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24 Abstract 

25

26 Imaging spectroscopy is currently the best approach for continuously mapping forest canopy 

27 traits, which is important for ecosystem and biodiversity assessments. Ideally, models are trained 

28 with trait data from fully sunlit top-of-canopy leaves. However, sampling top-of-canopy leaves is 

29 often difficult and sunlit foliage from the crown periphery is collected instead, assuming minimal 

30 within-crown trait variation among sunlit leaves. We tested the degree to which crown position 

31 affects foliar traits and spectra using mixed-effects models comparing sun leaves from crown 

32 centres of mature Acer saccharum trees collected with DeLeaves, a novel twig-sampling 

33 Unmanned Aerial System device, to sun leaves from the crown periphery collected with a pole 

34 pruner. Sun leaves from the crown centre differed from sun leaves from the crown periphery in 

35 absorption, reflectance and transmittance, and in a series of foliar traits, including leaf thickness, 

36 leaf mass and leaf nitrogen content per unit area, pointing out differences in resource allocation 

37 depending on sun exposure. Our study highlights the importance of matching exactly the location 

38 of foliar samples and spectral data, and of sampling across gradients of intra-individual variation 

39 for accurately predicting foliar trait distributions across and within canopies with imaging 

40 spectroscopy.

41

42 Keywords

43 functional trait mapping, spectroscopy, twig sampling, Unmanned Aerial System, Unmanned 

44 Aerial Vehicle
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45 Introduction

46

47 Recent technological advances in remote sensing, including imaging spectroscopy, provide 

48 ecologists with the unique ability to monitor the diversity and function of forests continuously 

49 over large regions. In addition, the “ecological data revolution” provides researchers and forest 

50 managers with an increasing amount of open access organismal and remote sensing data, and 

51 with tools kits for processing and interpreting these data (Bush et al. 2017). Large-scale research 

52 initiatives, such as the National Ecological Observatory Network (NEON, 

53 www.neonscience.org), are making their protocols and databases, containing foliar trait, 

54 community composition, and high resolution remote sensing data, publicly available. In addition, 

55 space agencies are currently investing in new instrument fleets for Earth observation, including 

56 imaging spectrometers allowing to remotely sense forest canopy traits repeatedly worldwide 

57 (Stavros et al. 2017). Together with ground observation data, these instruments will enable 

58 assessing the status of ecosystems and biodiversity at unprecedented detail (Turner 2014). This 

59 commitment to monitoring planet Earth comes at a critical time as global losses in plant species 

60 (Humphreys et al. 2019) and deforestation (Curtis et al. 2018) are putting ecosystem functions 

61 and services at risk.

62 Functional trait ecology is the most promising approach for scaling biological interaction 

63 across scales, and for modelling, predicting, and mitigating the effects of global change on 

64 ecosystem function and services (Laughlin 2014; Lavorel and Garnier 2002; Shipley et al. 2016; 

65 Violle et al. 2014). Plant functional traits are any characteristics that have a potentially 

66 significant influence on an individual’s establishment, survival, and fitness. At the individual 

67 scale, plant functional traits reveal trade-offs among a plant’s investment into different organs 
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68 (Osnas et al. 2013; Reich et al. 1997; Wright et al. 2004). At the community scale, investigating 

69 plant functional traits and trait syndromes, collections of interrelated traits, provide insight into 

70 resource partitioning and community assembly (Hart et al. 2016; McGill et al. 2006). And at 

71 landscape and continental scales, incorporating plant functional traits improves predictions of 

72 water and energy fluxes among atmosphere, biosphere, and geosphere in Earth System Models 

73 (Rockström et al. 2009; Rogers et al. 2017), and can also guide large-scale conservation planning 

74 (Asner et al. 2017). However, large inter- and intraspecific variation in plant functional traits 

75 imposes difficulties on their integration in large-scale ecosystem studies (Serbin et al. 2019). 

76 Measuring the traits of individual plants is laborious and it is logistically impossible to measure a 

77 wide range of traits over large spatial extents (Ustin et al. 2004) with traditional field techniques 

78 (see e.g. Perez-Harguindeguy et al. 2013). Remote sensing, particularly imaging spectroscopy 

79 and light detection and ranging (Lidar), provide the only practical means for mapping 

80 continuously and repeatedly the spatial distribution of chemical and structural plant traits (Jetz et 

81 al. 2016; Schimel et al. 2013; Turner 2014), from which plant community types, plant functional 

82 types and, in some cases, taxonomic groups can be inferred (for reviews see Fassnacht et al. 

83 2016; Wang and Gamon 2019).

84 Spectroscopy is the study of the interaction between electromagnetic energy and matter, 

85 and has a long history in detecting and quantifying chemical compounds in chemometrics 

86 (Martens 2001; Wold et al. 1983) and planetary sciences (Schaepman et al. 2009). Light 

87 absorption and scattering depend on the chemical composition and structural characteristics of 

88 the material measured. Spectrometers measure the interaction of light and matter in dozens of 

89 narrow wavelength channels, covering the visible (VIS, 400–700 nm), near- (NIR, 700–1000 

90 nm) and shortwave-infrared (SWIR, 1000–2500 nm) regions of the electromagnetic spectrum. 
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91 Spectral profiles of plants (i.e., the curves resulting from spectral measurements at short 

92 wavelength intervals) depend on a range of leaf and whole-plant traits (Gates et al. 1965; 

93 Knipling 1970), including pigment composition, micro- and macronutrient content, water 

94 content, specific leaf area (SLA), surface and internal structure of leaves, and canopy 

95 architecture (see e.g., Curran 1989; Curran et al. 2001; Ollinger 2011; Slaton et al. 2001; Ustin et 

96 al. 2009). Spectral profiles thus capture key differences in foliar chemistry, morphology, life 

97 history strategies, and responses to environmental variation, which have evolved over time and 

98 reflect ecological strategies (Cavender-Bares et al. 2017; Ustin and Gamon 2010). Ecological 

99 applications of imaging spectroscopy include mapping of functional traits (e.g., Asner et al. 

100 2011; Singh et al. 2015; Wang et al. 2019); the differentiation of plant communities (e.g., Foster 

101 and Townsend 2004; Schweiger et al. 2017), species (e.g. Asner and Martin 2008; Clark et al. 

102 2005; Lopatin et al. 2017), and genotypes (e.g., Madritch et al. 2014); the detection of disease 

103 (Herrmann et al. 2018; e.g., Pontius et al. 2005) and stress symptoms (e.g., Asner et al. 2016; 

104 Singh et al. 2016); and the estimation of other dimensions of plant biodiversity based on spectral 

105 diversity (e.g., Draper et al. 2019; Féret and Asner 2014; Laliberté et al. 2019; Palmer et al. 

106 2002; Rocchini et al. 2010; Schweiger et al. 2018; Wang et al. 2018). Imaging spectrometers are 

107 regularly mounted on airplanes, including NASA’s AVIRIS (Green et al. 1998) and ESA’s 

108 APEX (Schaepman et al. 2015) instruments, and experimental platforms, including mobile and 

109 stationary tram systems (Gamon et al. 2006), and flux towers (Gamon 2015). Current frontiers in 

110 imaging spectroscopy include the development of UAS’s (Aasen et al. 2018; Arroyo-Mora et al. 

111 2019) and upcoming spaceborne missions, such as ESA’s EnMAP (Guanter et al. 2015), JAXA’s 

112 HISUI (Iwasaki et al. 2011), and NASA’s SGB (National Academies of Sciences and Medicine 

113 2018) missions.
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114 Spectra of plants can be measured on dried and ground leaf material (e.g., (Curran et al. 

