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Abstract 

The selective and efficient drug delivery to tumor cells can remarkably improve different 

cancer therapeutic approaches. There are several nanoparticles (NPs) which can act as potent 

drug carrier for cancer therapy. However, the specific drug delivery to cancer cells is an 

important issue which should be considered before designing new NPs for in vivo application. 

It has been shown that cancer cells over-express folate receptor (FR) in order to improving 

their growth. As normal cells express a significantly lower levels of FR compared to tumor 

cells, it seems that folate molecules can be used as potent targeting moieties in different 

nanocarriers for biomedical approaches. Consistently, there is evidence which implies folate-

conjugated NPs can selectively deliver anti-tumor drugs into cancer cells both in vitro and in 

vivo. In this review, we will discuss about the efficiency of different folate-conjugated NPs in 

cancer therapy. 

Keywords: Folate, folate receptor, nanoparticle, cancer therapy
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Introduction 

Nanomedicine is a recently expanded novel technology, with various advantages for diagnosis and 

treatment of several disorders such as autoimmunity and cancer. Since the current therapeutic 

methods are usually ineffective for cancer, it seems that the identification of novel methods, which are 

safe and effective is highly required [1]. Surgery, radiation, and chemotherapy are conventional tumor 

therapy approaches, which destruct both cancerous and normal cells. As nanoscale therapeutic 

materials demonstrate several features such as nontoxic, biodegradable, non-immunogenic, 

biocompatible and the ability of controlled and long-term release of drugs, they might be as potent 

candidates in cancer therapy [2]. It has been shown that nanoparticles (NPs) can be applied in various 

purposes, including drug delivery, diagnosis and regenerative medicine. NPs can act as worthy drug 

carriers, which is in part due to their unique properties such as protection of drugs against degradation 

in the circulation before they reach their target site, promotion of drug absorption in cancer cells and 

tissues , and gradual drug release [3]. 

As mentioned, non-specific action of common anti-cancer drugs leads to destruction of both 

cancerous and normal cells. Thus, targeted cancer therapy can increase the efficiency of current 

therapeutic approaches. Consistently, modification of different NPs for specific targeting is of great 

importance for a targeted therapy [4]. There are two general targeting methods, including passive and 

active targeting approaches. The unique physiologic properties of tumor microenvironment and 

physicochemical features of NPs facilitate the preferred accumulation of nanocarriers in tumor tissues. 

This is the main objective of passive targeting. In spite of preferred accumulation of nanocarriers 

through passive mechanisms, there are some degrees of non-specific action in this method. Moreover, 

passive targeting does not guarantee the cellular uptake of drug loaded NPs. Furthermore, although 

the passively targeted NPs can accumulate within the tumor site, however they can also diffuse out of 

the tumor region and back into the blood circulation. In order to overcome these limitations the 

different active targeting approaches have been developed. Active targeting can be performed through 

surface conjugation of nanocariers to various targeting molecules such as antibodies against tumor 

markers, aptamers, carbohydrates, vitamins and peptides or ligands of some overexpressed molecules 

on tumor cells such as transferrin and folate (vitamin B9) [5]. It has been reported that folate receptor 

is overexpressed on the surface of several cancers, including breast, kidney, lung, brain and ovary 

cancers [6]. Folate receptor can bind to folate and facilitates the transfer of folate-targeted NPs 

through receptor mediated endocytosis. Folic acid is an essential nutrient needed by all cells for 

biosynthesis of nucleotide and normal action of some metabolic pathways. It has been shown that 

folate receptor (FR) has high affinity (Kd»10،10M) for the FA [7] and mediates the cellular uptake via 

a non-destructive [6], endosomal pathway [3]. Regarding the limited expression of FR on normal 

tissues and its overexpression on cancerous cells [6], it seems that folate may be an appropriate choice 

for targeting moiety in NP-based cancer therapy. The FR can cross the membrane to release its ligand 

into the cytosol, because it is linked to the lipid region of the cell membrane. Following migration of 

FR and its contents to inner side of membrane, the acidic microenvironment of interior side (pH of 

approximately 5) leads to dissociation of FR from the folate-conjugated NPs. Thus, folate-conjugated 

NPs can then release into the cytosol of the tumor cells following migration to the interior surface of 

the cell membrane [7]. In this review, we will discuss about the efficiency of different folic acid (FA)-

targeted NPs in cancer therapy. 

 

Folate-targeted cancer therapy 

As mentioned, folate-targeting can effectively increase the efficiency of cancer therapy, as several 

cancerous cells overexpress FR on their surface. Consistently, several drugs have conducted toward 

http://en.wikipedia.org/wiki/Folic_acid
http://en.wikipedia.org/wiki/Nutrient
http://en.wikipedia.org/wiki/Biosynthesis
http://en.wikipedia.org/wiki/Nucleotide
http://en.wikipedia.org/wiki/Metabolism
http://en.wikipedia.org/wiki/Metabolic_pathway
http://en.wikipedia.org/wiki/Endosome
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cancerous tissues through FA-conjugated NPs [8]. In here, we summarize the recent advances 

regarding the use of folate-conjugated NPs in cancer therapy. 

 

Polymeric Micelles 

Polymeric micelles are nanosized core/shell particles constituted by amphiphilic block copolymers 

[9]. The hydrophilic shell of the micelle increases their circulation time in the body  and inhibits their 

uptake by the reticuloendothelial system (RES) [10]. Micelles with a size range of 5–100 nm have the 

inner hydrophobic core, which enables them to engulf poorly water-soluble drugs [9].  Polyesters, 

polyethers, and polyamino acids are commonly used polymers for hydrophobic core of micelles [11]. 

These nanocarriers can act as potent drug reservoirs and are able to provide the high concentration of 

the drug in cancerous tissues. Micelles have mainly applied for drug solubilization, controlled drug 

release, and drug targeting [12]. Drug release from micelles at target site can be managed through 

various mechanisms such as pH-, thermo-, ultrasound- and light-sensitivity [13-14]. 

It is demonstrated that folate conjugation can increase the stability of FA-poly(ethylene glycol)] 

(PTL-PLA-MPEG/PEG-FA) micelle compared to poly(L-lactic acid)-block-methoxy poly(ethylene 

glycol) copolymer (PLA-MPEG), which was in part due to the lower micelle concentration [15]. 

Similarly, it is reported that FA-conjugated doxorubicin (DOX) loaded PLA-PEG-based polymeric 

micelles exhibit a potent cytotoxicity against FR-expressing SKOV3 human ovarian cancer cells, in 

vitro [16]. 

FA-conjugated micelles have been shown to exert potent anti-tumor effect both in vitro and in vivo. 

