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Abstract

Background: Many cell lines currently used in medical research, such as cancer cells or stem cells, grow in

confluent sheets or colonies. The biology of individual cells provide valuable information, thus the separation of

touching cells in these microscopy images is critical for counting, identification and measurement of individual

cells. Over-segmentation of single cells continues to be a major problem for methods based on morphological

watershed due to the high level of noise in microscopy cell images. There is a need for a new segmentation

method that is robust over a wide variety of biological images and can accurately separate individual cells even in

challenging datasets such as confluent sheets or colonies.

Results: We present a new automated segmentation method called FogBank that accurately separates cells when

confluent and touching each other. This technique is successfully applied to phase contrast, bright field,

fluorescence microscopy and binary images. The method is based on morphological watershed principles with two

new features to improve accuracy and minimize over-segmentation.

First, FogBank uses histogram binning to quantize pixel intensities which minimizes the image noise that causes

over-segmentation. Second, FogBank uses a geodesic distance mask derived from raw images to detect the shapes

of individual cells, in contrast to the more linear cell edges that other watershed-like algorithms produce.

We evaluated the segmentation accuracy against manually segmented datasets using two metrics. FogBank

achieved segmentation accuracy on the order of 0.75 (1 being a perfect match). We compared our method with

other available segmentation techniques in term of achieved performance over the reference data sets. FogBank

outperformed all related algorithms. The accuracy has also been visually verified on data sets with 14 cell lines

across 3 imaging modalities leading to 876 segmentation evaluation images.

Conclusions: FogBank produces single cell segmentation from confluent cell sheets with high accuracy. It can be

applied to microscopy images of multiple cell lines and a variety of imaging modalities. The code for the

segmentation method is available as open-source and includes a Graphical User Interface for user friendly execution.
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Background

Many cell lines that are currently being studied for med-

ical purposes, such as cancer cell lines, grow in conflu-

ent sheets. These cell sheets typically exhibit cell line

specific biological properties such as the morphology of

the sheet, protein expression, proliferation rate, and in-

vasive/metastatic potential. However, cell sheets are

comprised of cells of different phenotypes. For example,

individual cells in a sheet can have diverse migration

patterns, cell shapes, can express different proteins, or

differentiate differently. Identifying phenotypes of indi-

vidual cells is highly desirable, as it will contribute to

our understanding of biological phenomena of tumor

metastasis, stem cell differentiation, or cell plasticity.

Time-lapse microscopy now enables the observation of

cell cultures over extended time periods and at high spa-

tiotemporal resolution. Furthermore, it is now possible

not only to label cells with fluorescent markers, but also

to express fluorescently labeled protein, enabling spatio-

temporal analysis of protein distribution in a cell sheet

at a cellular level. To assess properties of individual cells

within the observed sheet, however, it is necessary to
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accurately track these cells in a fully automated fashion.

Thus, one of the requirements of an automated image

analysis method is high accuracy single cell segmenta-

tion for individual time steps and its applicability to a

wide range of cell types. Additionally, it is preferred that

the developed method can analyze a multitude of image

types, for example, phase contrast, differential interfer-

ence contrast, and fluorescence images, as they are typ-

ically obtained in biomedical science.

Segmentation methods based on morphological water-

sheds are used for object separation and appear through-

out the image processing and analysis literature and

patents, since the method was first applied to image seg-

mentation [1]. Most watershed methods work by dividing

the image surface into regions based on pixel intensity

gradient contours. However, the high level of noise in bio-

logical images leads to over-segmentation - a major prob-

lem when morphological watersheds are used [2-5]. This

noise creates small minima across the regions of interest

in an image, and gives rise to numerous small segmented

regions that do not have biological significance. Therefore,

a new segmentation method that accurately separates con-

fluent cells into single cells for a wide range of applications

is needed.

In general, watershed regions are formed either by a

flooding process, expanding out from gradient minima,

or by a watershed transform which computes a direct

solution. Either of these methods can include the entire

image, or begin from user-defined seed points. For

flooding techniques, typically the regions are flooded ac-

cording to intensity levels, through an immersion simu-

lation [6] creating a topographic surface. Automatic

minima detection can occur, for example, from low fre-

quency components in the morphological gradient of an

image [7]. Distance transforms can also be used for

watershed segmentation, flooded from localized distance

maxima [8]. Traditional watershed flooding by gradient

level has been improved by adding local neighborhood

comparisons and geodesic distance checking as the flood-

ing occurs [9]. Gradient vector flow (GVF) [10], a diffusion

of the classical gradient, has been used to give more

weight to important feature edges. The viscous watershed

technique [11] simulates flooding on a filtered relief of the

image. More user-dependent methods extract regions

through selected localized watershed flooding [12].

