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Abstract 

 

Nearly all plant families, represented across most major biomes, absorb water directly 

through their leaves. This phenomenon is commonly referred to as foliar water uptake. 

Recent studies have suggested that foliar water uptake provides a significant water 

subsidy that can influence both plant water and carbon balance across multiple spatial 

and temporal scales. Despite this, our mechanistic understanding of when, where, how, 

and to what end water is absorbed through leaf surfaces remains limited. We first 

review the evidence for the biophysical conditions necessary for foliar water uptake to 

occur, focusing on the plant and atmospheric water potentials necessary to create a 

gradient for water flow. We then consider the different pathways for uptake, as well as 

the potential fates of the water once inside the leaf. Given that one fate of water from 

foliar uptake is to increase leaf water potentials and contribute to the demands of 

transpiration, we also provide a quantitative synthesis of observed rates of change in 

leaf water potential and total fluxes of water into the leaf. Finally, we identify critical 

research themes that should be addressed to effectively incorporate foliar water uptake 

into traditional frameworks of plant water movement. 

 

 

Despite being represented across numerous plant families and providing a notable 

water subsidy to plants, the process of foliar water uptake is still poorly understood. 

This review addresses the need for a cohesive synthesis of the processes that drive 

foliar uptake, the pathways of water movement, and the role of this water in plant water 

budgets. In addition to these components, we address the critical knowledge gaps 

needed for a more complete understanding of this nearly ubiquitous process.  
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Introduction 

 

  “…plants can plentifully imbibe moisture thro’ their stems and leaves as well as perspire it.”  - Hales 1727 

 

The direct uptake of water into leaves, commonly referred to as foliar water uptake 

(FWU), has been observed for at least 300 years (Hales 1727). Since then, FWU has been 

established as a common process that varies among individuals, populations, species, 

and ecosystems. At least 233 species spanning 77 plant families and 6 major biomes 

have demonstrated some capacity for FWU (Figure 1; Table S1). This does not include 

the more than 100 genera measured before 1942 (reviewed in Williams, 1942). The 

capacity for FWU also seems to be nearly universal, it has been observed in more than 

85% of species studied (Goldsmith et al. 2013). This process has received increasing 

attention in the plant sciences, with rapid growth in both the number of peer-reviewed 

articles and the citation of those articles. Despite the considerable interest in research 

on FWU and increasing recognition of the role it may play in plant, community, and 

ecosystem functioning, our understanding of when, where, and how FWU occurs in 

leaves remains limited.   

 In the following review, we explore the physiology of FWU, with a particular 

focus on leaf and plant water balance. While several papers have demonstrated water 

uptake via bark (Katz et al. 1989, Mayr et al. 2014, Earles et al. 2016), this review 

focuses on leaf uptake. A more general review of the effects of leaf wetness and its 

effects on plant function at the community and ecosystem scales can be found in 

Dawson and Goldsmith (In Press). We begin by exploring the biophysical gradients 

required for FWU to occur, focusing on the physical and biological scenarios where FWU 

should be expected. We then review the relevant pathways of water movement into and 

through both the leaf and plant, highlighting where FWU fits into our current 

understanding of plant water movement. Finally, we contextualize FWU with whole 

plant water use by considering observed fluxes relative to known transpiration rates 

and changes in water potentials. Based on this synthesis, we identify the research 

questions that need to be addressed to accurately consider the processes and 

implications for FWU.  

 

Physical and biological requirements of foliar water uptake 

 

Water moves across gradients in chemical energy, often described in terms of “water potential”.  Generally, the internal structures of a leaf are assumed to be nearly 

or completely saturated with water (high water potential; Cernusak et al. 2018) and the 

atmosphere is typically unsaturated (low water potential), resulting in a net efflux of 

water (i.e. transpiration). For water to flow into the leaf, the driving gradient of water 

potentials must be reversed, i.e., the leaf water potential must be more negative than the 

atmosphere immediately surrounding the leaf (Rundel 1982). If water crosses the leaf 

boundary as vapor then it is instead driven by the vapor concentration gradient instead 

of water potentials. Atmospheric conditions are more typically measured as vapor 

pressure deficit, the difference in vapor pressure between saturation and ambient 

conditions for pure water at a given temperature. Comparing vapor pressure deficits (or 

relative humidities) with atmospheric water potentials can provide insights into the 

conditions necessary for FWU (Figure 2). The water potential of the surrounding air 

quickly becomes more negative than typical values for leaves at very low vapor 
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pressure deficits. For instance, at 25 C, the water potential of the air drops below -4 

MPa at 0.036 kPa vapor pressure deficit (97% relative humidity). Leaf temperature 

(relative to air) will also influence the leaf to air vapor pressure deficit. As leaves elevate 

above air temperature, the vapor pressure gradient increases which would result in 

greater FWU when leaves are wet.  A reversal of this gradient leading to FWU can occur 

by increasing the vapor in the air surrounding the leaf surface or by reducing the water 

potential inside the leaf (Slatyer 1960, Simonin et al. 2009, Oliveira et al. 2014, Vesala et 

al. 2017). 

The vapor pressure of the air reaches saturation (or near saturation) due to 

changes in weather conditions. Foliar water uptake has been demonstrated during 

periods when the air is saturated and liquid water forms on leaves, such as during rain 

and mist (Breshears et al. 2008, Steppe et al. 2018), fog (Burgess and Dawson 2004, 

Simonin et al. 2009), and dew (Munné-Bosch et al. 1999). However, there is also 

evidence of FWU of water vapor during periods where the air has not condensed to 

liquid water (i.e. water still in vapor form). Vapor uptake would be driven by vapor 

pressure and require the intercellular air space immediately within the leaf cuticle to 

have a lower vapor pressure than the vapor pressure of the air. This routinely occurs in 

leaf air spaces due to negative water potentials and the Kelvin effect reducing the vapor 

pressure (see Vesala et al. 2017 and Cernusak et al. 2018). However, any movement 

from intercellular air space into cells would require liquid water and would need to 

consider the resistance of a phase change from vapor to liquid.  