115 2001; Kokaly and Clark 1999), on fresh leaf samples (e.g., Gates et al. 1965), and estimated from 

116 spectral images (e.g., Green et al. 1998). Partial least squares regression (PLSR, Wold et al. 

117 1983) is one the most popular statistical methods for modelling and predicting continuous 

118 information from high dimensional data, such as spectra. Developed in the 1970’s and 1980’s for 

119 laboratory spectroscopy (Martens 2001), PLS methods were specifically designed to deal with 

120 the high degree of autocorrelation inherent in spectral data. For training a model with PLS, 

121 spectra (the predictors or x variables) are being matched to continuous data (the outcomes or y 

122 variables). For example, for functional trait mapping in forests, where harvesting all foliage 

123 within a given area is usually impossible, the biological outcome variables can be determined 

124 from leaf samples that are representative for the tree or trees present within a certain number of 

125 pixels captured by the sensor. Generally it is expected that the centre pixel or pixels of tree 

126 crowns dominate the spectral signal captured by airborne sensors with spatial resolutions at the 

127 m-scale, and they also often have the best illumination. Thus, methodological guidelines in 

128 imaging spectroscopy (see e.g., https://www.neonscience.org/data-collection/protocols-

129 standardized-methods) suggest sampling fully sunlit and mature leaves from the top of the 

130 canopy. However, the very top of a tree (i.e., the crown summit) is not always reachable with 

131 standard sampling equipment, such as pole pruners or line launchers. Canopy tops might be out 

132 of reach even for professional tree climbers that can operate equipment from within the crown; 

133 and more permanent infrastructure, such as canopy cranes, are difficult to deploy and expensive 

134 (Charron et al. 2020). In addition, the degree to which the chemical and structural composition of 

135 sunlit leaves from the top and centre of tree crowns are representative for the entire canopy is not 

136 clear. 
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137 Leaf structure and function within canopies vary depending on gradients of light, 

138 microclimate, and the degrees of herbivory and pathogen pressure (Niinemets 2007). Particularly 

139 well studied are anatomical and biochemical differences among sun and shade leaves which 

140 determine, for example, their maximum photosynthesis rates and longevity (Lichtenthaler et al. 

141 1981; Niinemets 2007; Valladares and Niinemets 2008). At high light sun leaves 

142 photosynthesize more and reach light saturation more gradually and at higher irradiance than 

143 shade leaves, while at low light shade leaves can exceed the maximum photosynthesis rates of 

144 sun leaves (Lichtenthaler et al. 1981). Generally, higher photosynthetic rates are associated with 

145 sun leaves being thicker than shade leaves, which is mainly achieved by longer palisade 

146 parenchyma cells increasing the space per unit area available for chloroplasts (Lichtenthaler et al. 

147 1981; Niinemets 2007). In addition, sun leaves often have a more robust cuticle reducing water 

148 loss and increasing specular reflectance at high irradiance. Shade leaves are generally thinner 

149 than sun leaves and have proportionally more spongy mesophyll cells (Lichtenthaler et al. 1981), 

150 which increases path length through light scattering within leaves increasing the probability of 

151 photon absorption by chlorophyll. Although shade leaves have compared to sun leaves often less 

152 chloroplasts per unit area, they can have higher chlorophyll concentrations per chloroplast 

153 resulting in relatively similar chlorophyll concentrations per unit mass (Vogelman et al. 1996). 

154 Comparative studies tend to describe differences among sun and shade leaves as extreme cases, 

155 but it is clear that these represent the tails of the distribution of traits along more complex light 

156 gradients within tree crowns (Ellsworth and Reich 1993; Gamon and Berry 2012; Niinemets 

157 2007; Shipley et al. 2005; Valladares and Niinemets 2008).

158 Several studies have highlighted the importance of incorporating intra- and interspecific 

159 variation for trait predictions from spectral images (Serbin et al. 2019; Singh et al. 2015), but 
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160 intra-individual variation in foliar traits within the outer tree crown surface has not received 

161 much attention. Here we took advantage of a custom UAS for foliar sampling to collect leaves 

162 from the centre and top of tree crowns which are difficult to reach with standard sampling 

163 methods. We tested for differences in chemical and structural leaf traits and spectra between 

164 paired samples of sunlit, mature and healthy leaves of ten sugar maple (Acer saccharum 

165 Marshall) trees, one set from crown periphery collected with a pole pruner, the other set from the 

166 top and centre of the crown collected with the UAS. We hypothesized that crown position would 

167 influence leaf traits and spectral only marginally, such that samples collected with the pole 

168 pruner would be representative for top of the canopy leaves.

169

170

171 Materials and methods 

172

173 On 26 June 2019 we sampled sunlit leaves of ten sugar maple trees near Sherbrooke (45.582, -

174 71.875) in Southern Québec (Supplementary Fig.1) under dry and sunny conditions, with 

175 minimal wind. The study site is located within the sugar maple-basswood bioclimatic domain, 

176 and has a mean annual air temperature and precipitation of 5.1ºC and 1287 mm, respectively. 

177 The stands are dominated by sugar maple with some red maple (Acer rubrum L.), American 

178 beech (Fagus grandifolia Ehrh.) and yellow birch (Betula alleghaniensis Britton). The soils are 

179 typically Orthic Humo-Ferric and Ferro-Humic Podzols characterized by a sandy loam to loam 

180 texture and a moder type forest floor varying in depth from 5 to 10 cm. 

181 We collected two twigs from each tree crown, one from the side of the crown with a pole 

182 pruner (Fig. 1A), and one from the top and centre of the crown using the DeLeaves Forestry 
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183 edition twig-sampling tool (DeLeaves, Sherbrooke, www.deleaves-drone.com; Charron et al. 

184 2020) operated from an off-the-shelf Unmanned Aerial Vehicle (UAV; here a Tarot 680 Pro 

185 Hexacopter; Fig. 1B). The DeLeaves sampling device consists of a grasping mechanism, a 

186 rotating saw, a branch holding mechanism and a camera installed on a carbon fibre rod, and a 

187 custom quick release system under the drone. It has a total weight of 1100 g and can be operated 

188 from any UAV with a maximum payload allowance of 1500 g (for details see Charron et al. 

189 2020)

190 After collection the twigs were immediately sealed into plastic bags, cooled and 

191 measured as soon as possible. We measured spectral reflectance and transmittance of six healthy 

192 and undamaged leaves per twig using a portable field spectrometer (SVC HR-1024i plus 

193 software; Spectra Vista Corporation, Poughkeepsie, NY) covering the wavelength range of 340 

194 to 2,500 nm in 1,024 spectral bands, fitted with an integrating sphere (DC-R/T, Spectra Vista 

195 Corporation, Poughkeepsie, NY) following the standardized leaf sampling protocol developed by 

196 the Canadian Airborne Biodiversity Observatory (CABO; Laliberté and Soffer 2018). Spectral 

197 processing followed the CABO spectral processing protocol (Schweiger and Laliberté 2019) and 

198 included correcting artefacts at the sensor overlap regions (around 900 nm and 1,900 nm, 

199 respectively), resampling to 1 nm spectral resolution, removing noisy regions at the beginning 

200 and end of the spectrum (centre wavelengths smaller than 400 nm or greater than 2,400 nm), and 

201 applying a Savitzky-Golay filter to reduce sensor noise. We calculated absolute leaf reflectance 

202 (%), transmittance (%), and absorptance (%; absorptance = 1 - reflectance - transmittance) per 

203 leaf (see Laliberté and Soffer 2018), and averaged the values of six leaves per twig.