A variety of different watershed transforms are avail-

able, dating back from Meyer's watershed transform,

which uses topographic distance to solve a shortest path

function [11]. The Image Foresting Transform (IFT) [13]

transforms an image into a weighted graph, in which

each pixel is represented by a node in the graph. Cost

functions are calculated for all possible paths within the

graph to find the optimal region separation. The Tie-Zone

Watershed (TZWS) transform [14] is derived from the

IFT transform, and defines tie-zones, where regions over-

lap and the forests could produce multiple solutions, and

defines unique optimal partitions between regions. Defin-

ing an energy minimization function to partition regions

[15] more efficiently handles noisy images and incomplete

boundaries, smoothing edges by adding a contour length to

the energy function, and a locally constrained watershed

transform [5] is based on such constraints. J. Cousty et al.

[16] used Edge-weighted graphs to separate watershed ba-

sins, which are optimized using minimum spanning forests.

Despite the long history of watershed techniques, to date

none of these can successfully segment images of sheets of

touching cells with high accuracy.

The task of separating watershed basins has been

attempted in a number of ways, designed for specific

types of cells. Merging criteria include region homogen-

eity and edge integrity [17], textures defined by co-

occurrence matrices [18], distance transforms based on

circular cell-like shapes [8], analyzing the gradient on

multiple scales, hierarchical segmentation in which seg-

mentation is a process ordered by decreasing altitude

[19], and by flooding dynamics [20,21]. Local shape fea-

tures from specific regions, extracted from Gaussian deriv-

atives of the objects, are used to evolve region boundaries

[15]. Spurious minima points have been merged according

to an overlap parameter that measures the fractional over-

lap when the objects are treated as overlapping circles [3].

Graph segmentation has been used to find skeletal lines

representing cell shapes for round and ellipsoidal objects

[22,23], and the shape of segmented masks themselves

used to separate circular objects [24,25]. The use of the

Maximally Stable Extremal Regions (MSER) for edge de-

tection followed by Ultimate erosion, watershedding, and

fragment merging pipeline is used on bright field images

[26]. All of these techniques are specific to one cell line or

one image modality and require an expensive merging cri-

terion that does not produce accurate results when applied

to a different type of cell line or image modalities.

We present a new algorithm that can address the need

for high accuracy single cell segmentation in confluent

sheets or clusters of cells touching each other, and that

can be applied to multiple cell lines and image modal-

ities. We have developed a derivative improved water-

shed algorithm that automatically detects distinct basins

(seed points) while minimizing over-segmentation and

uses geodesic distances to preserves the shape of individ-

ual cells. It uses two methods for the reliable seed detec-

tion: (1) histogram quantization with seed size constraint,

and (2) nucleoli seed detection, which incorporates bio-

logical insight to locate cell nuclei and their clustering.

Furthermore, in the literature, the geodesic distance is

mainly used to compute the shortest path between two

points of interest while avoiding obstacles in the image

[5,27,28]. In our method, we use the geodesic distance to
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assign pixels to the closest seed point object in the image

which leads to individual cell shapes close to manually

drawn ones, in contrast to the more linear cell edges that

other watershed-like algorithms produce. We show that

our new algorithm produces segmentation accuracy on

109 reference images in the order of 0.75, more success-

fully than previous methods. We compared our results to

five freely available tools that worked on our reference

datasets: CellProfiler based on region growing [29], Cell-

Tracer [30], Schnitzcells [31], Frlbm using level sets [32],

and Marker-Controlled Watershed (MCW). We highlight

the major differences between our new approach and pre-

viously existing ones and show its efficiency on a wide var-

iety of applications. We visually verified our method on

datasets comprised of 3 image modalities, 14 cell lines for

a total of 876 images.

Section Methods describes our new method. In sec-

tion Results, we quantify our results with this new method

and compare our method to others. We also demonstrate

the algorithm on multiple image modalities and cell lines.

Section Discussion and Conclusion are dedicated to dis-

cussing the results and deriving conclusions.

Methods

The automated single cell segmentation algorithm is com-

prised of five steps:

(1)Separate foreground from background, defining the

Region of Interest (ROI)

(2)Detect potential cell boundaries in the image that will

be used as barriers in the computation of the

geodesic distance mask

(3)Detect seed points or distinct basins within the ROIs
(4)Separate single cell boundaries within the ROIs using

seed points and boundary masks applied on

modified grayscale images

(5)Detect mitotic cells and add them to the mask

The following subsections describe each of the five al-

gorithmic steps in detail.

Foreground-background separation

We begin the process of separating a sheet of cells by lo-

cating the boundaries of that sheet using the Empirical

Gradient Threshold (EGT) technique [29]. A gradient

image is formed from the original image, and the fore-

ground and background distributions of gradient magni-

tude values are separated based on their overlap. This

technique has also been found to be highly accurate across

imaging modalities and with a wide range of cell lines.

Figure 1 is an example of edge detection on an image

of a sheet of breast epithelial cells. For more information

about breast epithelial cells, please refer to [30,31].

