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Fold maps with singular value sets of concentric spheres
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Abstract. In this paper, we study fold maps from C∞ closed manifolds into Eu-

clidean spaces whose singular value sets are disjoint unions of spheres embedded con-

centrically. We mainly study homology and homotopy groups of manifolds admitting

such maps.

Key words: Singularities of differentiable maps; singular sets, fold maps. Differential

topology.

1. Introduction

Fold maps are important in generalizing the theory of Morse functions.
Studies of such maps were started by Whitney ([23]) and Thom ([20]) in the
1950’s. A fold map is a C∞ map whose singular points are of the form

(x1, . . . , xm) 7→
(

x1, . . . , xn−1,
m−i∑

j=n

xj
2 −

m∑

j=m−i+1

xj
2

)

for two positive integers m ≥ n and an integer 0 ≤ i ≤ m− n + 1. A Morse
function is naturally regarded as a fold map (n = 1).

Since around the 1990’s, fold maps with additional conditions have been
actively studied. For example, in [1], [3], [10], [12] and [14], special generic
maps, which are fold maps whose singular points are of the form

(x1, . . . , xm) 7→
(

x1, . . . , xn−1,
m∑

j=n

xj
2

)

for two positive integers m ≥ n, were studied. In [15], Sakuma studied
simple fold maps, which are fold maps such that fibers of singular values
do not have any connected component with more than one singular points
(see also [9]). For example, special generic maps are simple. In [5] and [6],
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Kobayashi and Saeki investigated topology of stable maps into the plane
including fold maps which are stable (for stable maps, see [4] for example).
In [13], Saeki and Suzuoka found good properties of manifolds admitting
stable maps whose regular fibers, or fibers of regular values, are disjoint
unions of spheres. In [11], Saeki investigated Morse functions whose regular
fibers are disjoint unions of spheres.

For a fold map from a closed C∞ manifold of dimension m into a C∞

manifold of dimension n (without boundary), the followings hold where
m ≥ n ≥ 1.

(1) The singular set, or the set of all the singular points of the map, is a
closed C∞ (n− 1)-submanifold of the source manifold.

(2) The restriction to the singular set is a C∞ immersion of codimension 1.

In this paper, we introduce a new class of fold maps called round fold maps.
A round fold map is a fold map into Rn(n ≥ 2) satisfying the followings.

(1) The singular set is a disjoint union of standard spheres.
(2) The restriction to the singular set is a C∞ embedding.
(3) The singular value set is a disjoint union of spheres embedded concen-

trically.

This class includes some special generic maps on homotopy spheres (see
[10]) and some maps in [6] and [13], which are not special generic, for ex-
ample. We can construct many round fold maps easily. We study manifolds
admitting such maps in this paper.

This paper is organized as follows.
Section 2 is for preliminaries. We recall fold maps. We also recall special

generic maps and simple fold maps. Finally we review the Reeb space of a
smooth map, which is the space consisting of all the connected components
of all the fibers of the smooth map.

In Section 3, we introduce round fold maps and examples (Example
2) and give a method of construction. We also introduce terminologies
on structures of round fold maps and in Example 3, study structures of
examples including ones mentioned in Example 2 in these terminologies. As
a main theorem, we have relations between homology groups of a manifold
which admits a round fold map of a certain structure and those of the inverse
image of a ray in Rn called an axis (Theorem 1).

In Section 4, we study round fold maps whose regular fibers are disjoint
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unions of spheres. We have a lot of examples of such maps, as presented
in Example 2 and Example 3. We then show that the homology groups
of manifolds admitting round fold maps of certain structures with all the
regular fibers homeomorphic to disjoint unions of spheres are torsion-free
(Theorem 2) by applying our Theorem 1 and Corollary 3.17 of [11].

We next study homotopy groups of manifolds admitting such fold maps.
According to Theorem 4.1 of [13], if there exists a stable map from a closed
C∞ manifold of dimension 4 into the plane whose regular fibers are disjoint
unions of spheres, then the source manifold bounds a nice manifold. As a
corollary to the theorem, it has been shown that the fundamental groups
of such a manifold and the Reeb space agree (Corollary 4.8 in [13]). We
generalize these results under some constraints (Lemma 1 and Corollary 4).
After that, we prove Theorem 3. It states that some homotopy groups of
manifolds admitting such round fold maps are determined by topological
properties of the Reeb spaces. Furthermore, Theorem 3 is an extension
of the last part of the proof of Theorem 7.1 of [6], which states that if
we assume good conditions on the Reeb space of a simple fold map from
a simply-connected manifold into the plane, then the source manifold is a
homotopy sphere.

In Section 5, we study the homeomorphism types of manifolds admitting
round fold maps as in the previous section for some cases (Corollary 5,
Theorem 4 and Example 6).

Throughout this paper, we assume that M is a closed C∞ manifold of
dimension m, that N is a C∞ manifold of dimension n without boundary,
that f : M → N is a C∞ map and that m ≥ n ≥ 1. We denote the singular
set of f , or the set consisting of all the singular points of f , by S(f).

The author would like to express his gratitude to Mitsutaka Murayama,
Osamu Saeki and Kazuhiro Sakuma for helpful comments and constant en-
couragement. The author also thanks the referee for useful comments, which
improved this paper.

2. Preliminaries

2.1. Notations on topological spaces
We introduce notations on topological spaces which we use in this paper.

For a topological space X, we denote the identity map on X by idX . We
denote the interior, and the closure of a subspace X of a topological space
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by IntX and X, respectively. For a manifold X, we denote the boundary of
X by ∂X.

Let {Xλ}λ∈Λ be a family of topological spaces. We denote the disjoint
union of {Xλ}λ∈Λ by tλ∈ΛXλ. If Λ is a finite set consisting of all the integers
not smaller than l1 ∈ Z and not larger than l2 ∈ Z, then we also denote the
disjoint union by tl2

k=l1
Xk or Xl1 t · · · tXl2 .

For a family of maps {cλ : Xλ → Yλ}λ∈Λ, we denote the disjoint union
of {cλ}λ∈Λ by tλ∈Λcλ : tλ∈ΛXλ → tλ∈ΛYλ. We use the notation tl2

k=l1
ck

or cl1 t · · · t cl2 if Λ is a finite set consisting of all the integers not smaller
than l1 ∈ Z and not larger than l2 ∈ Z as before.

Let X1, X2 be topological spaces. Let Ai ⊂ Xi (i = 1, 2) and φ : A2 →
A1 be a homeomorphism. By glueing X1 and X2 together by φ, we obtain
a topological space X1

⋃
φX2. We often omit φ of X1

⋃
φX2 and denote it by

X1

⋃
X2 in case we consider a natural identification.
Let c1 : X1 → X2 and c2 : X2 → Y2 be continuous maps. Let Ai ⊂ Xi,

Bi ⊂ Yi and ci(Ai) ⊂ Bi (i = 1, 2). If for a pair of homeomorphisms
(φA : A2 → A1, φB : B2 → B1), the relation φB ◦ c2|A2

= c1|A1
◦ φA

holds, then by glueing X1 and X2 together by φA and by glueing Y1 and Y2

together by φB , two spaces X1

⋃
φA

X2 and Y1

⋃
φB

Y2 and a continuous map
c := c1

⋃
φA,φB

c2 : X1

⋃
φA

X2 → Y1

⋃
φB

Y2 such that

c(πφA
(x)) :=

{
πφB

◦ c1(x) x ∈ X1

πφB
◦ c2(x) x ∈ X2

are obtained where πφA
: X1 t X2 → X1

⋃
φA

X2 and πφB
: Y1 t Y2 →

Y1

⋃
φB

Y2 are the quotient maps. We often omit (φA, φB) and denote the
map by g1

⋃
g2 in case we consider natural identifications.

2.2. Fold maps
We recall fold maps, which are simplest generalizations of Morse func-

tions. See also [4], [7] and [8] for example.

Definition 1 For a C∞ map f : M → N , a point p ∈ M is said to be a
fold point of f if at p, the map f has the normal form

f(x1, . . . , xm) :=
(

x1, . . . , xn−1,

m−i∑

j=n

xj
2 −

m∑

j=m−i+1

xj
2

)
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and f is said to be a fold map if all the singular points of f are fold.

If a point p ∈ M is a fold point of f , then we can define j := min{i,m−
n+1− i} uniquely in the previous definition. We call p a fold point of index
j of f . We call a fold point of index 0 a definite fold point of f and we call f

a special generic map if all the singular points are definite fold points. For
special generic maps, see [1], [3], [10] and [14] for example. Let f be a fold
map. Then the singular set S(f) and the set of all the fold points of indices i

(we denote the set of all such points by Fi(f)) are C∞ (n− 1)-submanifolds
of M . The restriction f |S(f) is a C∞ immersion.

