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ABSTRACT 

The Internet of Things (IoT) ecosystem, as 
fostered by fifth generation (5G) applications, 
demands a highly available network 
infrastructure. In particular, the internet of 
vehicles use cases, as a subset of the overall IoT 
environment, require a combination of high 
availability and low latency in big volumes 
support. This can be enabled by a network 
function virtualization architecture that is able to 
provide resources wherever and whenever 
needed, from the core to the edge up to the end 
user proximity, in accordance with the fog 
computing paradigm. In this article, we propose a 
fog-enabled cellular vehicle-to-everything 
architecture that provides resources at the core, 
the edge and the vehicle layers. The proposed 
architecture enables the connection of virtual 
machines, containers and unikernels that form an 
application-as-a-service function chain that can 
be deployed across the three layers. Furthermore, 
we provide lifecycle management mechanisms 
that can efficiently manage and orchestrate the 
underlying physical resources by leveraging live 
migration and scaling functionalities.  
Additionally, we design and implement a 5G 
platform to evaluate the basic functionalities of 
our proposed mechanisms in real-life scenarios. 
Finally, the experimental results demonstrate 
that our proposed scheme maximizes the accepted 
requests, without violating the applications’ 
service level agreement.    

INTRODUCTION 

The Internet of Things (IoT) ecosystem is a 
collection of billions of devices, such as sensors, that 
are connected among them and with the Internet. 
According to Ericsson’s mobility report, the 10.8 
billion IoT connections of 2019 are expected to reach 
the number of 24.9 billion by the end of 2025, which 
means a compound annual growth rate (CAGR) of 
15 percent [1]. When it comes to cellular networks, 
and as the fifth generation of wireless 

communications (5G) is being gradually introduced, 
the amount of 1.3 billion cellular IoT connections of 
2019 is expected to experience an even higher CAGR 
of 25 percent, reaching the number of 5 billion by the 
end of 2025. 

Vehicle-to-everything (V2X) communications is a 
major area of IoT that will enable communication 
between vehicles and between vehicles and 
infrastructure. The cellular V2X (C-V2X) 
application layer model includes the vehicle-to-
vehicle (V2V), vehicle-to-infrastructure (V2I) and 
vehicle-to-network (V2N) operational modes that 
require a combination of high reliability and low 
latency. C-V2X was initially introduced by the 3rd 
Generation Partnership Project (3GPP), under the 
Release 14 [2], using LTE-based radio access 
network (RAN) for V2X communications, while 
Release 16 is anticipated to feature 5G support for 
the V2X services.  

The national highway traffic safety administration of 
the United States (U.S.) predicts that by fully 
adopting only two V2X safety applications, 1000 
lives per year could be saved and a half million 
crashes could be prevented in the U.S., while a 
reduction of 14 percent of the global greenhouse 
emissions, due to transportation, could be also 
achieved [3]. Therefore, it is imperative to create an 
intelligent transportation system (ITS), or an internet 
of vehicles (IoV) environment, in order to provide 
crucial and non-crucial services. 

Traffic safety, reduced air pollution and regulation of 
vehicle traffic flows, are only few examples for 
improving the quality of life. Traffic management 
applications, for example, could collect real-time 
weather information from road condition sensors, 
such as surface conditions (e.g., temperature, 
humidity, salinity, and so on.). A traffic safety 
application will have to take into consideration the 
aforementioned metrics and, along with sensors on 
the vehicles (e.g., proximity or break sensors), issue 
an action that could be a warning (e.g., information 
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for cooperative road safety), or an immediate action 
(e.g., emergency break for collision avoidance).  
  