Geodesic distance and cell boundaries

The geodesic distance dI (a, b) between two pixels a and

b in the image I, as defined in [32], is the minimum of

the length L of the path(s) P = (c1,c2,…,c1) joining p and

q in I.

dI a; bð Þ ¼ minfL Pð Þ c1 ¼ a; c1 ¼ b;P⊆Ij g
dI a; bð Þ ¼ ∞; if a and b are not connected in I:

The geodesic distance prevents pixels that are close to

a cell but separated by a boundary from being assigned

Figure 1 Edge segmentation results. Segmentation of sheet edges overlaid on the phase contrast image. The red color represents the colony

edge and it is used only for highlight.
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to that cell. Those pixels are instead assigned to a differ-

ent cell that is further away in terms of number of pixels

on the image, but closer in terms of geodesic distance as

shown in Figure 2.

There are two choices to define the boundary mask:

(1) all pixels can be traversed, or (2) the geodesic mask

is used. The geodesic mask [32] is a binary image where

pixels with value equal to zero represent boundaries that

cannot be traversed, and pixels with value equal to one

are paths that can connect two pixels of interest to-

gether. Figure 3 shows the geodesic mask overlaid on

the original phase image where the red pixels are the

boundaries that cannot be traversed. Boundaries are de-

fined through a user input percentile threshold, where

the boundaries are considered to have high pixel inten-

sities. In our case, the boundaries are composed of pixels

with intensities higher than the 85th percentile intensity.

This mask can help separate single cells with boundaries

close to the ones drawn manually.

Spatial seed point detection

The detection of seed points determines whether an image

is over or under-segmented. Commonly used watershed-

derived methods tend to lead to over-segmentation. This

problem can be fixed by post processing steps that re-

attach broken cell segments. These steps are challenging

and lead to lower accuracy in the resulting images [22].

In our approach, in contrast to most watershed ap-

proaches, we operate on the image histogram or on the

corresponding gradient histogram. We have developed

two different methods for automatic detection of seed

points that minimize over-segmentation: (1) histogram

percentile binning quantization with seed size constraint,

which does not incorporate any biological modeling, and

(2) nucleoli seed detection, which incorporates biological

insight to locate cell nuclei and their clustering. The user

can choose either of these two methods prior to the

automatic seed detection. The choice depends on the

problem being solved. Examples showing advantages of

each technique are presented in the Additional file 1.

Histogram quantization with seed size constraint

This computational step computes seed points as a func-

tion of histogram percentile binning quantization with

seed size constraint. In contrast to other techniques, in-

tensity thresholds are not defined at every unique inten-

sity value in the image but rather at each percentile

value of the image. Using every unique value leads to mul-

tiple local peaks and hence to over-segmentation, while

binning the pixel intensities reduces over-segmentation.

For our purposes we used bins containing 1% of pixels.

An illustration of the corresponding intensity interval is

shown in Figure 4. The quantization reduces the num-

ber of potential seed points to consider, thus reducing

the chances of over-segmenting the image. Furthermore,

the use of percentiles helps to focus on the intensity

levels that are more consistent across each quantile, and

has a much faster execution time since we are consider-

ing only 100 intensity levels in any image. Figure 4

shows that the intensity levels are more concentrated in

the middle section of the histogram and less on the

boundaries.

Figure 2 Geodesic distance illustration. A schematic figure to display the allocation of an unassigned pixel (x marked) to the closest seed

point (yellow path) by means of the minimum geodesic distance between that pixel and the seed points in the image. The yellow path has a

geodesic distance smaller than the orange or green path. The red pixels represent cell boundaries that cannot be traversed.
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Depending on image modality and cell line (e.g., phase

contrast, fluorescent, binary with distance transform,

etc.) one may want to look at seed points starting

from low intensity moving to high intensity or vice

versa. The two cases are color-coded below: (1) high

intensity pixels correspond to seed points and low in-

tensity pixels correspond to boundaries (in blue), and

(2) low intensity pixels correspond to seed points (in

red):

• The histogram H of an image is binned into 100 bins

centered on the percentile values p(i) of the image. p(i)

is the intensity value such that i% of image pixels have

intensities less than p(i).

Figure 3 Geodesic mask. Geodesic mask that defines boundaries that cannot be traversed between cells highlighted in red.

Figure 4 Histogram quantization. Image histogram with every pixel frequency displayed (top left), every bin contains a unique intensity value.

