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Abstract

Motivation: The release of AlphaFold 2.0 has revolutionized our ability to determine protein structures from sequen-
ces. This tool also inadvertently opens up many unanticipated opportunities. In this article, we investigate the
AntiFam resource, which contains 250 protein sequence families that we believe to be spurious protein translations.
We would not expect proteins belonging to these families to fold into well-ordered globular structures. To test this
hypothesis, we have attempted to computationally determine the structure of a representative sequence from all
AntiFam 6.0 families.

Results: Although the large majority of families showed no evidence of globular structure, we have identified one
example for which a globular structure is predicted. Proteins in this AntiFam entry indeed seem likely to be bona
fide proteins, based on additional considerations, and thus AlphaFold provides a useful quality control for the
AntiFam database. Conversely, known spurious proteins offer useful set of quality controls for AlphaFold. We have
identified a trend that the mean structure prediction confidence score pLDDT is higher for shorter sequences. Of the
131 AntiFam representative sequences <100 amino acids in length, AlphaFold predicts a mean pLDDT of 80 or
greater for six of them. Thus, particular care should be taken when applying AlphaFold to short protein sequences.

Availability and implementation: The AlphaFold predictions for representative sequences can be found at the fol-
lowing URL: https://drive.google.com/drive/folders/1u9OocRIAabGQn56GljoG1JTDAxjkY1ro.

Contact: agb@ebi.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Databases of protein sequences, such as UniProt (UniProt
Consortium, 2021) and RefSeq (Li et al., 2021), are critical for mod-
ern molecular biology. These databases are built upon predictions of
protein-coding genes from DNA sequence data. Only a small frac-
tion of these protein-coding gene predictions have support from ex-
perimental data. When a gene prediction software makes errors it
can lead to the creation of protein sequence entries that are not
found in nature. These erroneous protein sequences are what we call
spurious proteins. Genome contamination, such as from non-coding
repetitive eukaryotic DNA, can exacerbate the problem of errone-
ously predicted protein-coding sequences (Breitwieser et al., 2019).
Spurious proteins account for a small fraction (perhaps 1–2%) of all
sequences in the databases. However, due to the size of the databases
this still accounts for millions of sequences. It is useful to identify
these spurious proteins and remove them from analyses and from
biological database resources to improve their accuracy. Over the
years a small number of tools and methods have been developed to
identify spurious proteins. One of the earliest tools was the AntiFam

database (Eberhardt et al., 2012), which contains a collection of
profile-HMM models for sets of sequences that are believed to be
spurious translations (Eddy, 1998). These profile-HMMs can be
used to search any set of sequences of interest. For example, they can
be applied to sets of metagenomics sequence predictions to assess the
quality of the sequence predictions. Since it was founded, AntiFam
has collected a rather modest 250 entries. AntiFam has been curated
in a rather ad hoc fashion. In its initial period of growth, spurious
families were identified in Pfam and removed from that resource and
placed into AntiFam. More recently a screen for protein-coding
genes that overlapped known non-coding RNA genes, such as
tRNAs was carried out and identified proteins clustered to make
new entries. Most recently, within release 6.0, we identified proteins,
which were found on the opposite strand of known genes. These are
the so-called shadow ORFs (open reading frames). This screen con-
tributed the largest number of entries to AntiFam. In this work, we
apply AlphaFold to representative sequences from AntiFam to firstly
understand how AlphaFold performs on spurious protein sequences,
but also to identify if any existing AntiFam entries might actually be
bona fide proteins with a globular structure.
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2 Methods

We took the Stockholm formatted seed flatfile for AntiFam release
6.0 with 250 entries and extracted the first representative sequence
for each entry and removed all gap characters. We then submitted
each sequence for structure determination by the AlphaFold 2.0
software package (Jumper et al., 2021), installed locally, using de-
fault settings with May 14, 2020 being the latest template release
date (PDB templates available at CASP14) and we used the pTM
models. We used the full sequence databases specified by AlphaFold
to create the multiple sequence alignments (MSA) for the structure
predictions.

To visualize the results, we adapted the code from ColabFold to
plot the MSA sequence coverage and the prediction confidence
(Mirdita et al., 2021).

