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Abstract: In order to reduce the influence of fiber optic gyroscope (FOG) random drift error on

inertial navigation systems, an improved auto regressive (AR) model is put forward in this paper.

First, based on real-time observations at each restart of the gyroscope, the model of FOG random

drift can be established online. In the improved AR model, the FOG measured signal is employed

instead of the zero mean signals. Then, the modified Sage-Husa adaptive Kalman filter (SHAKF) is

introduced, which can directly carry out real-time filtering on the FOG signals. Finally, static and

dynamic experiments are done to verify the effectiveness. The filtering results are analyzed with

Allan variance. The analysis results show that the improved AR model has high fitting accuracy and

strong adaptability, and the minimum fitting accuracy of single noise is 93.2%. Based on the improved

AR(3) model, the denoising method of SHAKF is more effective than traditional methods, and its

effect is better than 30%. The random drift error of FOG is reduced effectively, and the precision of

the FOG is improved.

Keywords: fiber optic gyroscope (FOG); auto regressive (AR) model; Sage-Husa adaptive Kalman

filter (SHAKF); online model; random drift

1. Introduction

With the development of fiber optical technology, the fiber optic gyroscope (FOG) is gradually

replacing other types of gyroscopes with its unique advantages, and it has become mainstream in

inertial navigation system applications [1]. At present, much research work in modeling FOG random

drift is being carried out at home and abroad. When the initial alignment of a strapdown inertial

navigation system (SINS), the core of which is a FOG, is carried out, FOG random drift is an important

factor that influences the alignment precision [2]. Through modeling and filtering, the effect of FOG

random drift can be effectively restrained. The traditional modeling of FOG random drift is limited

to an offline form, which uses a random drift model based on the output data of a single gyroscope

obtained in the laboratory. Additionally, the estimated model is of certain significance in analyzing the

characteristic of random drift due to changeable measurement conditions under the circumstances of

the moment, such as temperature, humidity, electromagnetic field and gravity, as well as the impact

caused by restarting the gyroscope; the reliability of a model established offline will decrease, and its

universality is not strong [3,4]. To solve the above problems, we need to develop a real-time filtering

method of online modeling of FOG random drift, based on real-time observations at each restart of

the gyroscope, so an online model of FOG random drift can be established with a software method,

and the model then is used to realize real-time filtering on the FOG.
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In [1–5], auto regressive moving average (ARMA) models are used to establish the random drift

error model of FOG and a ring laser gyroscope (RLG); the Kalman filter is adopted to filter the zero the

drift of FOG and RLG, and the Allan variance analysis method is used to analyze various data noise

sources before and after modeling and filtering. The ARMA(n, m) models require a stable signal, with a

normal distribution and zero mean time series, which is also necessary for modeling gyroscope signals.

Therefore, the modeling and filtering of gyroscope signals is performed only with post-processing.

The estimated noise source error coefficient or performance parameters of the FOG are not suitable for

inertial navigation systems used in practical applications.

In [6], an improved AR(2) model is proposed to establish the random drift error model of FOG

online, and then, the Kalman filtering algorithm is adopted to filter the random drift error of FOG.

Jin [7] proposed an online modeling and filtering method. In this method, the traditional offline model

was improved based on a large number of measured data. In addition, a method of the random drift

model of FOG based on the AR model is studied, then an H8 filter is designed for filtering the signal

online. An improved AR model of FOG random drift error and a forward linear prediction (FLP)

filter were designed by Wang [8]. In [9], adaptive moving average (AMA) and random weighting

estimation (RWE) based on double-factor adaptive KF algorithm, named AMA-RWE-DFAKF was

proposed to denoise FOG drift signals under both static and dynamic conditions. Han [10] undertook

research on the wavelet filtering method of FOG output signals. It is based on the combination of a

Mallat pyramid algorithm and the characteristics of a finite impulse response (FIR) filter. Additionally,

an equivalent FIR filtering algorithm was deduced based on wavelets. On the basis of the wavelet

threshold filtering, a real-time wavelet filtering method for FOG output signals was given. In [11],

FOG state estimation was combined with an autoregressive integrated moving average (ARIMA)

model for non-linear parameter estimation. A Gaussian particle filter (GPF) was used to achieve

ARIMA model identification and state estimation of a FOG.

In this paper, an improved AR(3) model is suggested, where the FOG random drift model is

established online using measured FOG signal instead of a signal with zero mean. After modeling of

real-time data at each restart of a gyroscope with the improved AR(3) model, direct filtering of the

FOG signal is conducted using SHAKF. Filtering results are analyzed with Allan variance.