Scarano and colleagues have shown that both small and large FA-conjugated micelles loaded with 

platinum drugs exert higher anti-tumor effects in FR-expressing cell line OVCAR-3 compared to FR-

negative A549 cells [17]. In another study, Gao et al. showed the inhibition of tumor cells metastasis 

in 4T1 tumor bearing mice by DOX loaded FA-targeted pH sensitive polymeric micelles. FA-

conjugated micelles could effectively inhibit tumor growth and metastasis and increase mice survival 

[13]. Gue et al. have also showed that DOX-conjugated FA-conjugated PEG-poly(ε-caprolactone) 

micelles exert potent anti-tumor function in both in vitro and in vivo.  In their produced NP, DOX was 

connected with a hydrazone linker (FA-hyd) for a pH-mediated drug release. They demonstrated that 

FA-hyd micelles had significantly more circulation time and enriched drug into the tumors rather than 

normal tissues [18]. The similar results were reached in another investigation using two series of FA-

targeted pH-sensitive amphiphilic block copolymers, poly(ε-caprolactone)-b-poly[triethylene glycol 

methacrylate-co-N-methacryloyl caproic acid] and poly(ε-caprolactone)-b-poly[triethylene glycol 

methacrylate-co-N-(2-(methacrylamido)ethyl] in vitro in FR-positive (HeLa) and FR-negative (HT-

29) tumor cell lines [19]. There are other reports, which applied pH-dependent drug release approach 

for the control of tumor growth in FA-targeted micelles. For example, while Bae et al. used FA-PEG-

poly(aspartate hydrazone adriamycin) [FA-PEG-P(Asp-Hyd-ADR)] to stop the growth of human 

pharyngeal cancer cells (KB cell) in vitro [20], Liu and coworkers developed DOX-loaded poly(N-

isopropylacrylamide-co-N,N-dimethylacrylamide-co-2-aminoethyl methacrylate)-b-poly(10-

undecenoic acid) (P(NIPAAm-co-DMAAm-co-AMA)-b-PUA) micelles in order to control of tumor 

burden in 4T1 tumor bearing mice and KB cells [21]. Song and colleagues developed redox- and pH-

sensitive FA-targeted DOX-loaded polyurethane nanomicelles, which controlled the growth of FR-

positive HeLa cells in vitro [22]. 

In addition to pH-sensitive NPs, thermosensitive FA-conjugated micelles are also developed, which 

showed good stability. For instance, micelles based on 5-fluorouracil (5-FU) loaded poly(N-

vinylcaprolactam)-b-PEG-FA micelles with an the lower critical solution temperature of 33°C were 

generated. These micelles showed a slow and sustained release at 37°C up to 30 h. Moreover, while 

FA-targeted micelles exerted remarkable toxicity against FR-positive 4T1 cells, they had no 
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significant toxic effect on  FR-negative EA.hy 926 human endothelial cell line [23]. Interestingly, it 

has been demonstrated that polymeric micelles can also be used for photodynamic therapy (PDT).  In 

this method, a cancerous tissue will destroyed through light-induced chemical reaction. Consistently, 

Syu et al. generated a FA-conjugated meta-tetra (hydroxyphenyl)chlorin (m-THPC) loaded micelles. 

They showed that FA-conjugated m-THPC-loaded micelles are engulfed and accumulated by FR-

expressing KB cells in vitro and in vivo. Moreover, the encapsulated m-THPC had no remarkable side 

effects on the body weight of mice [24]. Regarding these reports (Table 1), it seems that FA-targeted 

nanomicelles may be considered as potent devices in drug delivery into FR-positive tumors. However, 

little is known regarding the efficiency of these NPs in human tumors in vivo and this issue needs 

further investigations. 

Albumin nanoparticles 

Human serum Albumin (HSA), is negatively charged plasma protein (42–54 g/l) with small size, 

which is produced in the liver and involved  in different physiological processes such as long chain 

fatty acids solubilization, nutrients delivery to cells, induction of colloidal osmotic pressure in the 

blood, controlling plasma pH, and for binding to bilirubin and drugs. As HSA is source of amino acid 

for metabolism of cells, albumin can be used as a carrier for the drug delivery to cancerous cells [25]. 

Cancerous cells secrete an albumin-binding protein (also known as BM-40), which can help to  

preferential uptake of albumin NPs by these cells [26]. Albumin NPs have several advantages such as 

biodegradability, less toxicity and antigenicity, high stability, controllable drug-release, shelf life, and 

high loading potential for hydrophilic drugs, which make them as potent candidate in drug delivery to 

tumor cells [27]. Conjugation of albumin NPs with folate can provide site-specific targeting properties 

for these NPs [4]. Consistently, there are evidence, which imply the effectiveness of FA-conjugated 

albumin NPs in drug delivery to cancer cells [27-28] (Table 1). Zhang et al. showed that FA-

conjugated BSA NPs could effectively uptake by SKOV3 cells in vitro [27]. It has also been reported 

that FA-conjugated paclitaxel loaded bovine serum albumin (BSA) NPs selectively deliver anti-cancer 

drug into a human prostate cancer PC3 cells [28]. Regarding the high efficiency of albumin NPs, 

albumin-bound formulation of paclitaxel (Abraxane ABI-007) has been evaluated in phase III trial for 

treatment of breast cancer [29]. However, its conjugation with folate may increase its site-specific 

drug delivery. There are other trials related to use of albumin based NPs for treatment and diagnosis 

of breast and brain tumors, respectively [30-31]. Hao et al. have recently prepared FA-conjugated 

DOX loaded BSA-dextran NPs for cancer drug delivery. It should be noted that the dextran shell 

makes the NPs more dispersible in solution. They showed that these NPs allow to the administration 

of the higher doses of DOX and exert remarkable anti-tumor activity in murine ascites hepatoma H22 

tumor-bearing mice [32]. The similar results have been observed following the use of DOX-loaded 

FA-conjugated albumin nanospheres in FR-positive Hela cells and FR-negative aortic smooth muscle 

cells (AoSMC), which led to selective killing of the FR-expressing tumor cells [33]. The FA-targeted 

5-FU loaded BSA-carboxymethyl-β-cyclodextrin NPs have also exhibited high inhibition and 

promote apoptosis in FR-expressing HeLa cells as compared to free drug and non-targeted NPs [34]. 