To investigate the effect of the sequence length on the AlphaFold
prediction results, we randomly created amino acid sequences of dif-
ferent length using the random python library. Each amino acid was
weighted equally for selection. We generated five random sequences
per sequence length of 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140,
160, 180 and 200 residues (Supplementary Table S1). We ran
AlphaFold as described above for the AntiFam sequences.

For a direct comparison of spurious proteins with bona fide pro-
teins of the SwissProt database (UniProt Consortium, 2021), we ran
AlphaFold as described before on five randomly selected sequences
of the sequence length 10, 16, 20, 30, 40, 50, 60, 70, 80, 90, 100,
120, 140, 160, 180 and 200. The sequence identifier can be found in
Supplementary Table S2. When selecting the sequences, fragmented
proteins were avoided and only SwissProt sequences with an average
IUPred2A score below 0.5 were selected to avoid disordered pro-
teins (Erd}os and Dosztányi, 2020).

For an extended analysis of the AntiFam entries ANF00051,
ANF00055, ANF00056, ANF00058, ANF00064 and ANF00208,
we used the PSIPRED v. 4.0 web server to predict the secondary
structure of each representative sequence (Buchan and Jones, 2019).

3 Results

For each sequence representing an AntiFam family, we computa-
tionally determined the structure with AlphaFold 2.0 (Jumper et al.,
2021). We manually inspected the results of all 250 predictions.
First, we studied the sequence coverage for the AntiFam entries. On
average 1233, 851 and 37 homologous sequences were found in the
BFD, MGnify and UniRef90 sequence databases, respectively. We
observed that the number of homologous sequences found in the
BFD database tended to be higher for Antifam entries with a higher
sequence length. Second, we inspected the predicted Local Distance
Difference Test (pLDDT) plots, which determine whether any region
of the sequence has been predicted with high confidence. During this
inspection, we noted that many short sequences had a relatively high
pLDDT score indicating confident predictions with 17 of the 131
Antifam entries of a sequence length below 100 residues yielding a
mean pLDDT above 70. Beyond that, 58 of these 131 short se-
quence entries had a mean pLDDT above 60 and most of them, 120
of 131 entries, had a mean pLDDT above 50. Only one Antifam
entry with a sequence length above 100 residues, ANF00096,
yielded a pLDDT score above 70 (see Fig. 1A). The average residue
number of the submitted sequences is 126 amino acids ranging from
16 to 886 residues. For further investigation, we plotted the mean
pLDDT score of the top ranked AlphaFold prediction for each
AntiFam sequence against its length, as shown in Figure 1A.
Surprisingly, there is a strong correlation between the mean pLDDT
and the length of the sequence, with shorter sequences showing
higher mean pLDDT scores. This tendency could be reproduced
with randomly generated amino acid sequences of different length
(Fig. 1B and Supplementary Table S1) although the slope looks dif-
ferent for the random sequences. The pTM score shows a slight cor-
relation with the pLDDT score, it is below 0.5 for all AntiFam
entries except ANF00096 (Fig. 1C).

When comparing AntiFam and SwissProt sequence entries, we
noted that the average pLDDT as well as pTM score was higher for

SwissProt proteins compared to spurious proteins from a sequence
length of around 100 residues, yielding a distinction between spuri-
ous and bona fide proteins (Fig. 2). For shorter proteins, no clear

Fig. 1. (A) Graph showing the relationship between mean pLDDT and sequence

length across AntiFam representative sequences. The 95% confidence interval is

shown in blue shading. The red dot represents a likely false positive entry in

AntiFam (ANF00096). (B) Graph showing the relationship between mean pLDDT

and sequence length for a range of randomly generated sequences. The confidence

interval shown is that calculated for the AntiFam matches in (A). (C) In this graph,

the pLDDT scores are plotted against the pTM scores for the representative

AntiFam sequences with the red dot again representing the likely false positive

AntiFam entry (ANF00096)
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separation was achieved with either the pLDDT nor with the pTM
score (Fig. 2).