Percentile binned histogram (top right and bottom): every bin contains 1% of the intensity values. Potential local minima correspond to peak

values in the histogram where the corresponding intensity/location in the image might be considered as a seed point. Histogram quantization

minimizes the number of local minima in the image, thus reducing the chances of over-segmenting the image.
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• Quantization is performed on every percentile level,

starting from p(100) or p(1),

○ Compute binary mask BW: BW = I > p(i) or BW =

I > p(i),

○ Apply pixel connectivity analysis to label the

current mask,

○ A group of connected pixels Cp are detected as

seed points SP if size of Cp is larger than the

user-defined size threshold ST

Biological seed modeling

In order to increase the accuracy of detecting seed

points, biological modeling of individual cells is incorpo-

rated into the seed detection algorithm. Nucleoli present

in the nucleus area are usually dark and round when im-

ages are acquired using phase contrast modality as dis-

played in Figure 5. In contrast to the above technique,

this method detects seed points at only one user-defined

percentile threshold. The number of seed points remains

constant between quantization levels. In our example

the bottom 2% of the pixel intensity levels correspond to

the nucleoli. The nucleoli are filtered by size as defined

above using the user-defined size threshold ST. Addition-

ally, they are also filtered by shape using a user-defined

circularity threshold CT. The circularity is computed

using the following formula: C = 4π × area/(perimeter)2.

A valid seed point is a connected object with circularity

above CT. Since multiple nucleoli can be present within

one nucleus, a user-defined approximated diameter of

the nucleus DN is used to cluster multiple nucleoli to-

gether as part of the same nucleus. If the distance be-

tween respective nucleoli centroids is less than DN, then

these nucleoli belong to the same cell. The distance be-

tween nucleoli can be computed as the Euclidian distance

or the geodesic distance (user choice). The algorithm used

to detect nucleoli as seed points is the following:

� Compute binary mask BW from user-defined

percentile t: BW = I > p(t) or BW = I < p(t),

� Apply pixel connectivity analysis to label the current

mask,

� A group of connected pixels Cp are detected as seed

points SP if size and circularity of Cp are larger than

user-defined size threshold ST and circularity

threshold CT respectively,

� Nucleoli with centroid distances smaller than DN are

assigned with the same label.

Single cell boundary detection

Single cell boundary detection starts with the pixels

identified as seed points. Unassigned pixels are then

added at every percentile level. Pixels are assigned to the

nearest seed point location by means of (1) the geodesic

distance or (2) the Euclidian distance between the un-

assigned pixels and the boundary of the seed points.

The geodesic pixel sorting technique improves single

cell edge detection for boundary tracing close to a manu-

ally drawn one, as shown at some key steps in Figure 6,

where the map chosen to perform the cuts is the grayscale

image. The algorithm for border detection is as follows:

1. Begin from seed points,

2. Take the lowest (or highest) remaining bin of

unmapped pixels and assign each to the seed point

Figure 5 Seed detection. Nucleoli detection and clustering using the geodesic distance. Same color indicates nucleoli that belong to the

same nucleus.
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with the nearest boundary, where distance can be

quantified by either Euclidean or geodesic distance,

3. Update boundary of seed points to reflect newly

mapped pixels,

4. Repeat steps 2 and 3 until all pixels are mapped.

Mitotic cell detection

For mitotic cell detection, we follow a model similar to the

one presented in [33], where pixels with high intensities

are detected by thresholding at a high intensity percentile

value, and resulting clusters are tested for roundness. The

mask generated by this technique is displayed in Figure 7.

Thresholding for mitotic cells occurs at the 97th intensity

percentile in that example. This mask is added to the last

mask in Figure 6 and the final result is displayed in

Figure 8. For more information about the value of the pa-

rameters chosen to perform this segmentation please refer

to the Additional file 1. We performed a full factorial sen-

sitivity analysis of these parameters in their full range pre-

sented in the Additional file 2.

Results
In this section we compare segmentation performance

of this new method with manually segmented datasets,

as well as with other known techniques in this field.

Reference datasets

In order to test the performance of the segmentation tech-

nique we used six datasets to create manual segmentation:

(1) 10 phase images of bone cancer cells from Broad

Institute [34] with a total of 2168 manually detected cells,

(2) 10 Fluorescent images of E. coli cells from Duke Uni-

versity [35,36] with a total of 237 manually detected cells,

(3) 10 Fluorescent images of yeast cells from Duke Univer-

sity [35,36] with a total of 153 manually detected cells, (4)

10 Fluorescent A10 rat cells from National Institute of

Standard and Technology (NIST) with a total of 347

manually detected cells, (2) 10 phase images of NIH 3T3

cells from NIST with a total of 656 manually detected

cells, and (1) 59 phase images of breast epithelial sheets

from NIH with a total of 5722 manually detected cells.

A human expert manually segmented individual cells in

each image of the reference datasets by drawing a bound-

ary using a computer mouse and ImageJ software [37].

This reference data was inspected by a second expert to

minimize human mistakes. It is available for download

from https://isg.nist.gov/. Additional file 3 shows more de-

tails about the manual segmentation process.

Measure of segmentation performance

The segmentation performance is measured using multiple

metrics: (1) a cell count accuracy as used by Chowdhury

et al. [38] that measures accuracy at a cellular level and (2)

the Adjusted Rand Index as recommended by Bajcsy et al.

[39] that measures accuracy at a pixel level.

