency breaking application could be
considered as a co-operative road safety service. The
vehicle that uses a hard break (event) signals the hard
breaking to the following vehicles (notification) in
order to notify them for possible collision. Based on
the speed, distance and road conditions, the
following vehicles should decide if they should slow
down in order to avoid a possible collision (action).
The maximum latency for such application is 100

ms, from the occurrence of the event until the
decision for action of the involved vehicles [12].

Navigation and traffic jam avoidance
A map download and update application can be
considered as an infotainment service. The vehicle
requests Internet access in order to download the
required map and find the best route, based on its
current location and destination. The maximum
latency for such application is 500 ms [12]. Traffic
jams normally happen in a long time period. In case
a traffic jam occurs (event) on the navigation’s
predefined route, depending on the setting, a delay of
2 s, in the case of urban areas, up to a few minutes,
in the case of rural areas, can occur for the vehicle to
get notified (notification) and change its route
(action) [4].

Autonomous driving
An autonomous driving application is enabled by
high definition (HD) sensor sharing. It provides
mechanisms for vehicles to share HD sensor data,
such as lidar that measures the distances by
illuminating targets with laser light and HD cameras,
in order to enable better coordination for platooning
and intersection management. An emergency vehicle
that has to make a turn into an intersection (event)
signals its course and speed to all nearby vehicles
(notification) in order to adjust their speed to give
priority to the emergency vehicle (action). The
maximum latency that such application can suffer
cannot exceed 10 ms, from the occurrence of the
event until the actions taken by the involved vehicles
[4].

DISTRIBUTED HETEROGENEOUS

APPLICATION MODEL

In accordance with the NFV paradigm, a distributed
application model is adopted, where applications
are hosted in VNFs. VNFs can run as VMs,
containers or unikernels, while their combination
creates an AaaSFC. In a traditional environment,
the memory is divided in the kernel and the user
space, for memory and hardware protection. The
OS and kernel are executed in the kernel space,
while the libraries and the application software are
running in the user space.

A virtual environment follows similar principles. In
some cases, though, a hypervisor is used for the
virtualization of the underlying physical resources or
the kernel is deployed to the user space. Figure 1
demonstrates the system architecture of each virtual
environment, namely the VM, container and
unikernel. The grey color illustrates the hardware or
hypervisors, the orange indicates the kernel space
and the green designates the user space.

Virtual Machines
VMs are virtual environments that act as virtual
computers with their own central processing unit
(CPU), memory, storage and network interfaces, and
have their own OS and kernels. A VM includes both
user and kernel space, while the virtualization and
allocation of the underlying physical resources is
enabled by a hypervisor software (Figure 1-a). VMs
can support resource demanding applications and
isolate them properly over the same infrastructure,
but their instantiation time could be up to few
minutes, depending, among other factors, on the
footprint of the VM.

Containers
Containers can also provide an isolated environment
for the applications and their runtime dependencies
to run, using the common infrastructure. Contrary to
the VMs, containers include only the user space
where the applications and the library files reside,
while the kernel space is shared (Figure 1-b).
Containers are more lightweight, compared to VMs,
but they require an underlying OS and kernel that
provide the basic services. Their instantiation time
could be up to few seconds and they are mostly used
to host lightweight applications.

Unikernels
Unikernels can be considered as shrunken VMs, as
they contain the minimum required OS services and
dependencies for a single task to run. They do not
require a kernel space, as the kernel commands are

executed in the user space and they do not need and
underlying OS; they can be executed directly at the
hypervisor or on bare metal (Figure 1-c). Since they
contain only the essential information for the
application to run, the size of the unikernels is very
small, while the reduced kernel complexity makes
the unikernels to run faster than the VMs. Thus, they
can be instantiated almost instantly. In contrast,
unikernels can only run a single process and the
development of applications able to run on this
environment is trickier. Finally, containers are prone
to hack attacks, since their kernel uses the user space.