The rest of this paper is organized as follows: the online model of FOG random drift based on

the improved AR model is introduced in Section 2. The modified SHAKF algorithm is described in

Section 3. In Section 4, the practical implementation of the proposed method is introduced. The results

are given for static and dynamic experiments to verify the feasibility of the improved AR model and

modified SHAKF. Finally, conclusions are drawn in Section 5.

2. Online Modeling of FOG Random Drift

Time series analysis methods are commonly used to model the random drift error of FOG. ARMA

modeling is a time series analysis method for analyzing observed random data. ARMA modeling

involves fitting the suitable ARMA(n, m) model to the observed time series txt, t “ 1, 2, . . . , Mu.

The estimation process of ARMA model parameters is a nonlinear regression process, and its calculation

is very complex. Enough high order AR models can be used to replace ARMA models to avoid

complexity in the parameter estimation of the ARMA model. The AR model is a class of ARMA model,

because its parameter estimation is a linear estimation, and the calculation is simple and fast. As such,

the model has great advantages in engineering applications.

By adopting the method proposed in [1] for offline analysis on a certain type of FOG static data

under different conditions, it is shown that the AR model can better fit FOG random drift, so in this

paper, an improved AR model is used to realize the modeling of gyroscope random drift time series,

estimate model parameters in real time and achieve online modeling.

Gyroscope output needs to meet the three conditions of being stable with a normal distribution

and zero mean when the AR model is used to model gyroscope drift time series [2]. The analysis results

of a certain type of FOG static output data under measurement conditions show that, gyroscope static
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data always satisfy the conditions of stationarity and normality; but, they do not meet the condition of

zero mean, and the detected means are different after each restarting. The cause of this phenomenon is

as follows: gyroscopes can measure the Earth’s rotation rate of a geographical location. Due to the

impact of current surges, electromagnetic interference and other factors, the mean of the gyroscope

will drift in a small range after each restarting. The value is steady (constant) after the stabilization of a

gyroscope. The constant after stabilization contains the Earth’s rotation rate and (smaller) constant

drift measured by the gyroscope. Therefore, the zero mean problem should be solved when adopting

an AR model for online modeling. In continuation, an improved AR model is proposed as a solution

of the described problem.

2.1. The Principle of Online Modeling

The framework of the AR(n) model is:

xk “ ϕ1xk´1 ` ϕ2xk´2 ` . . . ` ϕnxk´n ` ak (1)

where k is the sequence number, and its range is r1, `8s; n is the order of AR, and its range is n ě 1,

and k, n are integers; xk is the observed time series; ϕ1 „ ϕn are parameters to be estimated; ak is

white noise. On the assumption that the collected gyroscope data z1, z2 . . . zk, zk`1 . . . are stationary

and a normal sequence, the AR model can be established by the traditional method with a zero mean

value. The observed time series can be written using the mean value of the sequence z as follows:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

xk “ zk ´ z

xk´1 “ zk´1 ´ z

xk´2 “ zk´2 ´ z

¨ ¨ ¨
xk´n “ zk´n ´ z

(2)

By writing Equation (2) into Equation (1), the following expression is obtained:

zk “ ϕ1zk´1 ` ϕ2zk´2 ` . . . ` ϕnzk´n ` p1 ´ ϕ1 ´ ϕ2 . . . ´ ϕnq ¨ z ` ak (3)

From the above theoretical analysis, we can know that the average value z of the FOG static

output data should be constant after gyroscope stabilization after restarting. After the model is

established, ϕ1 „ ϕn are also constant, so we denote c “ p1 ´ ϕ1 ´ ϕ2 ´ . . . ´ ϕnq ¨ z. Equation (3) is

now rewritten as:

zk “ ϕ1zk´1 ` ϕ2zk´2 ` . . . ` ϕnzk´n ` c ` ak (4)

and describes the dynamic AR(n) model. The recursive least squares (RLS) method is used to estimate

unknown parameters in real time.

2.2. Estimation of Model Parameters

The estimation methods of AR model parameters can be divided into two categories: direct

estimation methods and recursive estimation methods. The former use observed data or the statistical

properties directly to estimate the model parameters, among which the least squares complex

exponential (LSCE) method is a most popular method. Due to how much data are required to

estimate the parameters accurately being unknown, these kinds of methods select the length of the

time window empirically. When the length is too small, this will make the parameters inaccurate;

however, when an excessive length is applied, the time demanded makes these methods only be able

to be used in offline modeling. The recursive estimation methods can estimate the model parameters

in real time, and the RLS method is selected to estimate the parameters of the FOG random drift model

in this paper.
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Substituting the collected output tzk, k “ 1, 2, . . . , Nu at the initial time into Equation (4), then the

following linear equations can be obtained [12,13]:
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zn`1 “ ϕ1zn ` ϕ2zn´1 ` . . . ` ϕnz1 ` c ` an`1

zn`2 “ ϕ1zn`1 ` ϕ2zn ` . . . ` ϕnz2 ` c ` an`2

¨ ¨ ¨
zN “ ϕ1zN´1 ` ϕ2zN´2 ` . . . ` ϕnzN´n ` c ` aN

(5)

where n is the order of AR.

