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Fold maps with singular value sets of concentric spheres
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Abstract. In this paper, we study fold maps from C closed manifolds into Eu-
clidean spaces whose singular value sets are disjoint unions of spheres embedded con-
centrically. We mainly study homology and homotopy groups of manifolds admitting
such maps.
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1. Introduction

Fold maps are important in generalizing the theory of Morse functions.
Studies of such maps were started by Whitney ([23]) and Thom ([20]) in the
1950’s. A fold map is a C'°° map whose singular points are of the form

m—i m
2 .2
(T1, ooy Tm) = | X1y, T, x;° — zj
Jj=n

j=m—i+1

for two positive integers m > n and an integer 0 < i <m —n+ 1. A Morse
function is naturally regarded as a fold map (n = 1).

Since around the 1990’s, fold maps with additional conditions have been
actively studied. For example, in [1], [3], [10], [12] and [14], special generic
maps, which are fold maps whose singular points are of the form

m
2
(1. vy @) — (ml,...,aﬁn_l, E x; )

j=n

for two positive integers m > n, were studied. In [15], Sakuma studied
simple fold maps, which are fold maps such that fibers of singular values
do not have any connected component with more than one singular points
(see also [9]). For example, special generic maps are simple. In [5] and [6],
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Kobayashi and Saeki investigated topology of stable maps into the plane
including fold maps which are stable (for stable maps, see [4] for example).
In [13], Saeki and Suzuoka found good properties of manifolds admitting
stable maps whose regular fibers, or fibers of regular values, are disjoint
unions of spheres. In [11], Saeki investigated Morse functions whose regular
fibers are disjoint unions of spheres.

For a fold map from a closed C*° manifold of dimension m into a C'*°
manifold of dimension n (without boundary), the followings hold where
m>n> 1.

(1) The singular set, or the set of all the singular points of the map, is a
closed C* (n — 1)-submanifold of the source manifold.
(2) The restriction to the singular set is a C°>° immersion of codimension 1.

In this paper, we introduce a new class of fold maps called round fold maps.
A round fold map is a fold map into R™(n > 2) satisfying the followings.

(1) The singular set is a disjoint union of standard spheres.

(2) The restriction to the singular set is a C*° embedding.

(3) The singular value set is a disjoint union of spheres embedded concen-
trically.

This class includes some special generic maps on homotopy spheres (see
[10]) and some maps in [6] and [13], which are not special generic, for ex-
ample. We can construct many round fold maps easily. We study manifolds
admitting such maps in this paper.

This paper is organized as follows.

Section 2 is for preliminaries. We recall fold maps. We also recall special
generic maps and simple fold maps. Finally we review the Reeb space of a
smooth map, which is the space consisting of all the connected components
of all the fibers of the smooth map.

In Section 3, we introduce round fold maps and examples (Example
2) and give a method of construction. We also introduce terminologies
on structures of round fold maps and in Example 3, study structures of
examples including ones mentioned in Example 2 in these terminologies. As
a main theorem, we have relations between homology groups of a manifold
which admits a round fold map of a certain structure and those of the inverse
image of a ray in R" called an axis (Theorem 1).

In Section 4, we study round fold maps whose regular fibers are disjoint
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unions of spheres. We have a lot of examples of such maps, as presented
in Example 2 and Example 3. We then show that the homology groups
of manifolds admitting round fold maps of certain structures with all the
regular fibers homeomorphic to disjoint unions of spheres are torsion-free
(Theorem 2) by applying our Theorem 1 and Corollary 3.17 of [11].

We next study homotopy groups of manifolds admitting such fold maps.
According to Theorem 4.1 of [13], if there exists a stable map from a closed
C* manifold of dimension 4 into the plane whose regular fibers are disjoint
unions of spheres, then the source manifold bounds a nice manifold. As a
corollary to the theorem, it has been shown that the fundamental groups
of such a manifold and the Reeb space agree (Corollary 4.8 in [13]). We
generalize these results under some constraints (Lemma 1 and Corollary 4).
After that, we prove Theorem 3. It states that some homotopy groups of
manifolds admitting such round fold maps are determined by topological
properties of the Reeb spaces. Furthermore, Theorem 3 is an extension
of the last part of the proof of Theorem 7.1 of [6], which states that if
we assume good conditions on the Reeb space of a simple fold map from
a simply-connected manifold into the plane, then the source manifold is a
homotopy sphere.

In Section 5, we study the homeomorphism types of manifolds admitting
round fold maps as in the previous section for some cases (Corollary 5,
Theorem 4 and Example 6).

Throughout this paper, we assume that M is a closed C'* manifold of
dimension m, that N is a C°° manifold of dimension n without boundary,
that f: M — N is a C* map and that m > n > 1. We denote the singular
set of f, or the set consisting of all the singular points of f, by S(f).

The author would like to express his gratitude to Mitsutaka Murayama,
Osamu Saeki and Kazuhiro Sakuma for helpful comments and constant en-
couragement. The author also thanks the referee for useful comments, which
improved this paper.

2. Preliminaries

2.1. Notations on topological spaces

We introduce notations on topological spaces which we use in this paper.
For a topological space X, we denote the identity map on X by idx. We
denote the interior, and the closure of a subspace X of a topological space
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by IntX and X, respectively. For a manifold X, we denote the boundary of
X by 0X.

Let {X)}xca be a family of topological spaces. We denote the disjoint
union of { X} xea by UxeaXa. If A is a finite set consisting of all the integers
not smaller than [; € Z and not larger than [y € Z, then we also denote the
disjoint union by L2, X, or X, U+ U Xy,

For a family of maps {cy : Xx — Yx}aea, we denote the disjoint union
of {extaea by Uneacy : UaeaXn — Uxea Y. We use the notation ugjzllck
or ¢, L--- ¢, if Ais a finite set consisting of all the integers not smaller
than [; € Z and not larger than [y € Z as before.

Let X7, X5 be topological spaces. Let A; C X; (i =1,2) and ¢ : Ay —
A; be a homeomorphism. By glueing X; and X5 together by ¢, we obtain
a topological space X1U¢X2. We often omit ¢ of X3 U¢X2 and denote it by
X1UJX> in case we consider a natural identification.

Let ¢1 : X1 — X5 and ¢ : X9 — Y5 be continuous maps. Let A; C X,
B; C Y; and ¢;(A;) € B; (i = 1,2). If for a pair of homeomorphisms
(pa : Ao — Ai,¢p : Ba — Bj), the relation ¢p o 02|A2 = Cl‘Al oy
holds, then by glueing X; and X5 together by ¢4 and by glueing Y7 and Y5
together by ¢p, two spaces X1U¢AX2 and Y1U¢B Y5 and a continuous map
c:= c1U¢A7¢B02 : X1U¢AX2 — Y1U¢BY2 such that

Teg0ci(z) € Xy
Tpp © Cg(l‘) T € Xo

(g4 (7)) = {

are obtained where my, : X7 U Xy — XjJ, Xo and 7y, : Y1 UYS, —
¢A ¢A ¢B

YiU ¢, Yo are the quotient maps. We often omit (¢a,¢p) and denote the

map by g1 |J g2 in case we consider natural identifications.

2.2. Fold maps
We recall fold maps, which are simplest generalizations of Morse func-
tions. See also [4], [7] and [8] for example.

Definition 1 For a C> map f: M — N, a point p € M is said to be a
fold point of f if at p, the map f has the normal form

m—1 m
A E : 2 § : 2
f(.’l)l,...,ﬂj‘m) = <$1,...,1‘n_1, i — Z 5 )
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and f is said to be a fold map if all the singular points of f are fold.

If a point p € M is a fold point of f, then we can define j := min{i, m —
n+1—4} uniquely in the previous definition. We call p a fold point of index
j of f. We call a fold point of index 0 a definite fold point of f and we call f
a special generic map if all the singular points are definite fold points. For
special generic maps, see [1], [3], [10] and [14] for example. Let f be a fold
map. Then the singular set S(f) and the set of all the fold points of indices i
(we denote the set of all such points by F;(f)) are C*° (n — 1)-submanifolds
of M. The restriction f| s(p) 1s a C°° immersion.