FOG-ENABLED C-V2X ARCHITECTURE

We propose the fog-enabled C-V2X architecture
depicted in Figure 2. This architecture includes
computation, network and storage resources on each
fog node, with the core having the most, and the
vehicle the least resources. The MEC resides in the
edge fog node. The proposed architecture fully
supports NFV by enabling the virtualization of
physical resources at the hypervisors that are located
at the three nodes, and by applications running as
connected VNFs (i.e., AaaSFC). The virtualized
infrastructure manager (VIM) is responsible for the
management and control of the heterogeneous
resources of the NFV infrastructure, while the NFVO
performs the resource orchestration. They both
reside in the core fog node.

In this architecture, the 5G RAN is considered for the
communication of the three different fog nodes. The
5G core control functions reside in the core fog node
and the user plane function (UPF) that steers the data
traffic to desired applications and network functions
resides in the edge fog node. The gNBs
communicate among them using the NG interface,
with the UPF using the N3 interface and with the
vehicles using the Uu interface. The vehicle fog
nodes can also communicate between them using the
direct PC5 interface. The PC5 interface, as described
in 3GPP Release 15, enables the direct
communication where the infrastructure does not
participate. Finally, each vehicle fog node acts as an
IoT gateway, as it collects and aggregates the data
from the sensors deployed at the vehicle.

In terms of virtual environments deployment, the
VMs can run either at the core or edge fog nodes, the

Figure 1 - Comparison of a) virtual machine, b) container and c)

unikernel system architecture

Hardware

Hypervisor

OS +

Kernel

OS +

Kernel

OS +

Kernel

Lib Lib Lib

App App App

Hardware

OS + Kernel

Lib Lib Lib

App App App

Hardware

Hypervisor

Kernel Kernel Kernel

Lib Lib Lib

App App App

a) b) c)

containers at the edge or vehicle fog nodes and the
unikernels are able to be executed at the vehicle fog
nodes only. Regarding their connectivity, the VMs of
the core fog node can communicate with VMs of the
core and edge fog nodes, and with containers of the
edge and vehicle fog nodes. Furthermore, the
containers of the edge nodes can also communicate
with the containers of the vehicle nodes. Finally,
containers of the vehicle fog nodes can communicate
with the unikernels and with containers on other
vehicle fog nodes, while the unikernels can only
communicate with the containers and sensors of the
vehicle fog nodes. All the communications are
enabled by virtual links.

There are numerous applications that can be
executed in this architecture. Crucial services, such
as autonomous driving could be combined with non-
crucial services, such as traffic jam avoidance or
infotainment services, running in parallel. In some
cases, the initial allocation of the VNF resources can
prove to be insufficient. Therefore, LCM actions,
such as live migration and scaling, need to be
performed to ensure a smooth service operation.

Lifecycle management
Each individual VNF has a lifecycle, which is
governed by the NFVO that can be considered as the
central controller of the system, in terms of filtering
the incoming requests and (re)allocating the physical
resources. The NFVO executes periodic checks in
order to monitor the current availability of resources
and ensures that the NFV infrastructure adapts to
data traffic variations. Moreover, the NFVO is
responsible for two important actions, namely the
live migration and the scaling:

• Live migration: the process that involves

moving a VNF to a different hypervisor for
resource optimization purposes, without service
interruption [13]. This is achieved by running the
instances of the old and new hypervisor
simultaneously while service migration is
performed, and only migrating RAM contents as
a final step.

• Scaling: the ability of the VNFs to scale-out

upon increased resource utilization and scale-in
upon resource underutilization. In this
architecture, the scaling option that is selected is
the horizontal scaling (i.e., the instantiation of

Figure 2 – Fog-enabled C-V2X Architecture

Hypervisor

5G Core

gNB

Core Fog

Node

Edge Fog

Node

UPF

MEC

Vehicle Fog

Node

gNB

gNB

PC5

VNF
NFVO

VIM

more VNFs). Compared with the vertical scaling
(i.e., the increase of the resources allocated to a
VNF), the horizontal scaling provides the
distributed applications with the required
elasticity, redundancy and continuous
availability.

C-V2X APPLICATIONS AS A SERVICE

FUNCTION CHAIN

In this section, we provide two examples of how C-
V2X use cases can be developed as AaaSFCs, as well
as their LCM.