The above equation can be written in the form:

YN “ ZNθN ` aN (6)

where YN “ r zn`1 zn`2 ¨ ¨ ¨ zN sT

1ˆpN´nq
, θN “ r ϕ1 ϕ2 ¨ ¨ ¨ ϕn c sT

1ˆpn`1q
,

aN “ r an`1 an`2 ¨ ¨ ¨ aN sT

1ˆpN´nq
, ZN “

»

—

—

—

–

zn zn´1 ¨ ¨ ¨ z1 1

zn`1 zn ¨ ¨ ¨ z2 1

¨ ¨ ¨
zN´1 zN´2 ¨ ¨ ¨ zN´n 1

fi

ffi

ffi

ffi

fl

pN´nqˆpn`1q

.

According to the theory of multiple regression, the least square estimation of the parameter matrix

θN is:

θN “ pZT
NZNq´1

ZT
NYN (7)

Assuming that the model parameter of the observed sequence at the present stage is θN and

with the arrival of new data zN`1, an updated estimation of θN can be obtained based on sequence

tzt, t “ 1, 2, . . . , N, N ` 1u. According to the form of the above matrix, the least square estimation

based on N + 1 data is as follows:

θN`1 “ pN`1ZT
N`1YN`1, pN`1 “ pZT

N`1ZN`1q´1
(8)

where h is sequence number, and its range is r1, `8s; h is an integer. ZN`1 “
«

ZN

Zph`1q

ff

pN´n`1qˆpn`1q

,

YN`1 “
«

YN

zN`1

ff

pN´n`1qˆ1

, Zph`1q “
”

zN zN´1 ¨ ¨ ¨ zN´n`1 1
ı

1ˆpn`1q
.

According to the multiplication of the block matrix, the following expression can be obtained:

$

&

%

ZT
N`1YN`1 “ ZT

NYN`ZT
ph`1qzN`1

pN`1 “ pp´1
N `ZT

ph`1qZph`1qq´1
(9)

By the matrix inversion formula, we can get the following:

pN`1 “ pI ` pN

ZT
ph`1qZph`1q

1`Zph`1qpNZT
ph`1q

qpN (10)

where Ipn`1qˆpn`1q is an identity matrix.

Substituting Equations (9) and (10) into Equation (8), the recursive estimation formula of the

parameters is obtained:

θN`1 “ θN`KN`1pzN`1 ´ Zph`1qθNq (11)

where KN`1 “ 1
1`Zph`1qpNZT

ph`1q

pNZT
ph`1q.
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The above formula shows that the new estimation θN+1 of the AR model parameters involves

amending the original estimation θN, and the correction term is KN`1pzN`1 ´ Zph`1qθNq.

3. Real-Time Filtering

3.1. Selection of the Filter

After the AR model of FOG random drift is obtained, the traditional approach is to filter it through

a Kalman filter [14–19]. The state space that sets the gyroscope as the research object is described

as follows:
#

Xt “ Φt,t´1Xt´1 ` et

Zt “ HtXt ` εt

(12)

where Xt is the state vector at time t; Φt,t´1 is the state transition matrix; et is the system process

noise sequence; Zt is the observation vector at time t, and here, it is the gyroscope output; Ht is the

observation matrix; εt is the measurement noise sequence; here, it is the fitting residual sequence

of model. The state equation is the improved AR model of the gyroscope. Using a Kalman filter to

filter the output signal of the gyroscope, the residual sequence εt is generally regarded as white noise,

but this approach is not reasonable. An improved AR(3) model is established by using the static output

data of a certain type of FOG. The residual error sequence fitted by the model is shown in Figure 1,

and the corresponding power spectral density (PSD) is shown in Figure 2.
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Figure 1. Fitting residual error sequence.

According to [20], the PSD of white noise should be constant, and the power spectrum is equal to

the variance intensity. As can be seen from Figure 2, the PSD of the residual series εt is not constant,

so it is not reasonable to simply treat the fitting residual part as white noise.