It has recently been demonstrated that FA-conjugated ergosta-4,6,8(14),22-tetraen-3-one (ergone) 

loaded albumin nanospheres could selectively kill KB tumor cells, in vitro. In vivo experiments in 

mice more substantiated the efficacy of these NPs in tumor targeting [35]. FA-conjugated albumin 

NPs could selectively deliver vinblastine sulfate (VBLS) anti-cancer drug to tumor cells [36]. The 

intravenous administration of tamoxifen-loaded FA-conjugated albumin NPs to nude mice carrying 

xenograft MCF-7 tumors was associated with potent anti-tumor effects and the lowest levels of drug 

accumulated in non-targeted tissues [37]. On the other hand, Yang and colleagues have shown that 

administration of FA-conjugated bovine serum albumin nanospheres comprising DOX and 

encapsulated magnetic iron oxide in combination with hyperthermia significantly decrease the adverse 

effects and improve the therapeutic effect of anti-tumor drugs in both in vitro and in vivo [38]. 

Similarly, mitoxantrone-loaded FA-conjugated albumin NPs could effectively control the growth of 

SKOV3 tumor cells both in vitro and in vivo [39]. 

Regarding the high compatibility, availability and drug loading, it seems that FA-conjugated albumin 

NPs may have potent therapeutic potential as the vector of anti-cancer drugs. 

 



6 
 

Magnetic nanoparticles 

The movement of materials, which have mass and electric charges such as crystalline materials that 

exhibit ferromagnetism (including Fe, Co, or Ni) creates magnetic effects [40]. Superparamagnetic 

NPs made from ferrite oxide-magnetite (Fe3O4) are the most magnetic NPs used in biological 

applications [41]. Magnetic NPs can be manipulated through magnetic field [42]. Although the 

application of magnetic NPs back to 1970s [43], high attention has recently been focused on them, 

which is in part related to their unique features such as high surface to volume ratio, quantum size 

effect, and magnetic character [43-44]. Although the size and surface functionality of magnetic NPs 

remarkably affect the efficiency of these NPs, superparamagnetic iron oxide NPs (SPIOs) diameters 

mainly affect their in vivo biodistribution. Moreover, ultra-small SPIOs with diameters of 10 to 40 nm 

show prolonged blood circulation and cross capillary walls and are usually engulfed by macrophages, 

which migrate to the lymph nodes and bone marrow [45]. Magnetic NPs can be applied in several 

ways, including magnetic drug targeting [44], magnetic fluid hyperthermia [46], and contrast agents 

for magnetic resonance imaging (MRI) [44, 47-50]. Among the magnetic NPs, Fe3O4 NPs are only 

approved by the US Food and Drug Administration (FDA) for clinical use [43, 51], however, it has a 

short half-life, no specific tumor-targeting effect, and readily phagocytosed by RES and removed by 

macrophages [38]. Magnetic NPs are usually composed of inner magnetic core (Fe3O4 or Fe2O3) and 

an outer polymeric shell. The polymeric shell provides biocompatibility, prevents agglomeration and 

acts as drug reservoir. Several polymers such as starch, dextran [52-53], PEG [49, 54], fatty acids, 

polyvinyl alcohol [55], polyacrylic acid, poly lactides, gelatin, silica [54, 56-57], oleic acid [58-59], 

PLGA poly(D,L-lactic-co-glycolic acid) [60], polyethylene imine (PEI) [61], poly methyl 

methacrylate (PMMA) and polyacrylic acid (PAA) [57, 62], albumin [38, 48], and chitosan [62] have 

been used as coating materials for different purposes. Conjugation of outer shell with different 

targeting molecules can promote site-specific function of magnetic NPs. Consistently, it has been 

shown that conjugation of SPIONs with amino-terminal fragment [63] and RGD peptides [64] could 

specifically target cancerous cells. Moreover, the amino-functionalized Fe3O4, MnFe2O4, and 

Mn3O4 magnetic NPs conjugated with rhodamine B (a fluorescent dye) and FA could specifically 

target cancer cells overexpressing FRs [65]. Similarly, it is reported that FA-conjugated Fe3O4 NPs 

modified by dopamine-PEG-NH2 and fluorescein isothiocyanate (FITC) could effectively recognize 

the FR-positive MCF-7 cells, but not the FR-negative A549 cells [47]. Interestingly, it is suggested 

that microbial exopolysaccharides can be applied as biocompatible shell polymers for magnetic NPs. 

Consistently, Sivakumar and colleagues have recently demonstrated that 5FU-loaded FA-conjugated 

magnetic NPs coated with bacterial exopolysaccharides mauran and gellan gum in combination with 

hyperthermia effectively killed cancer cells within a period of 60 min. They have recommended that 

mauran and gellan gum coated magnetic NPs have high biocompatibility, low cytotoxicity, high 

therapeutic potential, and superparamagnetic behavior that can be applied as worthy tools for bacterial 

exopolysaccharides based targeted drug delivery, cancer cell imaging and for magnetic hyperthermia 

within short period of time [66]. Most recently, Ma and coworkers generated FA-albumin conjugated 

SPION NPs, which had a strong MR imaging efficacy in MCF-7 and SPC-A-1 cells due to the 

recognition of FR [48]. DOX loaded FA-targeted magnetic Fe3O4 NPs could also significantly kill 

C30 and CP70 human ovarian cancer cells in vitro, which was associated with downregulation of bcl-

2 and surviving, and upregulation of caspase-3 [67]. The similar results were reached when FA-

conjugated SPION-based magnetic NPs were incubated with human leukemic CCRF-CEM cells [68]. 

Similarly, idarubicin-loaded PEG-covered magnetic NPs showed higher toxicity in MCF-7 cells 

compared to free idarubicin [69]. Interestingly, it has recently been demonstrated that the peroxidase-

like activity of Fe3O4@carbon NPs can modulate oxidative stress induced by ascorbic acid for the 

selective killing of PC-3 prostate cancer cells through production of a high level of endogenous ROS 

[70]. In addition, Li et al. have demonstrated that amine-modified group in the surface of core-

http://en.wikipedia.org/wiki/Magnetic_field
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shell Fe2O3@ carbon NPs can be functionalized with PEG and FA to enhance their solubility in 

aqueous solution and target cancer cells [71]. 

It is suggested that incorporation of Fe3O4 into FA conjugated BSA NPs inhibits their clearing by RES 

[38, 48]. Active targeting through FA-conjugated magnetic NPs is mainly dependent to density of FA 

on magnetic NPs and FR on the tumor cells as assessed in 4T1 bearing BALB/c mice [72].  

The higher sensitivity of tumor cells to high temperatures compared to normal cells, which is in part 

due to hypoxic condition of tumor area has led to combinatorial application of magnetic NPs and 

hyperthermia to destroy tumor cells [66, 73-74]. Addition of some chemotherapeutic drugs in the 

above mentioned combination therapy can increase the efficacy of tumor cell killing [66, 75-77]. 

Consistently, there are studies, which indicate the administration of chemotherapeutic drugs 

(daunorubicin and 5-bromotetrandrine)-loaded Fe3O4 magnetic NPs suppresses tumor proliferation 

and enhances apoptosis in a dose- and time-dependent manner, both in vitro and in vivo [78-79]. 