Co-operative road safety
Let us consider the co-operative road safety example,
combined with a vehicle warning feature that were
described earlier. If we want to deploy it as a
simplified AaaSFC (Figure 3 – dotted line), it
involves:

• One VM module that runs at the core and hosts

the traffic manager module (TM).
• One container module that runs at the vehicle,

monitors the data of the unikernels and notifies
possible involved parties (MON).

• One unikernel module that runs at the vehicle
where the data of the breaking and proximity
sensors can be collected (BRP).

In case a hard break occurs (BRP) on vehicle 1
(VH1), the MON checks for any possible vehicles in
proximity (VH2) and notifies them for the hard break
(through the direct interface) in order for the latter to
decide an emergency break action. At the same time,
the MON sends the notification to the TM, through
the 5G network, in order for the latter to issue and
broadcast a warning notification to the vehicles that
follow VH1, but are out of range for direct V2V
communication.

Autonomous Driving
Let us consider the autonomous driving application
as part of many applications that cooperate. In a
simplified version, we could involve two of the
previously described applications, the HD sensor
data and the navigation and traffic jam avoidance. If
we want to deploy it as an AaaSFC (Figure 3–dashed
line), it involves:

• One VM module that runs at the core and hosts
the latest map data of a geographical area (MD).

• One VM module that runs at the edge and
monitors the real-time vehicle traffic data of an
urban area (RTD).

• One container module that runs at the vehicle,
monitors the data of the unikernels and notifies
possible involved parties (MON).

• Two unikernel modules that run at the vehicle
where the data of the lidar and the HD cameras
are collected (LHD) and the route is determined
(RT).

In case there is a request for an emergency service,
the MON requests from the RTD the best route,
based on real-time vehicle traffic data, and updates
the RT with the route. When the vehicle arrives to an
intersection, the data from the LHD will be used by
the MON to notify all nearby vehicles using the
direct interface.

While on route, a traffic jam is detected. The RTD
forwards an alternative route to the MON but the RT
map data are not updated; thus, the MON requests
the additional map from the MD and forwards it to
the RT. In the last part, the edge acts as the
intermediate in the vehicle-to-core communication.

AaaSFC lifecycle management
Each VNF has specific virtual resources allocated to
it and each virtual link that interconnects the VNFs
has a maximum latency that can tolerate, based on

TM

MD

Core

Edge

RTD

MON

BRP

RT

MON

LHDVH1 VH2

MON
MON

MON

10 ms

Figure 3 - AaaSFC for co-operative drive safety (dotted line) and for

autonomous driving (dashed line)

the application. Depending on real-time data traffic
conditions, the application’s SLAs might be violated.
In what follows, we explain the conditions under
which a migration or a scaling decision might occur,
in order to prevent such violation.

Core to edge migration decision: The example of
the co-operative road safety uses the TM/VM of the
core. In case of high data traffic (e.g., during rush
hours), the required for the service latency could be
violated. Thus, we propose a migration action from
the core to the edge, in order for the TM/VM to be
closer to the vehicles. In the case of insufficient edge
resources, a migration from the edge to the core of
non-crucial VNFs could take place in order to free up
the needed edge resources for the TM/VM
accommodation. When the data traffic is restored to
normal, the VNFs are migrated back to their original
hosts.

Edge to edge migration decision: Another action
that could result in migration is due to the vehicles’
mobility. Since the vehicles move from one gNB to
another, if the two gNBs are not served by the same
edge fog node, then a migration of the service is
needed from the old to the new edge fog node,
following the user’s handover process between the
gNBs. Since the edge fog nodes communicate
between them, the VM could have remained at the
old node. However, this would result in increased
latency, since more hops are added between the
vehicle-to-edge communication.

Scaling decision: In case of high data traffic, one or
more of the VNFs that are part of the AaaSFC can
reach their maximum utilization capacity. In this
case, the NFVO will decide a scale-out operation by
creating a new copy of the overutilized VNF,
balancing the load between the two VNF instances.
This process can be repeated (as long as there are
sufficient physical resources) until the data traffic
can be handled properly. In the case of scaling, the
total VNFs of an AaaSFC are consequently
increased. The NFVO is also responsible for the
reverse process, that is, the scale-in, when the data
traffic is restored to normal.