  










X


Φ





     
     
   

      

      

   

       


   




 




R

   

 









0 10 20 30 40 50 60 70 80 90 100
10

-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

f / Hz

P
S

D
/(
/

h
)2

/H
z
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3.2. Sage-Husa Adaptive Kalman Filter

SHAKF, proposed by Sage and Husa [21], is an adaptive filtering algorithm for the uncertainty

of noise statistical characteristics. A time varying noise estimator is added into the KF framework,

which can estimate the statistical characteristics of noise in real time and mitigate the filter divergence.

3.2.1. Design of SHAKF

Consider the stochastic linear discrete system [22,23]:
#

Xk “ Φk,k´1Xk´1 ` W1
k´1

Zk “ HkXk ` V1
k

(13)

where Xk is the state vector at epoch k; Φk,k´1 is the state transition matrix; W 1
k´1 is the system

process noise sequence; Zk is the observation vector at epoch k; Hk is the observation matrix; V 1
k is the

measurement noise sequence; both are Gauss white noise, which are independent of each other with

time varying mean and covariance matrix; they meet the following conditions:

$

’

’

&

’

’

%

E
“

W1
k

‰

“ qk E
”

`

W1
k ´ qk

˘

´

W1T
k ´ qj

¯ı

“ Qkδkj

E
“

V1
k

‰

“ rk E
“`

V1
k ´ rk

˘ `

V1T
k ´ rk

˘‰

“ Rkδkj

E
“`

W1
k ´ qk

˘ `

V1T
k ´ rk

˘‰

“ 0

(14)

where δkj represents the Dirac delta function, δkj “
#

1, i f k “ l

0, otherwise
; Qk is the process noise covariance

matrix; and Rk is the measurement noise covariance matrix.

Because the process noise and measurement noise have a non-zero mean value, the system cannot

directly use the Kalman filter. Now, we will derive the SHAKF algorithm briefly [22].

Equation (13) is rewritten as:
#

Xk “ Φk,k´1Xk´1 ` qk´1 ` Wk´1

Zk “ HkXk ` rk ` Vk

(15)

where Wk´1 and Vk are both white noise with zero mean.

According to Equation (15), the following equation can be obtained:

$

’

’

&

’

’

%

X̂k,k´1 “ Φk,k´1X̂k´1 ` qk´1

νk “ Zk ´ HkX̂k,k´1 ´ rk

X̂k “ X̂k,k´1 ` Kkνk

(16)

where X̂k,k´1 is the predicted state vector; X̂k is the state estimation vector; νk is the residual error

series vector; Kk is the filtering gain.

Subtracting Equations (15) and (16), then we can get:

Xk ´ X̂k “ Φk,k´1

`

Xk´1 ´ X̂k´1

˘

´ Kkνk ` Wk´1 (17)

νk “ Hk

`

Xk ´ X̂k,k´1

˘

` Vk (18)

Firstly, we will derive the estimation formula of the statistical characteristics of the measurement

noise. Transposing both sides of Equation (18), the following can be obtained:

ν
T
k “

`

Xk ´ X̂k,k´1

˘T
HT

k ` VT
k (19)
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Furthermore, considering that the measurement noise and the estimation error are not related, we

can get:

E
”

νkν
T
k

ı

“ E
”

Hk

`

Xk ´ X̂k,k´1

˘ `

Xk ´ X̂k,k´1

˘T
HT

k

ı

` E
”

VkVT
k

ı

(20)

The above formula can be simplified as:

E
”

νkν
T
k

ı

“ HkPk,k´1HT
k ` Rk (21)

where Pk,k´1 is the covariance matrix of the predicted state vector.

The formula is written in the form of a recursive estimation formula as:

R̂k “ p1 ´ dkqR̂k´1 ` dk

”

νkν
T
k ´ HkPk,k´1HT

k

ı

(22)

where dk is a correction factor with dk “ 1´b
1´bk`1 and b is the forgetting factor, 0 ă b ă 1. Equation (22)

is namely the recursive estimation formula of measurement noise R̂k of the SHAKF algorithm.

Then, we derive the estimation formula of the statistical properties of process noise. Transposing

both sides of Equation (17), the following can be obtained:

`

Xk ´ X̂k

˘T ` νk
TKk

T “
`

Xk´1 ´ X̂k´1

˘T
Φk,k´1

T ` Wk´1
T (23)

Both sides of Equation (17) are respectively multiplied by both sides of Equation (23), and then,

the mathematical expectation is taken. Furthermore, considering that the process noise and the

estimation error are not related, the estimated residual error is uncorrelated with the estimation error,

and the process noise and the estimated residual error have zero expectation, so we can get:

E
“

Wk´1Wk´1
T

‰

` Φk,k´1E
”

`

Xk´1 ´ X̂k´1

˘ `

Xk´1 ´ X̂k´1

˘T
ı

Φk,k´1
T “

E
“

Kkνkνk
TKk

T
‰

` E
”

`

Xk ´ X̂k

˘ `

Xk ´ X̂k

˘T
ı (24)

The above formula can be simplified as:

Q̂k “ Kkνkν
T
k KT

k ` Pk ´ Φk,k´1Pk´1Φ
T
k,k´1 (25)

where Pk is the predicted state covariance matrix at time k.