The Cell Count Accuracy (CCA) metric is computed

as follow:

CCA ¼
TP

N þ FP

Figure 6 Geodesic region growing steps. Geodesic region growing for single cell edge detection starting from seed points and following the

histogram percentile quantization of intensities in grayscale image and geodesic mask constraint. Images 1 to 6 are the masks generated from

the 10th, 30th, 50th, 70th, 90th and 100th percentiles.
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where TP is the True Positive count, the number of cells

correctly detected by segmentation. N is the total num-

ber of cells manually detected. FP is the False Positive

count, the number of cells detected by automated seg-

mentation but does not exist in the manual one.

We report as complementary information: (1) Over-

Segmentation, the number of cells that were split into

multiple cells by the automated segmentation, (2) Under-

Segmentation, The group of cells recognized as only one

cell by the automated segmentation, and (3) The False

Negative count, the number of cells that exist in the

manual mask but are not detected in the automated one.

This information is presented in the Additional file 4.

The Adjusted Rand Index (ARI) is used to evaluate the

differences between the reference data and the auto-

mated segmentation results, following the procedure in

[33]. The ARI measures similarities between two seg-

mented images (labeled image1 and image2) at a pixel

level, for images with multiple cells per image.

The adjusted rand index metric [40,41] is based upon

counting the pairs of points on which two cell objects in

both images agree or disagree. The ARI is bounded

Figure 8 Results. Final segmentation result of the breast epithelial sheets.

Figure 7 Mitotic detection. Mitotic Mask overlaid on top of the original phase image.
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between 0 (no match) and 1 (best match) and is com-

puted by the following formula:
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Let C1 denote the group of labeled cells in image1 and

C2 the group of cells in image2. T is the total number of

data points, nij is the number of overlapping pixels

between cell C1i in image1 and cell C2j in image2,

nij
2

� �

is a combination pair of data points, ai and bj are

computed as follows:

ai ¼
X

k2

j¼1

nij and bj ¼
X

k1

i¼1

nij

The background is being discarded from the ARI

computation.

Performance evaluation

We quantified the segmentation performance over the six

reference datasets using the metrics mentioned above. We

compared the performance of our new method against 5

other cell separation techniques available to us as open-

source tools. In addition show the advantages of histogram

quantization and the use of geodesic distance by including

an additional technique, “FogBank-wopg,” without the

use of these two techniques. There are a total of 7 total

methods that are evaluated: (1) CellProfiler based on re-

gion growing [42], (2) CellTracer [35], (3) FogBank, (4)

FogBank wopg, (5) Schnitzcells [43], (6) Frlbm using level

sets [44], and (7) Marker-Controlled Watershed (MCW)

[45]. The details of each pipeline can be found in the

Additional file 1.

The geodesic distance concept for cell edge detection

helped our segmentation obtain higher accuracies than

the other methods, as it looks very similar to the manually

drawn one in Figure 9. These high accuracies are attrib-

uted both to the quantization process, which eliminates

the problem of over-segmentation, and to our method of

tracking individual cell boundaries using geodesic dis-

tances to retain the shape of each cell within the image. A

cell-by-cell comparison for all techniques, on example im-

ages from each reference dataset with the manual segmen-

tation, are displayed in the Additional file 1.

Figure 10 quantifies the differences between all 7 seg-

mentation method results compared with manual seg-

mentations over all 109 images of the reference datasets.

The images on the x axis are sorted with respect to the

ARI or CCA values from FogBank segmentation in each

Figure 9 Segmentation example. Segmentation example of multiple image modalities and cell lines. The cell lines and image modalities used

are: (1) phase images of bone cancer cells, (2) Fluorescent images of E. coli cells, (3) Fluorescent images of yeast cells, (4) Fluorescent A10 cells,

(5) NIH 3T3 cells, and (6) breast epithelial sheet.
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of the plots in Figure 10. The sorting makes it easier to

highlight visually the difference between FogBank and

other methods. One can notice that only a couple of

points are above the squared blue line (representing

FogBank results) in both the ARI and the CCA metrics.

Tables 1 and 2 show the comparison results in a head-

to-head matchup between methods. This table should be

looked at per row for each method. The value in the

element M(i,j) is the percent of reference images for

which method i had a higher ARI or CCA than method

j. These tables reveal the robustness of FogBank to seg-

ment single cells across image modalities and cell lines.

With regards to comparing FogBank to FogBank-wopg,

not only is FogBank more accurate than FogBank-wopg

over 77% of the time as measured by both metrics, but

also 10× faster in execution speed.

We applied the FogBank technique on 3 image modal-

ities and 14 cell lines for a total of 876 images. The seg-

mentation results are visually inspected and can be

viewed and downloaded from the following webpage:

https://isg.nist.gov/.