Several other biocompatible magnetic NPs such as dextran-stabilized magnetic fluid, aminosilane-

modified NPs, cationic magnetoliposomes, and affinity magnetoliposomes have also been used for 

hyperthermia treatment [80-81]. Magnetic hyperthermia makes it possible the heating to be limited to 

the tumor site [66, 82-83]. The use of external magnetic field in combination with magnetic NPs can 

conduct magnetic nanocarrier to the desired tumor site, fix them and release the drug locally [84-86]. 

It is demonstrated that combination of hyperthermia and chemotherapy not only increases the drug 

concentration in tumor cells but also decreases the drug related adverse effects to normal tissue and 

inhibits the drug resistance [77, 87]. The unique feature of tumor cells to absorb magnetic NPs (8-

400-fold more than normal cells) makes them highly susceptible to magnetic fluid hyperthermia [38]. 

Electromagnetic fields (EMFs) are other noninvasive useful devices, which can be applied in 

combination with magnetic NPs. It is demonstrated that frequencies lesser than 300 Hz (known as 

extremely low-frequency or ELF) do not exert damage to deoxyribonucleic acid (DNA) [60]. Using 

this approach, Wen and colleagues have shown that FA-conjugated magnetic NPs in combination 

with ELF-EMF could selectively induce apoptosis in BEL-7402 liver cancer cells [51]. ELF-EMF 

enhances anti-tumor function of magnetic NPs in part through affecting cell ion metabolism via the 

reduction of cation-exchange across the cell membrane [88]. The possibility of combining magnetic 

NPs with other cancer therapeutic methods make them as worthy candidate for cancer therapy (Table 

2). 

 

Mesoporous silica nanoparticles (MSN)  

Silica has more biocompatibility and lower cytotoxicity than other metal oxides such as titania and 

iron oxide [89]. The high levels of silanol groups in silica enhance its affinity to phospholipids, so it 

can be easily taken up by the cells. The high surface area (> 900 m
2
/g) and pore volume (> 0.9 cm

3
/g) 

make it possible to load high doses of different drugs [90]. Due to the presence of strong Si–O bond 

[91] in silica NPs, they have high resistance against  mechanical stress, heat, pH and hydrolysis-

induced degradations  compared to liposomes and dendrimers [90, 92-93]. The sol-gel process is 

common methodology to create mesoporous silica NPs [94]. The rate of drug release from 

mesoporous silica NPs is dependent on the size of pores, which can be controlled by the processing 

parameters, such as temperature, pH, solvents, raw materials, catalysts, precursor, and additives in 

different concentrations [89, 95]. MCM-41 and SBA-15 are two common mesoporous silica materials. 

which have different pore sizes, including 2–5 nm and 5–10 nm, respectively. The smaller pore size 

helps to slower drug release and higher stability in mesoporous silica NPs [90, 95-96]. In addition, the 

surface functionalization of  silica NPs with different molecules allows developing silica NPs with 

various surface properties [94, 97]. Regarding the high expression of FR on cancerous cells, several 

studies have tried to conjugate mesoporous silica NPs with FA to achieve to effective drug delivery to 

tumor cells [91, 98-100] (Table 3). Consistently, it is reported that FA-targeted camptothecin or 
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paclitaxel loaded multifunctional mesoporous silica NPs could effectively used for cancer imaging, 

targeting, and drug delivery in FR-expressing human pancreatic cancer cells PANC-1 and BxPC-3 

[91]. Fan and colleagues have developed the pH sensitive FA-conjugated DOX-loaded mesoporous 

silica NPs. which could selectively kill FR-expressing HeLa cells, but not FR-negative A549 and 

L929 cells [98]. Mahapatra and coworkers have also produced FA-conjugated hybrid NPs composed 

of multifunctional mesoporous hollow silica NPs. which encapsulated superparamagnetic CoFe2O4 

NPs for targeted co-delivery of cisplatin-pemetrexed and MR imaging. Their generated drug loaded 

nanospheres exhibited enhanced cytotoxicity against FR-positive HeLa cells, but not HaCat and 3T3 

cells [99]. Sahoo and colleagues have similarly prepared mesoporous silica-coated super 

paramagnetic manganese ferrite (MnFe2O4) NPs conjugated with FA for targeted drug delivery and 

MR imaging applications. The DOX-loaded NPs could selectively kill HeLa cancer cells in vitro and 

in vivo [56]. Other investigators have designed mechanized nanocontainers via conjugating 

interlocked molecules, rotaxanes, onto the orifices of mesoporous silica NPs through disulfide bond. 

They showed that DOX-loaded mechanized nanocarriers could selectively kill tumor cells in vitro and 

in vivo [100]. MA and coworkers have recently developed FA-conjugated hollow mesoporous silica 

NPs for simultaneously delivering both DOX and siRNA against the Bcl-2 protein into tumor cells. 

Their results showed that FA-conjugated NPs could potently kill high expressing FR cells (HeLa) 

compared to low expressing FR cells (MCF-7) [97]. Moreover, Teng et al. developed folate-targeted 

phospholipid-functionalized mesoporous silica NPs for selective photodynamic therapy of tumor cells 

in vitro and in vivo. They showed that their developed nano-photodynamic therapy systems could 

effectively enter into the FR-overexpressed HeLa cells. In addition, this therapeutic method could 

significantly decrease tumor growth in nude mice inoculated with B16F10 cells [101]. 

 

Gold nanoparticles 

Although the common oxidation states of gold are +1 (Au [I] or aurous) and +3 (Au [III] or auric), 

however, gold NPs are in a non-oxidized state (Au [0]). Gold NPs have been used for far years in 

techniques such as transmission electron microscopy (TEM) and atomic force microscopy (AFM) 

[102]. There are conflicting reports regarding the toxicity of gold NPs both in vitro and in vivo [103]. 

Gold NPs have successfully been used for several biomedical approaches such as photothermal 

therapy [104-105], cancer diagnosis [106], tumor imaging [107-108], and drug delivery [106, 109]. 