The formula is written in the form of a recursive estimation formula as:

Q̂k “ p1 ´ dkqQ̂k´1 ` dk

´

Kkνkν
T
k KT

k ` Pk ´ Φk,k´1Pk´1Φ
T
k,k´1

¯

(26)

Equation (26) is the recursive estimation formula of noise Q̂k of the SHAKF algorithm.

The flow chart of the SHAKF algorithm is shown in Figure 3.

As can be seen from Figure 3, the SHAKF algorithm consists of a noise estimator and a

conventional Kalman filtering algorithm. The noise estimator can be used to estimate the real-time noise

statistics, and the Kalman filtering algorithm can be adopted to complete the filtering state estimation.
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Figure 3. Flow chart of the SHAKF algorithm.

3.2.2. Analysis of the SHAKF Algorithm

The SHAKF algorithm is analyzed as follows:

1. The noise estimator cannot estimate the statistical properties of the process noise and measurement

noise at the same time. Notice that the estimations of system noise and measurement noise both

depend on the innovation, more specifically in the formula of νkν
T
k . This is because νkν

T
k reflects

the changes in the statistical characteristics of two kinds of noise at the same time, but in fact, νkν
T
k

does not accurately reflect which kind of noise has changed. Assume that the measurement noise

changes and process noise remain constant from a certain moment, then the covariance matrix of

the measurement noise can be correctly estimated by means of Equation (22); and the estimated

covariance matrix of the process noise obtained through Equation (26) is obviously inaccurate.

2. Suppose the expected value of measurement noise is r̂k, then the observation equation can be

expressed as:

Zk “ HkXk ` r̂k ` Vk (27)
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and r̂k can be obtained as follows:

r̂k “ Zk ´ HkX̂k ´ Vk (28)

It can be seen by comparison with Figure 3 that during the estimation of measurement noise

expectation, the final estimated value X̂k is substituted by a one-step prediction X̂k,k´1, so it is a kind

of suboptimal algorithm.

Due to the fact the estimation of system process noise expectation and measurement noise

expectation are suboptimal estimations, it may lead the expected estimation error to gradually

accumulate and then produce large deviations during the recursive process and even interfere with

the estimation of measurement noise or process noise variance.

3. The recursive formula of measurement noise covariance matrix Rk is rewritten as follows:

R̂k “ bkp1´bq
1´bk`1 R̂0 ` bk´1p1´bq

1´bk`1 pν1ν
T
1 ´ H1P1,0HT

1 q ` bk´2p1´bq
1´bk`1 pν2ν

T
2 ´ H2P2,1HT

2 q`

... ` 1´b
1´bk`1 pνkν

T
k ´ HkPk,k´1HT

k q
(29)

Notice that, in the estimation of Rk, the weight of the correction at the current time is maximum.

Additionally, the weight gradually tends to a constant value of 1 ´ b with the increase of time. Similarly,

with the increase of k, the distribution weight, for which the initial value R0 distributes on Rk, gradually

decays and tends to zero. This shows that the adaptive degree of the estimator decreases gradually

with the progress of filtering.

4. The recursive formula of Rk can also be rewritten as follows:

R̂k “ R̂k´1 ` 1 ´ b

1 ´ bk`1

”

νkν
T
k ´ pHkPk,k´1HT

k ` R̂k´1q
ı

(30)

It is known that:

Erνkν
T
k s “ HkPk,k´1HT

k ` R̂k (31)

On the one hand, it can be seen that during the recursive estimation of measurement noise,

the autocovariance of the current measurement value is used. Actually, in the calculation of the

autocovariance, R̂k is substituted by R̂k´1, which confirms that the measurement noise estimator is

a suboptimal noise estimator. On the other hand, the recursive formula requires the filter to tend to

become stable, with the result that the noise estimation after calculating the difference makes the new

estimation of the Rk matrix lose the positive definite value. This is not because the estimation error

variance matrix P is larger. In fact, the matrix P is generally chosen to be larger at the initial time of

filtering, and a larger deviation can appear during the filtering process due to carrier maneuvers or

innovation appearing, which causes coarse errors. When the estimated Rk is negative definite because

the matrix P is larger, it is likely to lead the filtering to diverge.