A Morse function on a closed manifold is naturally regarded as a fold
map (n = 1). A Morse function on a closed manifold which has just two
singular points is regarded as a special generic map.

We introduce simple fibers of fold maps and simple fold maps.

Definition 2 (see e.g. [9] and [14]) For a fold map f and a singular value
p ∈ f(S(f)), f−1(p) is said to be simple if each connected component of
f−1(p) includes at most one singular point of f . f is said to be a simple
fold map if for each p ∈ f(S(f)), f−1(p) is simple.

Example 1 (1) Morse functions on closed manifolds are simple if the
values are always distinct at distinct singular points.

(2) A fold map f : M → Rn is simple if f |S(f) is a C∞ embedding.
(3) Special generic maps are simple.

2.3. Reeb spaces
We review the Reeb space of a map.

Definition 3 Let X, Y be topological spaces. For p1, p2 ∈ X and for a
map c : X → Y , we define as p1∼cp2 if and only if p1 and p2 are in the
same connected component of c−1(p) for some p ∈ Y . The relation ∼c is an
equivalence relation.

We denote the quotient space X/∼c by Wc and call it the Reeb space of
c.

We denote the induced quotient map from X into Wc by qc. We define
c̄ : Wc → Y so that c = c̄ ◦ qc. Wc is often homeomorphic to a polyhedron.
For example, for a Morse function, the Reeb space is a graph and for a
simple fold map, the Reeb space is homeomorphic to a polyhedron which
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is not so complex (see Proposition 1 later). For a special generic map, the
Reeb space is homeomorphic to a C∞ manifold (see Section 2 of [10]).

Here, we introduce terms on spheres and fiber bundles which are impor-
tant in this paper.

An almost-sphere of dimension k means a C∞ homotopy sphere given
by glueing two k-dimensional standard closed discs together by a diffeomor-
phism between the boundaries.

We often use terminologies on (fiber) bundles in this paper (see also
[18]). For a topological space X, an X-bundle is a bundle whose fiber is
X. A bundle whose structure group is G is said to be a trivial bundle if
it is equivalent to the product bundle as a bundle whose structure group
is G. Especially, a trivial bundle whose structure group is a subgroup of
the homeomorphism group of the fiber is said to be a topologically trivial
bundle. In this paper, a C∞ (PL) bundle means a bundle whose fiber is a
C∞ (resp. PL) manifold and whose structure group is a subgroup of the
diffeomorphism group (resp. PL homeomorphism group) of the fiber. A
linear bundle is a C∞ bundle whose fiber is a standard disc or a standard
sphere and whose structure group is a subgroup of an orthogonal group.

The following Proposition 1 is well-known and we omit the proof. See
[6], [9] and [13] for example. This proposition is a basic tool in the proof of
Theorem 4.1 of [13] and Lemma 1 of this paper, for example.

Proposition 1 Let f : M → N be a special generic map or a simple fold
map or a stable fold map from a closed C∞ manifold M of dimension m

into a C∞ manifold N of dimension n. Then Wf has the structure of a
polyhedron and the followings hold.

(1) Wf − qf (S(f)) is uniquely given the structure of a C∞ manifold such
that qf |M−S(f) : M − S(f) → Wf − qf (S(f)) is a C∞ submersion.
Furthermore, for any compact C∞ submanifold R of dimension n of
any connected component of Wf − qf (S(f)), R is a subpolyhedron of
Wf and qf |qf

−1(R) : qf
−1(R) → R gives the structure of a C∞ bundle

whose fiber is a connected C∞ manifold of dimension m− n.
(2) The restriction of qf to the set F0(f) of all the definite fold points is

injective.
(3) f is simple if and only if qf |S(f) : S(f) → Wf is injective.
(4) If f is simple, then for any connected component C of S(f), qf (C) has a

small regular neighborhood N(qf (C)) in Wf such that qf
−1(N(qf (C)))
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has the structure of a C∞ bundle over qf (C).
(5) For any connected component C of F0(f), any small regular neighbor-

hood of qf (C) has the structure of a trivial PL [0, 1]-bundle over qf (C)
such that qf (C) corresponds to the 0-section. We can take a small
regular neighborhood N(qf (C)) of qf (C) so that qf

−1(N(qf (C))) has
the structure of a linear Dm−n+1-bundle over qf (C). More precisely,
the bundle structure is given by the composition of qf |qf

−1(N(qf (C)) :
qf
−1(N(qf (C))) → N(qf (C)) and the projection to qf (C).

(6) Let f be simple and m−n ≥ 1. If m−n = 1, then we also assume that
M is orientable.
Then for any connected component C of the set F1(f) of all the fold
points of indice 1 such that for any point p ∈ qf (C), any small neigh-
borhood N(p) of p and any point q in N(p)− qf (C), the inverse image
qf
−1(q) is an almost-sphere, any small regular neighborhood N(qf (C))

of qf (C) has the structure of a K-bundle over qf (C), where K :=
{r exp(2πiθ) ∈ C | 0 ≤ r ≤ 1, θ = 0, 1/3, 2/3} with the structure group
consisting of just two elements, where one element is defined as the iden-
tity transformation and the other element is defined as the transforma-
tion defined by z → z̄ (z̄ ∈ K is the complex conjugation of z ∈ K), such
that qf (C) corresponds to the 0-section. We can take the neighborhood
N(qf (C)) of qf (C) so that qf

−1(N(qf (C))) has the structure of a C∞

bundle over qf (C) with a fiber PL homeomorphic to Sm−n+1 with the
interior of a union of disjoint three (m − n + 1)-dimensional standard
closed discs removed. More precisely, the bundle structure is given by
the composition of qf |qf

−1(N(qf (C))) : qf
−1(N(qf (C))) → N(qf (C)) and

the projection to qf (C).

3. Round fold maps

In this section, we introduce round fold maps.

3.1. The definition of a round fold map
We introduce two definitions of a round fold map and show equivalence

of them.
First we recall C∞ equivalence (see [4] for example). For two C∞ maps

f1 : X1 → Y1 and f2 : X2 → Y2, they are said to be C∞ equivalent if
there exist diffeomorphisms φX : X1 → X2 and φY : Y1 → Y2 such that the
following diagram commutes.
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X1
φX //

f1

²²

X2

f2

²²
Y1

φY // Y2

Definition 4 f : M → Rn (m ≥ n ≥ 2) is said to be a round fold map if
f is C∞ equivalent to a fold map f0 : M0 → Rn on a closed C∞ manifold
M0 such that the followings hold.

(1) The singular set S(f0) is a disjoint union of l ∈ N copies of (n − 1)-
dimensional standard spheres.

(2) The restriction f0|S(f0)
is a C∞ embedding.

(3) Let Dn
r := {(x1, . . . , xn) ∈ Rn | ∑n

j=1xj
2 ≤ r}. Then f0(S(f0)) =

tl
j=1∂Dn

j .

We call f0 a normal form of f . We call a ray L from 0 ∈ Rn an axis of
f0 and Dn

1/2 the proper core of f0. Suppose that for a round fold map f ,
its normal form f0 and diffeomorphisms Φ : M → M0 and φ : Rn → Rn, the
equation φ ◦ f = f0 ◦Φ holds. Then for an axis L of f0, we also call φ−1(L)
an axis of f and for the proper core Dn

1/2 of f0, we also call φ−1(Dn
1/2) a

proper core of f .

Figure 1. An axis and a proper core of a round fold map.

We introduce another definition.

Definition 5 Assume that f : M → Rn is a fold map and that m ≥ n ≥ 2.
f is said to be a round fold map if the followings hold.
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(1) The singular set S(f) is a disjoint union of finite copies of (n − 1)-
dimensional standard spheres.

(2) The restriction f |S(f) is a C∞ embedding.
(3) We can denote by {U0} t {U∞} t {Uλ}λ∈Λ the set of all the connected

components of Rn − f(S(f)) where Λ is a finite set that may possibly
be empty so that the followings hold.
(a) The closure U0 is diffeomorphic to Dn.
(b) The closure U∞ is diffeomorphic to Sn−1 × [0,+∞).
(c) The closure Uλ is diffeomorphic to Sn−1 × [0, 1].

Figure 2. The image U0

S
U1

S
U2 of a round

fold map such that Λ = {1, 2} (Definition 5).

Note that f(M)
⋂

U∞ = ∅ always holds in Definition 5.

Proposition 2 Two definitions of a round fold map (Definition 4 and
Definition 5) are equivalent.

It immediately follows that if f is a fold map satisfying Definition 4,
then it satisfies Definition 5. Hence to show this proposition, it suffices to
prove that any fold map satisfying Definition 5 satisfies Definition 4.