The plasmon resonance features of gold NPs enable their detection in biological systems [110]. Gold 

NPs can bind to amine and thiol groups, which make it possible to modify their surface and  their 

using in medical applications [111]. The high surface to volume ratio provides an optimum condition 

in which hundreds of molecules such as drugs, targeting agents, and anti-fouling polymers can be 

coated on the surface of gold NPs. As gold NPs can pass across leaky blood vessels, they may be 

considered as potent nanocarriers for drug delivery into solid tumors with high angiogenesis potential 

[112]. It is suggested that gold NPs enter into cells through non-specific receptor mediated 

endocytosis mechanism [113]. Since the systemic administration of gold NPs without targeting 

moieties can be associated with toxic side effects against normal tissues, its surface modification with 

targeting molecules such as FA can increase their efficiency and decrease their adverse effects [114-

115] (Table 3). Consistently, Pandey and coworkers have developed FA-conjugated berberine 

hydrochloride loaded gold NPs, which can selectively kill FR-expressing HeLa cells [116]. Another 

group used BSA-conjugated gold NPs, which was surface modified by FA. They showed that while 

the BSA-gold NPs had no effects on the MGC803 gastric cancer cells, FA-modified NPs could 

selectively target them [108]. Similarly, FA-conjugated 6-mercaptopurine (6MP) loaded gold NPs 

could potently kill FR-expressing HeLa and KB cells both in vitro and in vivo [117]. It has also been 

shown that FA-targeted 5-FU loaded Pullulan stabilized gold NPs could significantly decrease the 

amount of 50% of growth of inhibition (IC50) when incubated with HepG2 cancer cells. Moreover, 
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these NPs had higher concentrations in liver of zebrafish embryo, as an in vivo model, compared to 

non-targeted gold NPs [118]. Zhu and colleagues recently developed multifunctional dendrimer-

entrapped gold NPs, which were conjugated with PEGylated FA and linked with α-tocopheryl 

succinate (α-TOS) as a platform for targeted cancer imaging and therapy. The theranostic potential of 

their used targeted NPs was approved both in vitro and in vivo in U87MG and L929 cancer cells 

[119]. 

The thermal characteristics of gold NPs, which let them to convert the absorbed laser light energy into 

localized heat, make them as worthy tools for application in combination with photo-thermal therapy 

for selective destruction of cancer cells [120-123]. Consistently, Mehdizadeh and colleagues have 

used the combination of FA-conjugated gold nanorods with the photothermal therapy for the selective 

targeting and destruction of mouth epidermal carcinoma KB cells. While none of the treatments alone 

had effects on the cancer cells, their combination could significantly kill cells [124]. FA-conjugated 

gold nanoclusters have also been used as fluorescence enzyme mimetic nanoprobes for tumor 

diagnosis and distinguishing cancerous cells from normal cells [125]. Moreover, Xu et al. have 

designed an electrochemical cytosensor containing FA-conjugated gold NPs and signal indicator 

(ferrocene), which was able to effective specific cancer cell detection and signal magnification for 

improving detection sensitivity [126]. 

Regarding the above discussed studies, it seems that FA-conjugated NPs in combination with photo-

thermal therapy can be worthy tools in specific cancer therapy. 

 

Dendrimers 

Dendrimers are branched polymeric molecules with several arms extending from a center, leading to 

almost perfect three-dimensional geometric pattern. Two common strategies, including  divergent and 

convergent methods have usually been used for synthesis of dendrimers, which differ in direction of 

production; either core to out or inwardly out to core, respectively [127]. While the branches of 

dendrimers increase exponentially with their generation (G), their diameter increases up to about 1 nm 

with the generation. 

Polyamidoamine (PAMAM) is an important subtype of dendrimers, which has a high efficiency to 

carry small therapeutic drugs. The cationic form of PAMAM is a worthy tool for delivery of 

therapeutic oligonucleotides. The tertiary amines and amide linkages of PAMAMs facilitate the 

attachment of numerous targeting and guest molecules. The hydrophobic core of PAMAMs enable 

them for the encapsulation of different therapeutic molecules [128]. Modification of terminal groups 

of dendrimers can creates both a hydrophilic or lipophilic molecules for the desired biological and 

drug delivery application [129]. Since there are several reactive groups on dendrimers, their surface 

modification for specific targeting can be easily performed. Consistently, it is reported that 

conjugation of dendrimers with biological targeting moieties such as FA can significantly increase 

their specific function in tumor cells in vitro (using KB cells) [130] (Table 4). The selective in vitro 

cytotoxicity of FA-conjugated methotrexate loaded dendrimers aginst tumor cells confirm former 

report [131]. Kesharwani et al. have recently analyzed the anti-tumor potential of different generations 

of FA-targeted Melphalan loaded poly(propyleneimine) (PPI) dendrimers both in vitro (MCF-7 cells) 

and in vivo. They have suggested that fourth generation PPI dendrimer is better carrier for targeted 

cancer therapy compared to third and fifth generation [132]. Other investigators have investigated the 

effect of surface capping via different groups (including -OH, -COOH and -NH2) on tumor targeting 

efficiency of FA-conjugated PPI dendrimers. Their results showed that COOH capped dendrimers 

have the highest tumor targeting potential (as assessed in HeLa and SiHa cells) as compared to other 

formulations [133]. The high anti-tumor gene delivery potential of FA-conjugated fifth generation 

(G5) PAMAM dendrimers into KB cancer cells has been demonstrated by other investigators [134]. 

Consistently, Arima and colleagues have reported that FA-PEG-appended polyamidoamine dendrimer 
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(G3) conjugate with α-cyclodextrin exhibit high efficiency for gene delivery into FR-overexpressing 

(KB), but not FR-negative (A549) cells, both in vitro and in vivo [135]. The high gene transfection 

potential of dendrimers was also demonstrated using a pH-sensitive FA-PEG-chitosan-PAMAM-

plasmid DNA (containing a high mobility group box 1, HMGB1) complexes in vitro (in KB cells) and 

in vivo (S180 xenograft nude mice) [136]. The rapid elimination of such a small NPs is one of their 

important limitations. Thus, Sunoqrot and coworkers have developed a multi-scale hybrid NP 

platform that loads PAMAM dendrimers into PEG-PLA NPs. Their generated hybrid NPs had higher 

circulation time compared to dendrimer. Moreover, these hybrid NPs could selectively reach to FR-

expressing KB tumor cells in vivo [137].  

It seems that dendrimers can be considered as potent therapeutic gene carriers in biomedical 

applications. Moreover, hybridization of dendrimers with some polymers could promote their 

efficiency for in vivo approaches. 

Chitosan nanoparticles 

Chitosan is a linear polysaccharide derived from alkaline N-deacetylation of chitin and composed of 

randomly distributed N-acetyl-glucosamine and glucosamine residues with β-1,4-linkage [138]. As 

chitosan is soluble in acid condition, it can be applied for drug delivery in acidic environment [8, 

139]. In addition to pH, degree of deacetylation, molecular weight and ionic strength of the solution 

can potently affect the chitosan solubility [140]. Chitosan exhibited several features, including high 

biocompatibility and low cytotoxicity, which made it as potent nanocarrier for targeted cancer 

therapy. However, due to the lack of cell-targeting ability and low transfection efficiency it shows low 

therapeutic potential in common form. Thus, different derivatives of chitosan such as Trimethyl 

chitosan (TMC), 6-amino-6-deoxy-chitosan (6ACT) (both are hydrophilic derivatives) and N-

alkylated chitosan (ACS), hydrophobically modified glycol chitosan (HGC) (both are hydrophobic 

derivatives) have been developed  in order to improving the therapeutic potential of chitosan [141]. 