3.2.3. Improvement of the SHAKF Algorithm

Aiming at the weight problem of the filtering algorithm and the divergence problem of the filter,

we can think about treating the SHAKF algorithm as follows [24,25]:

1. A criterion of filtering convergence is introduced for the estimator, which is used to judge whether

there is a large change in the measurement noise. The criterion is formulated as:

ν
T
k νk ď γ

2Tr
!

E
”

νkν
T
k

ı)

(32)

where TrpAq denotes the trace of the matrix A; γ is used to control the strictness degree of

criterion, and its range is γ ě 1. The specific method of use is: update the above criterion with
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new innovation; if the criterion is established, carry out the filtering; if not, indicating that the

measurement noise variance changes greatly, then calculate the weight value dk from the initial

value, i.e., the value of k is zero.

In the estimation of Rk, the degree of the utilization of the4 current innovation is maximum at the

beginning of filtering. With the increase of time, dk is decreased; then, Rk depends on Rk´1 much more

than innovation. The tracking ability of measurement noise is improved by the above method.

2. The estimator of Rk is rewritten in the following form:

R̂k “ p1 ´ dkqR̂k´1 ` dkνkν
T
k (33)

where the related items of the one-step prediction error covariance matrix are cast out on the basis

of Equation (22). Although the change is at the expense of certain filtering accuracy, the stability

of the filter is improved.

4. Experiment and Analysis of Adaptive Filtering Based on the AR Model

4.1. The Filtering Equation

The offline analysis of static data in different environments from a certain type of FOG was

developed by Casic33s by using the improved AR model and looks for the optimal fitting model.

The results show that the improved AR(3) model can fit the FOG random drift well, so the improved

AR(3) model is used to model online. The gyroscope precision can be described as follows: the constant

error is 0.01˝/h; the random drift error is 0.006
˝ {

?
h.

Under static conditions, we record the real-time data of the FOG single axis (x-axis). According

to Equation (4), the improved AR(3) model can be established online. Then, we adopt RLS to

estimate the model parameters in real time. The real-time estimation of parameter curves is shown

in Figures 4 and 5. Finally, we carry out adaptive filtering on the FOG signal directly. As a result

of using the FOG measured signal instead of the zero mean signal, the improved AR model has a

constant c. In this paper, c is also considered as a state variable. Therefore, the system state equation

can be expressed as follows:

Xk “ AXk´1 ` BWk (34)

where state vector Xk “ r zk zk´1 zk´2 c sT

1ˆ4
, process noise Wk “ r ak 0 0 0 sT

1ˆ4
,

A “

»

—

—

—

–

ϕ1 ϕ2 ϕ3 1

1 0 0 0

0 1 0 0

0 0 0 1

fi

ffi

ffi

ffi

fl

4ˆ4

, B “

»

—

—

—

–

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

fi

ffi

ffi

ffi

fl

4ˆ4

.

Suppose the FOG output is Zk, then the measurement equation of the system is as follows:

Zk “ HXk ` Vk (35)

where H “ r 1 0 0 0 s
1ˆ4

, Vk is measurement noise.

As can be seen from the figures, in the absence of disturbance, the estimated parameters tend to

become stable in about 30 s, and the estimated values are as follows:

ϕ1 “ 0.4885, ϕ2 “ ´0.6660, ϕ3 “ ´0.1705, c “ 0.0048 (36)

Therefore, the improved AR(3) model is:

zk “ 0.4885zk´1 ´ 0.6660zk´2 ´ 0.1705zk´3 ` 0.0048 ` ak (37)
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Then, the filtering equation is:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

»

—

—

—

–

zk

zk´1

zk´2

c

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

0.4885 ´0.6660 ´0.1705 1

1 0 0 0

0 1 0 0

0 0 0 1

fi

ffi

ffi

ffi

fl

»

—

—

—

–

zk´1

zk´2

zk´3

c

fi

ffi

ffi

ffi

fl

`

»

—

—

—

–

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

fi

ffi

ffi

ffi

fl

»

—

—

—

–

ak

0

0

0

fi

ffi

ffi

ffi

fl

zk “
”

1 0 0 0
ı

»

—

—

—

–

zk´1

zk´2

zk´3

c

fi

ffi

ffi

ffi

fl

` Vk

(38)

According to the above filtering equation, the random drift error of FOG can be filtered

using SHAKF.
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Figure 5. Real-time estimation of constant c.

4.2. Static Experiment Results and Analysis

Under static conditions, we record the real-time data of a single axis (x-axis) FOG for 2 h.

The sampling period is 5 ms, and the experimental picture is shown in Figure 6.