In Figure 3, we present all the examples of sequences <100
amino acids long with a mean pLDDT score >80 (Supplementary
Table S3). It is notable that in every case, the sequence is predicted
to be composed of a single alpha-helix. The helical structure was
also predicted by the secondary structure prediction tool PSIPRED
for AntiFam entry ANF00056, ANF00058 and ANF00064 (Buchan

and Jones, 2019). The other three AntiFam entries shown in
Figure 3 are too short to be predicted by PSIPRED. The five
AlphaFold models predicted per sequence superpose very well and
in many cases the side chain orientations are identical between the
models (Fig. 3).

We only identified a single AntiFam representative sequence, for
entry ANF00096, where a high-quality structure was predicted of
length >100 amino acids (see Fig. 4). Several aspects of sequence

Fig. 2. Comparison between spurious AntiFam sequence entries and bona fide protein sequences from SwissProt. (A) The average pLDDT score against protein sequence

length. (B) The pTM score against protein sequence length
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and distribution for ANF00096 family open reading frames had in-
dependently generated the notion that members of the family are
expressed, functional proteins rather than artifacts of genome misin-
terpretation. In particular, manual inspection of a multiple align-
ment of ANF00096 family protein translations showed strong
conservation of length with few examples of truncation or overhang
at either N- or C-terminus, which is often seen in spurious protein
translations. In the interior of the alignment, insertions and deletions
were common but occurred without shifting the reading frame. The
overall amino acid composition seemed typical of globular proteins,
rather than showing overrepresentations of Pro (CCN), Gly (GGN),
Ala (CGN) and Arg (GCN or AGR) as typical for spurious transla-
tions in GC-rich lineages, such as Streptomyces. Most columns of
the multiple alignment showed expected patterns of conservative
substitution, with strong conservation of hydrophilic, hydrophobic,
aromatic, small side chain size or Cys or Pro presence over a large
fraction of residue positions. A search using the PaperBLAST re-
source (Price and Arkin, 2017), allowing BLAST searches against all
proteins whose accession numbers or locus tags are cited explicitly
in Europe PubMedCentral (Ferguson et al., 2021), found a protein
with experimental evidence of gene expression that doubles
in response to redox stress (Pires et al., 2020). Lastly, we observed
a broad species distribution of member sequences, from
Actinobacteria to Cyanobacteria. Some families of ORFs spuriously
predicted as proteins, as from tRNA or CRISPR repeat region fea-
tures, are broadly distributed, but most are highly lineage-specific.
All these observations suggested that sequences identified by
ANF00096 were likely to consist mostly of genuine functional pro-
teins, but with the caveat that impressions by eye, dependent on cur-
ator expertise rather than a computational test, may not be reliable.

Taking all observations into account, we created a Pfam family
for the sequences of the AntiFam entry ANF00096 (Pfam: PF20704)
and so reinstating this domain family into Pfam.

4 Discussion

This study was partly motivated by trying to understand how
AlphaFold would perform on non-real protein sequences, to serve as
a kind of negative control. Randomly generated sequences would
mean that likely no homologous sequences would be found and thus

would be an imperfect negative control. The use of AntiFam as a
source of sequences means that there are sets of sequences for which
we do not believe they are translated in nature and yet we can iden-
tify similar sequences in the sequence databases. It is important to
note that AlphaFold was not designed or trained to make predic-
tions for spurious or randomly generated protein sequences. A se-
cond motivation was to see if we could use AlphaFold to act as a
quality control on AntiFam. If AntiFam entries were truly spurious
we would not expect them to adopt a well-ordered globular
structure.

Our discovery of a correlation between sequence length and
mean pLDDT is both an interesting and important one. An out-
standing question raised by this work is whether the short AntiFam
sequences do indeed adopt the confidently predicted conformation
that AlphaFold has produced. Some of the shortest sequences, such
as that for ANF00055, are both confidently predicted and have
highly consistent structure prediction even down to the side chain
orientations. The helical structures predicted by AlphaFold for the
entry ANF00056, ANF00058 and ANF00064 were also endorsed
by the secondary structure prediction tool PSIPRED. The question
whether the short AntiFam sequences indeed fold into helical struc-
tures is related to the question of whether randomly generated
sequences will adopt a stable structure (Tretyachenko et al., 2017).
Prior work in that area suggests that random sequences can adopt
regular secondary structures, although perhaps only 5–20% of these
sequences adopt a globular structure.