204 From each twig we collected a bulk leaf sample for foliar trait analysis. Leaves were 

205 weighed in the field to determine leaf fresh mass (LFM, g), rehydrated for 6 h, weighed to 
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206 determine rehydrated leaf mass (RLM, g) and scanned for total leaf area (LA, cm2). Then leaves 

207 were oven-dried for 72 h and weighed again to determine dry mass (LDM, g). Based on these 

208 measurement we calculated leaf mass per area (LMA, g m-2) as LMA = LDM x LA-1 x 10-4, 

209 equivalent water thickness (EWT, μm) as EWT = (LFM - LDM) x LA-1 x 104, relative water 

210 content (RWC, %) as RWC = [(LFM - LDM) ÷ (RLM - LDM)] × 100, leaf dry matter content 

211 (LDMC, mg g-1) as LDMC = LDM × RLM-1 x 103, leaf water content (LWC, %) as LWC = 1 - 

212 LDMC (for details see Laliberté 2018), and leaf thickness (LT, μm) as LT = LMA x LDMC-1 x 

213 104 (Vile et al. 2005). Leaf carbon (C, %) and nitrogen content on a mass basis (N, %) were 

214 determined from oven-dried and ground samples using an elemental analyzer (CHNOS 

215 Elemental Analyzer Vario Micro Select; Elementar Analysesysteme GmbH, Hanau, Germany; 

216 see Ayotte et al. 2019). The concentrations on a mass basis (%) of carbon fractions, including 

217 non-structural carbohydrates (NSC), hemicellulose, cellulose, and lignin, were determined from 

218 oven-dried and ground samples using sequential digestion (Fiber Analyzer 2000; ANKOM 

219 Technology, Macedon, NY; see Ayotte and Laliberté 2019). The contents of C, N, and fibre 

220 fractions on an area basis (mg m-2) were calculated as the product of LMA and the respective 

221 contents on a mass basis.

222 We tested the hypothesis that sun leaves from the top of the crown (sampled with the 

223 UAS) differed from sun leaves from the side of the crown (sampled with the pole pruner) 

224 regarding their foliar traits, and band-wise reflectance, transmittance, and absorptance using 

225 linear mixed-effects (LME) models with “tree identity” as the random factor. Since p-values are 

226 uninformative in LME’s, we used a likelihood ratio (LR) > 4 as the threshold indicating an effect 

227 of sampling position on leaf traits and spectra, meaning that it would be least four times more 

228 likely that leaves differ in their foliar traits and spectra depending on sampling position (M1) 
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229 than that they are the same (M0). We used R (R Core Team 2019) and the lme4 package (Bates 

230 et al. 2014) for all analyses. 

231

232

233 Results

234

235 Foliar traits

236

237 We found evidence for intra-individual differences in a series of leaf traits depending on crown 

238 position (Table 1). Sun leaves sampled from the top and centre of the crown with the UAS had 

239 greater LMA than sun leaves from the crown periphery sampled with the pole pruner (LR = 14.3, 

240 P < 0.001; Fig. 2A). This difference was likely driven by an increase in leaf thickness (LR = 

241 14.4, P < 0.001; Fig. 2B) and not leaf density, which is strongly correlated with LDMC (LR = 

242 0.6, P = 0.44; see Vile et al. 2005). Because of the difference in leaf thickness, leaves from the 

243 top and centre of the crown also had on an area basis (g m-2) higher contents of N (LR = 14.9, P 

244 < 0.001; Fig. 2C), as well as C (LR = 13.2, P < 0.001), NSC (LR = 14.2, P < 0.001), cellulose 

245 (LR = 8.7, P = 0.003), and lignin (LR = 13.3, P < 0.001; Supplementary Fig. 2) than leaves from 

246 the side of the crown. We found no differences in chemical traits between leaves from the top 

247 and from the side of the crown when traits were expressed on a mass basis (%), except for 

248 cellulose content which was lower in leaves from the crown centre (LR = 9.7, P = 0.002; Fig. 

249 2F). Further, compared to leaves from the crown periphery, leaves from the crown centre had 

250 higher EWT (LR = 10.9, P = 0.001; Fig. 2D), representing the amount of water at the time 

251 measurement (i.e., the depth of the water column as we cross the leaf), but lower RWC (LR = 
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252 9.9, P = 0.002; Fig. 2E), representing the amount of water at the time of measurement relative to 

253 a fully hydrated leaf. 

254

255

256 Spectral properties

257

258 Several wavelength regions differed between sun leaves from the top of the crown and sun 

259 leaves from the crown periphery. Leaves from the top of the crown absorbed more light in the 

260 green, between ~510 and 570 nm, at the red edge, between ~710 and 750 nm, and across the 

261 entire SWIR, at wavelength greater than ~1140 nm, than leaves from the crown periphery (Fig. 

262 3A). Greater SWIR absorption by leaves from the top of the crown compared to leaves from the 

263 crown periphery, including at the two major water absorption features at ~1450 and 1950 nm, led 

264 to less forward- (i.e., transmittance) and back-scattering (i.e., reflectance) in this wavelength 

265 region (Fig. 3B). Further, leaves from the top of the crown transmitted less light in the blue, 

266 between ~400 and 450 nm, in the green, between ~500 and 600 nm, and in the NIR regions of 

267 the spectrum compared to leaves from the crown periphery (Fig. 3B top). In addition, leaves 

268 from the top of the crown compared to leaves from the crown periphery reflected more light in 

269 the blue, between ~400 and 500 nm, and red, between ~650 and 700 nm, wavelength regions 

270 (Fig 3B bottom). 

271

272

273 Discussion

274
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275 Tree crowns are complex systems within which resource allocation is influenced by three-

276 dimensional gradients of light, microclimate, herbivory, and pathogen pressure. We focus our 

277 discussion on the interaction of light with leaves, as light is together with nutrients, water and 

278 carbon dioxide (CO2) a primary resource for plants. Light gradients occur throughout the canopy, 

279 and, although we did not measure radiation rates or the duration of leaves’ sun exposure 

280 depending on crown position, it is likely that leaves from the side of the crown received less 

281 intense sunlight for fewer hours than leaves from the top of the crown. We found that many 

282 regions of the spectrum (Fig. 3) and a number of leaf traits, including LMA, leaf thickness, 

283 EWT, RWC, the contents of C, N, NSC, cellulose, and lignin on an area basis, and cellulose on a 

284 mass basis (Table 1) varied significantly with sampling position. Our results are consistent with 

285 existing knowledge about the influence of light gradients on leaf structure and biochemistry 

286 (Lichtenthaler et al. 1981; Niinemets 2007; Shipley et al. 2005). However, the differences in leaf 

287 traits and spectra between sunlit foliage from the top compared to the side of the crown were 

288 greater than we expected, given that all leaves were collected from the outer crown layer and 

289 thus can be classified as sun leaves. On a light gradient ranging from maximum sun exposure 

290 during daylight hours to full shade, leaves from the top of the crown resembled leaves 

291 experiencing maximum sun exposure in form and function, while leaves from the crown 

292 periphery resembled leaves receiving less light. This has important implications for imaging 

293 spectroscopy and for models predicting foliar traits from spectra.

