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Folded digital backward propagation for 
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Abstract: In periodically dispersion managed long-haul transmission 
systems, waveform distortion is dominated by chromatic dispersion. As a 
result of the periodic waveform evolution, the nonlinear behavior also 
repeats itself in every dispersion period. It is shown that, under the weakly 
nonlinear assumption, nonlinear effects accumulated in a large number (K) 
of spans can be approximated by nonlinear effects accumulated in a single 
span with the same dispersion map and K times the nonlinearity. Thus, 
significant savings in computational load can be achieved in digital 
compensation of fiber nonlinearity using folded digital backward 
propagation (DBP). Simulation results show that the required computation 
for DBP of dispersion managed transoceanic transmission systems can be 
reduced by up to 2 orders of magnitude with negligible penalty using folded 
DBP. 
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1. Introduction 

Optical signal is distorted by the joint effects of dispersion and nonlinearity during its 
propagation in optical fiber. In most of the installed long-haul systems, dispersion is 
compensated by periodically cascading two or more kinds of fiber with inverse dispersion 
parameters. With the advent of new inverse dispersion fibers (IDF), wide-band dispersion 
flatness has been obtained by compensating for both dispersion and dispersion slope while 
minimizing the total polarization mode dispersion (PMD) [1]. In the emerging coherent 
communication systems, dispersion can also be compensated using digital signal processing 
(DSP) [2]. As the technology of dispersion compensation matured, fiber nonlinearity effects 
including self phase modulation (SPM), cross phase modulation (XPM) and four-wave mixing 
(FWM) become the limiting factor to further increase the spectral efficiency and transmission 
distance of long-haul fiber communication systems [3–5]. 

In order to mitigate nonlinear effects, methods such as optimized dispersion management 
[6], large effective area fiber [1] and new modulation formats [7] have been investigated and 
employed. In addition to the above methods that mitigate nonlinearity, methods of 
compensating nonlinear impairments have been proposed. Nonlinear phase shift in dispersion-
shifted fibers can be compensated with lumped nonlinear phase de-rotation based on the 
assumption that the intensity waveform remains unchanged throughout fiber propagation [8]. 
However, lumped nonlinearity compensation performs poorly where there is significant 
interaction between nonlinearity and dispersion. Additionally, nonlinearity pre-compensation 
at the transmitter side was proposed for direct-detection systems [9] and coherent optical 
OFDM systems [10]. 

Enabled by coherent detection, nonlinearity post-compensation via digital backward 
propagation (DBP) has attracted significant attention [11–13]. Recently, experimental 
demonstration of DBP for polarization-division multiplexed (PDM) wavelength-division 
multiplexing (WDM) transmission was reported [14]. 

DBP is typically implemented using the split-step method. In order for the split-step 
method to be accurate, a large number of steps are needed especially for inter-channel 
nonlinearity compensation of WDM systems, resulting in a very heavy computational load. 
Some efforts have been devoted to increase the computational efficiency of DBP. In 
comparison with solving the nonlinear Schrodinger equation (NLSE) for the total field of the 
WDM signal, solving the coupled NLSE was suggested because it requires a smaller step 
number and lower sampling rate [15,16]. The step number can be further reduced by 
factorizing the dispersive walk-off effects in the DBP algorithm [17] and using variable step 
size [18]. 

In this paper, we propose an efficient method of nonlinearity compensation for dispersion-
managed fiber-optic transmission systems, taking advantage of the periodic behavior of the 
optical signal. In section 2, the theory of folded DBP is presented. In section 3, the 
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effectiveness of this method is demonstrated with simulation of a long-haul fiber transmission 
system. The effect of residual dispersion is also investigated. 

2. Theory 

We focus on dispersion-managed fiber-optic transmission systems. Without loss of generality, 
we assume that each fiber span with a length of L  is one period of the dispersion map. For 
long-haul fiber-optic transmission, an optimum power exists as a result of the tradeoff 
between optical signal to noise ratio (OSNR) and nonlinear impairments. The total nonlinear 
phase shift at the optimum power level is on the order of 1 radian [19]. Therefore, for 
transoceanic fiber transmission systems which consist of many (>100) amplified spans, the 
nonlinear effects in each span is weak. As a result, chromatic dispersion is the dominant factor 
that determines the evolution of the waveform within each span. 

We can analyze the nonlinear behavior of the optical signal using a perturbation approach. 