Before a strict proof, we sketch the outline of the proof. First we decom-
pose f into a singular part f1 and a regular part f2 (FIGURE 3). Second,
we construct two C∞ maps f01 and f02 so that fi and f0i are C∞ equivalent
(i = 1, 2). Finally we construct f0 by glueing f01 and f02 together so that
f and f0 are C∞ equivalent and that f0 is a normal form of f .

Proof of Proposition 2. Suppose that f is a fold map in the sense of Defi-
nition 5.
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Figure 3. The image of the singular part f1 and the image of the regular part f2

of the round fold map f . (The image of the singular part is black and the image
of the regular part is white.)

Let the singular value set f(S(f)) consist of l ∈ N connected components
and we label all the connected components of the singular set of f by {Sr}l

r=1

so that for s, t ∈ N and 1 ≤ s, t ≤ l, s < t holds if and only if f(Ss) is in the
bounded connected component of Rn − f(St).

Let A be a small C∞ closed tubular neighborhood of f(S(f)) in Rn.
Note that A and f(S(f))× [−1, 1] are both diffeomorphic to a disjoint union
of l copies of Sn−1 × [−1, 1]. We put f1 := f |f−1(A) : f−1(A) → A, and
f2 := f |M−f−1(IntA) : f−1(Rn − IntA) → Rn − IntA. Hence we regard
f = f1

⋃
f2, where we identify ∂f−1(A) with ∂f−1(Rn− IntA) and ∂A with

∂(Rn − IntA). Since A is so small that Rn − IntA is diffeomorphic to the
disjoint union of Dn, Sn−1 × [0,+∞) and l − 1 copies of Sn−1 × [0, 1].

Set M1 := f−1(A). There exist a diffeomorphism φ1 : A → tl
r=1

(Dn
r+1/4 − IntDn

r−1/4) and a C∞ map f01 : M1 → tl
r=1(D

n
r+1/4 −

IntDn
r−1/4) such that φ1(f(Sr)) = ∂Dn

r holds for 1 ≤ r ≤ l and that
the following diagram commutes.

M1

idM1 //

f1

²²

M1

f01

²²
A

φ1 // tl
r=1(D

n
r+1/4 − IntDn

r−1/4)

We label all the connected components of ∂A by Pr and Qr (r =
1, . . . , l,) so that {Pr}l

r=1 t {Qr}l
r=1 denotes the set of all the connected

components of ∂A and that the followings hold for s, t ∈ N, 1 ≤ s, t ≤ l.
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(1) s < t holds if and only if Ps and Qs are in the bounded connected
component of Rn − Pt and Rn −Qt.

(2) Ps is in the bounded connected component of Rn −Qs.

We note that the disjoint union Pr t Qr is the boundary of a connected
component of A.

Set M2 := f−1(Rn − IntA). There exist a diffeomorphism φ2 : Rn −
IntA → tl−1

r=1(D
n

r+3/4−IntDn
r+1/4)tDn

3/4t(Rn−IntDn
l+1/4), and a C∞

map f02 : M2 → tl−1
r=1(D

n
r+3/4 − IntDn

r+1/4) tDn
3/4 t (Rn − IntDn

l+1/4)
such that φ2(Pr) = ∂Dn

r−1/4 and φ2(Qr) = ∂Dn
r+1/4 hold and that the

following diagram commutes.

M2

idM2 //

f2

²²

M2

f02

²²
Rn−IntA

φ2 // tl−1
r=1(D

n
r+3/4−IntDn

r+1/4) tDn
3/4 t (Rn−IntDn

l+1/4)

Then for φ0 := φ1|∂A◦φ2
−1|∂(tl−1

r=1(D
n

r+3/4−IntDn
r+1/4)tDn

3/4t(Rn−IntDn
l+1/4))

,
the map f is C∞ equivalent to f0 := f01

⋃
id∂M2 ,φ0

f02. In fact, by using
φ0, φ1

⋃
id∂(Rn−IntA),φ0

φ2 is defined. We note that the following diagram
commutes.

M
idM //

f

²²

M

f0

²²
Rn

φ1
S

id∂(Rn−IntA),φ0
φ2

// Rn

This means that f and f0 = f01

⋃
id∂M2 ,φ0

f02 are C∞ equivalent. By the
construction and Definition 5, f0 satisfies the followings.

(1) f0 is a fold map.
(2) f0|S(f0)

is a C∞ embedding and f0(S(f0)) = tl
r=1∂Dn

r.

More precisely, (1) is derived from the fact that f is a fold map and (2) is
derived from the definitions of diffeomorphisms φ1 and φ2.

This means that f0 is a normal form of f and hence Definition 4 and
Definition 5 are equivalent. ¤
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Example 2 (1) In Section 5 of [10], special generic maps from C∞ ho-
motopy spheres into R2 are constructed and they are round. Each of
them has the Reeb space homeomorphic to D2.

(2) We may regard that Figure 7 (b) of [6] or Figure 4 of the present paper
represents the Reeb space of a round fold map into the plane whose
singular set consists of three connected components and whose source
manifold is a homotopy sphere. Regular fibers of the map are disjoint
unions of finite copies of spheres. The Reeb space is homeomorphic to
a polyhedron represented as D2

⋃
φ(S1 × [0, 1]) for a homeomorphism φ

from a connected component of ∂(S1× [0, 1]) onto a circle in the interior
of D2.

Figure 4. The Reeb space of the map in (2) of Example 2 ([6, Figure 7 (b)]).

(3) We may regard that Figure 8 of [13] or Figure 5 of the present paper
represents the Reeb space of a round fold map into the plane whose
singular set consists of two connected components and whose source
manifold is a manifold having the structure of a C∞ S2-bundle over S2.
Regular fibers of the map are disjoint unions of finite copies of S2. The
Reeb space is given by glueing two copies of 2-dimensional closed discs
by a homeomorphism from the boundary of one disc onto a circle in the
interior of another disc.

Figure 5. The Reeb space of the map in (3) of Example 2 ([13, Figure 8]).

We can construct a round fold map as in the following manner. We use
this construction in the proceeding sections.
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Before the construction, we introduce good Morse functions on compact
C∞ manifolds possibly with non-empty boundaries. A Morse function on
a compact manifold with non-empty boundary is said to be good if on the
boundary, it is constant and minimal, singular points of it are not on the
boundary and at any two distinct singular points, the singular values are
distinct. A Morse function on a closed or compact manifold without bound-
ary is said to be good if at any two distinct singular points, the singular
values are distinct.

Let M̄ be a compact C∞ manifold with non-empty boundary ∂M̄ . Then
there exists a good Morse function f̃ : M̄ → [a,+∞), where a is the minimal
value.

Let Φ : ∂(M̄×∂(Rn−IntDn)) → ∂(∂M̄×Dn) and φ : ∂(Rn−IntDn) →
∂Dn be diffeomorphisms. Let p1 : ∂M̄ × ∂(Rn − IntDn) → ∂(Rn − IntDn)
and p2 : ∂M̄ × ∂Dn → ∂Dn be the canonical projections. Suppose that the
following diagram commutes.

∂M̄ × ∂(Rn − IntDn) Φ //

p1

²²

∂M̄ × ∂Dn

p2

²²
∂(Rn − IntDn)

φ // ∂Dn

By using Φ, we construct M := (∂M̄ × Dn)
⋃

Φ(M̄ × ∂(Rn − IntDn)).
Let p : ∂M̄ ×Dn → Dn be the canonical projection. Then a C∞ map f :=
p
⋃

Φ,φ(f̃ × idSn−1) is a round fold map whose source manifold is M .
If M̄ is a compact C∞ manifold without boundary, then there exists

a good Morse function f̃ : M̄ → [a,+∞) such that f̃(M̄) ⊂ (a,+∞). We
are enough to consider f̃ × idSn−1 and embed [a,+∞) × Sn−1 into Rn to
construct a round fold map whose source manifold is M̄ × Sn−1.

3.2. Round fold maps and homology groups of source manifolds
Throughout this subsection, let f : M → Rn be a round fold map and

let L be its axis. We study relations between homology groups of M and
those of f−1(L).

Let f be a normal form of a round fold map and P (1) := Dn
1/2. We

set E := f−1(P (1)) and E′ := M − f−1(IntP (1)). We set F := f−1(p) for
p ∈ ∂P (1). We put P (2) := Rn − IntP (1). Let f1 := f |E : E → P (1) if F is
non-empty and let f2 := f |E′ : E′ → P (2).
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f1 gives the structure of a trivial C∞ bundle over P (1) and f1|∂E :
∂E → ∂P (1) gives the structure of a trivial C∞ bundle over ∂P (1) if F is
non-empty. f2|∂E′ : ∂E′ → ∂P (2) gives the structure of a trivial C∞ bundle
over ∂P (2).

We can give E′ and qf (E′) the structures of bundles over ∂P (2) as
follows.