Discussion

In order to efficiently extract biological information from

images of confluent cells, highly accurate, automated

methods for identifying and tracking individual cells in

these images are needed. Particularly in heterogeneous

cell population as they occur in tumor cell lines as well

as in differentiating stem cell populations, the detailed

analysis of individual cells over time will provide infor-

mation of relevant biological properties. Cell lines used

in biomedical research exhibit different morphology, and

are additionally often used under conditions that alter

their phenotype, for example change the cell shape from

a polygonal to a spindle-like shape.

To address these issues, we developed a method that

reliably and automatically identifies and tracks individual

cells in cell sheets of vastly different origin such as bac-

teria, epithelial cells, and fibroblasts. Once cells are iden-

tified and tracked, additional analysis can be performed,

e.g. for individual cells the migratory phenotype, protein

expression levels, or changes in cell shape can be identi-

fied and used to characterize subpopulations of cells

with distinct biological phenotypes.

In order to increase the accuracy of cell separation in

images of confluent cells, we have directly addressed the

problems with current watershed-like over-segmentation.

By allowing watershed basins to grow in quantized incre-

ments instead of continuously across an intensity or gradi-

ent function, we reduce the noise associated with the

Figure 10 Performance comparison. Plots comparing the performance of all 7 methods over the entire reference datasets. The images are

sorted with respect to the ARI and CCA values for method 3 (FogBank) respectively in each plot. This helps visualizing the differences between

the other method and the new described method in this paper.

Table 1 Method comparison using ARI

Methods Cell profiler Cell tracer FogBank FogBank wopg Schnitzcells Frlbm MCW

Cell Profiler 100 79.8 0.9 22.9 93.6 100 86.2

Cell Tracer 20.2 100 0 0 90.8 100 22.9

FogBank 99.1 100 100 77.1 100 100 100

FogBank wopg 77.1 100 22.9 100 100 100 100

Schnitzcells 6.4 9.2 0 0 100 43.1 9.2

Frlbm 0 0 0 0 56.9 100 6.4

MCW 13.8 77.1 0 0 90.8 93.6 100

Head-to-head comparison using the ARI metric between every pair of method.

The value in the M(i,j) element is the percent of images that method i had a higher ARI than method j.
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continuous increment. In addition, we maintain the shape

of individual cells during the process of growing the water-

sheds by using geodesic distance functions instead of a

Euclidean distance function. If the algorithm can tell

where cell boundaries lie, and use that information to

form cell shapes, more realistic cell shapes will result.

The FogBank method does have some limitations: if

cells are physically overlapping each other our method

cannot separate them. In addition, although this method

works very well on a number of different images modal-

ities, such as phase contrast, bright field, and fluores-

cence microscopy images, it did not perform as well on

Differential Interference Contrast (DIC) images. Never-

theless we feel that the accuracy we can achieve on other

imaging modalities provides a contribution to the field

of image analysis.

An open source Graphical User Interface (GUI) is cre-

ated that allows the user to load a set of images from a

specified location and visualize the segmentation on any

image. It is created as a free standalone executable using

MATLAB. This executable file (exe) requires the instal-

lation of the free MATLAB Compiler Runtime (MCR)

that can be downloaded from the following link: http://

www.mathworks.com/products/compiler/mcr/. All infor-

mation and tools like the exe, the source code, and all

datasets can be downloaded from the following link:

https://isg.nist.gov/.

Conclusion
We present a new technique called FogBank to separate

individual cells in an image of a confluent sheet of cells

or colonies. Our new method for separating single cells

is highly accurate, on the order of 0.75 when compared

with manually segmented cells. It can be applied on

multiple image modalities and cell lines. We have com-

pared our technique with other available techniques to

show that the accuracy of our technique is higher than

that of currently available algorithms. We demonstrated

the use of this method on images of a wide variety of cell

lines and image modalities. We provided an open-source

user interface for the community to test this technique

on an even wider range of applications.

Additional files

Additional file 1: Pipeline and results of the reference dataset

segmentation. This Additional file describes in detail the pipelines used

to segment single cells from all reference datasets as described in the

main paper. The pipelines and the segmentation results described in this

additional file come from 8 methods: (1) Fog Bank, (2) CellProfiler and

(3) CellTracer.

Additional file 2: Sensitivity analysis. This Additional file describes the

sensitivity analysis performed on the input parameters of the FogBank

technique over a breast epithelial sheet image.

Additional file 3: Detailed description of the manual reference

dataset segmentation. This Additional file describes in detail the

creation of the reference datasets. We describe the step by step creation

of the 6 manually segmented datasets by expert scientists. These masks

are used to quantify the performance of the Fog Bank segmentation.

Additional file 4: Segmentation performance evaluation results.