Depending on the service, V2X crucial services (e.g., 
autonomous driving) can tolerate a maximum 
latency between 10 ms and few seconds, while non-
crucial services (e.g., vehicle software update) can 
tolerate up to few minutes of latency [4]. LTE RAN 
is unable to support such low latency values in big 
volumes, which makes the 5G RAN the perfect 
enabler for C-V2X applications [5]. The majority of 
the published works propose edge computing 
solutions where processing power becomes available 
at the edge of the network. These proposals often 
refer to multi-access edge computing (MEC)-
enabled architectures [6], where processing power is 
offered both at the core and edge network. Moreover, 
applications, in accordance with the network 
function virtualization (NFV) paradigm (i.e., the 
virtualization of the physical infrastructure), are 
considered as virtual network functions (VNFs) that 
can be executed at these two layers [7]. While these 
solutions are able to offer the required low latency 
for many C-V2X applications to function properly, 
they struggle to guarantee the ultra-low latency 
requirements (i.e., equal or less than 10 ms) in big 
volumes for some crucial services [5].   
 
Addressing some of the core and edge limitations, 
fog computing “distributes computing, storage, 
control and networking functions closer to the users, 
along a cloud-to-thing continuum” [8]. Fog takes 
advantage of the infrastructure that lies along the 
cloud-to-thing path, such as servers, routers, 
switches, vehicles and smartphones. These devices, 
previously limited to operate autonomously, can now 
participate in a connected environment that 
efficiently manages their resources. Therefore, the 
ability to leverage all the available resources, 
especially at the thing proximity, can guarantee the 
ultra-low latency in big volumes that the C-V2X 
applications require.  
 
Another significant topic that has caught both 
industry’s and academia’s attention is the VNF 
placement problem in such distributed architectures. 
On the one hand, there are various works that try to 
tackle the placement problem within a generic MEC-
enabled environment considering a VNF either as a 
virtual machine (VM) [7], an environment that fully 
virtualizes a physical computer, or a container [9], a 
lightweight virtual environment that enables 

application-level virtualization. Compared with 
unikernels, an even more shrunken virtualization 
environment that contains only the minimum amount 
of operating system (OS) services, kernel and 
libraries for a specific application to run, VMs and 
containers could add significant delay to the IoV 
infrastructure, making them inappropriate for ultra-
low latency C-V2X services. 
 
On the other hand, there are very few works focusing 
on the service placement, specifically for C-V2X 
communications. The authors in [10] consider the C-
V2X service placement problem in a MEC 
architecture, taking into consideration the 
computational resource availability at the nodes, 
offering a low-complexity greedy-based heuristic 
algorithm in order to solve this problem. Yet, they 
are limited to a two-layer architecture and their 
building block is considered to be the VM. 
Furthermore, the authors in [11] provide a fog-
enabled platform in order to support the distribution 
of IoV applications. While they leverage the fog 
infrastructure, they are also limited to the container 
as their virtualization environment. 
 
Within the context of the fog computing paradigm, 
we propose a new 3GPP compliant fog-enabled 
architecture with three different layers of processing 
power; the core, the edge and the vehicle. Our 
architecture, apart from the V2N communications, 
supports direct V2V communications, where, 
combined with the processing power at the vehicle, 
enables the execution of ultra-low latency 
applications, saving, at the same time, resources for 
the V2N communications. A distributed application 
model is adopted, where applications consist of 
virtual environments (i.e., VNFs) that can run as 
VMs, containers or unikernels. The combination of 
one or more heterogeneous virtual environments, 
distributed across the three different processing 
layers, creates an application-as-a-service function 
chain (AaaSFC). 
 
Supporting this architecture, we explain two 
important lifecycle management (LCM) 
functionalities, the live migration and the horizontal 
scaling of the VNFs. Furthermore, we provide an 
experimental 5G platform implementation, based on 
open source software and common hardware, while 
we enhance the shortcomings of an open source NFV 
orchestrator (NFVO) in order to support migration 
decisions. Additionally, we present four distinctive 



examples of C-V2X use cases and we provide a 
comprehensive guide that elaborates the main 
properties of the three different virtualization 
environments. To the best of our knowledge, there is 
no other work that assumes such distributed 
architecture, utilizing heterogeneous virtual 
environments, in order to deploy, place and manage 
a distributed AaaSFC within the premises of a three-
layered fog-enabled environment for C-V2X use 
cases, supported by experimental results that are 
based on an experimental platform implementation. 
 