Since for πP (x) := (1/2)(x/|x|) (x ∈ P (2)), πP ◦ f |E′ is a proper C∞

submersion, this map gives E′ the structure of a C∞ f−1(L)-bundle over
∂P (2) (apply Ehresmann’s fibration theorem [2]).

For p ∈ qf (E′) and p1, p2 ∈ qf
−1(p), the equation πP ◦f(p1) = πP ◦f(p2)

holds. We can correspond πP ◦ f(p1) = πP ◦ f(p2) = πP ◦ f̄(p) to p. The
resulting map from qf (E′) into ∂P (2) gives the structure of a f̄−1(L)-bundle
since πP ◦f |E′ gives the structure of a C∞ bundle and qf (E′) is the quotient
space of E′ by ∼f .

For a round fold map f which is not a normal form, we can consider
similar maps and similar structures of bundles.

Now, we introduce (algebraic) topological conditions for round fold maps
as the following definition. Here we use the notations above.

Definition 6 Let f : M → Rn be a round fold map, and let R be a
commutative group.

(1) If the natural projection πP ◦ f2 from the total space of the bundle E′

onto the base space ∂P (2) (∂P (2) is diffeomorphic to Sn−1) gives the
structure of a topologically trivial bundle, then f is said to be topologi-
cally trivial.

(2) If the natural projection πP ◦ f̄2 from the total space of the bundle
qf2(E

′) onto the base space ∂P (2) (∂P (2) is diffeomorphic to Sn−1)
gives the structure of a topologically trivial bundle, then f is said to
be topologically quasi-trivial.

(3) If H∗(E′;R) ∼= H∗(∂P (2) × f−1(L);R) (∼= H∗(∂P (2);R) ⊗ H∗(f−1(L);
R)), then f is said to be homologically product about R.

(4) Suppose that f is homologically product about R and that the following
diagram commutes for the canonical projection p : ∂P (2) × f−1(L) →
∂P (2) and two maps πP and f2.
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Hk(E′;R)
∼= //

(πP ◦f2)∗
²²

Hk(∂P (2) × f−1;R)

p∗
²²

Hk(∂P (2);R)
∼= // Hk(∂P (2);R)

Then f is said to be homologically R-trivial.

For any commutative group R, if f is topologically trivial, then f is
homologically product about R and it is homologically R-trivial.

Example 3 (1) Let M be a C∞ homotopy sphere of dimension m. Let
f : M → Rn be a round fold map such that f(M) is diffeomorphic to Dn

and that the singular set S(f) is connected (f is special generic, too).
Then f is topologically trivial since the natural projection from E′ onto
∂P (2) as in Definition 6 gives the structure of a linear bundle and the
restriction of the projection to ∂E′ gives the structure of a trivial C∞

bundle. Furthermore, f is homologically R-trivial for any commutative
group R. For special generic maps of homotopy spheres into Euclidean
spaces, see [10].

(2) The round fold map in (2) of Example 2 is topologically trivial since
the group of all the orientation-preserving homeomorphisms of a disc is
connected.

(3) Topologically trivial round fold maps are easy to construct by the
method in Subsection 3.1.

(4) Round fold maps whose fibers are always connected are topologically
quasi-trivial. In fact the Reeb spaces are homeomorphic to Dn or Sn−1×
[0, 1].

(5) In [19], one can find a round fold map f from a closed C∞ manifold M

of dimension 4 into R2 whose singular set consists of three connected
components such that the followings hold.
(a) We can denote by {U0}t{U∞}t{U1, U2} the set of all the connected

components of Rn − f(S(f)) as in Figure 2. For any p ∈ U0

⋃
U2,

f−1(p) is diffeomorphic to S2 and for any p ∈ U1, f−1(p) is diffeo-
morphic to two copies of S2.

(b) For the closure Ū1 of U1, f̄−1(Ū1) ⊂ Wf is homeomorphic to a Klein
Bottle.

The map f is not topologically quasi-trivial.
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(6) In [10], closed C∞ manifolds which admit special generic maps into R2

are determined. S1×Sm−1 is one of such manifolds and admits a special
generic map which is round and whose Reeb space is homeomorphic to
S1 × [0, 1]. For some orientation reversing diffeomorphism τ , there also
exists a round fold map from the non-orientable C∞ Sm−1-bundle over
S1 whose monodromy is [τ ] ∈ π0(Diff∞(Sm−1)) into R2 which is special
generic and whose Reeb space is S1 × [0, 1]. This is not homologically
product about Z and topologically trivial, either.

Theorem 1 Let M be a closed and connected C∞ manifold of dimension
m, f : M → Rn (m > n ≥ 2) be a round fold map and f(M) be diffeomor-
phic to Dn. Let F be the fiber of a point in a proper core of f and R be a
commutative group.

(1) Assume that F is a disjoint union of a finite number of R-homology
(m − n)-spheres. Assume also that f is homologically product about
R. Then, for an axis L, we have Hk(M ;R) ∼= Hk(f−1(L);R) for k ≤
min{n− 2,m− n− 1}.

(2) Assume that M is orientable. Assume also that F is an R-homology
sphere and that f is homologically R-trivial. Then for an axis L, we
have

Hk(M ;R) ∼= Hk(f−1(L);R) (k ≤ n− 2)

and

Hn−1(M ;R) ∼=
{{0} n− 1 > m− n

Hn−1(f−1(L);R) n− 1 ≤ m− n.

Furthermore, if n− 1 < m− n, then for n− 1 < k ≤ m− n, we have

Hk(M ;R) ∼= (R⊗Hk−n+1(f−1(L);R))⊕Hk(f−1(L);R).

This theorem is shown by just calculations of homology groups. Let
P (1) be a proper core of the map f , P (2) := Rn − IntP (1), E := f−1(P (1))
and E′ := f−1(P (2)) as before.

Remark 1 Assume that the fiber F of a point in a proper core is empty
in Theorem 1. Then M = E′ holds. If f is homologically product about
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a commutative group R, then Hk(M ;R) ∼= Hk(E′;R) is isomorphic to
Hk(f−1(L);R) for k < n − 1 and Hk(M ;R) ∼= Hk(E′;R) is isomorphic to
(Hk−n+1(f−1(L);R) ⊗Hn−1(∂P (2);R)) ⊕ (Hk(f−1(L);R) ⊗H0(∂P (2);R))
for n − 1 ≤ k ≤ m by the definition of a round fold map which is homo-
logically product about R. Note that by this definition, we do not need to
assume that M is connected in this situation.

Proof of Theorem 1. The manifold M is assumed to be connected and
it follows easily that two manifolds E′ and f−1(L) are connected. So
H0(M ;R) ∼= H0(E′;R) ∼= H0(f−1(L);R) ∼= R holds.

The following exact sequences hold where i : ∂E → E, j : E → M ,
i′ : ∂E′ → E′ and j′ : E′ → M are natural inclusions.

// Hk(∂E; R)
(i∗,i′∗) //

∼=
²²

Hk(E; R)⊕Hk(E′; R)
j∗−j′∗ //

∼=
²²

Hk(M ; R) //

∼=
²²

// Hk(∂P (1) × F ; R) // Hk(P (1) × F ; R)⊕Hk(E′; R) // Hk(M ; R) //

If 0 < k ≤ min{n−2,m−n−1}, then it holds that Hk(∂P (1)×F ;R) ∼=
{0} and Hk(P (1) × F ;R) ∼= {0}. So, by the exact sequences, if the map f

is homologically product about R, then we have Hk(M ;R) ∼= Hk(E′;R) ∼=
Hk(∂P (2)×f−1(L);R) ∼= Hk(f−1(L);R) for 0 ≤ k ≤ min{n−2,m−n−1}.
This completes the proof of (1).

Now we prove (2). Since the manifold M is assumed to be orientable,
two manifolds E′ and f−1(L) are orientable. The map f is assumed to be ho-
mologically R-trivial, so we have Hk(M ;R) ∼= Hk(E′;R) ∼= Hk(f−1(L);R)
for 0 ≤ k ≤ min{n− 2,m− n− 1} as the previous case.

Suppose m−n < n− 1. Since E is diffeomorphic to Dn×F , ∂E = ∂E′

is diffeomorphic to ∂Dn × F and F is an R-homology sphere of dimen-
sion m − n, the homomorphism i∗ : Hm−n(∂E;R) ∼= Hm−n(F ;R) ∼= R →
Hm−n(E;R) ∼= Hm−n(∂E;R) ∼= R is an isomorphism. The homomorphism
i′∗ : Hm−n(∂E′;R) → Hm−n(E′ : R) is 0 since a fiber F of the trivial bun-
dle ∂E′ over ∂P (2) is an R-homology sphere of dimension m − n bounding
an orientable compact manifold f−1(L), which is a fiber of the bundle E′

over ∂P (2). For m − n < k < n − 1, it holds that Hk(∂P (1) × F ;R) ∼= {0}
and Hk(P (1) × F ;R) ∼= {0}. Together with the result of (1), by the exact
sequences and the definition of a homologically R-trivial round fold map,
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we have Hk(M ;R) ∼= Hk(E′;R) ∼= Hk(∂P (2)×f−1(L);R) ∼= Hk(f−1(L);R)
for 0 ≤ k ≤ n− 2.