5G EXPERIMENTAL PLATFORM

IMPLEMENTATION

In order to demonstrate a proof-of-concept of our
architecture, we developed a 5G experimental
platform (Figure 4). The hardware of the platform
(Table 1) consists of one control server for the
management and orchestration of the physical and
virtual infrastructure, one core and two edge servers
for the core and edge processing needs respectively.
In terms of compute resources, the physical servers
at the edge site have lower computational power
compared to the server at the core. In terms of
networking, all physical servers have two network
interface cards (NIC) and are connected to two
routers through 1 Gbps Ethernet interfaces, while
edge server#2 has an additional 802.11n interface
where a smartphone that acts as the UE can be
connected.

With respect to the software installation, Openstack
[14], on its Queens release, is the open-source
infrastructure-as-a-service platform that is employed
as the VIM, in order to deploy and control the VNFs,
while Open Source MANO (OSM) [15], on its sixth

Table 1 - Hardware specification

Figure 4 - 5G experimental platform implementation

 Control
server

Core
server

Edge
server#1

Edge
server#2

CPU Intel i5-
8500

Intel i5-
8500

Intel i5-
7400

Intel i5-
7400

Cores 6 6 4 4
RAM 32 GB 32 GB 16 GB 16 GB

Storage
(SSD)

250 GB 2x 250
GB

120 GB 120 GB

NIC 2x 1Gbps
Ethernet

2x
1Gbps

Ethernet

2x 1Gbps
Ethernet

2x 1Gbps
Ethernet

1x 802.11n

VNF

OSM

Openstack

Custom

Scripts

Control

 Server

Core

Server

VNF#1

VNF

Edge

Server #1

VNF#2.1

VNF#1

VNF#2.2

Edge

Server #2

VNF#2

UE

 3 ms

100

ms

20

ms

release, is the software that is used to enable the VNF
management and orchestration. Finally, neither
Openstack nor OSM are aware of the application that
runs on the VNF or its SLAs. Therefore, we have
deployed bash-based custom scripts that monitor the
inter-VNF latency and trigger the migration
decisions, based on custom-defined thresholds.

EXPERIMENTAL RESULTS

In order to validate the described architecture, we
conducted a set of experiments, leveraging the 5G
platform.

Experimental setup
In our setup (Figure 4), we assume service#1 and
service#2 that are hosted on the VNF#1 at the edge
server#1 and on the VNF#2 at the edge server#2
respectively. Service#1 has an SLA that can tolerate
up to 100 ms of latency, while VNF#1 needs 5
percent of CPU resources in order to process each
incoming request. Service#2 has an SLA that can
tolerate up to 15 ms of latency and VNF#2 needs 9.8
percent of CPU resources in order to process each
incoming request. Furthermore, if the CPU
utilization of VNF#2 exceeds 90 percent of the CPU
resources, the process time for each request becomes
unstable and the latency SLA for service#2 is
violated. Thus, the scale-out threshold is set at 88
percent of CPU utilization. In order to equally
distribute the data traffic among the VNFs, we have
already deployed a load balancer with round robin
policy. Finally, we can define the number of
requests/s that the UE, which serves as the vehicle,
can send. For the live migration experiment, we start
with 1 request/s and gradually increase to 17
requests/s. For the scaling experiment we start with

1 request/s and gradually increase to 27 requests/s.
The duration that each experiment run was 12 h.

Live migration experiment
The first experiment demonstrates the case of a
vehicle leaving a gNB’s premises and entering
another’s, and the two gNBs are not served by the
same edge fog node. Figure 5-a depicts the response
time versus the requests/s that the vehicle produces.
Up to the first 6 requests/s, the VNF that serves this
vehicle runs at the old edge fog node (i.e., edge
server#1) and the service response time is 99 ms. If
the vehicle makes more requests/s, the service#1
latency SLA will be violated. Thus, the solution is to
migrate the VNF#1 to the nearest to the vehicle edge
fog node (i.e., edge server#2). This reduces the
overall response time, since the delay that was added
by the edge-to-edge server communication is now
eliminated. This way, we can support more requests,
without violating the latency SLA, compared with an
environment that does not support migration
features.