C-V2X USE CASES 

The IoV aims to provide crucial and non-crucial 
applications for an ITS. While in the V2V, V2N and 
V2I operational modes the 5G base station (gNB) can 
be used as the communication hub, there is also the 
option for direct communication between the vehicle 
and another vehicle or device. This direct channel 
can be used when the latency requirements of a 
service would be violated if the intermediate gNB 
was used, or to save infrastructure and network 
resources. In this section we will describe four C-
V2X use cases, as well as their latency requirements, 
based on [[4],[12]]. 
 

Vehicle type warnings 
A vehicle type warning service could be on 
emergency situation to create awareness of the 
presence of emergency vehicles in proximity. This 
application allows a vehicle of an emergency service 
(e.g., ambulance, police car, etc.) to indicate its 
presence (event). The emergency vehicle notifies the 
vehicles on its path about its presence (notification) 
and the drivers should be warned to clear the road 
(action). This will save important time for the 
emergency services to reach their destination.  The 
maximum latency for such application is 100 ms, 
from the occurrence of the event until the notification 
of the involved vehicles [12]. 
 

Co-operative road safety 
An emergency breaking application could be 
considered as a co-operative road safety service. The 
vehicle that uses a hard break (event) signals the hard 
breaking to the following vehicles (notification) in 
order to notify them for possible collision. Based on 
the speed, distance and road conditions, the 
following vehicles should decide if they should slow 
down in order to avoid a possible collision (action). 
The maximum latency for such application is 100 

ms, from the occurrence of the event until the 
decision for action of the involved vehicles [12]. 
 

Navigation and traffic jam avoidance 
A map download and update application can be 
considered as an infotainment service. The vehicle 
requests Internet access in order to download the 
required map and find the best route, based on its 
current location and destination. The maximum 
latency for such application is 500 ms [12]. Traffic 
jams normally happen in a long time period.  In case 
a traffic jam occurs (event) on the navigation’s 
predefined route, depending on the setting, a delay of 
2 s, in the case of urban areas, up to a few minutes, 
in the case of rural areas, can occur for the vehicle to 
get notified (notification) and change its route 
(action) [4].             
 

Autonomous driving 
An autonomous driving application is enabled by 
high definition (HD) sensor sharing. It provides 
mechanisms for vehicles to share HD sensor data, 
such as lidar that measures the distances by 
illuminating targets with laser light and HD cameras, 
in order to enable better coordination for platooning 
and intersection management. An emergency vehicle 
that has to make a turn into an intersection (event) 
signals its course and speed to all nearby vehicles 
(notification) in order to adjust their speed to give 
priority to the emergency vehicle (action). The 
maximum latency that such application can suffer 
cannot exceed 10 ms, from the occurrence of the 
event until the actions taken by the involved vehicles  
[4].       

 

DISTRIBUTED HETEROGENEOUS 

APPLICATION MODEL 

In accordance with the NFV paradigm, a distributed 
application model is adopted, where applications 
are hosted in VNFs.  VNFs can run as VMs, 
containers or unikernels, while their combination 
creates an AaaSFC.  In a traditional environment, 
the memory is divided in the kernel and the user 
space, for memory and hardware protection. The 
OS and kernel are executed in the kernel space, 
while the libraries and the application software are 
running in the user space. 



A virtual environment follows similar principles. In 
some cases, though, a hypervisor is used for the 
virtualization of the underlying physical resources or 
the kernel is deployed to the user space. Figure 1 
demonstrates the system architecture of each virtual 
environment, namely the VM, container and 
unikernel. The grey color illustrates the hardware or 
hypervisors, the orange indicates the kernel space 
and the green designates the user space.  