The homomorphism i∗ : Hn−1(∂E;R) → Hn−1(E;R) ∼= {0} is surjec-
tive. The image of the homomorphism i′∗ : Hn−1(∂E′;R) ∼= Hn−1(∂P (2);R)
→ Hn−1(E′;R) ∼= Hn−1(∂P (2)×f−1(L);R) is regarded as Hn−1(∂P (2);R)⊕
{0} ⊂ Hn−1(∂P (2);R) ⊕ Hn−1(f−1(L);R) ∼= Hn−1(∂P (2) × f−1(L);R)
and the homomorphism is injective since f is homologically R-trivial. Since
the homomorphism i∗ : Hn−2(∂E;R) ∼= Hn−2(F ;R) → Hn−2(E;R) ∼=
Hn−2(∂E;R) is an isomorphism, by the exact sequences, we have
Hn−1(E′;R)/i′∗(Hn−1(∂E′;R)) ∼= Hn−1(M ;R). Since the map f is homo-
logically R-trivial and f−1(L) is a compact and connected manifold of di-
mension m−n+1 ≤ n−1 with non-empty boundary, we have Hn−1(E′;R) ∼=
(Hn−1(∂P (2);R) ⊗H0(f−1(L);R)) ⊕ (H0(∂P (2);R) ⊗Hn−1(f−1(L);R)) ∼=
Hn−1(∂P (2);R) ⊗ H0(f−1(L);R) ∼= Hn−1(∂P (2);R) and we may regard
Hn−1(E′;R) = i′∗(Hn−1(∂E′;R)). Thus, we have Hn−1(M ;R) ∼= {0}.

Now suppose n − 1 < m − n. Since E is diffeomorphic to Dn × F ,
∂E = ∂E′ is diffeomorphic to ∂Dn × F and F is an R-homology sphere of
dimension m − n, the homomorphism i∗ : Hn−2(∂E;R) → Hn−2(E;R)
is an isomorphism and the homomorphism i∗ : Hn−1(∂E;R) ∼= R →
Hn−1(E;R) ∼= {0} is zero. Since f is homologically R-trivial, the image of
the homomorphism i′∗ : Hn−1(∂E′;R) ∼= Hn−1(∂P (2);R) → Hn−1(E′;R) ∼=
Hn−1(∂P (2);R)⊕Hn−1(f−1(L);R) is regarded as Hn−1(∂P (2);R)⊕{0} and
the homomorphism is injective. Thus, by the exact sequences, we have
Hn−1(M ;R) ∼= Hn−1(f−1(L);R).

For n − 1 < k < m − n, it holds that Hk(∂P (1) × F ;R) ∼= Hk(P (1) ×
F ;R) ∼= {0}. The homomorphism i∗ : Hk(∂E;R) ∼= {0} → Hk(E;R) ∼=
{0} is an isomorphism and the homomorphism i′∗ : Hk(∂E′;R) ∼= {0} →
Hk(E′;R) is zero.

Since F is an R-homology sphere of dimension m − n, the homomor-
phism i∗ : Hm−n(∂E;R) ∼= R → Hm−n(E;R) ∼= R is an isomorphism.
Since F is an R-homology sphere bounding an orientable compact manifold
f−1(L), we have that the image of the homomorphism i′∗ : Hm−n(∂E′;R)
→ Hm−n(E′;R) is {0} as before. Thus, by the exact sequences and by the
definition of a homologically R-trivial round fold map, we have Hk(M ;R)
∼= Hk(E′;R) ∼= Hk(∂P (2) × f−1(L);R) ∼= (R ⊗ Hk−n+1(f−1(L);R))⊕
Hk(f−1(L);R) for n− 1 < k ≤ m− n.

Now suppose n − 1 = m − n. Then the homomorphism i∗ : Hn−1(∂E;
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R) ∼= R⊕R → Hn−1(E;R) ∼= R is surjective by the diffeomorphism types of
E and ∂E = ∂E′. Since f is homologically R-trivial and F is an R-homology
sphere of dimension m−n bounding an orientable compact manifold f−1(L),
the image of the homomorphism i′∗ : Hn−1(∂E′;R) ∼= Hn−1(∂P (2);R) ⊕
Hn−1(F ;R) → Hn−1(E′;R) ∼= Hn−1(∂P (2);R) ⊕ Hn−1(f−1(L);R) is re-
garded as Hn−1(∂P (2);R) × {0}. For 0 < k ≤ min{n − 2,m − n − 1} =
n− 2 = m− n− 1, it holds that Hk(∂P (1) ×F ;R) ∼= {0} since ∂E is diffeo-
morphic to ∂Dn × F . Thus, by the exact sequences, we have Hn−1(M ;R)
∼= Hn−1(f−1(L);R).

This completes the proof. ¤

In the situation of Theorem 1, if M is orientable and f−1(L) is an
R-homology disc, then ∂f−1(L) is an R-homology sphere and f is ho-
mologically R-trivial. We can apply (2) of Theorem 1 and we have
Hk(M ;R) ∼= Hk(f−1(L);R) ∼= {0} and Hk(M ;R) ∼= Hk(f−1(L);R) ∼= {0}
for 0 < k ≤ max{n− 1,m− n}. By virtue of Poincare duality theorem, M

is an R-homology sphere of dimension m.
Conversely, in the situation of (2) of Theorem 1, if M is an R-homology

sphere and n− 1 ≥ m− n, then f−1(L) is an R-homology disc.
Now we have the following corollaries.

Corollary 1 In the situation of Theorem 1, we assume that M is ori-
entable. If f−1(L) is an R-homology disc, then M is an R-homology sphere.

Corollary 2 In the situation of (2) of Theorem 1, if M is an R-homology
sphere and n− 1 ≥ m− n, then f−1(L) is an R-homology disc.

Example 4 By applying the construction in Subsection 3.1, we obtain a
round fold map f : M → Rn which is topologically trivial, homologically
R-trivial and satisfies the assumption of Theorem 1. If in this mentioned
construction, the compact C∞ manifold M̄ is an R-homology disc and ori-
entable, then the resulting source manifold is an orientable R-homology
sphere by Corollary 1.

4. Round fold maps whose regular fibers are disjoint unions of
spheres

Theorem 7.1 or Corollary 7.3 of [6] is a proposition for simple fold
maps whose regular fibers are disjoint unions of spheres. In [13], Saeki
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and Suzuoka studied stable maps including stable fold maps with such reg-
ular fibers; mainly ones from closed 4-dimensional manifolds into surfaces
without boundaries.

In this section, we study round fold maps whose regular fibers are dis-
joint unions of spheres. A lot of maps in Example 2 and Example 3 are
examples of such maps. Here we review some of the results of [6] and [13]
(Propositions 5, 6 and 7) and show two theorems (Theorems 2 and 3).

Theorem 2 Let M be a closed and orientable C∞ manifold of dimension
m and f : M → Rn (m > n ≥ 2) be a round fold map which is homologically
product about Z.

Furthermore, assume that for each regular value p, f−1(p) is a disjoint
union of almost-spheres. Let F be the fiber of a point in a proper core of f

and suppose that F is empty or connected. If F is non-empty, then we also
assume that M is connected and that f is homologically Z-trivial.

Then, the k-th homology group Hk(M ;Z) is torsion-free for any k.

To show that the homology groups are torsion-free, we need the following
proposition, which is a part of Corollary 3.17 of [11].

Proposition 3 (Saeki, [11]) Suppose that M is a closed and orientable
C∞ manifold of dimension m > 1. Let f : M → R be a Morse function
such that each regular fiber is a disjoint union of almost-spheres. Then, the
k-th homology group Hk(M ;Z) is torsion-free for any k.

Proof of Theorem 2. If F is empty, then we have Hk(M ;Z) ∼=
Hk(f−1(L);Z) (0 ≤ k < n − 1) and Hk(M ;Z) ∼= Hk(Sn−1 × f−1(L);Z) ∼=
(Hk−n+1(f−1(L);Z)⊗ Z)⊕Hk(f−1(L);Z) (n− 1 ≤ k ≤ m). Furthermore,
Hk(M ;Z) is torsion-free for any k since Hk(f−1(L);Z) is torsion-free by
Proposition 3.