Many studies over the last 60 years have detected water vapor uptake using a 

wide range of species and methods (Vaadia & Waisel 1963, Virzo De Santo et al. 1976, 

Mooney et al. 1980, Lange et al 1986, Schmitt et al. 1988, Laur & Hacke 2013, Wang et 

al. 2016). Recent examples of FWU in high humidity conditions include Picea glauca, a 

temperate conifer (Laur & Hacke 2014), and Reaumuria soongorica, a desert plant from 

China (Wang et al. 2016). Many of these studies were conducted under high humidity 

conditions that may have resulted in some water condensation on the leaf surface, 

resulting in FWU of liquid water. Despite this potential artifact, it is apparent that FWU 

can ultimately occur in both liquid and vapor phases when a driving gradient for the 

entry of water into the leaf is present.  

Leaf surface properties can affect the vapor pressure at the leaf to air interface 

(within what is referred to as the boundary layer) in ways that can also alter leaf 

wetness and FWU. Chemical structure of cuticular waxes, stomatal structure, trichomes, 

leaf hairs, and endophytes have all been shown to affect water retention on leaf surfaces 

(Smith & McClean 1989, Brewer et al. 1991, Brewer & Smith 1997, Wagner et al. 2003, 

reviewed by Rosado & Holder 2013). Thicker wax layers decrease leaf water retention 

by increasing the roughness of the surface (Koch et al 2009, Taylor, 2011), while 

trichomes and leaf hairs also appear to decrease retention in a similar manner (Brewer 

et al. 1991, Pierce at al 2001). However, these relationships are not always robust, as 

some succulent species with hydrophilic trichomes can actually increase retention and 

enhance leaf wetness (Grammatikopoulos and Manetas, 1994). Fernandez et al. (2017) 

highlights the diversity in the chemical and structural components of leaf surfaces and 

their potential implications for maintaining wet leaf surfaces. Cuticular properties that 

differ among leaves and across species will result in variation of boundary layer 

conditions that may promote differential fluxes of FWU.  

Leaf surface properties and structure will also affect water loss and leaf water 

potential, altering the driving gradient for FWU. For instance, cuticular composition and 

permeability can be affected by reductions in leaf water potential (Fernandez et al. 
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2017). These changes could be a function of the degradation of cuticular waxes or due 

to losses in turgor of cuticle cells. Thus, while reduced water potentials may enhance the 

water potential gradient into the leaf, there may be a simultaneous tradeoff with cuticle 

permeability that either enhances or offsets the flux of FWU. Foliar water uptake may be 

more important to leaf water balance in species with increased cuticular conductance at 

decreasing water potentials. The direction of this change and the water potential where 

changes to leaf conductance occur will be critical variables in understanding the 

temporal patterns of FWU fluxes and net effects on plant water balance. Structurally, the 

size and shape of the leaf cuticle, mesophyll cells, and air space will affect water loss and 

thus water potential. Gotsch et al. (2015) observed lower FWU in species with thicker 

leaves and a greater water storage capacity. In contrast, species with high FWU could 

withstand lower water potentials, but had lower water storage capacity. The storage 

capacity (i.e. capacitance) will also alter the duration of FWU; species with higher 

storage capacity should demonstrate lower FWU that is sustained for longer. This 

suggests that leaf water storage and foliar uptake may be linked such that they buffer 

leaves from drought. 

The leaf (and wood) hydraulic capacitance will also affect the rate of water 

potential change, quantity of water, and the duration of FWU. Hydraulic capacitance 

buffers tension from negative water potentials by acting as a dynamic capacitor 

(Meinzer et al. 2013, McCulloh et al. 2014, Zeppel et al. 2014). Within the context of 

FWU, hydraulic capacitance will affect the rate of water potential increase.  Species with 

higher capacitance will have slower changes in water potential. Where water for foliar 

uptake is available, the persistence of this water potential gradient would likely result in 

longer FWU durations. In turn, species with higher hydraulic capacitance should be able 

to absorb greater total quantities of water. One might expect a tradeoff between safety 

and efficiency in this regard, where species with high capacitance require high FWU 

fluxes to refill water storage and those with low capacitance would require only low 

FWU fluxes (McCulloh et al. 2014). The capacitance of wood and roots will also 

influence the redistribution of water in the leaf by buffering water potential gradients. 

Water from FWU could potentially provide a key subsidy to these critical pools that 

buffer plant water tension and losses of hydraulic conductivity. 

Leaf water potentials change considerably on both diurnal and seasonal 

timescales and leaf water deficits can also increase the probability that the water 

potential gradient will reverse direction and result in FWU. For instance, Vesala et al. 

(2017) modeled transpiration and FWU as a function of leaf water and found that FWU 

fluxes measured in Coast Redwoods (Sequoia sempervirens) could be explained by leaf 

water potential. While the difference in water potential from the leaf to the air should 

explain FWU fluxes, no studies have quantified these fluxes experimentally. If the 

conductance of the leaf surface (cuticle or stomata) does not vary, then more negative 

leaf water potentials should lead to higher FWU fluxes (Limm & Dawson 2009, 

Goldsmith 2013). However, there is a potential tradeoff; when leaves have more 

negative water potentials, two processes may inhibit FWU. First, they will close stomata 

to resist water loss reducing the conductance of the leaf surface. If stomata are a 

pathway for FWU (discussed below), stomatal closure may limit FWU and several 

studies in water-stressed conditions have found support for this idea (Vaadia & Waisel 