Virtual Machines 
VMs are virtual environments that act as virtual 
computers with their own central processing unit 
(CPU), memory, storage and network interfaces, and 
have their own OS and kernels. A VM includes both 
user and kernel space, while the virtualization and 
allocation of the underlying physical resources is 
enabled by a hypervisor software (Figure 1-a). VMs 
can support resource demanding applications and 
isolate them properly over the same infrastructure, 
but their instantiation time could be up to few 
minutes, depending, among other factors, on the 
footprint of the VM.   

Containers 
Containers can also provide an isolated environment 
for the applications and their runtime dependencies 
to run, using the common infrastructure. Contrary to 
the VMs, containers include only the user space 
where the applications and the library files reside, 
while the kernel space is shared (Figure 1-b). 
Containers are more lightweight, compared to VMs, 
but they require an underlying OS and kernel that 
provide the basic services. Their instantiation time 
could be up to few seconds and they are mostly used 
to host lightweight applications.    
 

Unikernels 
Unikernels can be considered as shrunken VMs, as 
they contain the minimum required OS services and 
dependencies for a single task to run. They do not 
require a kernel space, as the kernel commands are 

executed in the user space and they do not need and 
underlying OS; they can be executed directly at the 
hypervisor or on bare metal (Figure 1-c). Since they 
contain only the essential information for the 
application to run, the size of the unikernels is very 
small, while the reduced kernel complexity makes 
the unikernels to run faster than the VMs. Thus, they 
can be instantiated almost instantly. In contrast, 
unikernels can only run a single process and the 
development of applications able to run on this 
environment is trickier. Finally, containers are prone 
to hack attacks, since their kernel uses the user space.     
 

FOG-ENABLED C-V2X ARCHITECTURE 

We propose the fog-enabled C-V2X architecture 
depicted in Figure 2. This architecture includes 
computation, network and storage resources on each 
fog node, with the core having the most, and the 
vehicle the least resources. The MEC resides in the 
edge fog node. The proposed architecture fully 
supports NFV by enabling the virtualization of 
physical resources at the hypervisors that are located 
at the three nodes, and by applications running as 
connected VNFs (i.e., AaaSFC). The virtualized 
infrastructure manager (VIM) is responsible for the 
management and control of the heterogeneous 
resources of the NFV infrastructure, while the NFVO 
performs the resource orchestration. They both 
reside in the core fog node. 
 
In this architecture, the 5G RAN is considered for the 
communication of the three different fog nodes. The 
5G core control functions reside in the core fog node 
and the user plane function (UPF) that steers the data 
traffic to desired applications and network functions 
resides in the edge fog node.  The gNBs 
communicate among them using the NG interface, 
with the UPF using the N3 interface and with the 
vehicles using the Uu interface. The vehicle fog 
nodes can also communicate between them using the 
direct PC5 interface. The PC5 interface, as described 
in 3GPP Release 15, enables the direct 
communication where the infrastructure does not 
participate.  Finally, each vehicle fog node acts as an 
IoT gateway, as it collects and aggregates the data 
from the sensors deployed at the vehicle. 
 
In terms of virtual environments deployment, the 
VMs can run either at the core or edge fog nodes, the  

Figure 1 - Comparison of a) virtual machine, b) container and c) 
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containers at the edge or vehicle fog nodes and the 
unikernels are able to be executed at the vehicle fog 
nodes only. Regarding their connectivity, the VMs of 
the core fog node can communicate with VMs of the 
core and edge fog nodes, and with containers of the 
edge and vehicle fog nodes. Furthermore, the 
containers of the edge nodes can also communicate 
with the containers of the vehicle nodes. Finally, 
containers of the vehicle fog nodes can communicate 
with the unikernels and with containers on other 
vehicle fog nodes, while the unikernels can only 
communicate with the containers and sensors of the 
vehicle fog nodes. All the communications are 
enabled by virtual links. 
 