The original output of gyroscope (x-axis) is shown in Figure 7, and the results with KF and SHAKF

processing are shown in Figures 8 and 9.
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Figure 6. Experimental setup of FOG.
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Figure 7. Raw output of the gyroscope (x-axis).

As can be seen from the figures, after filtering by the SHAKF, the noise is significantly reduced,

while the average value remains unchanged. The filtering effect of SHAKF is better than that of

KF. According to the filtering results, on the one hand, it can be seen that using the improved AR

model of FOG to model can effectively reduce the gyroscope random drift error; the validity of the

denoising method is verified. On the other hand, the effect of using the KF is not as good as the SHAKF,

which indicates that when dealing with the filtering problem of an uncertain model, the adaptive

filtering algorithm has better robustness.
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Figure 8. The filtering result of KF. (a) The filtering result of a single axis (x-axis) FOG for 2 h;

(b) local enlarged graphs.
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Figure 9. The filtering result of the modified SHAKF. (a) The filtering result of a single axis (x-axis)

FOG for 2 h; (b) local enlarged graphs.

Allan Variance Analysis

Now, the sampling data, the data of the random drift model and the data after filtering by the

KF and SHAKF are compared by adopting the Allan variance analysis method. The Allan variance

method is a time domain analysis method, which is recognized as a standard method for the analysis
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of FOG parameters by IEEE [26]. It can characterize and identify all kinds of error sources and their

contribution to the statistical properties of the whole noise very easily and meticulously. Therefore,

the Allan variance analysis can be used to analyze the variation of error coefficients before and after

filtering FOG signals quantitatively. If the noise sources are independent of each other, then the Allan

variance is the sum of squares of each type of error. The Allan variance of FOG can be expressed

as [27–31]:

σ
2
totalpτq “ σ

2
ARWpτq ` σ

2
BIpτq ` σ

2
RRWpτq ` σ

2
RRpτq ` σ

2
QNpτq (39)

Namely,

σ
2
Ω

pτq “ R2

2
τ

2 ` K2

3
τ ` 2B2ln2

π
` N2

τ
´1 ` 3Q2

τ
´2 (40)

where ARW is the angle random walk, and its error coefficient is N; BI is the bias instability, and its

error coefficient is B; RRW is the rate random walk, and its error coefficient is K; RR is the rate ramp,

and its error coefficient is R; QN is the quantization noise, and its error coefficient is Q.

According to Equation (35), if we use the least square method to fit the data, we can get the error

coefficients of five noise sources before and after filtering the FOG signal. They are shown in Table 1.

Table 1. Comparison of the noise source error coefficients before and after filtering.

Error Coefficients (Unit) Original Signal Fitting Sequence Kalman Filtering SHAKF

Np˝{h1{2q 4.2026 ˆ 10´6 3.9168 ˆ 10´6 3.2547 ˆ 10´6 2.0632 ˆ 10´6

Bp˝{hq 7.1221 ˆ 10´4 7.0438 ˆ 10´4 6.1221 ˆ 10´4 3.5235 ˆ 10´4

Kp˝{h3{2q 0.0335 0.0334 0.0246 0.0162

Rp˝{h2q 0.5401 0.5390 0.4286 0.2636

Qp˝q 1.1565 ˆ 10´5 1.1195 ˆ 10´5 9.4795 ˆ 10´6 5.4532 ˆ 10´6

It can be seen from Table 1 that the sampling data are basically consistent with the noise

characteristics of the noise sequence fitted by the improved AR model. The fitting accuracy of the rate

ramp and rate random walk error are both more than 99%. Due to the fact that the magnitudes of the

angle random walk, bias instability and quantization noise are small, fitting is more difficult, but the

fitting accuracy reaches above 93%. After the data are processed by two filtering methods, the five

noise source error coefficients of the FOG output signal are obviously reduced. After adopting the

modified SHAKF, the noise source error coefficients are all less than half of their values before filtering;

for example, the FOG bias stability reduces from the original 0.0007122 (˝/h) to 0.0003523 (˝/h).

When analyzing the filtering effect of a single noise, the modified SHAKF can improve the performance

by up to 42.5% (quantization noise) compared to KF, and the filtering effects of the random walk and

rate ramp error are increased by 34.1% and 38.5%, respectively. It can be seen that the effect of the

modified SHAKF is better than KF. Therefore, the random drift error of FOG is effectively reduced,

and the accuracy of FOG is improved.