1963, Burgess & Dawson 2004). Second, water stress could alter mesophyll 

conductance, limiting the movement of water within the leaf (Zhou et al. 2013). While 

most (if not all) plants should experience water potentials that would allow for FWU, 

the frequency and magnitude of uptake will be driven by the atmospheric vapor 
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pressure deficit, the leaf water potential, the leaf hydraulic capacitance, and the 

conductance of the leaf surface to water vapor.Ultimately, in what physical 

environments will the requirements for FWU be met? The conditions for a driving water 

potential gradient into the leaf can be satisfied during all leaf wetting periods. It can also 

occur when there is a low vapor pressure deficit that results in a high atmospheric 

water potential, provided that there is a more negative leaf water potential. Evidence 

from Cernusak et al. (2018) suggests that the driving gradient should be frequently met 

due to the unsaturation of the intercellular air spaces. Foliar water uptake fluxes and 

quantities should be greater in plants with more negative leaf water potentials, such as 

those that occur later in the day, during dry periods between rain events, during dry 

seasons, or in water-limited ecosystems. Both leaf wetting and leaf water deficit 

undoubtedly occur across all major biomes, meaning that the conditions should be 

suitable for all species. The implications are significant: a reversal of flow largely 

contradicts the traditional conception of the Soil-Plant-Atmosphere Continuum (SPAC, 

Philip 1966).  Recent work has called for a shift in this thinking to consider plant water 

movement in both directions (Goldsmith 2013). Yet some studies have observed species 

that do not carry out FWU co-occurring with species that do carry out FWU (Limm et al. 

2009, Emery et al. 2016). Emery et al. (2016) suggested that stomatal crypts resulted in 

limited FWU, however, there remains no clear explanation for species-level variation in 

FWU. This suggests that suitable environmental conditions are not the sole explanatory 

variable in understanding the fluxes of FWU.  While seemingly common, the extent to 

which FWU occurs or does not occur in conditions when the water potential gradient 

should be reversed is an area in need of further study.  

 

Pathways of water movement 

Entry points into the leaf 

Water is routinely exchanged across the leaf surface by multiple pathways. In 

higher plants, stomata, cuticles, and specialized structures (e.g. trichomes, hydathodes, 

or scales) have all been hypothesized to serve as pathways for FWU (Figure 3). We 

explore the evidence for FWU through each of these structures and analyze the 

mediating factors that might lead to certain pathways over others.  

The primary pathway for water loss from a leaf (i.e. transpiration) is stomata and 

due to the high conductance of water through stomata relative to other structures, it is 

intuitive that they could facilitate uptake. However, based on the assumption that 

droplet sizes or films on leaf surfaces typically exceed the size of stomata, stomata were 

generally thought to be impenetrable to water infiltration without external pressure 

(Schonherr & Bukovac 1972). More recent research using environmental scanning 

electron microscopy has demonstrated that stomata are a likely candidate for uptake of 

liquid water (Burkhardt et al. 2012). The process was mediated by salt ions in water 

(and potentially other molecules) that reduce surface tension (Burkhardt et al. 2010, 

2012). Further studies have found that the combination of salt ions and sunken stomata 

in clefts of leaves of the tree Chamaecyparis obtusa var. formosana promotes leaf 

wetness while not directly blocking stomatal pores (Pariyar et al. 2017). Burkhardt (2010) proposed the “hydraulic activation of stomata,” stating that salt mediation 
allows for the creation of liquid water film that bridges the stomatal pore and enables 

bidirectional movement of water. 

Both bacteria (Eichert et al. 2008) and endophytic fungi (Burgess & Dawson 

2004) have also been suggested to facilitate FWU. In these cases, the presence of these 

other biota may reduce the hydrophobicity of the leaf surface and form “bridges” into 
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the leaf by which water can travel. It is well established that the leaf microbiome can 

affect leaf physiology and potentially water movement (Vacher et al. 2016). 

Additionally, studies on air pollutants applied in high humidity conditions lead to 

greater foliar uptake of both water and pollutants, primarily driven by the stomatal 

response to low vapor pressure deficit (Mclaughlin & Taylor 1981, Norby & Kozlowski 

1982). Facilitation by external biota and molecules could form bridges across stomata 

or crack the surface, leading to greater uptake through cuticular pathways. Abiotic and 

biotic facilitation of FWU may shift the particular uptake pathways in species, adding 

complexity to the physical determinants of FWU fluxes. 

Some water uptake likely occurs across the cuticle (i.e. non-stomatal entry), even 

though they are highly resistive relative to stomata. Values of cuticular conductance are 

less than 0.1 mol m-2 s-1 and more commonly below 0.05 mol m-2 s-1, which is generally 

<5% of the sum of cuticular and stomatal conductance when stomata are open (Larcher 

et al. 2003, Riederer & Schreiber 2001). Cuticular conductance is often measured on 

intact and undamaged leaves. In damaged leaves, increased conductance may lead to 

increased FWU.Many studies have inferred that the cuticle is a primary pathway of 

water entry (Grammatikopoulos and Manetas 1994, Yates and Hutley 1995, Limm 2010, 

Goldsmith et al. 2013; reviewed by Kerstiens 1996). These come from situations where 

FWU occurs during periods when stomata are mostly closed (i.e. at night). Even when 

stomata are closed, there is evidence that water is still evaporated through the leaf 

surface and thus if the gradient is reversed, FWU will occur (Kerstiens 1996, Cavendar-

Bares et al. 2007, Limm et al. 2010). Within the cuticle, there is a thin layer (termed the 

limiting skin) that is the main diffusion barrier for water molecules to cross (Slatyer 

1960, Schonherr & Riederer 1989). The permeability of this layer may explain why 

cuticular thickness does not appear to affect water permeability (Kamp 1930, Becker et 

al. 1986, Schreiber & Riederer 1996). 