Let F be connected and non-empty. By the assumption that M is con-
nected and orientable, we can apply Poincare duality theorem. By Propo-
sition 3, Hk(f−1(L);Z) is torsion-free for any k. By (2) of Theorem 1,
Hk(M ;Z) is torsion-free for 0 ≤ k ≤ max{n− 1,m− n}. Hk(M ;Z) is also
torsion-free for 0 ≤ k ≤ max{n− 1,m−n} by virtue of universal coefficient
theorem. By virtue of Poincare duality theorem, Hk(M ;Z) is torsion-free
for any k. ¤

For example, most of round fold maps in Example 3 satisfy the assump-
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tion of Theorem 2. It is also not so difficult to construct such round fold
maps. In fact, we are enough to apply the method in Subsection 3.1.

The following proposition is a part of Theorem 4.1 of [13]. Note that
as in Proposition 1, for a simple fold map f : M → N , Wf is given the
structure of a polyhedron.

Proposition 4 ([13]) Let f : M → N be a simple fold map from a closed
C∞ manifold M of dimension 4 into a C∞ manifold N of dimension 2
without boundary. For each regular value p, let f−1(p) be a disjoint union
of finite copies of S2.

Then there exist a compact C∞ manifold W of dimension 5 such that
∂W = M and a continuous map r : W → Wf such that r|∂W coincides with
qf : M → Wf and the followings hold.

(1) For each p ∈ Wf − qf (S(f)), r−1(p) is diffeomorphic to D3.
(2) f̄ ◦ r is a C∞ submersion.
(3) There exist a C∞ triangulation of W and a triangulation of Wf such

that r is a simplicial map.
(4) For each p ∈ Wf , r−1(p) collapses to a point and r is a homotopy

equivalence.
(5) W collapses to a subpolyhedron Wf

′ such that r|Wf
′ : Wf

′ → Wf is a
PL homeomorphism.

As a corollary to Proposition 4, we have the following corollary.

Corollary 3 ([13]) In the situation of Proposition 4, let M be connected
and i : M → W be the natural inclusion. Then

qf ∗ = r∗ ◦ i∗ : πk(M) → πk(Wf )

gives an isomorphism for k = 0, 1.

We note that Proposition 4 above is for simple fold maps from closed 4-
dimensional manifolds into surfaces without boundaries. We can generalize
it to the following Lemma 1.

Lemma 1 Let M be a closed C∞ manifold of dimension m, N be a C∞

manifold without boundary of dimension n and m > n ≥ 1. If m − n = 1,
then we also assume that M is orientable.

Let f : M → N be a simple fold map. We assume that for each regular
value p, f−1(p) is a disjoint union of almost-spheres and that the indices of
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all the fold points of f are 0 or 1.
Then there exist a compact PL (m+1)-manifold W such that ∂W = M

and a continuous map r : W → Wf such that r|∂W coincides with qf : M →
Wf . Furthermore, the followings hold.

(1) For each p ∈ Wf − qf (S(f)), r−1(p) is PL homeomorphic to Dm−n+1.
(2) There exist a triangulation of W and a triangulation of Wf such that r

is a simplicial map.
(3) For each p ∈ Wf , r−1(p) collapses to a point and r is a homotopy

equivalence.
(4) W collapses to a subpolyhedron Wf

′ such that r|Wf
′ : Wf

′ → Wf is a
PL homeomorphism.

We prove the lemma by analogy of the proof of Theorem 4.1 of [13]. In
the proof, we often apply Proposition 1 implicitly.

Proof of Lemma 1. We construct a compact manifold of dimension m + 1
bounded by M .

STEP 1. Around a regular neighborhood of qf (F0(f))
qf (F0(f)) is the image of the set F0(f) of all the definite fold points of

f . Let N(qf (F0(f))) be a small regular neighborhood of qf (F0(f)).
We note that N(qf (F0(f))) has the structure of a trivial bundle over

qf (F0(f)) and that all the fibers are PL homeomorphic to [0, 1]. We may
assume that qf (F0(f)) corresponds to the 0-section ({0} ⊂ [0, 1]).

For each p ∈ qf (F0(f)), set Kp := qf
−1({p}×[0, 1]) for a fiber {p}×[0, 1]

of the bundle N(qf (F0(f))) over qf (F0(f)). Kp is diffeomorphic to Dm−n+1.
We may assume that q−1

f (N(qf (F0(f)))) has the structure of a C∞ bundle
over qf (F0(f)) and Kp is the fiber over a point p ∈ qf (F0(f)). We define a
Morse function qf p : Kp → [0, 1] with exactly one minimal point, which is
the only singular point of the function, such that qf p(Kp) = [0, 1]. Then qf p

(p ∈ qf (F0(f))) can be extended to a family of C∞ submersions q̃f p : K̃p →
{p}× [0, 1] of (m−n+2)-dimensional submanifolds K̃p (p ∈ qf (F0(f))) such
that the followings hold.

(1) For p ∈ qf (F0(f)) and for t ∈ (0, 1], q̃f p
−1(p, t) is diffeomorphic to

Dm−n+1.
(2) q̃f p

−1(p, 0) is a point.
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(3) q̃f p
−1({p}× [0, 1]) = K̃p is a C∞ manifold of dimension m− n + 2 with

corner along q̃f p
−1(p, 1).

(4) q̃f p
−1({p}× [0, 1]) = K̃p is diffeomorphic to Dm−n+2 after the corner is

smoothed.

Now we can construct a compact C∞ manifold V0 of dimension m + 1
having the structure of a C∞ Dm−n+2-bundle over a C∞ manifold qf (F0(f))
such that the bundle q−1

f (N(qf (F0(f)))) is a subbundle of the bundle V0 and
that the subbundle q−1

f (N(qf (F0(f)))) is in the boundary of V0. Note that

K̃p is the fiber over a point p ∈ qf (F0(f)). We also have a PL map r0 :
V0 → N(qf (F0(f))) such that r0

−1({p} × [0, 1]) = K̃p and r0|fKp
= q̃f p hold

for all p ∈ qf (F0(f)) and that r0|qf
−1(N(qf (F0(f)))) = qf |qf

−1(N(qf (F0(f))))

holds. Furthermore, there exists a PL submanifold N ′(qf (F0(f))) ⊂ V0 of
dimension n such that the followings hold (Figure 6).

(1) N ′(qf (F0(f)))
⋂

∂K̃p consists of two points in ∂N ′(qf (F0(f))). One
of these points is in q−1

f (N(qf (F0(f)))) and the other point is not in
q−1
f (N(qf (F0(f)))).

(2) V0 collapses to N ′(qf (F0(f))).
(3) N ′(qf (F0(f))) has the structure of a subbundle of the bundle V0.
(4) r0|N ′(qf (F0(f))) : N ′(qf (F0(f))) → N(qf (F0(f))) is a PL homeomor-

phism and a bundle isomorphism between the two PL bundles.

Figure 6. A fiber fKp over a point p ∈ qf (F0(f)) of the bundle V0. (The segment
in the center is a fiber over p ∈ qf (F0(f)) of the bundle N ′(qf (F0(f))). A fiber
over p of the bundle qf

−1(N(qf (F0(f)))) is the spherical part of the boundary of
fKp.)

STEP 2. Around a regular neighborhood of qf (F1(f))
qf (F1(f)) is the image of the set F1(f) of all the fold points of f whose

indices are 1. Note that qf : F1(f) → Wf is injective since f is simple.
Let N(qf (F1(f))) be a small regular neighborhood of qf (F1(f)). By the
assumptions on the pair (m,n) of dimensions and the orientability of M
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and by Proposition 1 (6), N(qf (F1(f))) has the structure of a PL K-bundle
over qf (F1(f)) where K := {r exp(2πiθ) ∈ C | 0 ≤ r ≤ 1, θ = 0, 1/3, 2/3}.
We may assume that qf (F1(f)) corresponds to the 0-section ({0} ⊂ K).

For each p ∈ qf (F1(f)), set Kp := qf
−1({p} × K) for a fiber

{p} × K of the bundle N(qf (F1(f))) over qf (F1(f)). Kp is PL home-
omorphic to Sm−n+1 with the interior of the union of three disjoint
(m − n + 1)-dimensional standard closed discs removed. We may assume
that q−1

f (N(qf (F1(f)))) has the structure of a C∞ bundle over qf (F1(f))
and Kp is the fiber over a point p ∈ qf (F1(f)). We define a Morse function
qf p : Kp → [0, 1] with exactly one singular point such that qf p(Kp) = [0, 1],
that qf p

−1(0) is an almost-sphere, that qf p
−1(1) is a disjoint union of

two almost-spheres and that the singular value is t0 ∈ (0, 1). Then qf p

(p ∈ qf (F1(f))) can be extended to a family of PL maps q̃f p : K̃p → {p}×K

(p ∈ qf (F1(f))) such that the followings hold.

(1) For any p ∈ qf (F1(f)), q̃f p
−1(p, t) is PL homeomorphic to Dm−n+1 for

t ∈ K − {0}
(2) q̃f p

−1({p} ×K) = K̃p is a PL manifold of dimension m− n + 2 and PL
homeomorphic to Dm−n+2.