4.3. Dynamic Experiment Results and Analysis

In order to verify the applicability of the modified model under moving base conditions,

the gyroscope axis (x-axis) is rotated by 5˝/s, 15˝/s, 25˝/s, 35˝/s and 50˝/s, respectively. In this

paper, the dynamic data of FOG (x-axis) is recorded for 2 h at room temperature with a sampling

period of 5 ms. The improved AR(3) model is established as the system state equation using 1,440,000

differentiated samples. Then, the SHAKF algorithm is applied to denoise the dynamic signal of the

FOG with the same initial parameters chosen as under static conditions. The results are shown in the

following figures, where the blue curve represents the FOG noisy signal, the red curve indicates the

SHAKF denoising signal and the green curve denotes the KF denoising signal.
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It can be seen from Figures 10–14 that the denoising effect of the KF becomes worse and worse

with the increasing of rotational velocity, even becoming invalid. Relative to the KF, the denoising

effect of the modified SHAKF is very obvious, and any increase in rotational velocity has little influence

on SHAKF.
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Figure 10. Comparison of the results before and after denoising for the FOG dynamic signal at a rate of

5˝/s. (a) Denoising the results of the FOG dynamic signal (x-axis) for 2 h; (b) local enlarged graphs.
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Figure 11. Comparison of the results before and after denoising for the FOG dynamic signal at a rate of

15˝/s. (a) Denoising the results of the FOG dynamic signal (x-axis) for 2 h; (b) local enlarged graphs.
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Figure 12. Comparison of the results before and after denoising for the FOG dynamic signal at a rate of

25˝/s. (a) Denoising results of the FOG dynamic signal (x-axis) for 2 h; (b) local enlarged graphs.

 
(a)

 
(b)

0 5 10 15

x 10
5

34.8

35

35.2

Time(5ms)

G
y
ro

( 
/s

)

 

 

FOG noisy signal

SHAKF denoise signal

KF denoise signal

1.4 1.4001 1.4002 1.4003 1.4004

x 10
6

34.8

35

35.2

Time(5ms)

G
y
ro

( 
/s

)

 

 

FOG noisy signal

SHAKF denoise signal

KF denoise signal




Figure 13. Comparison of the results before and after denoising for the FOG dynamic signal at a rate of

35˝/s. (a) Denoising results of the FOG dynamic signal (x-axis) for 2 h; (b) local enlarged graphs.
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Figure 14. Comparison of the results before and after denoising for the FOG dynamic signal at a rate of

50˝/s. (a) Denoising results of the FOG dynamic signal (x-axis) for 2 h; (b) local enlarged graphs.

Mean square error (MSE), root mean square error (RMSE) or the signal-to-noise power ratio

(SNR) [9] are generally employed to compare the performance of denoising methods before and after

denoising the FOG dynamic drift signal. The MSE is defined as follows:

MSE “

g

f

f

e

1

N

N
ÿ

t“1

pxptq ´ xptqq
2

(41)

where xptq is the mean value of the signal, xptq is the actual signal and N is the number of signals.

The MSE results calculated before and after denoising are in Table 2.

Table 2. MSE results of the FOG signal with different rotational velocities.

Rotation (˝/s) FOG Signal (˝/s) KF Denoised Signal (˝/s) SHAKF Denoised Signal (˝/s)

5 0.1068 0.0362 0.0184
15 0.2461 0.0932 0.0396
25 0.1629 0.1086 0.0280
35 0.0844 0.0637 0.0145
50 0.0538 0.0445 0.0093

Through comparing the statistical characteristics of the FOG output signal before and after

denoising, it can be seen that the MSE of random drift error before and after filtering clearly changes.

Additionally, the MSE of SHAKF denoised signal is much less than that of KF. Therefore, it can be

concluded through the above analysis that the modified SHAKF is a suitable denoising algorithm for

reducing the FOG random drift error.
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5. Conclusions

In this paper, the improved AR(3) model is proposed. It is shown that a model of the FOG

output signal can be established online by directly using the output static data of a FOG. Additionally,

according to the model, the modified SHAKF is adopted to filter the FOG random drift errors in real

time, which effectively reduces FOG errors and improves the accuracy of FOG. Static experiments and

dynamic experiments were done to verify the effectiveness of this method. Under static conditions,

the filtering performance of the modified SHAKF is compared to KF, and it is proven to be superior

to KF. Based on Allan variance analysis, the random errors, like the angle random walk and bias

instability, are reduced two-fold. The fitting precision of the FOG random drift model established

online by the improved AR model is higher. The real-time performance is strong, and the minimum

fitting accuracy of single noise is 93.2%. Under dynamic conditions, the minimum MSE obtained by

the modified SHAKF shows that the improved AR model established under static conditions is also

perfect. The effectiveness of this method is validated in denoising the single-axis FOG signal under

both static and dynamic conditions. The research presented in this paper is of great significance in

engineering applications.
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