Scaling experiment

The second experiment shows the case of increased
demand for a specific service (i.e., during rush hours)
but the VNF’s already allocated resources cannot
cope with such high demand. Figure 5-b displays the
average CPU utilization of the active VNFs versus
the requests/s that the UE sends. Up to the first 9
requests/s, the process time at VNF#2 is stable, with
a CPU utilization of 88.2 percent. Since the scale-out
threshold has been exceeded, VNF#2.1 is
instantiated. Hence, the load balancer equally
distributes the data traffic and each VNF reaches
approximately 45 percent CPU utilization. As the
requests/s increase, the scale-out process is executed
once more when the average CPU utilization of the
two VNFs exceeds again the 88 percent threshold.

Figure 5 - Demonstration of a) live migration and b) scaling functionalities

a) b)

))

This results in the instantiation of VNF#2.2. Once the
data traffic is reduced, the scale-in process will
destroy the VNFs that are underutilized. In this way,
the resources can be efficiently managed and the
application can serve more users when needed,
compared with monolithic architectures that do not
support scaling functionalities.

CONCLUSION

In this article we proposed a fog-enabled C-V2X
architecture, able to exploit the interplay among the
core, the edge and the vehicle layers. We presented
specific examples of C-V2X use cases that can be
deployed as AaaSFC and provided information on
their LCM. Additionally, we deployed an
experimental platform, where open-source software,
along with custom-made scripts, were used to
demonstrate experiments that take advantage of the
proposed architecture and validate the usefulness of
the live migration and scaling features, resulting in
respecting the latency SLAs and maximizing the
served users. As future work, we aim to provide
online algorithms that will efficiently manage the
lifecycle of the AaaSFC that are deployed across our
proposed architecture.

AKNOWLEDGMENT

This work has been supported in part by the research
projects SPOTLIGHT (722788), AGAUR (2017-
SGR-891), 5G-DIVE (859881), SPOT5G
(TEC2017-87456-P), MonB5G (871780) and 5G-
Routes (951867).

REFERENCES

[1] “Ericsson Mobility Report”, June 2019, Available:
https://www.ericsson.com/en/mobility-
report/reports/june-2019, accessed May 30, 2020.

[2] “Release 14 Description”, 3GPP TR 21.914, Tech. Rep.,
2018.

[3] National Higway Traffic Safety Administraion, Available:
https://www.nhtsa.gov/speeches-presentations/traffic-
safety-and-59-ghz-spectrum, accessed May 30, 2020.

[4] 5G Automotive Association (5GAA) , “C-V2X Use Cases:
Methodology, Examples and Service Level
Requirements”, White Paper, 2019, pp. 1-77.

[5] C. Bockelmann et al., "Towards Massive Connectivity
Support for Scalable mMTC Communications in 5G
Networks," IEEE Access, vol. 6, 2018, pp. 28969-28992.

[6] F. Giust et al, “MEC Deployments in 4G and Evolution
Towards 5G”, ETSI White Paper, 24, 2018, pp. 1-24.

[7] I. Sarrigiannis et al., "Online VNF Lifecycle Management
in a MEC-enabled 5G IoT Architecture", IEEE Internet of
Things Journal, vol. 7, no. 5, 2020, pp. 4183-4194.

[8] Consortium Architecture Working Group, “OpenFog
reference architecture for fog computing.”, Feb. 2017.

[9] H.-C. Hsieh, C.-S. Lee, and J.-L. Chen, “Mobile edge
computing platform with container-based virtualization
technology for iot applications,” Wireless Personal
Communications, vol. 102, no. 1, 2018, pp. 527–542.

[10] A. Moubayed et al., "Edge-enabled V2X Service
Placement for Intelligent Transportation Systems”, IEEE
Transactions on Mobile Computing, 2020, pending
publication.