A Morse function on a closed manifold is naturally regarded as a fold
map (n = 1). A Morse function on a closed manifold which has just two
singular points is regarded as a special generic map.

We introduce simple fibers of fold maps and simple fold maps.

Definition 2 (see e.g. [9] and [14]) For a fold map f and a singular value
p € f(S(f)), f~1(p) is said to be simple if each connected component of
f~1(p) includes at most one singular point of f. f is said to be a simple
fold map if for each p € f(S(f)), f~1(p) is simple.

Example 1 (1) Morse functions on closed manifolds are simple if the
values are always distinct at distinct singular points.

(2) A fold map f: M — R" is simple if f|5(f) is a C*° embedding.

(3) Special generic maps are simple.

2.3. Reeb spaces
We review the Reeb space of a map.

Definition 3 Let X, Y be topological spaces. For pi,p2 € X and for a
map ¢ : X — Y, we define as p;~.po if and only if p; and ps are in the
same connected component of ¢~!(p) for some p € Y. The relation ~, is an
equivalence relation.

We denote the quotient space X/~. by W, and call it the Reeb space of

We denote the induced quotient map from X into W, by ¢.. We define
¢: W, —Y sothat c = c¢oq.. W, is often homeomorphic to a polyhedron.
For example, for a Morse function, the Reeb space is a graph and for a
simple fold map, the Reeb space is homeomorphic to a polyhedron which
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is not so complex (see Proposition 1 later). For a special generic map, the
Reeb space is homeomorphic to a C°>° manifold (see Section 2 of [10]).

Here, we introduce terms on spheres and fiber bundles which are impor-
tant in this paper.

An almost-sphere of dimension k& means a C'° homotopy sphere given
by glueing two k-dimensional standard closed discs together by a diffeomor-
phism between the boundaries.

We often use terminologies on (fiber) bundles in this paper (see also
[18]). For a topological space X, an X-bundle is a bundle whose fiber is
X. A bundle whose structure group is G is said to be a trivial bundle if
it is equivalent to the product bundle as a bundle whose structure group
is G. Especially, a trivial bundle whose structure group is a subgroup of
the homeomorphism group of the fiber is said to be a topologically trivial
bundle. In this paper, a C*° (PL) bundle means a bundle whose fiber is a
C® (resp. PL) manifold and whose structure group is a subgroup of the
diffeomorphism group (resp. PL homeomorphism group) of the fiber. A
linear bundle is a C'*° bundle whose fiber is a standard disc or a standard
sphere and whose structure group is a subgroup of an orthogonal group.

The following Proposition 1 is well-known and we omit the proof. See
[6], [9] and [13] for example. This proposition is a basic tool in the proof of
Theorem 4.1 of [13] and Lemma 1 of this paper, for example.

Proposition 1  Let f: M — N be a special generic map or a simple fold
map or a stable fold map from a closed C* manifold M of dimension m
into a C°° manifold N of dimension n. Then Wy has the structure of a
polyhedron and the followings hold.

(1) Wy —qp(S(f)) is uniquely given the structure of a C*° manifold such
that qrlar_sipy + M = S(f) — Wy —qp(5(f)) is a C> submersion.
Furthermore, for any compact C*° submanifold R of dimension n of
any connected component of Wy — qs(S(f)), R is a subpolyhedron of
Wy and q]c|qf,1(R) : ¢t (R) — R gives the structure of a C* bundle
whose fiber is a connected C*° manifold of dimension m —n.

(2) The restriction of gy to the set Fyo(f) of all the definite fold points is
mjective.

(3) f is simple if and only if qf’S(f) 2 S(f) — Wy is injective.

(4) If f is simple, then for any connected component C of S(f), qf(C) has a
small regular neighborhood N(qs(C)) in Wy such that gz~ (N (g (C)))
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has the structure of a C*° bundle over q(C).

For any connected component C of Fo(f), any small reqular neighbor-
hood of q¢(C) has the structure of a trivial PL [0, 1]-bundle over q;(C')
such that q¢(C) corresponds to the 0-section. We can take a small
reqular neighborhood N(qs(C)) of qf(C) so that gy~ (N(qs(C))) has
the structure of a linear D™ "t -bundle over qr(C). More precisely,
the bundle structure is given by the composition of qf\qf,l(N(qf(C)) :
qs Y (N(qf(C))) — N(qs(C)) and the projection to q¢(C).

Let f be simple and m —n > 1. If m—n =1, then we also assume that
M 1is orientable.

Then for any connected component C of the set Fy(f) of all the fold
points of indice 1 such that for any point p € q5(C), any small neigh-
borhood N (p) of p and any point q in N(p) — qr(C), the inverse image
qs'(q) is an almost-sphere, any small reqular neighborhood N(qs(C))
of q¢(C) has the structure of a K-bundle over q;(C), where K :=
{rexp(2mif) € C |0 <r < 1,0 =0,1/3,2/3} with the structure group
consisting of just two elements, where one element is defined as the iden-
tity transformation and the other element is defined as the transforma-
tion defined by z — z (z € K is the complex conjugation of z € K), such
that qf(C) corresponds to the 0-section. We can take the neighborhood
N(qs(C)) of qs(C) so that gz~ (N(qs(C))) has the structure of a C*>
bundle over q;(C) with a fiber PL homeomorphic to S™ "1 with the
interior of a union of disjoint three (m — n + 1)-dimensional standard
closed discs removed. More precisely, the bundle structure is given by
the composition of qf|qf*1(N(qf(O))) ¢ 1 (N(qs(C))) — N(qs(C)) and
the projection to q¢(C).

3. Round fold maps

In this section, we introduce round fold maps.
3.1. The definition of a round fold map

We introduce two definitions of a round fold map and show equivalence
of them.

First we recall C*° equivalence (see [4] for example). For two C'* maps
fi: X1 — Yy and fo : Xo — Yo, they are said to be C™° equivalent if

there exist diffeomorphisms ¢x : X7 — X5 and ¢y : Y7 — Y5 such that the
following diagram commutes.
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X1&>X2

\Lﬁ lf2
oy

Yi —=Y;

Definition 4 f: M — R"™ (m >n > 2) is said to be a round fold map if
f is C°° equivalent to a fold map fy : My — R™ on a closed C*° manifold
My such that the followings hold.

(1) The singular set S(fp) is a disjoint union of I € N copies of (n — 1)-
dimensional standard spheres.

(2) The restriction fo|g(y,, is a C*> embedding.

(3) Let D", := {(z1,...,2,) € R" | Z?lef < r}. Then fo(S(fo)) =
ut_,oD";.

We call fy a normal form of f. We call a ray L from 0 € R™ an axis of
Jo and D™y 5 the proper core of fo. Suppose that for a round fold map f,
its normal form fy and diffeomorphisms ® : M — My and ¢ : R™ — R"™, the
equation ¢ o f = fy o ® holds. Then for an axis L of fy, we also call ¢~ (L)
an axis of f and for the proper core D"y /5 of fo, we also call ¢_1(D”1/2) a
proper core of f.

Figure 1. An axis and a proper core of a round fold map.

We introduce another definition.

Definition 5 Assume that f : M — R" is a fold map and that m > n > 2.
f is said to be a round fold map if the followings hold.
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(1) The singular set S(f) is a disjoint union of finite copies of (n — 1)-
dimensional standard spheres.

(2) The restriction f[g ;) is a C* embedding.

(3) We can denote by {Up} U {Uso} LI {Ux} ¢, the set of all the connected
components of R” — f(S(f)) where A is a finite set that may possibly
be empty so that the followings hold.

(a) The closure Uy is diffeomorphic to D™.
(b) The closure Uy, is diffeomorphic to S™~1 x [0, +0).
(c) The closure U, is diffeomorphic to S"~1 x [0, 1].

Figure 2. The image Uy |J U1 |J Uz of a round
fold map such that A = {1,2} (Definition 5).