A better distinction between spurious and bona fide proteins
appears to be achieved by the pTM score, which is below 0.5 for all
AntiFam entries, except the likely false positive entry ANF00096.
But also the pTM score tends to be increased for shorter compared
to longer representative AntiFam sequences and thereby yields no
clear separation to real proteins of the manually reviewed SwissProt
database for sequences below 100 residues length.

The computational structure determination method can only de-
termine that AntiFams are unlikely to be spurious. It does not con-
firm the spurious nature of each entry. For example, well known
disordered proteins lack a well-defined AlphaFold structure and dis-
ordered regions are described to substantially overlap with low con-
fidence score regions (Akdel et al., 2021; Ruff and Pappu, 2021).
Therefore, this property cannot be used solely to determine if a

Fig. 3. AlphaFold predictions for the representative sequences of the seven AntiFam families <100 amino acids with a mean pLDDT score >80. The five models for each

sequence have been superposed and the side chains shown in stick representation
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protein is likely to be a spurious translation. AntiFam is heavily
biased toward eubacterial proteins, with 223 of the 250 AntiFam
entries containing eubacterial sequences and only 25 containing eu-
karyotic sequences. Eubacteria have a far lower proportion of disor-
dered proteins than eukaryotes (Dunker et al., 2000) and thus true
protein translations are much more likely to contain ordered globu-
lar regions than in eukaryotic proteins. Thus, this methodology, we
apply is well suited to AntiFam, but it is likely to be far less effective
for eukaryotic sequences.

Overall, we have discovered that AntiFam as expected has al-
most no entries that show a globular structure thus providing an in-
dependent quality assessment for the resource. This work and the
use of AlphaFold can be used as a quality control method for exist-
ing and candidate AntiFam entries, and has enabled the removal of

an erroneously added true protein entry from AntiFam. However,
short regions of secondary structure, such as a single alpha-helix
should not be taken as the sole evidence that a short peptide se-
quence is a true translated protein and should be removed from
AntiFam.

Initially, we thought that AlphaFold predictions might play a
role in the accurate determination of the protein-coding content of a
genome. For example, by looking through alternate reading frames
looking for confidently predicted structures. However, our results
on AntiFam suggest that AlphaFold may be able to distinguish be-
tween spurious and true protein-coding genes for longer ORFs, but
it is probably not a useful tool for short ORFs. Due to the computa-
tionally intensive nature of carrying out AlphaFold predictions, it
seems likely that such a method would only be applied to high value

Fig. 4. AlphaFold predictions for representative sequence of AntiFam entry ANF00096. (A) Superposition of the five AlphaFold predictions. (B) Sequence coverage plot show-

ing the number of homologues identified across the representative sequence and colored by the sequence identity of the homologues. (C) A plot of the pLDDT score per pos-

ition for each of the five AlphaFold models predicted
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reference proteomes to help discover long novel missing ORFs. For
the large majority of genomes now being sequenced, high speed pre-
diction is critical for scalability.

In conclusion, the field of identifying spurious proteins has been
greatly hindered by a lack of tools to identify them, as well as the diffi-
culty in confidently deciding that a protein is not translated. AlphaFold
provides a new and exciting adjunct to the existing techniques in this
field. Through the study of spurious proteins with AlphaFold, we have
also identified an important correlation between protein length and the
confidence prediction of AlphaFold. This result has important implica-
tions for interpreting AlphaFold outputs for shorter peptide sequences
in both spurious and real protein sequences.

Data availability

The AlphaFold predictions for representative sequences can be
found at the following URL: https://drive.google.com/drive/folders/
1u9OocRIAabGQn56GljoG1JTDAxjkY1ro.

The representative AntiFam sequences used in this study as well
as the scripts used for the graphs are provided under the following
GitHub repo: https://github.com/VivianMonzon/Folding_the_
Unfoldable.
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