There are numerous applications that can be 
executed in this architecture. Crucial services, such 
as autonomous driving could be combined with non-
crucial services, such as traffic jam avoidance or 
infotainment services, running in parallel. In some 
cases, the initial allocation of the VNF resources can 
prove to be insufficient. Therefore, LCM actions, 
such as live migration and scaling, need to be 
performed to ensure a smooth service operation. 
  

 
 

Lifecycle management 
Each individual VNF has a lifecycle, which is 
governed by the NFVO that can be considered as the 
central controller of the system, in terms of filtering 
the incoming requests and (re)allocating the physical 
resources. The NFVO executes periodic checks in 
order to monitor the current availability of resources 
and ensures that the NFV infrastructure adapts to 
data traffic variations. Moreover, the NFVO is 
responsible for two important actions, namely the 
live migration and the scaling: 
 
• Live migration: the process that involves 

moving a VNF to a different hypervisor for 
resource optimization purposes, without service 
interruption [13]. This is achieved by running the 
instances of the old and new hypervisor 
simultaneously while service migration is 
performed, and only migrating RAM contents as 
a final step. 

 
• Scaling: the ability of the VNFs to scale-out 

upon increased resource utilization and scale-in 
upon resource underutilization. In this 
architecture, the scaling option that is selected is 
the horizontal scaling (i.e., the instantiation of 

Figure 2 – Fog-enabled C-V2X Architecture 
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more VNFs). Compared with the vertical scaling 
(i.e., the increase of the resources allocated to a 
VNF), the horizontal scaling provides the 
distributed applications with the required 
elasticity, redundancy and continuous 
availability. 

 
C-V2X APPLICATIONS AS A SERVICE 

FUNCTION CHAIN 

In this section, we provide two examples of how C-
V2X use cases can be developed as AaaSFCs, as well 
as their LCM. 
 

Co-operative road safety 
Let us consider the co-operative road safety example, 
combined with a vehicle warning feature that were 
described earlier. If we want to deploy it as a 
simplified AaaSFC (Figure 3 – dotted line), it 
involves: 
 
• One VM module that runs at the core and hosts 

the traffic manager module (TM).      
• One container module that runs at the vehicle, 

monitors the data of the unikernels and notifies 
possible involved parties (MON).  

• One unikernel module that runs at the vehicle 
where the data of the breaking and proximity 
sensors can be collected (BRP).  

 

In case a hard break occurs (BRP) on vehicle 1 
(VH1), the MON checks for any possible vehicles in 
proximity (VH2) and notifies them for the hard break 
(through the direct interface) in order for the latter to 
decide an emergency break action. At the same time, 
the MON sends the notification to the TM, through 
the 5G network, in order for the latter to issue and 
broadcast a warning notification to the vehicles that 
follow VH1, but are out of range for direct V2V 
communication.   
 

Autonomous Driving 
Let us consider the autonomous driving application 
as part of many applications that cooperate. In a 
simplified version, we could involve two of the 
previously described applications, the HD sensor 
data and the navigation and traffic jam avoidance. If 
we want to deploy it as an AaaSFC (Figure 3–dashed 
line), it involves: 

• One VM module that runs at the core and hosts 
the latest map data of a geographical area (MD). 

• One VM module that runs at the edge and 
monitors the real-time vehicle traffic data of an 
urban area (RTD). 

• One container module that runs at the vehicle, 
monitors the data of the unikernels and notifies 
possible involved parties (MON). 

• Two unikernel modules that run at the vehicle 
where the data of the lidar and the HD cameras 
are collected (LHD) and the route is determined 
(RT). 

In case there is a request for an emergency service, 
the MON requests from the RTD the best route, 
based on real-time vehicle traffic data, and updates 
the RT with the route. When the vehicle arrives to an 
intersection, the data from the LHD will be used by 
the MON to notify all nearby vehicles using the 
direct interface.  
 