Note that f(M) (U = 0 always holds in Definition 5.

Proposition 2  Two definitions of a round fold map (Definition 4 and
Definition 5) are equivalent.

It immediately follows that if f is a fold map satisfying Definition 4,
then it satisfies Definition 5. Hence to show this proposition, it suffices to
prove that any fold map satisfying Definition 5 satisfies Definition 4.

Before a strict proof, we sketch the outline of the proof. First we decom-
pose f into a singular part f; and a regular part fo (FIGURE 3). Second,
we construct two C* maps fo1 and fgo so that f; and fy; are C* equivalent
(1 = 1,2). Finally we construct fy by glueing fo1 and fo2 together so that
f and fy are C°° equivalent and that fy is a normal form of f.

Proof of Proposition 2. Suppose that f is a fold map in the sense of Defi-
nition 5.
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Figure 3. The image of the singular part fi and the image of the regular part fo
of the round fold map f. (The image of the singular part is black and the image
of the regular part is white.)

Let the singular value set f(S(f)) consist of [ € N connected components
and we label all the connected components of the singular set of f by {S, }\._;
so that for s,t € Nand 1 < s,¢t <[, s < t holds if and only if f(Ss) is in the
bounded connected component of R™ — f(.S;).

Let A be a small C* closed tubular neighborhood of f(S(f)) in R™.
Note that A and f(S(f)) x [-1, 1] are both diffeomorphic to a disjoint union
of | copies of S ! x [~1,1]. We put f; = fly-1(a) f~YA) — A, and
fo = flare =1 (moay f7YR™ — IntA) — R™ — IntA. Hence we regard
f = fiU f2, where we identify 0f~!(A) with 9f 1 (R™ —IntA) and A with
O(R™ — IntA). Since A is so small that R” — IntA is diffeomorphic to the
disjoint union of D™, S"~1 x [0, 4+00) and [ — 1 copies of S*~1 x [0, 1].

Set My := f~!'(A). There exist a diffeomorphism ¢; : A — LL_,
(D" 4174 — IntD™,_1/4) and a C™ map for : My — U_ (D™ 4174 —
IntD",_q/4) such that ¢1(f(S,)) = dD™, holds for 1 < r < [ and that
the following diagram commutes.

id]ul

M1 Ml

I B
®1

A——UL_ (D" y1/q —IntD™, 4 )y)

We label all the connected components of JA by P, and Q, (r =
1,...,1,) so that {P.}\_, U{@Q,}._; denotes the set of all the connected
components of A and that the followings hold for s,t € N, 1 < s,¢ < .
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(1) s < t holds if and only if P; and @, are in the bounded connected
component of R” — P, and R™ — Q.
(2) Py is in the bounded connected component of R — Q.

We note that the disjoint union P, U @, is the boundary of a connected
component of A.

Set My := f~1(R™ — IntA). There exist a diffeomorphism ¢ : R —
IntA — U2} (D" 4370 —IntD™, 1y /4)UD™ 3, U(R™ —Int D™ 4 14), and a O™
map fo2 : My — UL (D™, 4374 — IntD™, 4 /4) U D34 U (R™ — IntD™, 4 /4)
such that ¢o(P.) = 0D",_1/4 and ¢2(Q,) = 0D", /4 hold and that the
following diagram commutes.

idas,

M2 M2

B B
P2

R —IntA —— U2 (D", 450 —IntD™, 41 /4) U D34 U (R"—IntD" ;4 g /4)

T

_7 -1
Then for ¢g := ¢1], 4002 ’a(ul;:ll(Dnr+3/4—IntDnr+1/4)an3/4u(Rn—IntD"l+1/4))’
the map f is C° equivalent to fo := fo1lq,,, 4,f02- In fact, by using
2
®0, ¢1Uida(R7L71ntA), s, ®2 1s defined. We note that the following diagram
commutes.

idar

M M

I B
1 Uida(nw —IntA) ®0 b2
R"™ R™

This means that f and fy = fmUidaM o J02 are C°° equivalent. By the
2
construction and Definition 5, fy satisfies the followings.

(1) fo is a fold map.
(2) fols(s,) 18 a € embedding and fo(S(fo)) = UL_,0D™,.

More precisely, (1) is derived from the fact that f is a fold map and (2) is
derived from the definitions of diffeomorphisms ¢; and ¢s.

This means that fy is a normal form of f and hence Definition 4 and
Definition 5 are equivalent. O
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Example 2 (1) In Section 5 of [10], special generic maps from C* ho-
motopy spheres into R? are constructed and they are round. Each of
them has the Reeb space homeomorphic to D?.

(2) We may regard that Figure 7 (b) of [6] or Figure 4 of the present paper
represents the Reeb space of a round fold map into the plane whose
singular set consists of three connected components and whose source
manifold is a homotopy sphere. Regular fibers of the map are disjoint
unions of finite copies of spheres. The Reeb space is homeomorphic to
a polyhedron represented as D?|J s(S 1'% [0,1]) for a homeomorphism ¢
from a connected component of 9(S* x [0, 1]) onto a circle in the interior

of D2,
[\

Figure 4. The Reeb space of the map in (2) of Example 2 ([6, Figure 7 (b)]).

(3) We may regard that Figure 8 of [13] or Figure 5 of the present paper
represents the Reeb space of a round fold map into the plane whose
singular set consists of two connected components and whose source
manifold is a manifold having the structure of a C*° S2?-bundle over S2.
Regular fibers of the map are disjoint unions of finite copies of S2. The
Reeb space is given by glueing two copies of 2-dimensional closed discs
by a homeomorphism from the boundary of one disc onto a circle in the
interior of another disc.

Figure 5. The Reeb space of the map in (3) of Example 2 ([13, Figure 8]).

We can construct a round fold map as in the following manner. We use
this construction in the proceeding sections.
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Before the construction, we introduce good Morse functions on compact
C* manifolds possibly with non-empty boundaries. A Morse function on
a compact manifold with non-empty boundary is said to be good if on the
boundary, it is constant and minimal, singular points of it are not on the
boundary and at any two distinct singular points, the singular values are
distinct. A Morse function on a closed or compact manifold without bound-
ary is said to be good if at any two distinct singular points, the singular
values are distinct.

Let M be a compact C* manifold with non-empty boundary M. Then
there exists a good Morse function f : M — [a, +00), where a is the minimal
value.

Let ® : (M x O(R™ —IntD™)) — J(OM x D™) and ¢ : I(R™ —IntD™) —
OD"™ be diffeomorphisms. Let p; : OM x (R™ — IntD") — J(R™ — IntD"™)
and py : OM x D™ — OD™ be the canonical projections. Suppose that the
following diagram commutes.

OM x d(R" — IntD") —2> 91T x OD"

lpl P2

O(R™ — IntD") —~ gpn

By using ®, we construct M := (OM x D™)Jgp(M x O(R™ — IntD™)).
Let p: OM x D™ — D™ be the canonical projection. Then a C> map f :=
PUs 4( f X idgn-1) is a round fold map whose source manifold is M.

If M is a compact C* manifold without boundary, then there exists
a good Morse function f : M — [a,+00) such that f(M) C (a,+00). We
are enough to consider f x idgn-1 and embed [a,+00) x S™~! into R™ to
construct a round fold map whose source manifold is M x ™1,

3.2. Round fold maps and homology groups of source manifolds

Throughout this subsection, let f : M — R™ be a round fold map and
let L be its axis. We study relations between homology groups of M and
those of f~1(L).

Let f be a normal form of a round fold map and P() := D™ /5. We
set £ := f~Y(PW) and E' :== M — f~1(IntPM)). We set I := f~'(p) for
p € 0PW. We put P? ;= R" — IntPW. Let f1 := f|, : E — PW if Fis
non-empty and let fy := f|p : B/ — P®),
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f1 gives the structure of a trivial C*> bundle over P™") and f] oE -
OE — P gives the structure of a trivial C* bundle over 9P if F is
non-empty. fa|gp : OB — OP®) gives the structure of a trivial C* bundle
over 9P?).