294 The increase in LMA and leaf thickness with crown centrality is likely to be explained by 

295 the tendency of palisade cell length and number of palisade cell layers to increase with 

296 increasing sun exposure (Lichtenthaler et al. 1981). Longer palisade cells and more palisade cell 

297 layers tend to contain more chloroplasts per unit area, within which Ribulose-1,5-bisphosphate 
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298 carboxylase/oxygenase (Rubisco) fixes CO2. Rubisco contains about 20–30 % of total leaf N in 

299 C3 plants (Evans and Seemann 1989), and leaves in high light environments tend to have more 

300 Rubisco leading to greater content of leaf N per unit area in thicker leaves (Niinemets 2007). 

301 Notably, leaf N on a mass basis did not change with sampling position, probably because thinner 

302 leaves with fewer chloroplasts tend to contain more chlorophyll per chloroplast (Niinemets 

303 2007). Similarly, leaves from the top of the canopy had higher amounts of carbon related traits 

304 on an area basis (Table 1, Supplementary Fig. 2), highlighting that changes in areas based 

305 measurements in leaf chemistry arise largely through scaling with LMA (Ellsworth and Reich 

306 1993). Cellulose content was the only leaf trait included in our study that varied significantly on 

307 a mass basis between leaves from the crown centre and crown periphery. Although we did not 

308 specifically investigate leaf anatomy, we explain this by thinner leaves from the crown periphery 

309 likely having proportionally more vascular tissue, relative to mesophyll, with thicker cell walls 

310 than the thicker leaves from the crown centre. Although, leaves from the crown centre had higher 

311 EWT, indicating greater leaf water content at the time of measurement, than leaves from the 

312 crown periphery, leaves from the crown centre were less turgescent, indicated by a lower RWC, 

313 expressing leaf water content at the time of measurement relative to leaf water content of a fully 

314 hydrated leaf. This was likely caused by a greater degree of sun exposure of the crown centre 

315 compared to the crown periphery, which led to more water loss through transpiration during the 

316 morning hours preceding our measurements. Sampling position affected all chemical leaf traits 

317 (the contents of C, N, NSC, cellulose, and lignin), except for hemicellulose content, expressed on 

318 an area basis, while it affected only one leaf trait expressed on a mass basis (cellulose content), 

319 pointing out that area and mass based trait measurements describe fundamentally different trade-

320 offs. Generally, area based measurements more adequately describe physiological processes and 
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321 leaf anatomy, while mass based measurements better describe allocation patterns and energy 

322 budgets.

323 Leaf water content strongly influences leaf spectral properties throughout the SWIR 

324 (Curran 1989; Knipling 1970; Ollinger 2011). Water causes not only distinct absorption features 

325 at 1450 nm and 1950 nm, and smaller features in the NIR-SWIR transition region at 980 nm and 

326 1150 nm, but also generally high absorption beyond 1400 nm due to rotational-vibrational 

327 properties of water molecules (Ollinger 2011). The increased SWIR absorption, and decreased 

328 transmittance and reflectance of leaves from the top of the crown compared to leaves from the 

329 crown periphery can be explained by their greater water content at the time of measurement 

330 (EWT). Leaves from the centre of the crown compare to leaves from the crown periphery also 

331 likely had more cell-to-air interfaces per unit area (Slaton et al. 2001), which probably led to 

332 increased forward-scattering (i.e., reflectance) in the NIR (at the expense of transmittance), since 

333 differences in density between air and water lead to refraction (Ollinger 2011). Leaves from 

334 centre of the crown compared to leaves from the side of the crown absorbed more light in the 

335 green, but reflected more (and transmitted less) in the red and blue regions of the spectrum, 

336 which is likely associated with differences in pool sizes of photoprotective carotenoid pigments 

337 relative to chlorophyll (Gamon and Berry 2012). We used the photochemical reflectance index 

338 (PRI, Gamon et al. 1992) to compare our leaf samples. Generally, lower PRI values [calculated 

339 as PRI = (reflectance at 531 nm - reflectance at 570 nm) / (reflectance at 531 nm + reflectance at 

340 570 nm)] are associated with higher carotenoid to chlorophyll ratio, lower epoxidation state of 

341 xanthophyll cycle pigments which dissipate excess absorbed photosynthetically active radiation 

342 as heat (Demmig-Adams and Adams 1996), and lower light use efficiency (Gamon et al. 1992). 

343 Therefore, PRI and changes in PRI capture short term responses to excess light (xanthophyll 
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344 pigment conversion) as well as long term changes in pigment pool sizes due to leaf development, 

345 leaf age, sun exposure, and chronic stress (Gamon et al. 1992; Gamon and Berry 2012). Most 

346 leaves from the centre of the crown had lower PRI values than leaves from the crown periphery 

347 (Supplementary Fig. 3). Given the time it takes to collect foliar samples and measure them, it is 

348 likely that the PRI signal was primarily driven by differences in pigment pool size and not 

349 xanthophyll cycle activity. Thus, our result points towards sun leaves from the centre of the 

350 crown investing more in carotenoid pigments relative to chlorophylls, as they likely experience 

351 increased sun exposure compared to sun leaves from the crown periphery.

352 The UAS twig sampling device offered the only possibility for us to collect leaves from 

353 the top of crown of our maple trees within a reasonable amount of time (the average time for 

354 sample collection was ~5 min). It would have been difficult for professionals to climb high 

355 enough for reaching the top of the crowns with a pole pruner because tree branches were 

356 relatively thin. Likewise, reaching the top of the tree with a line launcher (Youngentob et al. 

357 2016) would have been difficult because of the high density of foliage, and using a canopy crane 

358 was not an option due to the high cost and limited accessibility of the site. Pole pruners are easy 

359 to use and inexpensive and are thus regularly used for twig sampling, including the collection of 

360 foliar samples for remote sensing studies. Generally, it is assumed that healthy, mature, sunlit 

361 leaves collected more towards the side of the crown are representative of the leaves from the 

362 crown centre. However, our results show that this assumption can introduce bias for remote 

363 sensing of foliar traits in forests. Combining imaging spectroscopy data collected at the m-level 

364 from airplanes with trait data sampled from the same crowns is the current gold standard for 

365 continuous trait mapping in forest ecosystems (Asner et al. 2017; Asner et al. 2011; Serbin et al. 

366 2019; Singh et al. 2015). Although the careful matching of leaf samples and spectra has been 
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367 emphasized and possibilities for incorporating intra-individual trait variation at the vertical level 

368 in trait mapping has been explored (Singh et al. 2015), less attention has been paid to intra-

369 individual variation at the outer layer of leaves in the crown. More studies are needed to quantify 

370 the degree to which different parts of the canopy contribute to remotely sensed signals. Our 

371 results suggest that remote sensing products, such as trait maps, could be improved by 

372 incorporating intra-individual variation of foliar characteristics, for example by sampling leaves 

373 from multiple position throughout the top layer of the crown. Focusing on the centre of the 

374 crown with UAS precision sampling provides another option and could be combined with tree 

375 segmentation algorithms allowing the automatic extraction of image pixels from crown centres 

376 (e.g., Maschler et al. 2018). Looking ahead, trait mapping from spectral imagery acquired by 

377 satellites would likely also benefit from incorporating intra-individual variation during the 

378 upscaling process. In addition, imaging spectroscopy from UASs, an active area of research 

379 (Arroyo-Mora et al. 2019), will provide exciting opportunities for studying the functional 

380 complexity of tree crowns at the cm level. Matching spectra exactly to the positions of foliar 

381 sample collection will be important for such high spatial resolution remote sensing studies. 