This Additional file is an excel spreadsheet that has all the detailed

information about the segmentation performance for all methods and all

datasets.
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Chalfoun et al. BMC Bioinformatics  (2014) 15:431 Page 11 of 12

http://www.mathworks.com/products/compiler/mcr/
http://www.mathworks.com/products/compiler/mcr/
https://isg.nist.gov/
http://www.biomedcentral.com/content/supplementary/s12859-014-0431-x-s1.docx
http://www.biomedcentral.com/content/supplementary/s12859-014-0431-x-s2.docx
http://www.biomedcentral.com/content/supplementary/s12859-014-0431-x-s3.docx
http://www.biomedcentral.com/content/supplementary/s12859-014-0431-x-s4.xlsx


Author details
1Information Technology Laboratory, National Institute of Standards and

Technology, Gaithersburg, MD, USA. 2Laboratory of Cellular and Molecular

Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD,

USA.

Received: 17 September 2014 Accepted: 11 December 2014

References

1. Meyer F, Beucher S: Morphological segmentation. J Vis Commun Image

Represent 1990, 1:21–46.

2. Gonzalez RC, Woods RE, Eddins SL: Digital Image Processing Using MATLAB,

2nd ed. Gatesmark Publishing: Knoxville, TN; 2009.

3. Sun HQ, Luo YJ: Adaptive watershed segmentation of binary particle

image. J Microsc 2009, 233:326–330.

4. Patino L: Fuzzy relations applied to minimize over segmentation in

watershed algorithms. Pattern Recognit Lett 2005, 26:819–828.

5. Beare R: A locally constrained watershed transform. IEEE Trans Pattern Anal

Mach Intell 2006, 28:1063–1074.

6. Vincent L: Morphological grayscale reconstruction in image analysis:

Applications and efficient algorithms. Image Process IEEE Trans. 1993,

2:176–201.

7. Gao LGL, Yang SYS, Xia JXJ, Liang JLJ, Qin YQY: A New Marker-Based

Watershed Algorithm. TENCON 2006–2006 IEEE Reg. 10 Conf. 2006, 2:81–84.

8. Gedda M, Svensson S, Analysis I: Separation of blob-like structures using

fuzzy distance based hierarchical clustering. Symp. Image Anal. SSBA

2006, 3–6.

9. Rambabu C, Chakrabarti I: An efficient immersion-based watershed

transform method and its prototype architecture. J Syst Archit 2007,

53:210–226.

10. Mancas M, Gosselin B, Macq B: Segmentation Using a Region Growing

Thresholding. Proc. SPIE 5672 2005, 388–398.

11. Meyer F: On the Regularization of the Watershed Transform. ADV IMAG

ELECTRON PHYS 03 2007, 148:193–249.

12. Stoev S, Straβer W: Extracting regions of interest applying a local

watershed transformation. Proc Conf Vis 2000, 21–29.

13. Audigier R, de Alencar Lotufo R: Tie-Zone Watershed, Bottlenecks, and

Segmentation Robustness Analysis. XVIII Braz Symp Comput Graph Image

Process. 2005, 55–62.

14. Audigier R, Lotufo R: Seed-Relative Segmentation Robustness of

Watershed and Fuzzy Connectedness Approaches. XX Brazilian Symp

Comput Graph Image Process (SIBGRAPI 2007) 2007, 61–70.

15. Nguyen HT: Improved watershed segmentation using water diffusion

and local shape priors. IEEE Comput Soc Conf Comput Vis Pattern Recog

2006, 2006(1):985–992.

16. Cousty J, Bertrand G, Najman L, Couprie M: Watershed cuts: minimum

spanning forests and the drop of water principle. IEEE Trans Pattern Anal

Mach Intell 2009, 31:1362–1374.

17. Hernandez SE, Barner KE: Tactile Imaging Using Watershed-Based. In

Proceedings of the fourth international ACM conference on Assistive

technologies 2000, 26–33.

18. Handrick S, Naimipour B, Raicu D, Furst J: Evaluation of Binning Strategies

for Tissue Classification in Computed Tomography Images. In SPIE 6144,

Medical Imaging 2006: Image Processing 2006, 6144:1–11.

19. Najman L, Couprie M, Bertrand G: Watersheds, mosaics, and the

emergence paradigm. Discret Appl Math 2005, 147:301–324.

20. Vincent L: Minimal path algorithms for the robust detection of linear

features in gray images. Comput Imaging Vis. 1998, 331–338.

21. Smo\lka J: Watershed based region growing algorithm. Ann Inform UMCS

Lublin 2005, 3:169.

22. Faessel M, Courtois F: Touching grain kernels separation by gap-filling.

Image Anal. Stereol. 2011:195–203.

23. Nasr-Isfahani S, Mirsafian A, Masoudi-Nejad A: A new approach for touching

cells segmentation. Int Conf Biomed Eng Informa 2008, 2008:816–820.

24. Song H, Wang W: A new separation algorithm for overlapping blood cells

using shape analysis. Int J Pattern Recognit Artif Intell 2009, 23:847–864.

25. Wang W, Song H: Cell Cluster Image Segmentation on Form Analysis.

Third Int. Conf. Nat. Comput. (ICNC 2007) 2007:833–836.