We can give E' and q;(E’) the structures of bundles over 9P as
follows.

Since for mp(z) := (1/2)(z/|z|) (x € PP), 7p o f|, is a proper C=
submersion, this map gives E’ the structure of a C*° f~!(L)-bundle over
OP®?) (apply Ehresmann’s fibration theorem [2]).

For p € q¢(E’) and p1,p2 € g5 *(p), the equation Fpof(pl) = mpof(p2)
holds. We can correspond 7p o f(p1) = mp o f(p2) = wp o f(p) to p. The
resulting map from q;(E’) into P2 gives the structure of a f~!(L)-bundle
since mp o f| . gives the structure of a C*° bundle and g (E") is the quotient
space of E' by ~.

For a round fold map f which is not a normal form, we can consider
similar maps and similar structures of bundles.

Now, we introduce (algebraic) topological conditions for round fold maps
as the following definition. Here we use the notations above.

Definition 6 Let f : M — R™ be a round fold map, and let R be a
commutative group.

(1) If the natural projection 7p o fo from the total space of the bundle E’
onto the base space 9P (9P is diffeomorphic to S"~1) gives the
structure of a topologically trivial bundle, then f is said to be topologi-
cally trivial.

(2) If the natural projection 7p o fo from the total space of the bundle
qs,(E") onto the base space 9P (9P is diffeomorphic to S™~1)
gives the structure of a topologically trivial bundle, then f is said to
be topologically quasi-trivial.

(3) If H.(E"; R) = H,(OP® x f~Y(L); R) (£ H.(0P®;R) ® H,(f~*(L);
R)), then f is said to be homologically product about R.

(4) Suppose that f is homologically product about R and that the following
diagram commutes for the canonical projection p : 9P x f~Y(L) —
dP® and two maps mp and fo.
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Hi(E'; R) —— H,(0P® x f~;R)

\L(WPsz)* lp*

Hi(0P®; R) ———= H,(9P®); R)

Then f is said to be homologically R-trivial.

For any commutative group R, if f is topologically trivial, then f is
homologically product about R and it is homologically R-trivial.

Example 3 (1) Let M be a C* homotopy sphere of dimension m. Let
f:+ M — R™ be around fold map such that f(M) is diffeomorphic to D™
and that the singular set S(f) is connected (f is special generic, t00).
Then f is topologically trivial since the natural projection from E’ onto
OP® as in Definition 6 gives the structure of a linear bundle and the
restriction of the projection to OE’ gives the structure of a trivial C*°
bundle. Furthermore, f is homologically R-trivial for any commutative
group R. For special generic maps of homotopy spheres into Euclidean
spaces, see [10].

(2) The round fold map in (2) of Example 2 is topologically trivial since
the group of all the orientation-preserving homeomorphisms of a disc is
connected.

(3) Topologically trivial round fold maps are easy to construct by the
method in Subsection 3.1.

(4) Round fold maps whose fibers are always connected are topologically
quasi-trivial. In fact the Reeb spaces are homeomorphic to D™ or S~ 1 x
[0, 1].

(5) In [19], one can find a round fold map f from a closed C*° manifold M
of dimension 4 into R? whose singular set consists of three connected
components such that the followings hold.

(a) We can denote by {Up }LU{Uq }LU{U;, Us} the set of all the connected
components of R™ — f(S(f)) as in Figure 2. For any p € Uy Us,
f~Y(p) is diffeomorphic to S? and for any p € Uy, f~1(p) is diffeo-
morphic to two copies of S2.

(b) For the closure Uy of Uy, f~1(U;) C Wy is homeomorphic to a Klein
Bottle.

The map f is not topologically quasi-trivial.
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(6) In [10], closed C° manifolds which admit special generic maps into R?
are determined. S* x S™~! is one of such manifolds and admits a special
generic map which is round and whose Reeb space is homeomorphic to
St x [0,1]. For some orientation reversing diffeomorphism 7, there also
exists a round fold map from the non-orientable C*° S™~!-bundle over
St whose monodromy is [r] € 7o (Diff**(S™~1)) into R? which is special
generic and whose Reeb space is S x [0,1]. This is not homologically
product about Z and topologically trivial, either.

Theorem 1 Let M be a closed and connected C*™ manifold of dimension
m, f: M — R"™ (m >n>2) be a round fold map and f(M) be diffeomor-
phic to D™. Let F' be the fiber of a point in a proper core of f and R be a
commutative group.

(1) Assume that F is a disjoint union of a finite number of R-homology
(m — n)-spheres. Assume also that f is homologically product about
R. Then, for an axis L, we have Hy(M; R) = Hy(f~Y(L); R) for k <
min{n —2,m —n — 1}.

(2) Assume that M is orientable. Assume also that F is an R-homology
sphere and that f is homologically R-trivial. Then for an axis L, we
have

Hi(M;R) = Hi(fY(L);R) (k<n-—2)
and

Hn—l(M;R)ﬁ{{O} n—1>m-—n

Ho 1 (f7YL);R) n—1<m-—n.
Furthermore, if n — 1 <m —n, then forn —1 <k <m —n, we have
Hy,(M;R) = (R® Hy—pns1 (f71(L); R)) © Hr(f 7 (L); R).

This theorem is shown by just calculations of homology groups. Let
P be a proper core of the map f, P?) := R" — IntPM, E := f~1(PM)
and B’ := f~1(P®) as before.

Remark 1 Assume that the fiber F' of a point in a proper core is empty
in Theorem 1. Then M = E’ holds. If f is homologically product about
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a commutative group R, then Hp(M;R) = Hp(E’;R) is isomorphic to
Hi(f~Y(L); R) for k < n —1 and Hy(M;R) & H,(E'; R) is isomorphic to
(Hinia (F (L) R) ® Hoor(9P®); R)) & (Hy(F~1(L); R) © Ho(9P®; R))
for n — 1 < k < m by the definition of a round fold map which is homo-
logically product about R. Note that by this definition, we do not need to
assume that M is connected in this situation.

Proof of Theorem 1. The manifold M is assumed to be connected and
it follows easily that two manifolds E’ and f~!(L) are connected. So
Ho(M;R) = Hy(E"; R) = Ho(f~Y(L); R) & R holds.

The following exact sequences hold where ¢ : OF — E, j : E — M,
i :0F — E’ and j' : B/ — M are natural inclusions.

s HWOER) — ) g (B R)® Hu (B R) — > H(M;R) ——>

: | i:

— H,(0PM x F;R) — H,(PM) x F;R) ® H,(E';R) — Hy(M; R) ——

1R

If 0 < k < min{n —2,m —n —1}, then it holds that H;(0P") x F; R) =
{0} and H(P™M x F;R) = {0}. So, by the exact sequences, if the map f
is homologically product about R, then we have Hy(M; R) = Hy(F'; R) &
Hy(0P® x f~Y(L); R) = Hy(f~*(L); R) for 0 < k < min{n—2,m—n—1}.
This completes the proof of (1).

Now we prove (2). Since the manifold M is assumed to be orientable,
two manifolds E’ and f~!(L) are orientable. The map f is assumed to be ho-
mologically R-trivial, so we have Hy(M;R) = Hy(E'; R) = Hy(f~*(L); R)
for 0 <k <min{n — 2,m —n — 1} as the previous case.

Suppose m —n < n— 1. Since F is diffeomorphic to D" x F, 0F = OF'
is diffeomorphic to dD™ x F and F is an R-homology sphere of dimen-
sion m — n, the homomorphism i, : Hy,_n(0E;R) = Hy—n(F;R) 2 R —
Hy_n(E;R) = Hy—p(OF; R) = R is an isomorphism. The homomorphism
i« Hp—n(OE'; R) — Hp,—n(E' : R) is 0 since a fiber F' of the trivial bun-
dle OF" over P is an R-homology sphere of dimension m — n bounding
an orientable compact manifold f~!(L), which is a fiber of the bundle E’
over 9P?). For m —n < k < n — 1, it holds that H(0P") x F;R) = {0}
and Hy(PYW x F;R) = {0}. Together with the result of (1), by the exact
sequences and the definition of a homologically R-trivial round fold map,
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we have Hy(M; R) = Hy(E'; R) = H,(OP® x f~1(L); R) = Hy(f~*(L); R)
for0<k<n-2.