382 In summary, our study highlights the importance of matching accurately leaves and 

383 spectra during spectroscopic field campaigns. Twig sampling devices operated from UAS’s 

384 provide a valuable, cost- and time-effective option for sampling from the top and centre of tree 

385 crowns (Charron et al. 2020), which are difficult to reach with conventional sampling methods. 

386 Opportunities for imaging spectroscopy across scales are rapidly increasing (Turner 2014). Thus 

387 far, imaging spectrometers have been mostly operated from airplanes at relatively high costs. 

388 Upcoming satellite missions will collect spectral images of Earth repeatedly across large spatial 

389 extents, while UAS imaging spectroscopy will allow investigating resource allocation in forests 
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390 at the cm level. Foliar traits express specific adaptations of leaves for optimizing resource 

391 allocation within the complex light environment of a crown, including trade-offs in 

392 photosynthesis, photoprotection, and longevity. Incorporating intra-individual foliar variation 

393 can be expected to improve the accuracy of remote sensing products, which are becoming 

394 increasingly important for predicting energy and water fluxes, and for global biodiversity 

395 assessments.

396

397

398 Acknowledgements

399

400 We thank Florence Blanchard, Sabrina Demers-Thibeault, Alexandra Massey, Antoine Mathieu 

401 and Maria Juliana Pardo for field sampling, and Isabelle Gareau and Sabrina Demers-Thibeault 

402 for laboratory analysis. Thanks to John A. Gamon for comments on the results. This research is 

403 part of the Canadian Airborne Biodiversity Observatory (CABO) project, which is funded by a 

404 Discovery Frontiers grant from Natural Sciences and Engineering Research Council of Canada 

405 (NSERC; Grant number 509190-2017). EL was also supported by a Discovery Grant from 

406 NSERC (Grant number RGPIN-2014-06106).

Page 18 of 31

https://mc06.manuscriptcentral.com/cjfr-pubs

Canadian Journal of Forest Research



Draft

19

407 References

408

409 Aasen, H., Honkavaara, E., Lucieer, A., and Zarco-Tejada, P. 2018. Quantitative remote sensing 

410 at ultra-high resolution with uav spectroscopy: A review of sensor technology, measurement 

411 procedures, and data correction workflows. Remote Sensing 10(7): 1091.

412 Arroyo-Mora, J.P., Kalacska, M., Inamdar, D., Soffer, R., Lucanus, O., Gorman, J., Naprstek, T., 

413 Schaaf, E.S., Ifimov, G., and Elmer, K. 2019. Implementation of a UAV–Hyperspectral 

414 Pushbroom Imager for Ecological Monitoring. Drones 3(1): 12.

415 Asner, G.P. and Martin, R.E. 2008. Airborne spectranomics: mapping canopy chemical and 

416 taxonomic diversity in tropical forests. Frontiers in Ecology and the Environment 7(5): 269-

417 276.

418 Asner, G.P., Brodrick, P.G., Anderson, C.B., Vaughn, N., Knapp, D.E., and Martin, R.E. 2016. 

419 Progressive forest canopy water loss during the 2012–2015 California drought. Proceedings 

420 of the National Academy of Sciences 113(2): E249-E255.

421 Asner, G.P., Martin, R.E., Knapp, D., Tupayachi, R., Anderson, C., Sinca, F., Vaughn, N., and 

422 Llactayo, W. 2017. Airborne laser-guided imaging spectroscopy to map forest trait diversity 

423 and guide conservation. Science 355(6323): 385-389.

424 Asner, G.P., Martin, R.E., Knapp, D.E., Tupayachi, R., Anderson, C., Carranza, L., Martinez, P., 

425 Houcheime, M., Sinca, F., and Weiss, P. 2011. Spectroscopy of canopy chemicals in humid 

426 tropical forests. Remote Sensing of Environment 115(12): 3587-3598.

427 Ayotte, J. and Laliberté, E. 2019. Measuring leaf carbon fractions with the ANKOM2000 Fiber 

428 Analyzer.

429 Ayotte, J., Guilbeault-Mayers, X., and Laliberté, E. 2019. Measuring CN content in leaf samples 

430 using Elementar Vario MICRO Cube. Available from 

431 https://www.protocols.io/view/measuring-cn-content-in-leaf-samples-using-element-

432 udces2w.

433 Bates, D., Mächler, M., Bolker, B., and Walker, S. 2014. Fitting linear mixed-effects models 

434 using lme4. arXiv preprint arXiv:1406.5823.

435 Bush, A., Sollmann, R., Wilting, A., Bohmann, K., Cole, B., Balzter, H., Martius, C., Zlinszky, 

436 A., Calvignac-Spencer, S., and Cobbold, C.A. 2017. Connecting Earth observation to high-

437 throughput biodiversity data. Nature Ecology & Evolution 1(7): 0176.

Page 19 of 31

https://mc06.manuscriptcentral.com/cjfr-pubs

Canadian Journal of Forest Research



Draft

20

438 Cavender-Bares, J., Gamon, J.A., Hobbie, S.E., Madritch, M.D., Meireles, J.E., Schweiger, A.K., 

439 and Townsend, P.A. 2017. Harnessing plant spectra to integrate the biodiversity sciences 

440 across biological and spatial scales. American Journal of Botany 104(7): 966-969.

441 Charron, G., Robichaud-Courteau, T., La Vigne, H., Weintraub, S., Hill, A., Justice, D., 

442 Bélanger, N., and Lussier Desbiens, A. 2020. The DeLeaves: A UAV device for efficient tree 

443 canopy sampling. Journal of Unmanned Vehicle Systems. doi:10.1139/juvs-2020-0005.

444 Clark, M.L., Roberts, D.A., and Clark, D.B. 2005. Hyperspectral discrimination of tropical rain 

445 forest tree species at leaf to crown scales. Remote sensing of environment 96(3-4): 375-398.

446 Curran, P.J. 1989. Remote sensing of foliar chemistry. Remote Sensing of Environment 30(3): 

447 271-278.

448 Curran, P.J., Dungan, J.L., and Peterson, D.L. 2001. Estimating the foliar biochemical 

449 concentration of leaves with reflectance spectrometry: testing the Kokaly and Clark 

450 methodologies. Remote Sensing of Environment 76(3): 349-359.

451 Curtis, P.G., Slay, C.M., Harris, N.L., Tyukavina, A., and Hansen, M.C. 2018. Classifying 

452 drivers of global forest loss. Science 361(6407): 1108-1111. doi:10.1126/science.aau3445.

453 Demmig-Adams, B. and Adams, W.W.I. 1996. The role of xanthophyll cycle carotenoids in the 

454 protection of photosynthesis. Trends in Plant science 1(1): 21-26.

455 Draper, F.C., Baraloto, C., Brodrick, P.G., Phillips, O.L., Martinez, R.V., Honorio Coronado, 

456 E.N., Baker, T.R., Zárate Gómez, R., Amasifuen Guerra, C.A., and Flores, M. 2019. Imaging 

457 spectroscopy predicts variable distance decay across contrasting Amazonian tree 

458 communities. Journal of Ecology 107(2): 696-710.

459 Ellsworth, D. and Reich, P.B. 1993. Canopy structure and vertical patterns of photosynthesis and 

460 related leaf traits in a deciduous forest. Oecologia 96(2): 169-178.