Stomatal entry of water would allow for greater fluxes of FWU than entry 

through the cuticle due to the comparatively higher conductivity. Therefore, if stomata 

are open and there is a water vapor gradient into the leaf, stomatal flow should be the 

dominant pathway for FWU. However, the contribution of FWU via the cuticle should 

increase dramatically during periods when stomata are predominantly closed, as well 

as where there are relatively few stomata and large surface areas. Furthermore, 

stomatal aperture changes rapidly (as short as a few minutes), which would allow for 

rapid responses to environmental cues such as humidity or leaf wetness (Merilo et al. 

2014). Therefore, evidence supports a strong role for stomata in the foliar absorption of 

water. 

The cuticular composition will also influence permeability and the extent to which 

FWU occurs through stomata or cuticles. Certain compounds within cuticles, such as 

polysaccharide sugars, facilitate FWU (Kerstiens & Lendzian 1989, et al. 1992). 

Boanares et al. (2018) recently demonstrated that species with greater FWU fluxes had 

more pectins in their cell walls, while those with lower rates had greater quantities of 

cellulose. This study concluded that these molecules can alter the porosity and 

hydrophobicity by altering the linkages and surfaces on the leaf surface. Cuticular 

permeability also increases with leaf age due to cuticle damage and degradation and 

this may have implications for FWU (van Gardingen et al. 1991, Yates and Hutley 1995, 

Schreiber et al. 2001, Jordan and Brodribb 2007). For instance, old leaves of Sequoia 

sempervirens absorb more water than young leaves, possibly due to cuticular damage 

(Burgess & Dawson 2004). High relative humidity can also affect cuticular permeability 

by facilitating microbial growth (Lindow & Brandl 2003), increasing leaf wettability and 
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cuticle absorption (Bunster et al. 1989, Schreiber 1996, Knoll & Schreiber 1998, 

Schreiber et al. 2005). The role of cuticle structure and the exchange of water is 

reviewed extensively in Fernandez et al. (2017). Thus, while the predominant pathway 

for FWU may be the stomata, there is evidence that uptake through the cuticle may 

occur in some instances.   

While less prevalent across taxa, specialized leaf structures can also play a 

significant role in altering leaf wetness and FWU. Trichomes, which are hair- or scale-

like structures on leaf surfaces, are known to directly absorb water (Franke 1967, 

Benzing and Burt 1970, Benzing et al. 1978, Fernandez et al. 2014, Eller et al. 2016). 

Trichomes are particularly important for absorbing water in the largely epiphytic 

Bromeliaceae family (Benzing 2000; Crayn et al. 2004). These epidermal structures are 

highly variable in their morphology and function. As a result, they could play 

contrasting roles in FWU. Trichomes could facilitate water condensation on the leaf 

surface and promote FWU (Konrad et al. 2014) or, alternatively, increase leaf water 

repellency (Brewer et al. 1991) and reduce FWU. Evidence of water uptake has also 

been shown in hydathodes (specialized pores involved in guttation; Martin & von 

Willert 2000), porous surfaces in thorns (Schill and Barthlott 1973), and water-

absorbing scales (Wang et al. 2016). While specialized structures likely play a 

significant role in water movement across the leaf surface in particular species, these 

specialized structures do not represent the primary pathway for FWU among all 

species.  

 

Pathways inside the plant 

 Water entering the leaf through FWU first arrives in the intercellular air space or 

cells of the cuticle and continues to move along water potential gradients (potential 

pathways highlighted in Figure 3). While water potential gradients are generally 

understood for entire plants, driving forces and pathways of water molecules within the 

leaf are still poorly understood (Buckley et al. 2015). Water absorbed through FWU 

could continue to travel through intercellular air spaces or enter mesophyll (palisade or 

spongy) cells. In cells, water movement occurs apoplastically or symplastically; early 

research proposed that most movement was apoplastic (e.g. Byott & Sheriff 1976, Boyer 

1977, Canny 1990). However, other studies have suggested that symplastic water 

movement could occur in certain situations, particularly when aquaporins are up-

regulated to facilitate flow across the cell membrane (Chrispeels and Agre 1994, Tyree 

et al. 1999). Recent modeling experiments have suggested that apoplastic pathways 

should dominate (Buckley 2015). However, when there are internal temperature 

gradients from the mesophyll to the epidermis, vapor phase movement through the 

intercellular air space could contribute up to 44% of the flow (Rockwell et al. 2014, 

Buckley 2015, Buckley et al. 2015). This temperature gradient could be controlled 

through stomatal aperture, which influences leaf temperature through evaporative 

cooling. For FWU, it is likely that vapor phase water transport is a routine pathway of 

water movement inside the leaf and occurs in parallel with cellular pathways.  

Ultimately, regardless of the pathway, there are three possible fates for water 

absorbed into the leaf by FWU: (1) entry into the mesophyll and use for photosynthesis 

or capacitance, (2) entry into the vasculature, or (3) transpiration back into the 

atmosphere. Transpiration will only occur if water potential gradients within the leaf 

are low and the gradient across the leaf surface is quickly reversed (i.e. short-lived 

wetting events). The pathway of water is governed by resistances across membranes, 

including across the epidermis, into mesophyll cells, and across the bundle sheath cells 
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into the vasculature. These resistances are also influenced by the architecture of these 

different tissues and whether the FWU water is in liquid or vapor phase (as all transport 

into cells will be in liquid phase). The net flux of water moving will be governed by the 

water potential gradient buffered by capacitance of individual tissues. Thus, flow should 

persist for longer to tissues with larger capacitance values. Below, we highlight evidence 

that water from foliar uptake enters mesophyll cells and vasculature.  