Moreover, several targeting molecules such as FA have also been conjugated with chitosan NPs in 

order to facilitating their selective function (Table 4). Consistently, it is reported that FA-conjugated 

DOX loaded chitosan NPs could potently kill FR-expressing SMMC-7221 cells, in vitro [142]. FA-

tagged copper ion and acetylacetone encapsulated chitosan NPs were also exerted anti-tumor effects 

on the several FR-overexpressing cancer cells, in vitro [143]. The similar results were earned using 

FA-conjugated gemcitabine loaded PEG-chitosan NPs in COLO357 pancreatic cancer cells both  in 

vitro and in vivo [144]. Zheng and colleagues have shown that FA-conjugated DNA loaded TMC NPs 

exhibit the higher cellular uptake in FR-expressing cells (KB and SKOV3 cells) compared to non-

targeted NPs. The cellular uptake of FA-conjugated NPs was significantly decreased in FR-negative 

cells (A549 and NIH/3T3 cells).  Moreover, they suggested that  FR-mediated uptake of NPs could be 

done through both FR-dependent and -independent endocytosis mechanisms [145]. The FA-targeted 

DOX loaded chitosan-dextran NPs could also inhibit the growth of cancer (KB) cells both in vitro and 

in vivo [146]. Gaspar et al. reported that the use of FA-PEG conjugated p53 DNA loaded amino acid-

modified chitosan NPs significantly increased gene transfer into FR-positive cancer cells, both in 3D 

spheroids and in vivo-mimicking 2D co-cultures, which led to the decreased tumor-spheroids volume 

[147]. Interestingly, it is suggested that methotrexate, as a FA analogue, can effectively target cancer 

cells through binding to FR [148]. Shi and coworkers have recently developed FA-conjugated DOX 

loaded chitosan-deoxycholic acid–MPEG NPs, which exerted high toxicity against FR-positive HeLa 

but not FR-negative fibroblast 3T3 cells, in vitro [149]. It should be noted that deoxycholic acid 

contains the hydrophilic moieties and the hydrophobic nucleus, which allows forming micelles in 

water because of its amphiphilicity. Thus, deoxycholic acid can help to self-association of chitosan 

and physical incorporation of hydrophobic drugs. In order to escaping from the RES, PEG molecules 

can be added to this complex. The systemic administration of FA-targeted HIF-1α siRNA 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Sunoqrot%20S%5BAuthor%5D&cauthor=true&cauthor_uid=24837188
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encapsulated-PEG-chitosan oligosaccharide lactate (FA-PEG-COL) NPs into BALB/c mice bearing 

OVK18 #2 tumor xenograft was associated with remarkable tumor hindrance compared to non-

targeted NPs that implies chitosan as potent carrier for siRNA delivery, in vivo [150]. 

 

Conclusion 

Site-specific drug delivery is an important issue in cancer therapy because it can decrease drug 

toxicity and enhance therapeutic effects [27, 151]. The effective nanocarriers, which can be applied in 

cancer therapy should exhibit some features, including high biocompatibility and less toxicity, 

efficient drug loading, long-time circulation in bloodstream, and selective targeting of cancerous cells 

[27, 152-158]. There are three main pathways by which NPs can be uptaken by cells, including 

endocytosis, phagocytosis, and receptor-mediated endocytosis. In order to improving the 

internalization of NPs, their surface can be modified with some ligands that can selectively bind to 

their receptors on target cells. 

Regarding the high expression of FR on cancer cells and the lack of FR on normal cells, it seems that 

folate can be as potent targeting molecule that can be applied in NP-based cancer therapy [159]. 

Folate exhibits several properties such as possibility of conjugation, non-immunogenicity, and 

essential factor for tumor growth, which make it as a novel targeting molecule for various tumors 

[160]. FA-targeted NPs can be also conjugated with some other targeting molecules that may enhance 

their cellular penetration. For example, trans activating transcriptional activator peptide (Tat) is a 

well-known cell-penetrating peptide (CPP), which can enhance the efficient uptake of nanocarriers by 

target cells. Therefore, the combination of FR mediated specificity and CPP-mediated penetration 

may increase the efficiency of current FA-targeted nanocarriers for cancer therapy [161]. Dual 

targeting through FA and some anti-tumor antigen monoclonal antibodies is another approach in order 

to improving tumor site-specific cancer therapy. 

As discussed earlier, several FA-targeted NPs have successfully been used for cancer therapy in vitro 

and in tumor animal models. Unfortunately, little is known regarding the efficiency of these FA-

targeted NPs in human tumor and this issue should be investigated in future studies.   
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Table 1: Studies related to the role of FA targeted micelles and albumin NPs in cancer therapy. 

Nanoparticles Drug Findings Ref. 
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Polymeric Micelles  

FA-PTL-PLA-MPEG micelle - Folate conjugation increases the stability of 

NPs. 

[15] 

FA-DOX-PLA-PEG- polymeric 

micelles 

DOX DOX loaded NPs could markedly kill FR-

expressing SKOV3 human ovarian cancer 

cells, in vitro.  

[16] 

FA-platinum-polymeric 

micelles 

Platinum platinum loaded NPs exert potent anti-

tumoral effect both in vitro and in vivo.  

[17] 

FA-DOX-pH sensitive 

polymeric micelles 

DOX FA-conjugated micelles could effectively 

inhibit tumor growth in 4T1 tumor bearing 

mice. 

[13] 

FA-DOX-PEG-poly(ε-

caprolactone) micelles 

DOX DOX-loaded micelles exerted potent anti-

tumor function in both in vitro and in vivo.   

[18] 

FA-poly(ε-caprolactone)-b-

poly[triethylene glycol 

methacrylate-co-N-

methacryloyl caproic acid] and 

poly(ε-caprolactone)-b-

poly[triethylene glycol 

methacrylate-co-N-(2-

(methacrylamido)ethyl) NPs  

DOX DOX-loaded ph-sensitive NPs exerted high 

toxicity against FR-expressing HeLa cells, 

in vitro. 

 

[19] 

FA-PEG-poly(aspartate 

hydrazone adriamycin)  

aspartate 

hydrazone 

adriamycin 

Aspartate hydrazone adriamycin LOADED 

NPs stoped the growth of human 

pharyngeal cancer cells (KB cell) in vitro.  