461 Evans, J.R. and Seemann, J.R. 1989. The allocation of protein nitrogen in the photosynthetic 

462 apparatus: cost, consequences and control. In Photosynthesis. Edited by W.R. Briggs. Alan 

463 R. Liss Inc., New York. pp. 183–205.

464 Fassnacht, F.E., Latifi, H., Stereńczak, K., Modzelewska, A., Lefsky, M., Waser, L.T., Straub, 

465 C., and Ghosh, A. 2016. Review of studies on tree species classification from remotely 

466 sensed data. Remote Sensing of Environment 186: 64-87.

467 Féret, J.-B. and Asner, G.P. 2014. Mapping tropical forest canopy diversity using high‐fidelity 

468 imaging spectroscopy. Ecological Applications 24(6): 1289-1296.

Page 20 of 31

https://mc06.manuscriptcentral.com/cjfr-pubs

Canadian Journal of Forest Research



Draft

21

469 Foster, J.R. and Townsend, P.A. Linking hyperspectral imagery and forest inventories for forest 

470 assessment in the Central Appalachians. In Proceedings of the 14th Central Hardwood 

471 Conference. 2004.

472 Gamon, J., Penuelas, J., and Field, C. 1992. A narrow-waveband spectral index that tracks 

473 diurnal changes in photosynthetic efficiency. Remote Sensing of environment 41(1): 35-44.

474 Gamon, J.A. 2015. Reviews and Syntheses: optical sampling of the flux tower footprint. 

475 Biogeosciences 12: 4509–4523. doi:10.5194/bg-12-4509-2015.

476 Gamon, J.A. and Berry, J.A. 2012. Facultative and constitutive pigment effects on the 

477 Photochemical Reflectance Index (PRI) in sun and shade conifer needles. Israel Journal of 

478 Plant Sciences 60(1-2): 85-95.

479 Gamon, J.A., Cheng, Y., Claudio, H., MacKinney, L., and Sims, D.A. 2006. A mobile tram 

480 system for systematic sampling of ecosystem optical properties. Remote Sensing of 

481 Environment 103(3): 246-254. doi:http://dx.doi.org/10.1016/j.rse.2006.04.006.

482 Gates, D.M., Keegan, H.J., Schleter, J.C., and Weidner, V.R. 1965. Spectral properties of plants. 

483 Applied optics 4(1): 11-20.

484 Green, R.O., Eastwood, M.L., Sarture, C.M., Chrien, T.G., Aronsson, M., Chippendale, B.J., 

485 Faust, J.A., Pavri, B.E., Chovit, C.J., and Solis, M. 1998. Imaging spectroscopy and the 

486 airborne visible/infrared imaging spectrometer (AVIRIS). Remote sensing of environment 

487 65(3): 227-248.

488 Guanter, L., Kaufmann, H., Segl, K., Foerster, S., Rogass, C., Chabrillat, S., Kuester, T., 

489 Hollstein, A., Rossner, G., and Chlebek, C. 2015. The EnMAP spaceborne imaging 

490 spectroscopy mission for earth observation. Remote Sensing 7(7): 8830-8857.

491 Hart, S.P., Schreiber, S.J., and Levine, J.M. 2016. How variation between individuals affects 

492 species coexistence. Ecology letters 19(8): 825-838.

493 Herrmann, I., Vosberg, S., Ravindran, P., Singh, A., Chang, H.-X., Chilvers, M., Conley, S., and 

494 Townsend, P. 2018. Leaf and Canopy Level Detection of Fusarium Virguliforme (Sudden 

495 Death Syndrome) in Soybean. Remote Sensing 10(3): 426. Available from 

496 http://www.mdpi.com/2072-4292/10/3/426 [accessed.

497 Humphreys, A.M., Govaerts, R., Ficinski, S.Z., Nic Lughadha, E., and Vorontsova, M.S. 2019. 

498 Global dataset shows geography and life form predict modern plant extinction and 

499 rediscovery. Nature Ecology & Evolution 3(7): 1043-1047. doi:10.1038/s41559-019-0906-2.

Page 21 of 31

https://mc06.manuscriptcentral.com/cjfr-pubs

Canadian Journal of Forest Research



Draft

22

500 Iwasaki, A., Ohgi, N., Tanii, J., Kawashima, T., and Inada, H. Hyperspectral Imager Suite 

501 (HISUI) -Japanese hyper-multi spectral radiometer. In 2011 IEEE International Geoscience 

502 and Remote Sensing Symposium. 24-29 July 2011 2011. pp. 1025-1028.

503 Jetz, W., Cavender-Bares, J., Pavlick, R., Schimel, D., Davis, F.W., Asner, G.P., Guralnick, R., 

504 Kattge, J., Latimer, A.M., and Moorcroft, P. 2016. Monitoring plant functional diversity from 

505 space. Nature plants 2: 16024.

506 Knipling, E.B. 1970. Physical and physiological basis for the reflectance of visible and near-

507 infrared radiation from vegetation. Remote sensing of environment 1(3): 155-159.

508 Kokaly, R.F. and Clark, R.N. 1999. Spectroscopic determination of leaf biochemistry using 

509 band-depth analysis of absorption features and stepwise multiple linear regression. Remote 

510 Sensing of Environment 67(3): 267-287.

511 Laliberté, E. 2018. Measuring specific leaf area and water content. Available from 

512 https://www.protocols.io/view/measuring-specific-leaf-area-and-water-content-p3tdqnn.

513 Laliberté, E. and Soffer, R. 2018. Measuring spectral reflectance and transmittance (350-2500 

514 nm) of large leaves using the Spectra Vista Corporation (SVC) DC-R/T Integrating Sphere. 

515 Available from https://www.protocols.io/view/measuring-spectral-reflectance-and-

516 transmittance-3-p8pdrvn.

517 Laliberté, E., Schweiger, A.K., and Legendre, P. 2019. Partitioning plant spectral diversity into 

518 alpha and beta components. Ecology letters.

519 Laughlin, D.C. 2014. Applying trait‐based models to achieve functional targets for theory‐driven 

520 ecological restoration. Ecology letters 17(7): 771-784.

521 Lavorel, S. and Garnier, É. 2002. Predicting changes in community composition and ecosystem 

522 functioning from plant traits: revisiting the Holy Grail. Functional ecology 16(5): 545-556.

523 Lichtenthaler, H., Buschmann, C., Döll, M., Fietz, H.-J., Bach, T., Kozel, U., Meier, D., and 

524 Rahmsdorf, U. 1981. Photosynthetic activity, chloroplast ultrastructure, and leaf 

525 characteristics of high-light and low-light plants and of sun and shade leaves. Photosynthesis 

526 research 2(2): 115-141.

527 Lopatin, J., Fassnacht, F.E., Kattenborn, T., and Schmidtlein, S. 2017. Mapping plant species in 

528 mixed grassland communities using close range imaging spectroscopy. Remote Sensing of 

529 Environment 201: 12-23. doi:https://doi.org/10.1016/j.rse.2017.08.031.

Page 22 of 31

https://mc06.manuscriptcentral.com/cjfr-pubs

Canadian Journal of Forest Research



Draft

23

530 Madritch, M.D., Kingdon, C.C., Singh, A., Mock, K.E., Lindroth, R.L., and Townsend, P.A. 

531 2014. Imaging spectroscopy links aspen genotype with below-ground processes at landscape 

532 scales. Philosophical Transactions of the Royal Society of London B: Biological Sciences 

533 369(1643): 20130194.