The homomorphism i, : H,—1(0FE; R) — H,_1(E;R) = {0} is surjec-
tive. The image of the homomorphism i, : H,,_1(0E'; R) = H,,_1(0P®); R)
— H,_(E';R) = H,,_1(0P® x f~Y(L); R) is regarded as H,,_;(0P?; R)®
{0} C Ho (0P®;R) & Hy y(f~ (L) R) = H, (0P® x f~/(L); R)
and the homomorphism is injective since f is homologically R-trivial. Since
the homomorphism i, : H,_2(0E;R) = H,_o(F;R) — H,_2(E;R) =
H, _2(0F;R) is an isomorphism, by the exact sequences, we have
H, 1(E";R)/i.(H,—1(0E"; R)) =2 H,,_1(M;R). Since the map f is homo-
logically R-trivial and f~!(L) is a compact and connected manifold of di-
mension m—n—+1 < n—1 with non-empty boundary, we have H,,_1(E’; R) &
(Hu—1(0P®; R) ® Ho(f~*(L); R)) @ (Ho(0P®); R) @ Hya (fH(L); R)) =
H,_ 1(0P®;R) @ Hy(f~"(L);R) = H,_,(0P®?;R) and we may regard
H, 1(E";R) =4 (H,-1(0F"; R)). Thus, we have H,,_1(M; R) = {0}.

Now suppose n — 1 < m — n. Since F is diffeomorphic to D" x F|
OF = OF' is diffeomorphic to 9D™ x F and F is an R-homology sphere of
dimension m — n, the homomorphism i, : H,_2(0F;R) — H,_2(F;R)
is an isomorphism and the homomorphism i, : H,_1(0E;R) 2 R —
H,_1(E;R) = {0} is zero. Since f is homologically R-trivial, the image of
the homomorphism ', : H,,_1(0E"; R) = H,,_1(0P®);R) — H,,_1(E'; R) =
H,_1(0P®;R)® H,_1(f~*(L); R) is regarded as H,,_,(0P?; R)®{0} and
the homomorphism is injective. Thus, by the exact sequences, we have
Hy 1 (M;R) = Hya(f7H(L); R).

For n —1 < k < m — n, it holds that H,(OPY x F;R) = H,(PM x
F;R) = {0}. The homomorphism i, : Hiy(OE;R) = {0} — Hi(E;R) =
{0} is an isomorphism and the homomorphism ', : Hp(0E"; R) = {0} —
Hi(E'; R) is zero.

Since F' is an R-homology sphere of dimension m — n, the homomor-
phism i, : Hy,—n(0F;R) 2 R — H,,—n(F;R) = R is an isomorphism.
Since F'is an R-homology sphere bounding an orientable compact manifold
f7Y(L), we have that the image of the homomorphism ', : H,,_,(0FE’; R)
— Hp—n(E'; R) is {0} as before. Thus, by the exact sequences and by the
definition of a homologically R-trivial round fold map, we have Hy(M; R)
~ H,(E;R) = Hi(0P® x f~YL);R) = (R ® Hp_ni1(f"H(L);R))®
Hi(f~YL);R) forn—1<k <m—n.

Now suppose n — 1 = m — n. Then the homomorphism i, : H,_1(0F;
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R)~2 R®R — H,_1(F; R) = R is surjective by the diffeomorphism types of
E and OF = OF’. Since f is homologically R-trivial and F'is an R-homology
sphere of dimension m —n bounding an orientable compact manifold f~1(L),
the image of the homomorphism ¢/, : H, 1(0E;R) = H, 1(0P®;R) @
H, (F;R) — H, 1(E;R) = H,_1(0P®;R) ® H,_1(f~Y(L); R) is re-
garded as Hn_1(8P(2);R) x {0}. For 0 < k < min{n —2,m —n—1} =
n—2=m—n— 1, it holds that Hy(0P™") x F; R) = {0} since 9F is diffeo-
morphic to D™ x F. Thus, by the exact sequences, we have H,_1(M; R)
~ H, ,(f(L); R).

This completes the proof. O

In the situation of Theorem 1, if M is orientable and f~!(L) is an
R-homology disc, then df~(L) is an R-homology sphere and f is ho-
mologically R-trivial. We can apply (2) of Theorem 1 and we have
Hy(M; R) = Hy,(f~'(L); R) = {0} and H*(M; R) = H*(f~'(L); R) = {0}
for 0 < k < max{n — 1, m — n}. By virtue of Poincare duality theorem, M
is an R-homology sphere of dimension m.

Conversely, in the situation of (2) of Theorem 1, if M is an R-homology
sphere and n — 1 > m — n, then f~!(L) is an R-homology disc.

Now we have the following corollaries.

Corollary 1 In the situation of Theorem 1, we assume that M is ori-
entable. If f~Y(L) is an R-homology disc, then M is an R-homology sphere.

Corollary 2 In the situation of (2) of Theorem 1, if M is an R-homology
sphere and n — 1 > m —n, then f~(L) is an R-homology disc.

Example 4 By applying the construction in Subsection 3.1, we obtain a
round fold map f : M — R™ which is topologically trivial, homologically
R-trivial and satisfies the assumption of Theorem 1. If in this mentioned
construction, the compact C* manifold M is an R-homology disc and ori-
entable, then the resulting source manifold is an orientable R-homology
sphere by Corollary 1.

4. Round fold maps whose regular fibers are disjoint unions of
spheres

Theorem 7.1 or Corollary 7.3 of [6] is a proposition for simple fold
maps whose regular fibers are disjoint unions of spheres. In [13], Saeki
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and Suzuoka studied stable maps including stable fold maps with such reg-
ular fibers; mainly ones from closed 4-dimensional manifolds into surfaces
without boundaries.

In this section, we study round fold maps whose regular fibers are dis-
joint unions of spheres. A lot of maps in Example 2 and Example 3 are
examples of such maps. Here we review some of the results of [6] and [13]
(Propositions 5, 6 and 7) and show two theorems (Theorems 2 and 3).

Theorem 2 Let M be a closed and orientable C*° manifold of dimension
m and f: M — R™ (m > n > 2) be a round fold map which is homologically
product about Z.

Furthermore, assume that for each regular value p, f~1(p) is a disjoint
union of almost-spheres. Let F' be the fiber of a point in a proper core of f
and suppose that F' is empty or connected. If F' is non-empty, then we also
assume that M is connected and that f is homologically Z-trivial.

Then, the k-th homology group Hy(M;Z) is torsion-free for any k.

To show that the homology groups are torsion-free, we need the following
proposition, which is a part of Corollary 3.17 of [11].

Proposition 3 (Saeki, [11]) Suppose that M is a closed and orientable
C* manifold of dimension m > 1. Let f : M — R be a Morse function
such that each reqular fiber is a disjoint union of almost-spheres. Then, the
k-th homology group Hy(M;Z) is torsion-free for any k.

Proof of Theorem 2. 1f F is empty, then we have Hp(M;Z)
Hy(f~N(L):;Z) (0 < k < n—1) and Hy(M;Z) = Hp(S"' x f~1(L); Z)
(Hg—ns1(fHL);2) @ Z) ® Hp(f~Y(L);Z) (n —1 < k < m). Furthermore,
Hy(M;Z) is torsion-free for any k since Hp(f (L);Z) is torsion-free by
Proposition 3.