While on route, a traffic jam is detected. The RTD 
forwards an alternative route to the MON but the RT 
map data are not updated; thus, the MON requests 
the additional map from the MD and forwards it to 
the RT. In the last part, the edge acts as the 
intermediate in the vehicle-to-core communication.  
 

AaaSFC lifecycle management 
Each VNF has specific virtual resources allocated to 
it and each virtual link that interconnects the VNFs 
has a maximum latency that can tolerate, based on 
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the application. Depending on real-time data traffic 
conditions, the application’s SLAs might be violated. 
In what follows, we explain the conditions under 
which a migration or a scaling decision might occur, 
in order to prevent such violation. 

Core to edge migration decision: The example of 
the co-operative road safety uses the TM/VM of the 
core. In case of high data traffic (e.g., during rush 
hours), the required for the service latency could be 
violated. Thus, we propose a migration action from 
the core to the edge, in order for the TM/VM to be 
closer to the vehicles. In the case of insufficient edge 
resources, a migration from the edge to the core of 
non-crucial VNFs could take place in order to free up 
the needed edge resources for the TM/VM 
accommodation. When the data traffic is restored to 
normal, the VNFs are migrated back to their original 
hosts. 
 

Edge to edge migration decision: Another action 
that could result in migration is due to the vehicles’ 
mobility. Since the vehicles move from one gNB to 
another, if the two gNBs are not served by the same 
edge fog node, then a migration of the service is 
needed from the old to the new edge fog node, 
following the user’s handover process between the 
gNBs. Since the edge fog nodes communicate 
between them, the VM could have remained at the 
old node. However, this would result in increased 
latency, since more hops are added between the 
vehicle-to-edge communication.  
 
Scaling decision: In case of high data traffic, one or 
more of the VNFs that are part of the AaaSFC can 
reach their maximum utilization capacity. In this 
case, the NFVO will decide a scale-out operation by 
creating a new copy of the overutilized VNF, 
balancing the load between the two VNF instances. 
This process can be repeated (as long as there are 
sufficient physical resources) until the data traffic 
can be handled properly. In the case of scaling, the 
total VNFs of an AaaSFC are consequently 
increased. The NFVO is also responsible for the 
reverse process, that is, the scale-in, when the data 
traffic is restored to normal. 
 

5G EXPERIMENTAL PLATFORM 

IMPLEMENTATION 

In order to demonstrate a proof-of-concept of our 
architecture, we developed a 5G experimental 
platform (Figure 4). The hardware of the platform 
(Table 1) consists of one control server for the 
management and orchestration of the physical and 
virtual infrastructure, one core and two edge servers 
for the core and edge processing needs respectively. 
In terms of compute resources, the physical servers 
at the edge site have lower computational power 
compared to the server at the core. In terms of 
networking, all physical servers have two network 
interface cards (NIC) and are connected to two 
routers through 1 Gbps Ethernet interfaces, while 
edge server#2 has an additional 802.11n interface 
where a smartphone that acts as the UE can be 
connected. 

With respect to the software installation, Openstack 
[14], on its Queens release, is the open-source 
infrastructure-as-a-service platform that is employed 
as the VIM, in order to deploy and control the VNFs, 
while Open Source MANO (OSM) [15], on its sixth 

Table 1 - Hardware specification 

Figure 4 - 5G experimental platform implementation 
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release, is the software that is used to enable the VNF 
management and orchestration. Finally, neither 
Openstack nor OSM are aware of the application that 
runs on the VNF or its SLAs. Therefore, we have 
deployed bash-based custom scripts that monitor the 
inter-VNF latency and trigger the migration 
decisions, based on custom-defined thresholds. 

 

EXPERIMENTAL RESULTS 

In order to validate the described architecture, we 
conducted a set of experiments, leveraging the 5G 
platform. 