There are three lines of evidence that water from FWU is incorporated into 

mesophyll cells. The first is evidence from fluorescence or radioactive tracer studies 

where water has been observed moving into palisade and spongy mesophyll cells, as 

well as epidermal cell walls (Munne-Bosch et al. 1999, Gouvra & Grammatikopoulos 

2003, Ohrui et al. 2007, Eller et al. 2013). The second is the observation that leaf wetting 

and high humidity lead to up-regulation of aquaporin channels of mesophyll cells, 

increasing membrane conductivity and resulting in greater water flow (Ohrui et al. 

2007, Laur & Hacke 2014). The third source of evidence for water reaching the 

mesophyll and being incorporated into photosynthetic pathways comes from research 

using stable isotopes of water as tracers (Lehmann et al. 2018). Oak saplings exposed to 

fog generated using water with a distinct oxygen isotope signature demonstrated a 

subsequent change in the oxygen isotope ratio of water in the leaf, as well as the oxygen 

isotope ratio of sugars observed both in the leaf and isolated from the phloem of the 

petiole. 

Water from FWU can also travel into the vasculature of a plant. In many species, 

bundle sheath cells are lignified, requiring water to enter through mesophyll cells. This 

greatly reduces the subsequent hydraulic conductance into the vascular bundle (North 

& Peterson 2005, Ohtsuka et al. 2017). To increase this conductivity, there can be 

upregulation of aquaporins in the bundle sheath, which leads to increased water flow 

into the xylem and phloem and the associated recovery of hydraulic conductivity (Mayr 

et al. 2014, Laur & Hacke 2014). Interestingly, Laur & Hacke (2014) found greater 

upregulation of aquaporins in phloem, suggesting that this water is initially transported 

to the phloem and then possibly the xylem. Sap flow (heat ratio method) has also been 

used to demonstrate that water from FWU is incorporated into plant vasculature 

(Burgess & Dawson 2004, Nadezhdina et al. 2010, Eller et al. 2013, Goldsmith et al. 

2013, Gotsch et al. 2014, 2015 Darby et al. 2016, Steppe et al. 2018). Most recently, 

Steppe et al. (2018) demonstrated that FWU induced radial stem growth driven by 

changes in cell turgor. This evidence suggests that water from FWU may also serve to 

recharge wood capacitance. These studies demonstrate clear reversals of water 

movement through stems and trunks during leaf wetting periods. Together, the 

evidence supports the idea that water absorbed through leaves is routinely 

incorporated into plant vascular networks. 

In some cases, the water absorbed in leaves can be released into the soil. Given a 

sufficient water potential gradient (including low soil water potentials), it is possible to 

observe a complete reversal of the Soil-Plant-Atmosphere Continuum (Goldsmith 2013). 

Early studies, such as Breazeale et al. (1950) and Breazeale & McGeorge (1953), isolated 

soil and plant compartments and found increases in soil moisture. More recent studies 

have used stable isotopes of water as tracers to detect the presence of water exchanged 

between the atmosphere and leaves as it moves into the soil. Both Eller et al. (2013) and 

Cassana et al. (2016) find evidence that water from FWU was transported to soil in 

seedlings of a tropical evergreen (Drimys brasiliensis) and a southern hemisphere 

conifer (Araucaria angustifolia) in Brazil. However, Limm et al. (2009) and Berry et al. 

(2014) conducted similar studies and did not find any signal of FWU water in the soil in 
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seedlings from temperate California Redwoods (10 herbaceous and tree species) and in 

Appalachian montane conifer forests (canopy conifers), respectively. Notably, recent 

research has demonstrated that stable isotopes of water alone cannot be used as tracers 

to establish the net uptake of water by FWU, due to the possibility of bidirectional 

exchange of water isotopes between the leaf and the atmosphere (Goldsmith et al. 

2017). The extent to which FWU affects the flow of water into different parts of the 

plant and ultimately out of roots into the soil will require verification from additional 

methods. If this occurs routinely, single FWU events could improve soil water 

availability and whole-plant water balance at longer time scales. 

The evidence presented here suggests that water absorbed through leaves can 

move considerable distances within the plant and potentially is utilized in distal leaves, 

wood vasculature, and roots. Quantifying and tracing the movement of water from FWU 

will require new methods capable of resolving higher resolutions and multiple 

dimensions.  Imaging techniques such as microCT (e.g. Brodersen et al. 2011) and MRI 

(Zwieniecki et al. 2013), combined with assays of aquaporin regulation and new leaf 

hydraulic modeling (e.g. MOFLO, Buckley et al. 2017), could be particularly promising 

avenues of inquiry. Combining field-based methods such as sap flow, dendrometers, and 

stem psychrometry with mechanistic modelling will also expand our understanding of 

FWU in mature trees (e.g. Steppe et al. 2018). Further, research needs to consider the 

role of plant water status, hydraulic conductivity, capacitance, and soil moisture 

availability in driving the many pathways of FWU water through the plant. Reliably 

tracking the movement of individual water molecules from FWU would open doors for a 

unified three-dimensional model of water movement pathways. 

 

Integrating FWU into plant water budgets 

 One critique of FWU is that it is assumed to be an insignificant quantity of water 

that is rarely relevant to plant processes.  This perception has been driven by a diverse 

set of methodologies, which vary in scale from leaves to whole plants and result in 

incomparable values. Further, studies have not always considered FWU fluxes and 

quantities in the context of plant water budget parameters such as transpiration fluxes 

and leaf water potentials (Guzmán-Delgado et al., 2018). In this section, we compare 

what research is available on FWU fluxes, net quantities (inferred through sap flow 

data), and changes to leaf water potentials from FWU events with transpiration fluxes 

and leaf water potentials. We consider both the leaf and whole plant, as current 

methodologies are largely focused at these scales.   