The NLSE governing the propagation of the optical field, ( , )
j

A z t , in the j
th

 fiber span can be 

expressed as 

 
2( , )

[ ( ( , ) )] ( , ),
j

j j

A z t
D N A z t A z t

z



   


  (1) 

where 0 z L  is the propagation distance within each span, D is the linear operator for 

dispersion, fiber loss and amplifier gain, 
2

( ( , ) )
j

N A z t  is the nonlinear operator,  (to be set 

to unity) is a parameter indicating that the nonlinear perturbation is small for the reasons given 
above. The boundary conditions are 
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where (0, )a t is the input signal at the beginning of the first span. We assume that the solution 

of Eq. (1) can be written as, 
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Equating to zero the successive terms of the series, we have 
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The boundary conditions are 

 1, (0, ) (0, ),
l

A t a t   (8) 

 , 1(0, ) ( , ) for 2,
j l j

A t A L t j    (9) 

and 

 , (0, ) 0.
j nl

A t    (10) 
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First, we assume that dispersion is completely compensated in each span. As a result, at the 
end of the first span, 

 
1, ( , ) (0, ),

l
A L t a t   (11) 

and 

 
2 1 1,(0, ) ( , ) (0, ) ( , ),

nl
A t A L t a t A L t      (12) 

where 
1, ( , )

nl
A z t is the solution of Eq. (7) with 1j  . In the second span, 

 2, 1,( , ) ( , ) ( , ),
l l

A z t A z t A z t     (13) 

where the first and second terms are solutions to Eq. (6) with boundary conditions 

2, (0, ) (0, )
l

A t a t  and 
2, 1,(0, ) ( , )

l nl
A t A L t  , respectively, as a result of the principle of 

superposition. At the end of the second span, because of complete dispersion compensation, 

 2, 1,( , ) (0, ) ( , ).
l nl

A L t a t A L t     (14) 

The nonlinear distortion in the second span is governed by Eq. (7) with 2j  . Since 

 
22 2

2, 1, 1, ( ),
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the differential equation and the boundary conditions for 2, ( , )
nl

A z t  and 1, ( , )
nl

A z t  are 

identical, so 

 2, 1,( , ) ( , ).
nl nl

A L t A L t   (16) 

As a result, the optical field at the end of the second span is given by 

 2 2, 2, 1,( , ) ( , ) ( , ) (0, ) 2 ( , ).
l nl nl

A L t A L t A L t a t A L t         (17) 

That is, the nonlinear distortion accumulated in 2 spans is approximately the same as the 
nonlinear distortion accumulated in 1 span with the same dispersion map and twice the 
nonlinearity. It follows that, assuming weak nonlinearity and periodic dispersion management, 
the optical field after K  spans of propagation can be written as 

 1,( , ) (0, ) ( , ),
N nl

A L t a t KA L t     (18) 

which is the solution of the NLSE 
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The nonlinear term 
2

( ( , ) )
j

N A z t  in Eq. (1) is proportional to the fiber nonlinear parameter 

 . So the NLSE describing the optical propagation in a fiber span with the same dispersion 

map and K  times the nonlinearity can be written as 

 
2( , )
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j
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A z t
D K N A z t A z t
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  (20) 

The equivalence of Eqs. (19) and (20) suggests that DBP for K  spans can be folded into a 
single span with K  times the nonlinearity. Assuming that the step size for the split-step 
implementation of DBP is unchanged, the computational load for the folded DBP can be 

saved by the folding factor K . 
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The above derivation is based on the assumption that waveform distortion due to fiber 
nonlinearity and the residual dispersion per span (RDPS) are negligible, and consequently the 
nonlinear behavior of the signal repeats itself in every span. This assumption is not exactly 
valid because first, fiber nonlinearity also changes the waveform, and secondly, dispersion is 
not perfectly periodic if the RDPS is non-zero or the dispersion slope is not compensated. 
These effects accumulate and as a result, the waveform evolutions are not identical between 
two spans that are far away from each other. 

In order for the nonlinearity compensation to be accurate, it might be necessary to divide 
the entire long-haul transmission system into segments of multiple dispersion-managed spans 
so that the accumulated nonlinear effects and residual dispersion is small in each segment. 
Moreover, in order to minimize the error due to residual dispersion, folded DBP should be 
performed with a boundary condition calculated from lumped dispersion compensation for the 
first half of the segment. For a fiber link with M K spans, the folded DBP is illustrated in 
Fig. 1. 

 

Fig. 1. Folded DBP for a periodically dispersion managed fiber link with M K spans. 