26. Buggenthin F, Marr C, Schwarzfischer M, Hoppe PS, Hilsenbeck O, Schroeder

T, Theis FJ: An automatic method for robust and fast cell detection in

bright field images from high-throughput microscopy. BMC Bioinformatics

2013, 14:297.

27. Ikonen L, Toivanen P: Shortest routes on varying height surfaces using

gray-level distance transforms. Image Vis Comput 2005, 23:133–141.

28. Nandy K, Gudla PR, Amundsen R, Meaburn KJ, Misteli T, Lockett SJ:

Automatic segmentation and supervised learning-based selection of

nuclei in cancer tissue images. Cytometry A 2012, 81:743–754.

29. Chalfoun J, Majurski M, Peskin A, Breen C, Bajcsy P: Empirical Gradient

Threshold Technique for Automated Segmentation across Image

Modalities and Cell Lines. J. Microsc. 2014:1–18.

30. Weiger MC, Vedham V, Stuelten CH, Shou K, Herrera M, Sato M, Losert W,

Parent CA: Real-time motion analysis reveals cell directionality as an

indicator of breast cancer progression. PLoS One 2013, 8:e58859.

31. Stuelten CH, Busch JI, Tang B, Flanders KC, Oshima A, Sutton E, Karpova TS,

Roberts AB, Wakefield LM, Niederhuber JE: Transient tumor-fibroblast

interactions increase tumor cell malignancy by a TGF-Beta mediated

mechanism in a mouse xenograft model of breast cancer. PLoS One 2010,

5:e9832.

32. Soille P: Morphological image analysis: principles and applications.

Springer 2003, 49:391.

33. Chalfoun J, Kociolek M, Dima A, Halter M, Cardone A, Peskin A, Bajcsy P,

Brady M: Segmenting time-lapse phase contrast images of adjacent NIH

3T3 cells. J Microsc 2013, 249:41–52.

34. Khan IA, Lupi M, Campbell L, Chappell SC, Brown MR, Wiltshire M, Smith PJ,

Ubezio P, Errington RJ: Interoperability of time series cytometric data: a

cross platform approach for modeling tumor heterogeneity. Cytometry A

2011, 79:214–226.

35. Wang Q, Niemi J, Tan C-M, You L, West M: Image segmentation and

dynamic lineage analysis in single-cell fluorescence microscopy.

Cytometry A 2010, 77:101–110.

36. Rosenfeld N, Perkins TJ, Alon U, Elowitz MB, Swain PS: A fluctuation

method to quantify in vivo fluorescence data. Biophys J 2006, 91:759–766.

37. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T,

Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ,

Hartenstein V, Eliceiri K, Tomancak P, Cardona A: Fiji: an open-source

platform for biological-image analysis. Nat Methods 2012, 9:676–682.

38. Chowdhury S, Kandhavelu M, Yli-Harja O, Ribeiro AS: Cell segmentation by

multi-resolution analysis and maximum likelihood estimation (MAMLE).

BMC Bioinformatics 2013, 14(Suppl 1):S8.

39. Bajcsy P, Chalfoun J, Brady M: Toward a Recommendation System for

Image Similarity Metrics. In 2nd IASTED Int. Symp. Imaging Signal Process.

Heal. Care Technol. (ISPHT 2012). Baltimore, MD: 2012:94–100.

40. Hubert L, Arabie P: Comparing partitions. J Classif 1985, 2:193–218.

41. Vinh NX, Epps J, Bailey J: Information theoretic measures for clusterings

comparison: is a correction for chance necessary? In Proc. 26th Annu. Int.

Conf. Mach. Learn. ACM; 2009:1073–1080.

42. Carpenter AE, Jones TR: CellProfiler: image analysis software for

identifying and quantifying cell phenotypes. Genome Biol. 2006, 7.

43. Young JW, Locke JCW, Altinok A, Rosenfeld N, Bacarian T, Swain PS,

Mjolsness E, Elowitz MB: Measuring single-cell gene expression dynamics

in bacteria using fluorescence time-lapse microscopy. Nat Protoc 2012,

7:80–88.

44. Balla-Arabé S, Gao X, Wang B: A fast and robust level set method for

image segmentation using fuzzy clustering and lattice Boltzmann

method. IEEE Trans Cybern 2013, 1–11.

45. Parvati K, Prakasa Rao BS, Mariya Das M: Image segmentation using gray-

scale morphology and marker-controlled watershed transformation.

Discret Dyn Nat Soc 2008, 2008:1–8.

Chalfoun et al. BMC Bioinformatics  (2014) 15:431 Page 12 of 12


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Foreground-background separation
	Geodesic distance and cell boundaries
	Spatial seed point detection
	Histogram quantization with seed size constraint
	Biological seed modeling

	Single cell boundary detection
	Mitotic cell detection

	Results
	Reference datasets
	Measure of segmentation performance
	Performance evaluation

	Discussion
	Conclusion
	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	Disclaimer
	Author details
	References