 Determining fluxes presents a unique challenge for FWU. The movement of 

water is a function of the water vapor concentration immediately outside a leaf (wa) and 

the water vapor concentration in the substomatal cavity (wi) 

 

E = (wi – wa) * g   (1) 

 

where E is the transpiration (or net flux out of the leaf) and g is the stomatal 

conductance (Nobel 2005). For transpiration, the wa term is smaller than the wi term 

leading to a net loss of water from the leaf. When quantifying leaf-level transpiration, 

this gradient also remains relatively constant in sunny and high VPD conditions 

assuming a high boundary layer conductance. This gradient is maintained because the 

wa of the air is so small relative to the leaf that small changes in wa do not appreciably 

affect the gradient and transpired water largely equilibrates with the atmosphere. For 

FWU, this is not true. Due to the small volume of the leaf relative to the atmosphere, the 



 
This article is protected by copyright. All rights reserved. 

difference between wi and wa would decrease over time during an FWU event, slowing 

the net flux of uptake (Figure 4A). The actual rate of water potential improvement 

(Figure 4B) is then governed by the flux of FWU for that species. In species with a high 

FWU flux, the net improvement in leaf water potential would be much greater over the 

same time period compared to a species with a low FWU flux (Figure 4B). This concept 

assumes that the resistance of water entering the vasculature (and leaving the leaf) is 

very high relative to resistances within the leaf. If the flow into the vasculature is high, 

then a decline in flux would not occur until the entire plant reached equilibration, which 

is presumably a much longer time scale. Thus the duration and magnitude of the fluxes 

represented in Figure 4 would be greater if there is high conductivity into the plant 

vasculature. There may also be differences between species due to the maximum leaf 

water content capacity. Boanares et al. (2018) found that species with higher water 

content capacities (i.e. leaf capacitance) had slower uptake rates. Thus, integration of 

FWU fluxes over periods where the rate slows over time could yield lower average 

fluxes than the same species studied over short time periods that capture relatively 

constant FWU fluxes, depending on the leaf storage capacity.  

 Despite these limitations, FWU fluxes (integrated over any time period) can be 

compared to transpiration. To do so, we reviewed studies where we could determine 

the flux of water exchanged across the leaf per unit time through FWU. These typically 

came from studies where leaves were either experimentally submerged or misted and a 

change in mass was quantified over a defined time at a set leaf area (mmol H20 m-2 s-1). 

Among 24 species in this sample, values ranged from 0.004 to 0.390 mmol m-2 s-1 

(mean: 0.063  0.085), highlighting high variability in this trait across species (Figure 

5). Interestingly, the highest fluxes were observed in three temperate conifers: 

Araucaria angustifolia (Cassana et al. 2015), Picea rubens, and Abies fraseri (Berry & 

Smith 2013). Berry & Smith (2013) observed maximum transpiration fluxes of 1.5 – 2.0 

mmol m-2 s-1. Thus, in P. rubens and A. fraseri, FWU was approximately 10% of the 

maximum transpiration fluxes. This is similar to the results from Cassana et al. (2015) 

using sap flow methods. These values provide first approximations of FWU at the leaf-

level relative to transpiration fluxes for canopy trees. 

 More generally, we can also consider the fluxes of FWU we determined in the 

context of maximum transpiration fluxes reported in other studies. Transpiration fluxes 

vary based on growth form and biome but range from approximately 0.2 mmol m-2 s-1 

for plants in the tundra to values of 8 – 10 mmol m-2 s-1 for herbaceous species in dry 

environments (e.g. deserts; Larcher 2003). More common values for tropical and 

temperate tree species range from 1 – 3 mmol m-2 s-1. These transpiration ranges would 

support the idea that FWU fluxes are much lower than maximum transpiration fluxes. 

However, if FWU conditions occur more frequently or during midday periods when high 

transpiration fluxes would occur, the influence of FWU on plant water balance would 

increase. Further, simply because the fluxes may be small in relative terms, small 

changes to individual leaf water potential can have significant long-term effects on leaf 

photosynthesis and stomatal conductance (Simonin et al. 2009, Berry et al. 2014, Eller 

et al. 2016).   

Several studies have also explored how FWU leads to increases in leaf water 

potentials. From these studies, we have derived rates of water potential improvement 

over time (Figures 4 & 5; Table S1). These values were collected for 75 species and 

range from very slow increases of 0.0007 MPa min-1 to strikingly fast increases of 0.12 

MPa minute-1 (mean: 0.014  0.003 MPa min-1). The highest rate was observed in 

Juniperus monosperma shoots with an average starting water potential of -2.1 MPa and 
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integrated over a 5-minute period (Breshears et al. 2008). A net change of 0.6 MPa over 

a 5-minute period highlights the potential of FWU to alter water status with 

implications for long-term physiological functioning. The lowest rate observed (0.0007 

MPa min-1) comes from a wetting study that integrated over 24 hours in Quercus ilex 

with an average starting water potential between -2.5 and -3.0 MPa (Fernandez et al. 

2014). It is difficult to discern if this low rate is due to the long time period, water 

potential gradient, or a reduced FWU rate for this species. While we have highlighted 

that the rate of water potential change is likely not constant, extrapolating the mean 

rate (0.014 MPa min-1) suggests that noticeable changes of 0.1 MPa can likely be 

observed within 10 minutes. These improvements are dramatic and could lead to 

remarkable shifts in leaf water balance and serve to repair embolism. Future studies 

that explore this mechanism need to carefully consider integration over multiple time 

scales (e.g. Steppe et al. 2018) and the changing water potential gradient with 

environmental conditions in their experimental designs. 