3. Simulation 

We simulate a single polarization WDM system with quadrature phase-shift keying (QPSK) 
modulation at 56 Gb/s using VPItransmissionMaker. The simulation setup is shown in Fig. 2. 
12 channels of NRZ (non-return-to-zero) QPSK signal are transmitted with 50 GHz channel 
spacing. The linewidth of the lasers is 100 KHz. The dispersion managed fiber link consists of 
140 spans of 50 km of the OFS UltraWave SLA/IDF Ocean Fiber combination. In each span, 
the SLA fiber with a large effective area is used near the EDFA, followed by the IDF fiber 
with inverse dispersion and dispersion slope. The ASE noise is loaded at each EDFA module 
in the link and the noise figure is 4.5 dB. The loss, dispersion, relative dispersion slope and 
effective area of the SLA fiber are 0.188 dB/km, 19.5 ps/nm/km, 0.003/nm and 106 μm2

. The 

corresponding parameters for the IDF fiber are 0.23 dB/km, 44 ps/nm/km, 0.003/nm and 31 
μm

2
, respectively. The RDPS is determined by the proportion of SLA fiber to IDF fiber in 

each span. A piece of fiber at the receiver was used to compensate for the residual dispersion. 
After de-multiplexing and coherent detection, DSP was performed in Matlab. 

 

Fig. 2. Block diagram of the dispersion managed WDM system. 

The DBP was performed as illustrated in Fig. 1. Without loss of generality, we solved the 
coupled scalar NLSE with the non-iterative asymmetric split-step Fourier method (SSFM) 
[13]. After matched filtering, phase estimation and clock recovery, the Q-value averages of 
the WDM channels were estimated. 
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Fig. 3. (a) Q-value vs. launching power per channel and (b) Q-value at optimum power vs. step 
number per span with RDPS = 0 ps/nm. 

We first simulated the transmission with full inline dispersion compensation, i.e., RDPS = 
0. The Q-value as a function of the launching power is shown in Fig. 3(a). Without 
nonlinearity compensation, the maximum Q-value is 10.8 dB. With conventional DBP in all 
spans, the Q-value is increased to 13.3 dB as a result of nonlinearity compensation. With 
folded DBP with a folding factor of 140 (i.e., M = 1, K = 140), the maximum Q-value was 
13.1 dB. The 0.2 dB Q-value penalty was due to the accumulated nonlinear waveform 
distortion which reduced the accuracy of nonlinearity compensation. There was almost no 
penalty when the folding factor was 70 (i.e. M = 2, K = 70). 

In the split-step implementation DBP, the step size has to be small enough so that the 
dispersion and nonlinear effects can be properly de-coupled. In long-haul WDM fiber links, 
the step size is usually limited by dispersion [17,20]. Therefore in each fiber span, we use the 
same number of steps in SLA fiber and IDF fiber, so that the dispersion in each step is 
approximately the same. Figure 3(b) shows the Q-value as a function of step number per span. 
The folded DBP method does not require increased step number per span. 

 

Fig. 4. (a) Q-value vs. folding factor K and (b) Q-value vs. RDPS. 

The nonlinear impairments of a dispersion managed fiber link can be suppressed with 
inline residual dispersion [21,22]. But the non-zero RDPS can induce penalty in the folded 
DBP. Figure 4(a) shows the Q-values obtained at optimum power levels as functions of the 
folding factor. With a RDPS of 5 ps/nm (20 ps/nm), the maximum Q-value can be approached 
using a folding factor of 20 (5), which still represent significant computational savings.  
Figure 4(b) shows the Q-values as functions of the RDPS. With conventional DBP in all 
spans, the Q-value increases with RDPS and approaches the maximum value when RDPS is 
larger than 10 ps/nm. When folded DBP is used, the Q-value penalty increases with RDPS. It 
is shown that for a fiber link with non-zero RDPS, there is a tradeoff between computational 
load and system performance. 
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4. Conclusion and discussion 

In this paper, we proposed an efficient DBP method for periodically dispersion managed fiber 
system. With periodic dispersion management, the linear and nonlinear behavior of the signal 
repeats itself in every dispersion period. Taking advantage this periodic behavior, DBP of 
many fiber spans can be folded into one span. Polarization-mode dispersion does impact the 
effectiveness of DBP. We expect the effect of PDM on folded DBP to be similar to regular 
DBP described in [14]. 

We demonstrated the folded DBP at the receiver. However, this method of folding 
nonlinearity compensation of many spans into one span can also be applied to pre-
compensation of fiber nonlinearity at the transmitter. In the current work, each amplified span 
contains one period of the dispersion map. The folding factor can be further increased by 
shortening the dispersion period, i.e., each amplified span may consist of several dispersion 
periods. Folded DBP can also be applied when each dispersion period consists of several 
amplified spans. 
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