Experimental setup 
In our setup (Figure 4), we assume service#1 and 
service#2 that are hosted on the VNF#1 at the edge 
server#1 and on the VNF#2 at the edge server#2 
respectively. Service#1 has an SLA that can tolerate 
up to 100 ms of latency, while VNF#1 needs 5 
percent of CPU resources in order to process each 
incoming request. Service#2 has an SLA that can 
tolerate up to 15 ms of latency and VNF#2 needs 9.8 
percent of CPU resources in order to process each 
incoming request. Furthermore, if the CPU 
utilization of VNF#2 exceeds 90 percent of the CPU 
resources, the process time for each request becomes 
unstable and the latency SLA for service#2 is 
violated. Thus, the scale-out threshold is set at 88 
percent of CPU utilization. In order to equally 
distribute the data traffic among the VNFs, we have 
already deployed a load balancer with round robin 
policy. Finally, we can define the number of 
requests/s that the UE, which serves as the vehicle, 
can send. For the live migration experiment, we start 
with 1 request/s and gradually increase to 17 
requests/s. For the scaling experiment we start with 

1 request/s and gradually increase to 27 requests/s. 
The duration that each experiment run was 12 h. 
 

Live migration experiment 
The first experiment demonstrates the case of a 
vehicle leaving a gNB’s premises and entering 
another’s, and the two gNBs are not served by the 
same edge fog node. Figure 5-a depicts the response 
time versus the requests/s that the vehicle produces. 
Up to the first 6 requests/s, the VNF that serves this 
vehicle runs at the old edge fog node (i.e., edge 
server#1) and the service response time is 99 ms. If 
the vehicle makes more requests/s, the service#1 
latency SLA will be violated. Thus, the solution is to 
migrate the VNF#1 to the nearest to the vehicle edge 
fog node (i.e., edge server#2). This reduces the 
overall response time, since the delay that was added 
by the edge-to-edge server communication is now 
eliminated. This way, we can support more requests, 
without violating the latency SLA, compared with an 
environment that does not support migration 
features. 

 
Scaling experiment 

The second experiment shows the case of increased 
demand for a specific service (i.e., during rush hours) 
but the VNF’s already allocated resources cannot 
cope with such high demand. Figure 5-b displays the 
average CPU utilization of the active VNFs versus 
the requests/s that the UE sends. Up to the first 9 
requests/s, the process time at VNF#2 is stable, with 
a CPU utilization of 88.2 percent. Since the scale-out 
threshold has been exceeded, VNF#2.1 is 
instantiated. Hence, the load balancer equally 
distributes the data traffic and each VNF reaches 
approximately 45 percent CPU utilization. As the 
requests/s increase, the scale-out process is executed 
once more when the average CPU utilization of the 
two VNFs exceeds again the 88 percent threshold. 

Figure 5 - Demonstration of a) live migration and b) scaling functionalities 

a) b)

) )



This results in the instantiation of VNF#2.2. Once the 
data traffic is reduced, the scale-in process will 
destroy the VNFs that are underutilized. In this way, 
the resources can be efficiently managed and the 
application can serve more users when needed, 
compared with monolithic architectures that do not 
support scaling functionalities.  

 

CONCLUSION 

In this article we proposed a fog-enabled C-V2X 
architecture, able to exploit the interplay among the 
core, the edge and the vehicle layers. We presented 
specific examples of C-V2X use cases that can be 
deployed as AaaSFC and provided information on 
their LCM. Additionally, we deployed an 
experimental platform, where open-source software, 
along with custom-made scripts, were used to 
demonstrate experiments that take advantage of the 
proposed architecture and validate the usefulness of 
the live migration and scaling features, resulting in 
respecting the latency SLAs and maximizing the 
served users. As future work, we aim to provide 
online algorithms that will efficiently manage the 
lifecycle of the AaaSFC that are deployed across our 
proposed architecture. 
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