 Finally, some fluxes and quantities of FWU have been inferred using whole tree 

studies with sap flow probes. These rates have been valuable estimates for 

understanding the influence of FWU at the scale of whole-plant water balance. It should 

be noted that these methods would integrate water absorbed through both leaves and 

bark (e.g. Earles et al. 2016).  The rates cited in several studies suggest that reverse flow 

rates can be 5 to 26 % of maximum transpiration fluxes, which is consistent with leaf-

level data (Burgess & Dawson 2004, Eller et al 2013, Li et al. 2014, Cassana et al. 2015, 

Steppe et al. 2018). What is unclear in these studies is the extent to which negative sap 

flow in wood presents a 1:1 relationship with water absorbed at the leaf surface. It is 

probable that some proportion of the water from FWU is utilized in mesophyll cells or 

stored in supporting cells in wood and therefore not be represented in sap flow data. 

Determining net FWU rates over longer time periods (e.g. days to weeks) is influenced 

by the temporal patterns of water potential of the leaf and soil further disconnecting 

leaf water uptake and negative sap flow in wood. Using sap flow probes on stems 

adjacent to leaves, Gotsch et al. (2014) measured dry season water use in small 

branches on canopy emergent trees in a tropical montane cloud forest and found that 

9% of the water transpired was recovered through FWU. Darby et al. (2016) found that, 

in tropical montane cloud forest epiphytes, FWU accounted for ~30% of transpired 

water during the dry season and ~ 70% of transpired water during a wet season 

(Gotsch et al. 2015). Finally, Steppe et al. (2018) recently found that Avicennia marina 

had no radial growth in the absence of FWU, demonstrating that this water source is 

critical for wood development. Field-based whole plant studies provide tools that allow 

for continuous measurements allowing for greater integration of FWU into whole-plant 

water balance.  

 To consider the role of FWU in leaf and whole-plant water budgets, we have 

compared fluxes of FWU relative to transpiration and water potential values.  While we 

demonstrate great variability across species, we also observe the potential for FWU to 

play a large role in leaf and plant water balance. The implications for this are significant, 

as FWU can quickly reduce water deficits (e.g. water potentials), as well as subsidize 

mesophyll cells or vasculature. However, more research is needed to elucidate the 

variation in these traits across environments and species, as well as to determine the 

net effects on long-term plant functioning and water balance. 

 

Critical Knowledge Gaps 
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 While FWU research has made significant progress in recent years, there are still 

many key knowledge gaps that limit a more complete understanding of water 

movement in plants. In this section, we elaborate on key questions surrounding the 

environmental scenarios when FWU is likely to occur, the precise pathways of water 

flow, and the net effects on leaf and plant water balance. Finally, we explore current 

methods and their limitations, as well as propose ideas to further our understanding of 

FWU and plant water movement. 

 

When and where does FWU occur? 

To assess when FWU occurs requires an accurate quantification of the spatial 

and temporal components of leaf wetting across canopies. It is well established that 

FWU can occur during leaf wetting events such as rain, dew, mist, or fog events. 

However, the spatial and temporal frequency of leaf wetting is often difficult to measure 

simultaneously to FWU.  Complex canopies exhibit high spatial variability in 

microclimate, which can result in subcanopy leaves staying wet for up to 22 hours 

following rain events, more than double the time of canopy leaves (Dietz et al. 2007). 

While studies quantifying leaf wetness patterns are valuable, the complex dynamics of 

these patterns are just now being  incorporated into canopy storage or plant water and 

carbon balance models (e.g. Steppe et al. 2018). Sap flow data during these periods 

demonstrate FWU during leaf wetting periods, but do not allow for separation of sunlit 

versus shaded layers of the canopy. Thus, FWU could continue to subsidize leaf water 

content in many sub-canopy locations well after a leaf wetting event ceases and the 

canopy dries. Further, the spatial patterns of leaf wetness on individual leaves may 

result in FWU only on certain areas of leaves which could not be captured in whole-

plant methodologies. Quantifying the spatial and temporal components of leaf wetting 

will allow for predictive frameworks of when and where FWU occurs across forests and 

canopies.  

The extent to which FWU occurs when the air is not fully saturated with water 

vapor also remains unresolved (i.e. low, but non-zero VPD). Some studies have 

demonstrated FWU in high humidity conditions (in the absence of physical leaf 

wetting). However, the physical process to reverse the water potential gradient when 

the air is not saturated will only occur when VPD is low and plants are experiencing 

more negative water potentials (Figure 2). While Vesala et al. (2017) has provided the 

modeling framework for understanding when these conditions occur, empirical support 

is still needed. Further, any water that enters as vapor would require a phase change to 

liquid for subsequent movement from the intercellular air spaces into mesophyll or 

vascular cells. Other studies, such as Darby et al. (2016), found that precipitation more 

accurately predicted FWU than vapor pressure deficit. Leaves that experience more 

negative water potentials, such as those in drier climates or during dry seasons, should 

experience more FWU in high humidity conditions. Determining the relationships 

between microclimate, water potentials and rates of FWU is complicated by the 

methods available to make continuous and precise measurements, but remains of 

interest.  

  In addition to understanding when FWU occurs, there is a similar need to 

understand where FWU occurs. Given that FWU has been demonstrated in at least 209 

species, the implications are that it occurs in nearly every major biome (Figure 1).  

However, research on FWU to date has been biased towards cloud forest (60 species), 

Mediterranean (45 species), and crop (34 species) systems, limiting our ability to infer 

the prevalence and effects of FWU across a wide range of taxa and ecosystems. Further, 
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we infer that greater rates of FWU are expected in arid regions (e.g. Stanton et al. 2014), 

where a single wetting event may have a greater impact on plant water balance in arid 

regions. A recent analysis by Dawson & Goldsmith (In Press), using a conservative 

estimate of leaf wetness from global rainfall data, found that an average canopy spends 

~120 days year-1 wet. If the environmental conditions for FWU also extend beyond the 

leaf wetting event, then FWU is likely to be a routine process, not a rare occurrence. A 

strategic, systematic, and standardized sampling of FWU fluxes across major plant 

families and biomes should elucidate the role of FWU in biomes with different rainfall 

patterns and atmospheric moisture patterns. 