111

Let F' be connected and non-empty. By the assumption that M is con-
nected and orientable, we can apply Poincare duality theorem. By Propo-
sition 3, Hg(f~(L);Z) is torsion-free for any k. By (2) of Theorem 1,
Hy,(M;7Z) is torsion-free for 0 < k < max{n — 1,m —n}. H*(M;Z) is also
torsion-free for 0 < k < max{n —1,m —n} by virtue of universal coefficient
theorem. By virtue of Poincare duality theorem, Hy(M;Z) is torsion-free
for any k. O

For example, most of round fold maps in Example 3 satisfy the assump-
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tion of Theorem 2. It is also not so difficult to construct such round fold
maps. In fact, we are enough to apply the method in Subsection 3.1.

The following proposition is a part of Theorem 4.1 of [13]. Note that
as in Proposition 1, for a simple fold map f : M — N, W; is given the
structure of a polyhedron.

Proposition 4 ([13]) Let f : M — N be a simple fold map from a closed
C* manifold M of dimension 4 into a C*° manifold N of dimension 2
without boundary. For each regular value p, let f~1(p) be a disjoint union
of finite copies of S>.

Then there exist a compact C*° manifold W of dimension 5 such that

OW = M and a continuous map r: W — Wy such that r|4y, coincides with
qr : M — Wy and the followings hold.

(1) For each p € W — q¢(S(f)), r—(p) is diffeomorphic to D3.

(2) for isaC™ submersion.

(3) There exist a C™ triangulation of W and a triangulation of Wy such
that r is a simplicial map.

(4) For each p € Wg, r~Y(p) collapses to a point and r is a homotopy
equivalence.

(5) W collapses to a subpolyhedron W;' such that 7"|Wf/ Wi — Wyis a
PL homeomorphism.

As a corollary to Proposition 4, we have the following corollary.

Corollary 3 ([13]) In the situation of Proposition 4, let M be connected
and i : M — W be the natural inclusion. Then

qf, = Ts 0ty : T(M) — mp (W)

gives an isomorphism for k =0, 1.

We note that Proposition 4 above is for simple fold maps from closed 4-
dimensional manifolds into surfaces without boundaries. We can generalize
it to the following Lemma 1.

Lemma 1 Let M be a closed C*° manifold of dimension m, N be a C*
manifold without boundary of dimension n and m >n > 1. If m —n =1,
then we also assume that M is orientable.

Let f: M — N be a simple fold map. We assume that for each reqular
value p, f~1(p) is a disjoint union of almost-spheres and that the indices of
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all the fold points of f are 0 or 1.

Then there exist a compact PL (m+ 1)-manifold W such that OW = M
and a continuous map r : W — Wy such that r|gy, coincides with qp : M —
Wy. Furthermore, the followings hold.

(1) For each p € Wy — q;(S(f)), r1(p) is PL homeomorphic to D™~"+1,

(2) There exist a triangulation of W and a triangulation of Wy such that r
s a simplicial map.

(3) For each p € W¢, r~Y(p) collapses to a point and r is a homotopy
equivalence.

(4) W collapses to a subpolyhedron W;' such that rlw, W;' — Wy is a
PL homeomorphism.

We prove the lemma by analogy of the proof of Theorem 4.1 of [13]. In
the proof, we often apply Proposition 1 implicitly.

Proof of Lemma 1. We construct a compact manifold of dimension m + 1
bounded by M.

STEP 1. Around a regular neighborhood of ¢ (Fo(f))

qf(Fo(f)) is the image of the set Fy(f) of all the definite fold points of
f. Let N(q¢(Fo(f))) be a small regular neighborhood of ¢¢(Fy(f)).

We note that N(qs(Fo(f))) has the structure of a trivial bundle over
qf(Fo(f)) and that all the fibers are PL homeomorphic to [0,1]. We may
assume that q¢(Fo(f)) corresponds to the O-section ({0} C [0, 1]).

For each p € q¢(Fo(f)), set K, := gz~ ({p} x[0,1]) for a fiber {p} x [0, 1]
of the bundle N (g (Fo(f))) over gf(Fo(f)). K, is diffeomorphic to D™+,
We may assume that qfl(N(qf(Fo(f)))) has the structure of a C'* bundle
over q¢(Fo(f)) and K, is the fiber over a point p € qf(Fo(f)). We define a
Morse function gy, : K, — [0,1] with exactly one minimal point, which is
the only singular point of the function, such that pr(Kp) = [0,1]. Then ar,
(p € g7 (Fo(f))) can be extended to a family of C'* submersions gy, : R_; —
{p} x[0,1] of (m —n+2)-dimensional submanifolds IA(; (p € q¢(Fo(f))) such
that the followings hold.

(1) For p € q¢(Fo(f)) and for t € (0,1], q/fvp_l(p,t) is diffeomorphic to
pmnL
(2) 47, (p,0) is a point.
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(3) a7, '({p} x [0,1]) = K, is a C* manifold of dimension m — n + 2 with
corner along %—1(% 1).

(4) q/J\c;fl({p} x [0,1]) = I?p is diffeomorphic to D™ "2 after the corner is
smoothed.

Now we can construct a compact C'°° manifold Vy of dimension m + 1
having the structure of a C> D™~ "*2_bundle over a C* manifold q¢(Fy(f))
such that the bundle q;I (N(qf(Fo(f)))) is a subbundle of the bundle Vj and
that the subbundle q}l(N(qf(Fg(f)))) is in the boundary of V{. Note that

E is the fiber over a point p € qf(Fy(f)). We also have a PL map ¢ :
Vo — N(gs(Fo(f))) such that o~ ({p} x [0,1]) = K, and T’o];{vp =gy, hold
for all p € qp(Fo(f)) and that roly (v (g, (ro(r)) = Ulo, 18 ap i)
holds. Furthermore, there exists a PL submanifold N'(qs(Fy(f))) C Vo of
dimension n such that the followings hold (Figure 6).

(1) N’(qf(Fo(f)))ﬂﬁf?p consists of two points in ON'(qs(Fo(f))). One
of these points is in q;I(N(qf(Fo(f)))) and the other point is not in
a5 (N (g5 (Fo(f))))-

(2) Vi collapses to N'(qs(Fo(f))).

(3) N'(¢f(Fo(f))) has the structure of a subbundle of the bundle Vj.

(4) ol ni(q,mo(ryy + N'(ar(Fo(f))) — N(gr(Fo(f))) is a PL homeomor-
phism and a bundle isomorphism between the two PL bundles.

Figure 6. A fiber K, over a point p € q7(Fo(f)) of the bundle Vy. (The segment
in the center is a fiber over p € qf(Fo(f)) of the bundle N'(qr(Fo(f))). A fiber
over p of the bundle q; ' (N(qs(Fo(f)))) is the spherical part of the boundary of

Kyp.)

STEP 2. Around a regular neighborhood of g (F1(f))

qf(F1(f)) is the image of the set Fi(f) of all the fold points of f whose
indices are 1. Note that ¢ : Fi(f) — Wy is injective since f is simple.
Let N(qf(Fi(f))) be a small regular neighborhood of ¢;(Fi(f)). By the
assumptions on the pair (m,n) of dimensions and the orientability of M
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and by Proposition 1 (6), N(qs(Fi(f))) has the structure of a PL K-bundle
over qf(Fi(f)) where K := {rexp(2mif) € C|0<r <1,0 =0,1/3,2/3}.
We may assume that g¢(F;(f)) corresponds to the O-section ({0} C K).

For each p € q¢(Fi(f)), set K, = ¢ '({p} x K) for a fiber
{p} x K of the bundle N(qs(Fi(f))) over q¢(Fi(f)). K, is PL home-
omorphic to S™~"*! with the interior of the union of three disjoint
(m — n + 1)-dimensional standard closed discs removed. We may assume
that qJ?l(N(qf(Fl(f)))) has the structure of a C°° bundle over g7 (Fi(f))
and K, is the fiber over a point p € ¢ (F1(f)). We define a Morse function
ar,  Kp — [0, 1] with exactly one singular point such that qu(Kp) = [0, 1],
that qu_l(()) is an almost-sphere, that qu_l(l) is a disjoint union of
two almost-spheres and that the singular value is ¢ € (0,1). Then ar,
(p € qf(F1(f))) can be extended to a family of PL maps gy, : I/(vp — {p}x K
(p € g (F1(f))) such that the followings hold.