534 Martens, H. 2001. Reliable and relevant modelling of real world data: a personal account of the 

535 development of PLS regression. Chemometrics and intelligent laboratory systems 58(2): 85-

536 95.

537 Maschler, J., Atzberger, C., and Immitzer, M. 2018. Individual tree crown segmentation and 

538 classification of 13 tree species using Airborne hyperspectral data. Remote Sensing 10(8): 

539 1218.

540 McGill, B.J., Enquist, B.J., Weiher, E., and Westoby, M. 2006. Rebuilding community ecology 

541 from functional traits. Trends in Ecology & Evolution 21(4): 178-185.

542 National Academies of Sciences, E. and Medicine. 2018. Thriving on Our Changing Planet: A 

543 Decadal Strategy for Earth Observation from Space. The National Academies Press, 

544 Washington, DC.

545 Niinemets, Ü. 2007. Photosynthesis and resource distribution through plant canopies. Plant, Cell 

546 & Environment 30(9): 1052-1071.

547 Ollinger, S.V. 2011. Sources of variability in canopy reflectance and the convergent properties of 

548 plants. New Phytologist 189(2): 375-394. doi:10.1111/j.1469-8137.2010.03536.x.

549 Osnas, J.L., Lichstein, J.W., Reich, P.B., and Pacala, S.W. 2013. Global leaf trait relationships: 

550 mass, area, and the leaf economics spectrum. Science 340(6133): 741-744.

551 Palmer, M.W., Earls, P.G., Hoagland, B.W., White, P.S., and Wohlgemuth, T. 2002. 

552 Quantitative tools for perfecting species lists. Environmetrics: The official journal of the 

553 International Environmetrics Society 13(2): 121-137.

554 Perez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., and 

555 Bret-Harte, M. 2013. New handbook for standardised measurement of plant functional traits 

556 worldwide. Australian Journal 800: 167-234.

557 Pontius, J., Hallett, R., and Martin, M. 2005. Using AVIRIS to assess hemlock abundance and 

558 early decline in the Catskills, New York. Remote Sensing of Environment 97(2): 163-173.

559 R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for 

560 Statistical Computing, Vienna.

Page 23 of 31

https://mc06.manuscriptcentral.com/cjfr-pubs

Canadian Journal of Forest Research



Draft

24

561 Reich, P.B., Walters, M.B., and Ellsworth, D.S. 1997. From tropics to tundra: global 

562 convergence in plant functioning. Proceedings of the National Academy of Sciences 94(25): 

563 13730-13734.

564 Rocchini, D., Balkenhol, N., Carter, G.A., Foody, G.M., Gillespie, T.W., He, K.S., Kark, S., 

565 Levin, N., Lucas, K., and Luoto, M. 2010. Remotely sensed spectral heterogeneity as a proxy 

566 of species diversity: recent advances and open challenges. Ecological Informatics 5(5): 318-

567 329.

568 Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin III, F.S., Lambin, E.F., Lenton, T.M., 

569 Scheffer, M., Folke, C., and Schellnhuber, H.J. 2009. A safe operating space for humanity. 

570 Nature 461(7263): 472.

571 Rogers, A., Medlyn, B.E., Dukes, J.S., Bonan, G., Von Caemmerer, S., Dietze, M.C., Kattge, J., 

572 Leakey, A.D., Mercado, L.M., and Niinemets, Ü. 2017. A roadmap for improving the 

573 representation of photosynthesis in Earth system models. New Phytologist 213(1): 22-42.

574 Schaepman, M.E., Ustin, S.L., Plaza, A.J., Painter, T.H., Verrelst, J., and Liang, S. 2009. Earth 

575 system science related imaging spectroscopy-An assessment. Remote Sensing of 

576 Environment 113(SUPPL. 1): S123-S137. Available from 

577 http://www.scopus.com/inward/record.url?eid=2-s2.0-

578 67650270441&partnerID=40&md5=874f5734a40a51f3a49da7130d7b6db5 [accessed.

579 Schaepman, M.E., Jehle, M., Hueni, A., D'Odorico, P., Damm, A., Weyermann, J., Schneider, 

580 F.D., Laurent, V., Popp, C., Seidel, F.C., Lenhard, K., Gege, P., Küchler, C., Brazile, J., 

581 Kohler, P., De Vos, L., Meuleman, K., Meynart, R., Schläpfer, D., Kneubühler, M., and Itten, 

582 K.I. 2015. Advanced radiometry measurements and Earth science applications with the 

583 Airborne Prism Experiment (APEX). Remote Sensing of Environment 158: 207-219. 

584 doi:https://doi.org/10.1016/j.rse.2014.11.014.

585 Schimel, D.S., Asner, G.P., and Moorcroft, P. 2013. Observing changing ecological diversity in 

586 the Anthropocene. Frontiers in Ecology and the Environment 11(3): 129-137.

587 Schweiger, A.K. and Laliberté, E. 2019. Spectral processing protocol.

588 Schweiger, A.K., Schütz, M., Risch, A.C., Kneubühler, M., Haller, R., and Schaepman, M.E. 

589 2017. How to predict plant functional types using imaging spectroscopy: linking vegetation 

590 community traits, plant functional types and spectral response. Methods in Ecology and 

591 Evolution 8(1): 86-95.

Page 24 of 31

https://mc06.manuscriptcentral.com/cjfr-pubs

Canadian Journal of Forest Research



Draft

25

592 Schweiger, A.K., Cavender-Bares, J., Townsend, P.A., Hobbie, S.E., Madritch, M.D., Wang, R., 

593 Tilman, D., and Gamon, J.A. 2018. Plant spectral diversity integrates functional and 

594 phylogenetic components of biodiversity and predicts ecosystem function. Nature Ecology & 

595 Evolution. doi:10.1038/s41559-018-0551-1.

596 Serbin, S.P., Wu, J., Ely, K.S., Kruger, E.L., Townsend, P.A., Meng, R., Wolfe, B.T., Chlus, A., 

597 Wang, Z., and Rogers, A. 2019. From the Arctic to the tropics: multi‐biome prediction of leaf 

598 mass per area using leaf reflectance. New Phytologist.

599 Shipley, B., Vile, D., Garnier, E., Wright, I., and Poorter, H. 2005. Functional linkages between 

600 leaf traits and net photosynthetic rate: reconciling empirical and mechanistic models. 

601 Functional ecology 19(4): 602-615.

602 Shipley, B., De Bello, F., Cornelissen, J.H.C., Laliberté, E., Laughlin, D.C., and Reich, P.B. 

603 2016. Reinforcing loose foundation stones in trait-based plant ecology. Oecologia 180(4): 

604 923-931.

605 Singh, A., Ganapathysubramanian, B., Singh, A.K., and Sarkar, S. 2016. Machine learning for 

606 high-throughput stress phenotyping in plants. Trends in plant science 21(2): 110-124.

607 Singh, A., Serbin, S.P., McNeil, B.E., Kingdon, C.C., and Townsend, P.A. 2015. Imaging 

608 spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and 

609 their uncertainties. Ecological Applications 25(8): 2180-2197.

610 Slaton, M.R., Raymond Hunt Jr, E., and Smith, W.K. 2001. Estimating near‐infrared leaf 

611 reflectance from leaf structural characteristics. American Journal of Botany 88(2): 278-284.