[11] F.-E. da Silva Barbosa, F.-F. de Mendonça Júnior, K.L.
Dias, A platform for cloudification of network and
applications in the Internet of Vehicles. Trans Emerging
Tel Tech, 2020, pending publication.

[12] “Intelligent transport systems (ITS); vehicular
communications; basic set of applications; definitions,”
ETSI TR 102 638, Tech. Rep., 2009.

[13] A. Laghrissi and T. Taleb, “A survey on the placement of
virtual resources and virtual network functions”, IEEE
Communications Surveys Tutorials, vol. 21, no. 2, 2019,
pp. 1409–1434.

[14] The Openstack foundation, https://openstack.org/,
accessed May 30, 2020.

[15] Open Source Mano, https://osm.etsi.org/, accessed May
30, 2020.

BIOGRAPHIES

Ioannis Sarrigiannis [S’10] (isarrigiannis@iquadrat.com) received his
five-year diploma (MSc equivalent) in Information and
Communication Systems Engineering in 2015 from the University of
the Aegean, Samos, Greece. Currently, he is a Marie Curie Researcher
at Iquadrat Informatica S.L., in Barcelona, Spain, and is pursuing his
Ph.D. degree in Signal Theory and Communications (TSC) with the
Polytechnic University of Catalonia (UPC), Barcelona, Spain. His
research interests include Software Defined Networks, Network
Function Virtualization, VNF Placement and Orchestration and
Network Slicing, in the scope of cloud-edge architectures towards the
realization of 5G concepts.

Luis M. Contreras (luismiguel.contrerasmurillo@telefonica.com) is a
Telecom Engineer by the Universidad Politécnica of Madrid (1997)
and M. Sc. on Telematics by the Universidad Carlos III of Madrid
(2010). Since August 2011 he is part of Telefónica I+D / Global CTIO.
Previously he worked for Orange Spain and Alcatel. His research
interests are on 5G and scalable networks.

Kostas Ramantas (kramantas@iquadrat.com) has received his
Diploma of Computer Engineering, his MSc degree in Computer
Science and Engineering and his PhD degree from the University of
Patras, Greece, in 2006, 2008 and 2012 respectively. He has been the
recipient of two national scholarships and has participated in the EC
funded ICT-BONE and ePhoton/One+ Networks of Excellence,
conducting joint research with many European research groups. His
research interests include modeling and simulation of network
protocols, and scheduling algorithms for QoS provisioning. In June
2013, he joined IQUADRAT as a senior researcher and is actively
involved in EU-funded research projects.

Angelos Antonopoulos [SM’15] (aantonopoulos@cttc.es) is a Senior
Researcher at CTTC/CERCA. He has authored over 100 publications
on various topics, including 5G wireless communications, content

caching and dissemination, energy efficient network planning and
network economics. He currently serves as an Editor for IEEE Access,
IEEE Networking Letters and Elsevier Computer Networks. He has
received the Best Paper Award at IEEE GLOBECOM 2014, the Best
Demo Award at IEEE CAMAD 2014, the first prize in the IEEE
ComSoc Student Competition (as a Mentor), and the EURACON Best
Student Paper Award at EuCNC 2016.

Christos Verikoukis [SM’07] (cveri@cttc.es) received his Ph.D.
degree from UPC, Barcelona, Spain, in 2000. He is currently a Fellow
Researcher at CTTC, Castelldefels, Spain, and an Adjunct Professor
with UB. He has authored more than 134 journal papers and more than
200 conference papers. He has coauthored more than three books, 14
chapters, and two patents. He has participated in more than 40
competitive projects and has served as the Principal Investigator of
national projects. He has supervised 15 Ph.D. students and five
postdoctoral researchers.
Dr. Verikoukis was the recipient of the Best Paper Award at IEEE
International Conference on Communications 2011 and 2020, IEEE
GLOBECOM 2014 and 2015, and EUCNC/EURACON2016, and the
EURASIP 2013 Best Paper Award for the Journal on Advances in
Signal Processing. He is currently Associate EiC for the IEEE
NETWORKING LETTERS, IEEE ComSoc EMEA Director and
Member-at-Large of GITC.

	Página en blanco