Then, by an argument similar to those in the previous step, we can
construct a compact PL manifold V1 of dimension m+1 having the structure
of a PL Dm−n+2-bundle over a C∞ manifold qf (F1(f)) such that the bundle
q−1
f (N(qf (F1(f)))) (over qf (F1(f))) is a subbundle of the bundle V1 and that

the subbundle q−1
f (N(qf (F1(f)))) is in the boundary of V1. Note that K̃p

is the fiber over a point p ∈ qf (F1(f)). We also have a PL map r1 : V1 →
N(qf (F1(f))) such that r1

−1({p} ×K) = K̃p and r1|fKp
= q̃f p hold for all

p ∈ qf (F1(f)) and that r1|qf
−1(N(qf (F1(f)))) = qf |qf

−1(N(qf (F1(f)))) holds. We
also have a subpolyhedron N ′(qf (F1(f))) ⊂ V1 of dimension n such that the
followings hold (Figure 7).

(1) N ′(qf (F1(f)))
⋂

∂K̃p consists of three points (p, 0), (p, e(2/3)πi),
(p, e(4/3)πi) ∈ {p} × K, the points are not in qf

−1(N(qf (F1(f)))) and
each connected component of ∂K̃p− q−1

f (N(qf (F1(f)))) includes one of
these three points.

(2) V1 collapses to N ′(qf (F1(f))).
(3) N ′(qf (F1(f))) has the structure of a subbundle of the bundle V1.
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(4) r1|N ′(qf (F1(f))) : N ′(qf (F1(f))) → N(qf (F1(f))) is a PL homeomor-
phism and a bundle isomorphism between the two PL bundles.

Now we set the disjoint unions VS := V0 t V1, NS := N(qf (F0(f))) t
N(qf (F1(f))) ⊂ Wf , rS := r0 t r1 : VS → NS and N ′

S := N ′(qf (F0(f))) t
N ′(qf (F1(f))) ⊂ VS .

Figure 7. A fiber fKp over a point p ∈ qf (F1(f)) of the bundle V1. (The Y-shaped
graph in the center is a fiber over p ∈ qf (F1(f)) of the bundle N ′(qf (F1(f))). A

fiber over p of the bundle qf
−1(N(qf (F1(f)))) is in the boundary of fKp.)

STEP 3. Around R := Wf − IntNS

Since each regular fiber of f is a disjoint union of almost-spheres,
qf |qf

−1(R) : qf
−1(R) → R gives the structure of a bundle over R with a

fiber PL homeomorphic to Sm−n. Here we define a bundle rR : VR → R

whose fiber is Dm−n+1 and which is an associated bundle of the bundle
qf |qf

−1(R) : qf
−1(R) → R. More precisely, we define the associated bundle

so that the structure group is a group consisting of PL homeomorphisms
satisfying the following; for any element r of the structure group, r(0) = 0
and for a PL homeomorphism r′ on Sm−n, r(x)/|x| = r′(x/|x|) (x 6= 0).
Let R′ ⊂ VR be the 0-section of the associated bundle (the subbundle whose
fiber is {0} ⊂ Dm−n+1).

Then it is easy to check that we can glue VS and VR together to give a
compact PL (m + 1)-manifold W , rS : VS → NS and rR : VR → R together
to give a PL map r : W → Wf and N ′

S and R′ together to give a polyhedron
Wf

′ of dimension n. From the construction, it is now easy to verify all the
required conditions stated in Lemma 1. This completes the proof. ¤

Remark 2 If m − n + 1 is odd, then we don’t need to assume that the
indices of fold points are 0 or 1 in Lemma 1 as mentioned in Remark 7.2 of
[6].
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Corollary 4 In the situation of Lemma 1, let M be connected and i :
M → W be the natural inclusion. Then the homomorphism

qf ∗ = r∗ ◦ i∗ : πk(M) → πk(Wf )

induced by qf gives an isomorphism for 0 ≤ k ≤ m− n− 1.

Proof. Since we have qf = r ◦ i and r is a homotopy equivalence, we
have only to show that the homomorphism i∗ : πk(M) → πk(W ) (0 ≤ k ≤
m−n−1) induced by i is an isomorphism. Since W collapses to a polyhedron
of dimension n, it admits a PL handlebody decomposition consisting of
handles whose indices are not larger than n. Dualizing the handles, we see
that W is obtained from M × [0, 1] by attaching handles whose indices are
not smaller than m − n + 1 along M × {1}. Hence, i∗ : πk(M) → πk(W )
(0 ≤ k ≤ m− n− 1) is an isomorphism. This completes the proof. ¤

Now we introduce Theorem 7.1 (or Corollary 7.3) of [6] with some ar-
rangements.

Proposition 5 ([6]) Let m ≥ 4, m be even and M be a closed C∞ manifold
of dimension m. Assume that f : M → R2 is a simple fold map and that
regular fibers of the map are disjoint unions of standard spheres. Assume
also that π1(M) ∼= {0} and H2(Wf ;Z) ∼= {0} hold.

Then M is a C∞ homotopy sphere of dimension m.

The proof in [6] is summarized as follows in the terminologies of the
present paper.

First, by certain operations (R-operations), we transform the given map
without changing the diffeomorphism type of the source manifold so that
the source manifold is represented as the connected sum of a finite number
of the source manifolds of three types of maps; two of them are round fold
maps whose Reeb spaces are homeomorphic to either D2 or the one in Figure
4 and the third one is a simple fold map which is not round (for its Reeb
space, refer to Figure 7 (c) of [6]). Then we prove that the source manifolds
of these three types of maps are homotopy spheres.

In other words, the following was shown in the last part of the proof.

Proposition 6 Let m ≥ 4, m be even and M be a closed C∞ manifold
of dimension m. Assume that f : M → R2 is a simple fold map and that
regular fibers of the map are disjoint unions of standard spheres. Assume
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also that the Reeb space Wf is homeomorphic to either of the followings.

(1) D2.
(2) D2

⋃
φ(S1 ×K), where K := {r exp(2πiθ) ∈ C | 0 ≤ r ≤ 1, θ = 0, 1/3,

2/3} and φ is a homeomorphism from S1 × {1}(⊂ S1 ×K) onto ∂D2.

Then M is a homotopy sphere of dimension m.

The following result, or Theorem 3 can be regarded as an extension
of Proposition 6 and states that by studying their Reeb spaces, we can
know some homotopy groups of manifolds admitting round fold maps whose
regular fibers are disjoint unions of spheres, under some constraints.

Theorem 3 Let M be a closed and connected C∞ manifold of dimension
m, f : M → Rn be a round fold map and m > n ≥ 2. If m − n = 1, then
we also assume that M is orientable.

We assume furthermore that f−1(p) is a disjoint union of almost-spheres
for each regular value p and that the indices of all the fold points of f are 0
or 1.

Let L be an axis of f and fL := f |f−1(L). We denote by l1 the number
of loops of the Reeb space WfL

of fL (in other words, let H1(WfL
;Z) ∼= Zl1).

We denote by l2 the number of connected components of the fiber of a point
in a proper core of f .

Then there exist a PL manifold W and a homotopy equivalence r :
W → Wf as in Lemma 1. Furthermore, for the inclusion i : M → W ,
qf = r ◦ i gives an isomorphism of homotopy groups πk(M) ∼= πk(Wf ) for
0 ≤ k ≤ m − n − 1 and we have the following list where we denote the free
group of rank r by Fr.

(1) When n ≥ 3 and m ≥ 2n hold, we have the followings.

πk(M) ∼= πk(Wf ) ∼=
{

Fl1 k = 1

{0} 2 ≤ k < n− 1

πn−1(M) ∼= πn−1(Wf ) ∼=
{
Z l2 = 0

{0} l2 6= 0

(2) When n ≥ 3, n < m ≤ 2n−1 and m−n ≥ 2 hold, we have the following.
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πk(M) ∼= πk(Wf ) ∼=
{

Fl1 k = 1

{0} 2 ≤ k ≤ m− n− 1

(3) When m ≥ 4 and n = 2 hold, we have the followings.
(a) If f is topologically quasi-trivial and l2 = 0 holds, then we have the

following.

πk(M) ∼= πk(Wf ) ∼=
{
Z× Fl1 k = 1

{0} 2 ≤ k ≤ m− 3

(b) If f is topologically quasi-trivial and l2 6= 0 holds, then we have the
following.

π1(M) ∼= π1(Wf ) ∼= Fl1

Proof. The existence of W and r and the fact that qf induces isomorphisms
of homotopy groups easily follow from Lemma 1 and Corollary 4.