[20] 

FA-DOX-poly(N-

isopropylacrylamide-co-N,N-

dimethylacrylamide-co-2-

aminoethyl methacrylate)-b-

poly(10-undecenoic acid) 

micelles 

DOX DOX-loaded micelles effectively inhibited 

the tumor burden both in vitro and in vivo.  

[21] 

FA-DOX-polyurethane micelles DOX Redox- and pH-sensitive nanomicelles 

inhibited the growth of FR-positive HeLa 

cells in vitro.  

 

[22] 

FA-5-FU-poly(N-

vinylcaprolactam)-b-PEG 

micelles 

5-FU Thermosensitive 5-FU loaded micelles 

exerted remarkable toxicity against FR-

positive 4T1 cells.  

[23] 

FA-meta-

tetra(hydroxyphenyl)chlorin (m-

THPC) micelles. 

meta-

tetra(hydroxy

phenyl)chlon 

Polymeric micelles can be useful for 

photodynamic therapy both in vitro and in 

vivo.  

[24] 

Albumin nanoparticles  

FA-BSA - BSA NPs could effectively uptake by 

SKOV3 cells in vitro.  

[27] 

FA-Paclitaxel-BSA Paclitaxel Paclitaxel loaded BSA NPs effectively 

deliver anti-cancer drug into a human 

prostate cancer PC3 cell line.  

[28] 

FA-albumin-bound formulation Paclitaxel albumin-bound formulation of paclitaxel [29] 
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of paclitaxel (Abraxane ABI-

007) 

(Abraxane ABI-007) has been evaluated in 

phase III trial for treatment of breast cancer.  

FA-DOX-BSA-dextran DOX DOX loaded BSA-dextran NPs exert 

remarkable antitumor activity in vivo. 

 

[32] 

FA-DOX-albumin nanospheres DOX DOX-loaded albumin nanospheres kill the 

FR-expressing tumor cells in vitro. 

[33] 

FA-5-FU-BSA-carboxymethyl-

β-cyclodextrin 

5-FU 5-FU loaded NPs exhibited high inhibition 

and promote apoptosis in FR-expressing 

tumor cells . 

[34] 

FA-ergosta-4,6,8(14),22-

tetraen-3-one (ergone)-albumin 

nanospheres 

ergosta-

4,6,8(14),22-

tetraen-3-one 

(ergone) 

 Ergone loaded albumin nanospheres could 

selectively kill tumor cells, in vitro and in 

vivo.  

[35] 

FA-vinblastine sulfate-albumin 

NPs 

vinblastine 

sulfate 

Albumin NPs could selectively deliver 

vinblastine sulfate (VBLS) anti-cancer drug 

to tumor cells  

[36] 

FA-tamoxifen-albumin NPs tamoxifen tamoxifen-loaded albumin NPs inhibit 

tumor growth in vitro.  

[37] 

FA-BSA nanospheres-DOX and 

encapsulated magnetic iron 

oxide 

DOX DOX loaded BSA NPs which encapsulated 

magnetic iron oxide in combination with 

hyperthermia improve the therapeutic effect 

of anti-tumor drugs in both in vitro and in 

vivo  

[38] 

FA-mitoxantrone-loaded 

albumin NPs 

Mitoxantrone mitoxantrone-loaded albumin NPs could 

effectively control the growth of SKOV3 

tumor cells both in vitro and in vivo  

[39] 
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Table 2: Studies related to the role of FA targeted magnetic NPs in cancer therapy. 

Nanoparticles Drug Findings Ref. 

Magnetic nanoparticles  

FA-Fe3O4, FA-MnFe2O4, and 

FA-Mn3O4 magnetic NPs 

conjugated with rhodamine B  

- FA-conjugated magnetic NPs cells 

selectively target FR-expressing cancer 

cells.  

 

[65] 

FA-Fe3O4-dopamine-PEG-

NH2-FITC 

- FA-conjugated magnetic NPs cells 

selectively target FR-expressing cancer 

cells.  

[47] 

FA-5FU- magnetic NPs coated 

with bacterial 

exopolysaccharides 

5FU 5FU-loaded magnetic NPs coated with 

bacterial exopolysaccharides in 

combination with hyperthermia effectively 

killed cancer cells.  

[66] 

FA-albumin conjugated SPION 

NPs 

- albumin SPION NPs had a strong MR 

imaging efficacy.  

[48] 

FA-DOX Fe3O4magnetic NPs DOX DOX loaded magnetic NPs kill FR-

expressing human ovarian cancer cells in 

vitro through downregulation of bcl-2 and 

upregulation of caspase-3.  

[67] 

FA-SPION-based magnetic NPs - SPION-based magnetic NPs inhibit the 

growth of FR-expressing human leukemic 

CCRF-CEM cell Line.  

[68] 

FA-idarubicin-PEG-covered 

magnetic NPs 

Idarubicin Idarubicin-loaded PEG-covered magnetic 

NPs kill FR-expressing MCF-7 in vitro.  

[69] 

FA-PEG-Fe2O3@ carbon NPs - Fe2O3@ carbon NPs can be functionalized 

with PEG and folic acid to enhance their 

solubility in aqueous solution and 

target cancer cells  

[71] 

FA-Fe3O4 into conjugated BSA 

NPs 

- Fe3O4-BSA-FA NPs resist against clearing 

by reticuloendothelial cells.  

 

[38, 

48] 

FA-magnetic NPs - Active targeting is dependent to density of 

FA on magnetic NPs and FR on the tumor 

cells.  

[72] 

FA-magnetic NPs cis-

Diamminedic

hloroplatinu

m Cisplatin 

and 5FU 

The combination of magnetic induced 

hyperthermia, chemotherapy and FA 

targeted radionuclide of radiation exposure 

significantly inhibit the growth of tumor. 

[66, 

83] 

FA-dextran/retinoic-magnetic 

iron oxide NPs and FA-

polyethylenimine magnetic NPs 

DOX The use of external magnetic field in 

combination with magnetic NPs can 

conduct magnetic nanocarrier to the desired 

tumor site, fix them and release the drug 

locally.  

[84-

85] 

FA-curcumin and 5-FU-

magnetic NPs-poly(D,L-lactic-

Curcumin 

and 5-FU 

Combination of hyperthermia and 

chemotherapy increases the efficiency of 

[77] 
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co-glycolic acid)   anti-tumor therapy. 

FA-magnetic NPs - Magnetic NPs in combination with 

extremely low-frequency- electromagnetic 

fields effectively kill cancer cells  

[51] 
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Table 3: Studies related to the role of FA targeted mesoporous silica and gold NPs in cancer therapy. 

Nanoparticles Drug Findings Ref. 