612 Stavros, E.N., Schimel, D., Pavlick, R., Serbin, S., Swann, A., Duncanson, L., Fisher, J.B., 

613 Fassnacht, F., Ustin, S., Dubayah, R., Schweiger, A.K., and Wenneberg, P. 2017. ISS 

614 Observations Offer Insights Into Plant Function. Nature Ecology and Evolution 1(BNL--

615 113983-2017-JA).

616 Turner, W. 2014. Sensing biodiversity. Science 346(6207): 301-302.

617 Ustin, S.L. and Gamon, J.A. 2010. Remote sensing of plant functional types. New Phytologist 

618 186(4): 795-816. Available from http://www.scopus.com/inward/record.url?eid=2-s2.0-

619 77953955155&partnerID=40&md5=e31a579227952083fc671714bf921c0d [accessed.

620 Ustin, S.L., Roberts, D.A., Gamon, J.A., Asner, G.P., and Green, R.O. 2004. Using imaging 

621 spectroscopy to study ecosystem processes and properties. BioScience 54(6): 523-534. 

Page 25 of 31

https://mc06.manuscriptcentral.com/cjfr-pubs

Canadian Journal of Forest Research



Draft

26

622 Available from http://www.scopus.com/inward/record.url?eid=2-s2.0-

623 2942528742&partnerID=40&md5=2836f861398530378aa58f5bc04d4320 [accessed.

624 Ustin, S.L., Gitelson, A.A., Jacquemoud, S., Schaepman, M.E., Asner, G.P., Gamon, J.A., and 

625 Zarco-Tejada, P. 2009. Retrieval of foliar information about plant pigment systems from high 

626 resolution spectroscopy. Remote Sensing of Environment 113: S67-S77.

627 Valladares, F. and Niinemets, Ü. 2008. Shade tolerance, a key plant feature of complex nature 

628 and consequences. Annual Review of Ecology, Evolution, and Systematics 39: 237-257.

629 Vile, D., Garnier, E., Shipley, B., Laurent, G., Navas, M.-L., Roumet, C., Lavorel, S., Diaz, S., 

630 Hodgson, J.G., and Lloret, F. 2005. Specific leaf area and dry matter content estimate 

631 thickness in laminar leaves. Annals of botany 96(6): 1129-1136.

632 Violle, C., Reich, P.B., Pacala, S.W., Enquist, B.J., and Kattge, J. 2014. The emergence and 

633 promise of functional biogeography. Proceedings of the National Academy of Sciences 

634 111(38): 13690-13696.

635 Vogelman, T.C., Nishio, J.N., and Smith, W.K. 1996. Leaves and light capture: Light 

636 propagation and gradients of carbon fixation within leaves. Trends in Plant Science 1(2): 65-

637 70. doi:https://doi.org/10.1016/S1360-1385(96)80031-8.

638 Wang, R. and Gamon, J.A. 2019. Remote sensing of terrestrial plant biodiversity. Remote 

639 Sensing of Environment 231: 111218. doi:https://doi.org/10.1016/j.rse.2019.111218.

640 Wang, R., Gamon, J.A., Cavender‐Bares, J., Townsend, P.A., and Zygielbaum, A.I. 2018. The 

641 spatial sensitivity of the spectral diversity–biodiversity relationship: an experimental test in a 

642 prairie grassland. Ecological Applications 28(2): 541-556.

643 Wang, Z., Townsend, P.A., Schweiger, A.K., Couture, J.J., Singh, A., Hobbie, S.E., and 

644 Cavender-Bares, J. 2019. Mapping foliar functional traits and their uncertainties across three 

645 years in a grassland experiment. Remote sensing of environment 221: 405-416.

646 Wold, S., Martens, H., and Wold, H. The multivariate calibration problem in chemistry solved by 

647 the PLS method. In Matrix pencils, Lecture Notes in Mathematics. 1983. Edited by A. Ruhe 

648 and B. Kagstrom. Springer, Heidelberg. pp. 286-293.

649 Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, 

650 J., Chapin, T., Cornelissen, J.H., and Diemer, M. 2004. The worldwide leaf economics 

651 spectrum. Nature 428(6985): 821-827.

Page 26 of 31

https://mc06.manuscriptcentral.com/cjfr-pubs

Canadian Journal of Forest Research



Draft

27

652 Youngentob, K.N., Zdenek, C., and Gorsel, E. 2016. A simple and effective method to collect 

653 leaves and seeds from tall trees. Methods in Ecology and Evolution 7(9): 1119-1123. 

654 doi:doi:10.1111/2041-210X.12554.

655

Page 27 of 31

https://mc06.manuscriptcentral.com/cjfr-pubs

Canadian Journal of Forest Research



Draft

28

656 Tables

657

658 Table 1. Differences in chemical and structural traits, and the photochemical reflectance index 

659 (PRI) between sunlit sugar maples leaves from the top and side of the crown; we rejected the null 

660 model (M0) of no effect of sampling position on foliar traits and PRI when the model including 

661 an effect of sampling position (M1) was at least four times (likelihood ratio > 4) more likely than 

662 M0 (highlighted in bold).

663

Trait Model df Likelihood ratio P value

Leaf thickness (μm) M1 4 14.44 0.0001

Leaf mass per area (g m-2) M1 4 14.34 0.0002

Equivalent water thickness (μm) M1 4 10.91 0.0010

Relative water content (%) M1 4 9.94 0.0016

Leaf water content (mg g-1) M0 3 0.60 0.4378

Leaf dry matter content (mg g-1) M0 3 0.60 0.4378

Nitrogen (mg cm-2) M1 4 14.89 0.0001

Nitrogen (%) M0 3 1.49 0.2216

Carbon (mg cm-2) M1 4 13.20 0.0003

Carbon (%) M0 3 0.25 0.6146

Nonstructural carbohydrates (mg cm-2) M1 4 14.15 0.0002

Nonstructural carbohydrates (%) M0 3 2.49 0.1149

Hemicellulose (mg cm-2) M0 3 0.61 0.4362

Hemicellulose (%) M0 3 0.77 0.3793

Cellulose (mg cm-2) M1 4 8.73 0.0031

Cellulose (%) M1 4 9.72 0.0018

Lignin (mg cm-2) M1 4 13.27 0.0003

Lignin (%) M0 3 0.16 0.6865

Photochemical reflectance index (PRI) M1 4 4.31 0.0380
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664 Figures 

665

666 Fig. 1. Sampling of sunlit leaves (A) with a pole pruner from the side of the crown, and (B) with 

667 an Unmanned Aerial System (UAS) and the DeLeaves twig-sampling tool from the top of the 

668 crown.

669

670

671

672

673

674

675

676

677

678

679
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680 Fig. 2. Sunlit sugar maple leaves from the top of the crown had higher (A) leaf mass per area 

681 (LMA, g m-2), (B) leaf thickness (μm), (C) nitrogen content per area (mg cm-2) and (D) 

682 equivalent water thickness (μm), but lower (E) relative water content (RWC, %), and (F) 

683 cellulose content per mass (%) than sunlit leaves from the side of the crown. Plots show means 

684 +/- standard deviations; dashed lines connect samples from the same trees; for statistics see Table 

685 1.

686
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687 Fig. 3. Differences in (A) absorbance, and (B) absolute reflectance (bottom) and transmittance 

688 (top) between sunlit sugar maple leaves sampled from the top (red) and side (blue) of the crown. 

689 Wavelength regions that were at least four times more likely to be affected by sampling position 

690 than not affected are shaded in grey; red and blue lines indicate mean spectra, red and blue 

691 shaded areas 95% of the sample distribution.

692

693
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