First we prove (1) and (2) of the list.
By the assumption, n ≥ 3 holds. Since the boundary of a proper core of

the map or Sn−1 is simply-connected, the natural bundle f̄−1(L) over the
boundary of the proper core, whose fiber is a polyhedron of dimension 1 or
a graph, is trivial. Thus, f is topologically quasi-trivial.

Suppose l2 = 0. Then Wf is PL homeomorphic to Sn−1 × T , where
T is a connected graph with l1 loops. We have π1(Wf ) ∼= π1(Sn−1 × T ) ∼=
π1(Sn−1)⊕π1(T ) ∼= Fl1 , πk(Wf ) ∼= πk(Sn−1×T ) ∼= πk(Sn−1)⊕πk(T ) ∼= {0}
(1 < k < n−1) and πn−1(Wf ) ∼= πn−1(Sn−1×T ) ∼= πn−1(Sn−1)⊕πn−1(T ) ∼=
Z.

Suppose l2 ≥ 1. Then Wf is represented as A
⋃

ψB, where A is a disjoint
union of l2 copies of Dn, B is the product of Sn−1 and a connected graph
T with l1 loops and ψ is a homeomorphism from Sn−1 × Λ ⊂ B onto ∂A,
where Λ is a set consisting of l2 degree 1 vertices of the previous graph. Then
(Wf , B) is (n−1)-connected and we have πk(B) ∼= πk(Wf ) for 0 ≤ k ≤ n−2
by virtue of the homotopy exact sequence. It also follows that the inclusion
from B into Wf induces a surjective homomorphism from πn−1(B) ∼= Z onto
πn−1(Wf ) which is zero. Thus we have π1(B) ∼= π1(Wf ) ∼= π1(Sn−1 × T ) ∼=
π1(T ) ∼= Fl1 , πk(B) ∼= πk(Wf ) ∼= πk(Sn−1 × T ) ∼= πk(Sn−1) ⊕ πk(T ) ∼= {0}
(1 < k < n− 1) and πn−1(Wf ) ∼= {0}.
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This completes the proof of (1) and (2) of the list.
We prove (3) of the list (the case where n = 2).
Suppose l2 = 0. By the extra assumption in (a) of the list, f is topolog-

ically quasi-trivial and Wf is PL homeomorphic to S1×T , where T is a con-
nected graph with l1 loops. We have π1(M) ∼= π1(Wf ) ∼= π1(S1)⊕ π1(T ) ∼=
Z× Fl1 and πk(M) ∼= πk(Wf ) ∼= πk(S1)⊕ πk(T ) ∼= {0} (1 < k < m− 3).

Suppose l2 ≥ 1. By the extra assumption in (b) of the list, f is topolog-
ically quasi-trivial. Then Wf is represented as A

⋃
ψB, where A is a disjoint

union of l2 copies of Dn, B is the product of Sn−1 and a connected graph
T with l1 loops and ψ is a homeomorphism from Sn−1 × Λ ⊂ B onto ∂A,
where Λ is a set consisting of l2 degree 1 vertices of the previous graph. We
have π1(M) ∼= π1(Wf ) ∼= π1(T ) ∼= Fl1 by applying van Kampen’s theorem.

¤

Example 5 We can construct a round fold map satisfying the assumption
of Theorem 3 as in the following by applying the method in Subsection 3.1.

Let m and n ≥ 2 be integers satisfying 2 ≤ m−n+1 ≤ 3 or m−n+1 ≥
6. Let M̄ be a compact C∞ manifold homeomorphic to Sm−n+1 with the
interior of a disjoint union of a finite number of (m−n+1)-dimensional closed
standard discs removed. For diffeomorphisms Φ : ∂M̄ ×Sn−1 → ∂M̄ ×∂Dn

and φ : Sn−1 → ∂Dn and the canonical projections p1 : ∂M̄ × Sn−1 →
Sn−1 and p2 : ∂M̄ × ∂Dn → ∂Dn, we assume that the following diagram
commutes. There exists a good Morse function f̃ : M̄ → [a,+∞) such that
regular fibers are disjoint unions of almost-spheres, where a is the minimal
value (see Theorem 6.1 of [17] for example). Hence we can construct a
closed C∞ manifold M and a round fold map f : M → Rn which satisfies
the assumption of Theorem 3.

∂M̄ × Sn−1 Φ //

p1

²²

∂M̄ × ∂Dn

p2

²²
Sn−1

φ // ∂Dn

The construction above still works even if we add extra singular points to
f̃ by generating a cancelling pair of an (m− n)-handle and an (m− n + 1)-
handle. Note that regular fibers of f̃ are still disjoint unions of almost-
spheres.
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Remark 3 If m − n + 1 = 4, 5, then in Example 5, it is difficult to
know whether we can obtain the Morse function f̃ on M̃ to perform the
construction. We can indeed obtain the function f̃ if M̄ is diffeomorphic
to Sm−n+1 with the interior of a disjoint union of a finite number of of
(m− n + 1)-dimensional closed standard discs removed (see [17]).

5. The homeomorphism and diffeomorphism types of manifolds
admitting round fold maps

In this section, we study the homeomorphism and diffeomorphism types
of the source manifolds of round fold maps satisfying the assumption of
Theorem 3. Here we denote the h-cobordism group of k-dimensional C∞

oriented homotopy spheres by Θk.
The following propositions are well-known.

Proposition 7 ([16], [17]) If X is a closed and simply-connected manifold
of dimension k 6= 0, 4 which is the boundary of a contractible PL manifold
of dimension k + 1, then X is PL homeomorphic to Sk.

Proposition 8 ([21]) Let X be a closed C∞ oriented manifold of dimen-
sion 2k having the same homotopy type as that of a connected sum of finite
copies of Sk × Sk. If k ≡ 3, 5, 6, 7mod 8, then X is diffeomorphic to a
connected sum of finite copies of Sk × Sk and an oriented almost-sphere of
dimension 2k. If k ≡ 3, 5, 6, 7mod 8 and Θ2k

∼= {0} (e.g. k = 3, 6), then X

is diffeomorphic to a connected sum of finite copies of Sk × Sk.

We have the following corollary to Theorem 3.

Corollary 5 Let M be a closed and connected C∞ manifold of dimension
m. Suppose that there exists a round fold map f : M → Rn (m ≥ n ≥ 3)
such that the followings hold.

(1) The indices of all the fold points are 0 or 1.
(2) Regular fibers are disjoint unions of almost-spheres.
(3) π1(Wf ) ∼= {0}.
(4) The fiber of a point in a proper core is non-empty and connected.

We also assume that m− n ≥ 2. Then M is a homotopy sphere.

Proof. By Corollary 4, we have π1(M) ∼= π1(Wf ) ∼= {0}. Furthermore, M

is the boundary of a PL manifold simple homotopy equivalent to Wf . As
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mentioned in the proof of Theorem 3, Wf is represented as Dn
⋃

ψP , where
P is the product of Sn−1 and a connected graph without loops and ψ is
a homeomorphism from Sn−1 × {∗} ⊂ P onto ∂Dn, where ∗ is a point in
the previous graph, so Wf is contractible. Thus, by Proposition 7, M is a
homotopy sphere. ¤

We also have the following theorem.

Theorem 4 Let M be a closed and connected C∞ oriented manifold of
dimension m. Suppose that there exists a round fold map f : M → Rn

(n ≥ 2). Let m = 2n and n ≡ 3, 5, 6, 7mod 8. We also assume that the
followings hold.

(1) The indices of all the fold points of f are 0 or 1.
(2) Regular fibers of f are always disjoint unions of almost-spheres.
(3) π1(Wf ) ∼= {0}.
(4) The fiber of a point in a proper core of f is non-empty.

Then M is (n− 1)-connected. If M has the same homotopy type as that of
a connected sum of finite copies of Sn × Sn, then M is diffeomorphic to a
connected sum of finite copies of Sn × Sn and an oriented almost-sphere of
dimension m. If Θ2n

∼= {0} (e.g. n = 3, 6) and M has the same homotopy
type as that of a connected sum of finite copies of Sn × Sn, then M is
diffeomorphic to a connected sum of finite copies of Sn × Sn.

Proof. f satisfies the assumption of Theorem 3. By applying Theorem
3, we have π1(M) ∼= π1(Wf ) ∼= {0} and by (1) of Theorem 3, we have
πk(M) ∼= πk(Wf ) ∼= {0} for 2 ≤ k ≤ n− 1, so M is (n− 1)-connected. From
Proposition 8, the result follows. ¤

Example 6 It is known that any closed and 2-connected manifold of
dimension 6 has a C∞ differentiable structure and that the resulting C∞

manifold is always diffeomorphic to a connected sum of finite copies of S3×
S3 ([22]). So in the situation of Theorem 4, if m = 6, then M is diffeomorphic
to a connected sum of finite copies of S3×S3 without the assumption about
the homotopy type.
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