Mesoporous silica NPs  

FA-camptothecin or paclitaxel 

multifunctional mesoporous 

silica NPs 

Camptotheci

n and 

paclitaxel 

Multifunctional mesoporous silica NPs are 

useful for cancer imaging, targeting, and 

drug delivery in FR-expressing human 

cancer cells  

 

[91] 

FA-DOX-mesoporous silica 

NPs 

DOX The pH sensitive DOX-loaded mesoporous 

silica NPs selectively kill FR-expressing 

cancer cells.  

[98] 

FA-cisplatin-pemetrexed- 

mesoporous hollow silica-

CoFe2O4 NPs  

Cisplatin and 

pemetrexed 

Multifunctional mesoporous silica NPs 

which encapsulated superparamagnetic 

CoFe2O4 NPs are effective for targeted 

drug delivery and tumor imaging.  

[99] 

FA-DOX- mesoporous silica-

coated super paramagnetic 

manganese ferrite (MnFe2O4) 

NPs 

DOX Mesoporous silica-coated super 

paramagnetic manganese ferrite 

(MnFe2O4) NPs are useful for targeted 

drug delivery and tumor imaging  

[56] 

FA-DOX-mesoporous silica 

NPs 

DOX DOX-loaded mechanized nanocontainers 

could selectively kill tumor cells in vitro 

and in vivo  

[100

] 

FA-DOX and Bcl-2 siRNA-

mesoporous silica NPs 

DOX and 

siRNA 

against the 

Bcl-2 

DOX and Bcl-2-siRNA loaded mesoporous 

silica NPs potently kill high FR expressing 

cancer cells.  

[97] 

FA-phospholipid-functionalized 

mesoporous silica NPs 

 FA-targeted phospholipid-functionalized 

mesoporous silica NPs are effective for 

selective photodynamic therapy of tumor 

cells in vitro and in vivo.  

[101

] 

Gold nanoparticles    

FA-berberine hydrochloride-

gold NPs 

Berberine 

hydrochlorid

e 

Berberine hydrochloride loaded gold NPs 

selectively kill FR-expressing cancer cells  

 

[116

] 

FA-BSA-gold NPs - BSA-conjugated gold NPs selectively target 

FR-expressing cancer cells  

[108

] 

FA-6-mercaptopurine (6MP)-

gold NPs 

6-

mercaptopuri

ne (6MP) 

6-mercaptopurine (6MP)loaded gold NPs 

potently kill FR-expressing cancer cells 

both in vitro and in vivo.  

[117

] 

FA-5FU-Pullulan stabilized 

gold NPs 

5-FU 5-FU loaded Pullulan stabilized gold NPs 

significantly decrease growth of tumor cells 

both in vitro and in vivo.  

[118

] 

FA-PEG-dendrimer-entrapped 

gold NPs  

α-tocopheryl 

succinate (α-

TOS) 

The theranostic potential of multifunctional 

dendrimer-entrapped gold NPs was 

confirmed both in vitro and in vivo. 

[119

] 
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FA-gold nanorods - The combination of folate-conjugated gold 

nanorods with the photothermal therapy is 

useful for the selective targeting and 

destruction of cancer cells  

[124

] 

FA-gold NPs - FA-conjugated gold nanoclusters can be 

used as fluorescence enzyme mimetic 

nanoprobes for tumor imaging.  

[125

] 

FA-gold NPs  Electrochemical cytosensor containing FA-

conjugated gold NPs are able to detect 

cancer cells. 

[126

] 
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Table 4: Studies related to the role of FA targeted dendrimer and chitosan NPs in cancer therapy. 

Nanoparticles Drug Findings Ref. 

Dendrimer NPs    

FA-dendrimer - FA significantly increases the specific 

function of NPs in tumor cells in vitro  

 

[130] 

FA-MTX-dendrimers MTX MTX loaded dendrimers selectively kill 

tumor cells  

[131] 

FA-Melphalan -

poly(propyleneimine) (PPI) 

dendrimers 

Melphalan The fourth generation PPI dendrimer is 

the best carrier for targeted cancer 

therapy. 

[132] 

FA-(PPI) dendrimers. - COOH capped dendrimers have the 

highest tumor targeting potential  

[133] 

FA-DNA-fifth generation (G5) 

PAMAM dendrimers 

DNA The fifth generation (G5) PAMAM 

dendrimers have high potential for gene 

delivery into cancer cells  

[134] 

FA-DNA-PEG- 

polyamidoamine dendrimer 

(G3)-α-cyclodextrin 

DNA FA-PEG-appended polyamidoamine 

dendrimer (G3) conjugate with α-

cyclodextrin exhibit high efficiency for 

gene delivery into FR-overexpressing 

cancer cells, both in vitro and in vivo  

[135] 

FA-PEG-chitosan-PAMAM-

plasmid DNA (containing a 

high mobility group box 1, 

HMGB1) 

Plasmid 

DNA 

(containing a 

high mobility 

group box 1, 

HMGB1) 

The high gene transfection potential of 

dendrimers in vitro and in vivo  

[136] 

PAMAM-PEG-b-poly(D,L-

lactide) (PEG-PLA) NPs 

- Hybrid NPs selectively target FR-

expressing tumor cells in vivo  

[137] 

Chitosan     

FA-DOX-chitosan NPs DOX DOX loaded chitosan NPs kill FR-

expressing cancer cells, in vitro  

 

[142] 

FA-copper ion –acetylacetone-

chitosan NPs 

- FA-tagged copper ion and acetylacetone 

encapsulated chitosan NPs exhibit anti-

tumor effects on the several FR-

overexpressing cancer cells, in vitro  

[143] 

FA-gemcitabine-PEG-chitosan 

NPs 

Gemcitabine Gemcitabine loaded chitosan NPs exert 

potent anti-tumor function on cancer cells 

both  in vitro and in vivo  

[144] 

FA-DNA-N-trimethyl chitosan 

NPs 

DNA DNA loaded NPs exhibit the higher 

cellular uptake in FR-expressing cancer 

cells  

[145] 

FA-DOX-chitosan-dextran NPs DOX DOX loaded NPs inhibit the growth of 

cancer cells both in vitro and in vivo  

[146] 

FA-PEG-p53 DNA-amino acid- p53 DNA Amino acid-modified chitosan NPs [147] 
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modified chitosan NPs increased gene transfer into FR-positive 

cancer cells, both in 3D spheroids and in 

vivo-mimicking 2D co-cultures  

FA-DOX-chitosan-deoxycholic 

acid–MPEG NPs 

DOX DOX loaded NPs exerted high toxicity 

against FR-positive cancer cells, in vitro  

[149] 

FA-HIF-1α siRNA -PEG-

chitosan oligosaccharide lactate 

NPs 

 HIF-1α siRNA encapsulated NPs 

inhibited the tumor growth in vivo  

[150] 
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