(1) For any p € q¢(F1(f)), qffvp_l(p,t) is PL homeomorphic to D™~ "+ for
te K—{0}

(2) q?p_l({p} x K) = Ifi, is a PL manifold of dimension m —n + 2 and PL
homeomorphic to D™~ "+2,

Then, by an argument similar to those in the previous step, we can
construct a compact PL manifold V; of dimension m+-1 having the structure
of a PL D™~ "*"2_bundle over a C* manifold g7 (F;(f)) such that the bundle
q}l (N(qf(Fi(f)))) (over gf(Fi(f))) is a subbundle of the bundle V; and that
the subbundle qul(N(qf(Fl(f)))) is in the boundary of V;. Note that If(vp
is the fiber over a point p € qf(Fi(f)). We also have a PL map r; : Vj —
N(g7(Fi(f))) such that 11~ ({p} x K) = K, and r1|;z = g7, hold for all
p € a5 (Fi(f)) and that mlg i (v (g, (i (1)) = 7 las -1V (g (7 (1) DOIS- We
also have a subpolyhedron N'(qs(F1(f))) C V1 of dimension n such that the
followings hold (Figure 7).

1) N'(qr(FL(f OK, consists of three points (p,0), (p,e2/3)m),
f ‘ p
(p,e/3)7m) € {p} x K, the points are not in q¢; (N (qs(Fi(f)))) and
each connected component of 0K, — q;I(N (g7(F1(f)))) includes one of
these three points.
(2) Vi collapses to N'(qf(F1(f))).
q 1 as the structure of a subbundle of the bundle V.
3) N'(qs(Fi(f))) has th f bbundle of the bundle V;
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(4) 7“1\N/(qf(pl(f))) : N'(qr(Fi(f))) — N(gs(Fi(f))) is a PL homeomor-
phism and a bundle isomorphism between the two PL bundles.

Now we set the disjoint unions Vg := Vy U Vi, Ng = N(qs(Fo(f))) U
N(q¢(Fi(f))) C Wy, rg:==roUry : Vs — Ng and N'g := N'(q¢(Fo(f))) U
N'(qr(F1(f))) € Vs.

Figure 7. A fiber If(vp over a point p € g5 (Fi(f)) of the bundle V4. (The Y-shaped
graph in the center is a fiber over p € q¢(Fi(f)) of the bundle N'(qs(Fi(f))). A

fiber over p of the bundle q; ' (N(gs(Fi(f)))) is in the boundary of K,.)

STEP 3. Around R := Wy — IntNg

Since each regular fiber of f is a disjoint union of almost-spheres,
Qf|qf_1(R) : g5 '(R) — R gives the structure of a bundle over R with a
fiber PL. homeomorphic to S™~". Here we define a bundle rg : Vg — R
whose fiber is D™~"*! and which is an associated bundle of the bundle
qf| a-1(R) qs~1(R) — R. More precisely, we define the associated bundle
so that the structure group is a group consisting of PL homeomorphisms
satisfying the following; for any element r of the structure group, r(0) = 0
and for a PL homeomorphism " on S™ ", r(x)/|z| = r'(z/|x]) (z # 0).
Let R’ C Vg be the 0-section of the associated bundle (the subbundle whose
fiber is {0} ¢ D™+,

Then it is easy to check that we can glue Vg and Vi together to give a
compact PL (m + 1)-manifold W, rg : Vg — Ng and rg : Vg — R together
to givea PLmap r : W — W and N'g and R’ together to give a polyhedron
W} of dimension n. From the construction, it is now easy to verify all the
required conditions stated in Lemma 1. This completes the proof. O

Remark 2 If m —n + 1 is odd, then we don’t need to assume that the
indices of fold points are 0 or 1 in Lemma 1 as mentioned in Remark 7.2 of
[6].
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Corollary 4 In the situation of Lemma 1, let M be connected and i :
M — W be the natural inclusion. Then the homomorphism

qf, = Tx Oi* Zﬂk(M) — TI'k(Wf)

induced by q5 gives an isomorphism for 0 <k <m —mn — 1.

Proof. Since we have gy = r o¢ and r is a homotopy equivalence, we
have only to show that the homomorphism i, : 7 (M) — 7, (W) (0 < k <
m—n—1) induced by i is an isomorphism. Since W collapses to a polyhedron
of dimension n, it admits a PL handlebody decomposition consisting of
handles whose indices are not larger than n. Dualizing the handles, we see
that W is obtained from M x [0, 1] by attaching handles whose indices are
not smaller than m —n + 1 along M x {1}. Hence, i, : mx(M) — m (W)
(0 <k <m—n—1) is an isomorphism. This completes the proof. O

Now we introduce Theorem 7.1 (or Corollary 7.3) of [6] with some ar-
rangements.

Proposition 5 ([6]) Letm > 4, m be even and M be a closed C* manifold
of dimension m. Assume that f : M — R? is a simple fold map and that
reqular fibers of the map are disjoint unions of standard spheres. Assume
also that m (M) = {0} and Hy(Wy;Z) = {0} hold.

Then M is a C* homotopy sphere of dimension m.

The proof in [6] is summarized as follows in the terminologies of the
present paper.

First, by certain operations (R-operations), we transform the given map
without changing the diffeomorphism type of the source manifold so that
the source manifold is represented as the connected sum of a finite number
of the source manifolds of three types of maps; two of them are round fold
maps whose Reeb spaces are homeomorphic to either D? or the one in Figure
4 and the third one is a simple fold map which is not round (for its Reeb
space, refer to Figure 7 (c) of [6]). Then we prove that the source manifolds
of these three types of maps are homotopy spheres.

In other words, the following was shown in the last part of the proof.

Proposition 6 Let m > 4, m be even and M be a closed C*° manifold
of dimension m. Assume that f : M — R? is a simple fold map and that
reqular fibers of the map are disjoint unions of standard spheres. Assume
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also that the Reeb space Wy is homeomorphic to either of the followings.

(1) D2
(2) D2U¢(S1 x K), where K := {rexp(2mif) e C|0<r <1,6=0,1/3,
2/3} and ¢ is a homeomorphism from S* x {1}(C S' x K) onto OD?.

Then M is a homotopy sphere of dimension m.

The following result, or Theorem 3 can be regarded as an extension
of Proposition 6 and states that by studying their Reeb spaces, we can
know some homotopy groups of manifolds admitting round fold maps whose
regular fibers are disjoint unions of spheres, under some constraints.

Theorem 3 Let M be a closed and connected C*° manifold of dimension
m, f: M — R" be a round fold map and m >n > 2. If m —n =1, then
we also assume that M 1is orientable.

We assume furthermore that f~1(p) is a disjoint union of almost-spheres
for each reqular value p and that the indices of all the fold points of f are O
or 1.

Let L be an axis of f and fr := f|f,1(L). We denote by l; the number
of loops of the Reeb space Wy, of f1, (in other words, let Hy(Wy,;Z) = Z").
We denote by ly the number of connected components of the fiber of a point
in a proper core of f.

Then there exist a PL manifold W and a homotopy equivalence r :
W — Wy as in Lemma 1. Furthermore, for the inclusion i : M — W,
qf = roi gives an isomorphism of homotopy groups m,(M) = 7,(Wy) for
0<k<m—n—1 and we have the following list where we denote the free
group of rank r by F,.

(1) When n >3 and m > 2n hold, we have the followings.
=i B
T = =~
g PP 0 2<k<n—t
7 lo=0
{0} #0

(2) Whenn >3, n<m <2n—1 and m—n > 2 hold, we have the following.

Tn—1(M) = 7Tn—l(vvf) = {
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R, k=1
{0} 2<k<m-n-1

ﬂk(M) = ﬂ'k(Wf) = {
(3) When m >4 and n = 2 hold, we have the followings.
(a) If f is topologically quasi-trivial and ls = 0 holds, then we have the
following.

(b) If f is topologically quasi-trivial and la # 0 holds, then we have the
following.

(M) = m (Wy) = F,

Proof. The existence of W and r and the fact that ¢¢ induces isomorphisms
of homotopy groups easily follow from Lemma 1 and Corollary 4.

First we prove (1) and (2) of the list.

By the assumption, n > 3 holds. Since the boundary of a proper core of
the map or S"~! is simply-connected, the natural bundle f~!(L) over the
boundary of the proper core, whose fiber is a polyhedron of dimension 1 or
a graph, is trivial. Thus, f is topologically quasi-trivial.

Suppose ls = 0. Then Wy is PL homeomorphic to "~ x T, where
T is a connected graph with I; loops. We have 71 (Wy) & 7 (5"~ ! x T) =
Wl(Sn_l)EBTrl(T) = F, TI'k(Wf) = Wk(Sn_l X T) = Wk(Sn_l)EBTrk(T) = {O
(1<k<n-1)and m,—1(Wg) 2 m,_1(S"IXT) = 1,1 (S" Ve, —1(T)
7.

Suppose o > 1. Then Wy is represented as Al J B, where A is a disjoint
union of Iy copies of D", B is the product of S?~! and a connected graph
T with [; loops and 1 is a homeomorphism from S"~! x A C B onto 0A,
where A is a set consisting of l5 degree 1 vertices of the previous graph. Then
(Wy, B) is (n—1)-connected and we have 7 (B) = 7, (Wy) for 0 < k <n—2
by virtue of the homotopy exact sequence. It also follows that the inclusion
from B into W induces a surjective homomorphism from 7, (B) = Z onto
Tn—1(Wy) which is zero. Thus we have m(B) = m (W) 2w (S" ! x T) =
() = By, m(B) 2 (W) = m(S71 x T) 2 my(571) & my (T) 2 {0}
(1<k<n—1)and 7,1 (Wy) = {0}.
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This completes the proof of (1) and (2) of the list.

We prove (3) of the list (the case where n = 2).

Suppose ls = 0. By the extra assumption in (a) of the list, f is topolog-
ically quasi-trivial and Wy is PL homeomorphic to S x T', where T is a con-
nected graph with {1 loops. We have w1 (M) = 7y (W) =2 my(SY) & 71 (T) =
Z x Fy, and mp(M) = 1 (Wy) 2 7 (SY) @ mp(T) 2 {0} (1 < k <m —3).

Suppose I3 > 1. By the extra assumption in (b) of the list, f is topolog-
ically quasi-trivial. Then W/ is represented as AU¢B , where A is a disjoint
union of Iy copies of D", B is the product of S"~! and a connected graph
T with [; loops and % is a homeomorphism from S™~! x A C B onto 9A,
where A is a set consisting of lo degree 1 vertices of the previous graph. We
have m1 (M) = m(Wy) = 71 (T) = Fj, by applying van Kampen’s theorem.

O

Example 5 We can construct a round fold map satisfying the assumption
of Theorem 3 as in the following by applying the method in Subsection 3.1.

Let m and n > 2 be integers satisfying2 <m—-n+1<3orm—-n-+12>
6. Let M be a compact C'*° manifold homeomorphic to S™~"*! with the
interior of a disjoint union of a finite number of (m—n+1)-dimensional closed
standard discs removed. For diffeomorphisms ® : OM x S"~1 — dM x 9D"
and ¢ : S"~! — OD" and the canonical projections p; : OM x S"~1 —
S"=1 and py : OM x D™ — OD", we assume that the following diagram
commutes. There exists a good Morse function f : M — [a,+0o0) such that
regular fibers are disjoint unions of almost-spheres, where a is the minimal
value (see Theorem 6.1 of [17] for example). Hence we can construct a
closed C*° manifold M and a round fold map f : M — R”™ which satisfies
the assumption of Theorem 3.

OM x 571 —2> 9N x oD"

lpl ¢ i

Sn—l e N aDn

The construction above still works even if we add extra singular points to
f by generating a cancelling pair of an (m — n)-handle and an (m —n 4+ 1)-
handle. Note that regular fibers of f are still disjoint unions of almost-
spheres.
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Remark 3 If m —n + 1 = 4,5, then in Example 5, it is difficult to
know whether we can obtain the Morse function f on M to perform the
construction. We can indeed obtain the function f if M is diffeomorphic
to S™~"*+! with the interior of a disjoint union of a finite number of of
(m —n + 1)-dimensional closed standard discs removed (see [17]).

5. The homeomorphism and diffeomorphism types of manifolds
admitting round fold maps

In this section, we study the homeomorphism and diffeomorphism types
of the source manifolds of round fold maps satisfying the assumption of
Theorem 3. Here we denote the h-cobordism group of k-dimensional C*°
oriented homotopy spheres by ©y.

The following propositions are well-known.

Proposition 7 ([16], [17]) If X is a closed and simply-connected manifold
of dimension k # 0,4 which is the boundary of a contractible PL manifold
of dimension k + 1, then X is PL homeomorphic to S*.

Proposition 8 ([21]) Let X be a closed C™ oriented manifold of dimen-
ston 2k having the same homotopy type as that of a connected sum of finite
copies of S*¥ x S¥. If k = 3,5,6,7Tmod8, then X is diffeomorphic to a
connected sum of finite copies of S* x S* and an oriented almost-sphere of
dimension 2k. If k = 3,5,6,7mod 8 and Oy, = {0} (e.9. k = 3,6), then X
is diffeomorphic to a connected sum of finite copies of S¥ x S*.

We have the following corollary to Theorem 3.

Corollary 5 Let M be a closed and connected C*° manifold of dimension
m. Suppose that there exists a round fold map f : M — R™ (m > n > 3)
such that the followings hold.

(1) The indices of all the fold points are O or 1.
(2) Regular fibers are disjoint unions of almost-spheres.

(3) m(Wy) = {0}.
(4) The fiber of a point in a proper core is non-empty and connected.

We also assume that m —n > 2. Then M is a homotopy sphere.

Proof. By Corollary 4, we have w1 (M) = m(Wy) = {0}. Furthermore, M
is the boundary of a PL manifold simple homotopy equivalent to W;. As
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mentioned in the proof of Theorem 3, Wy is represented as D"UwP, where
P is the product of S"~! and a connected graph without loops and 1 is
a homeomorphism from S"~! x {x} C P onto D", where x is a point in
the previous graph, so Wy is contractible. Thus, by Proposition 7, M is a
homotopy sphere. O

We also have the following theorem.

Theorem 4 Let M be a closed and connected C*° oriented manifold of
dimension m. Suppose that there exists a round fold map f : M — R"
(n>2). Let m = 2n and n = 3,5,6,7mod8. We also assume that the
followings hold.

(1) The indices of all the fold points of f are 0 or 1.

(2) Regular fibers of f are always disjoint unions of almost-spheres.
(3) m(Wy) = {0},

(4) The fiber of a point in a proper core of f is non-empty.

Then M is (n — 1)-connected. If M has the same homotopy type as that of
a connected sum of finite copies of S™ x S™, then M is diffeomorphic to a
connected sum of finite copies of S™ x S™ and an oriented almost-sphere of
dimension m. If ©g, = {0} (e.g. n =3,6) and M has the same homotopy
type as that of a connected sum of finite copies of S™ x S™, then M is
diffeomorphic to a connected sum of finite copies of S™ x S™.

Proof. f satisfies the assumption of Theorem 3. By applying Theorem
3, we have m (M) = m(W;) = {0} and by (1) of Theorem 3, we have
(M) = m,(Wy) = {0} for 2 < k <n—1,s0 M is (n—1)-connected. From
Proposition 8, the result follows. O

Example 6 It is known that any closed and 2-connected manifold of
dimension 6 has a C* differentiable structure and that the resulting C*°
manifold is always diffeomorphic to a connected sum of finite copies of S3 x
S3 ([22]). So in the situation of Theorem 4, if m = 6, then M is diffeomorphic
to a connected sum of finite copies of S3 x §2 without the assumption about
the homotopy type.
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