 

Where does the absorbed water go? 

 While previous research has explored the pathways for water uptake into the 

leaf, methodological limitations have limited our ability to precisely determine the 

pathways of water inside the leaf and whole plant. There is clear evidence that some 

water enters both mesophyll cells (Munne-Bosch et al. 1999) and vasculature (Laur & 

Hacke 2014). Determining the proportion of the absorbed water that follows these 

pathways or is transpired remains unclear.  Additionally, it is unknown if certain 

environmental scenarios dictate differential flows to each pathway. Whether FWU 

occurs in liquid or vapor phase could also influence the flow pathways inside the leaf. 

Once inside mesophyll cells, is water utilized for photosynthesis, stored, or incorporated 

into to the vascular bundle? How is water that enters vasculature internally distributed 

(e.g. xylem or phloem) and where does it move? Many of these questions are just 

starting to be explored, but more work is needed to elucidate the fate(s) of water that 

enters from the leaf surface. Active work in plant hydraulics, in vivo plant imaging and 

sap flow combined with stem diameter variation could help address these questions. 

The pathways of the water from FWU will have implications for cellular processes and 

plant water balance at multiple scales. 

 

What are the long-term effects on plant water balance, photosynthesis, growth, and 

survival? 

 Research has demonstrated that during leaf wetting events, significant quantities 

of water are absorbed, altering leaf and stem water potentials, improving branch 

hydraulic conductivity, and increasing leaf water content. However, quantifying the 

long-term effects of these improvements on net carbon and water fluxes has proven 

more difficult. Berry & Smith (2013) demonstrate that morning FWU improves net daily 

carbon gain as inferred from greater stomatal conductance during midday and 

afternoon periods. But to what extent do these daily gains occur across species and 

contexts and do they have net effects for days or weeks? For example, could the altered 

water potential values, stomatal conductance, and photosynthesis from one day of FWU 

be observed for days or weeks? Steppe et al. (2018) demonstrated that FWU was 

important for turgor maintenance and growth in Avicennia marina. Water from FWU 

could serve as an additional subsidy (similar to leaf capacitance) that buffers declines in 

turgor loss and hydraulic conductivity (Nguyen et al. 2017). Would these net effects 

allow for greater cumulative growth or carbon storage? Would daily water potential 

improvements keep plants above turgor loss points or significant losses in hydraulic 

conductivity? Does FWU result in water deposition into the soil that may improve long-

term soil moisture availability? Will community-level variation in FWU result in species-

specific responses to changing moisture availability (Goldsmith et al. 2013)? The 

answers to these questions are likely specific to the unique climatic conditions of a site, 
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as well as the species’ capacity for FWU. Future research should consider both the 

short- and long-term effects on plant water balance based on the temporal patterns of 

FWU. Further, exploration of the linkages between FWU and hydraulic functioning, 

plant growth, and risk for mortality will enhance our ability to predict plant response to 

novel climates. Ultimately, understanding these linkages will allow for integration into 

ecosystem models that predict ecosystem hydrology and long-term vegetation 

dynamics. 

 

Unifying Methods 

The above questions require a new perspective and set of methodologies for 

quantifying reverse water movement in plants. In particular, a standardized method to 

accurately quantify fluxes and rates of FWU is urgently needed. Comparison among 

studies is currently complicated by the variety of methodologies (sap flow, isotopes, 

change in mass, change in water potential, dyes), time intervals (seconds to days) and 

environmental conditions used. These methods have value in addressing critical 

questions but limit the ability to standardize FWU into a unifying framework. Plant 

science researchers need to standardize these measurements to facilitate comparisons 

of FWU; recent research by Guzmán-Delgado et al. (2018) that utilizes methods for 

measuring leaf hydraulic conductivity may point towards a standardized approach for 

the future.  

 Additionally, the plant science community is steadily moving towards a more 3D 

view of plant water movement. Water can simultaneously move up, down, and laterally 

through leaves, wood, and roots (Lee et al. 2013). Incorporating FWU into this new 3D 

view is necessary to build a complete picture of plant water balance. However, 

visualizing these pathways will require novel methodologies. Microcomputed 

tomography and in vivo MRI imaging provide promising avenues for visualizing 

pathways of FWU in leaves and wood (e.g. Holbrook et al. 2001, Brodersen et al. 2011, 

Hochberg et al. 2016). To date, the use of these technologies remains limited and they 

have not explicitly been used in relation to FWU. The integration of these methods with 

continuous field measurements of whole-plant water balance will be needed to advance 

our understanding of FWU. 

 

Conclusions 

 At the end of Stephen Hales’ renowned publication, Vegetable Staticks (1727), he concludes that water absorbed through leaves is “…insufficient its small quantity is towards making good the great demands of perspiration.” However, we demonstrate 

that FWU is prevalent across species and biomes, that the physical requirements for it 

to occur happen routinely, and that it can serve as a critical source of water for 

metabolic function. However, there are still many unanswered questions about FWU 

that require creative and interdisciplinary experiments. The undeniable ubiquity of this 

fundamental plant process highlights a need to understand FWU as intricately as we 

understand processes such as root water absorption, xylem flow and transpiration.  
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Figure 1. Foliar water uptake has been observed across a number of different biomes, 

ranging from A) tropical montane cloud forests in Monteverde, Costa Rica to B) coastal 

sage scrub ecosystems in Santa Barbara, California. The sites where foliar water uptake 

has been demonstrated are represented relative their location on a C) plot of classical 

Whittaker biomes (Whittaker 1962) using climate data from the TerraClimate database 

(Abatzoglou et al. 2018). The inset shows the distribution of average vapor pressure 

deficits for each site from TerraClimate. 
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Figure 2. A low VPD (high relative humidity) is necessary for foliar water uptake. Water 

potential as a function of A) vapor pressure deficit (VPD) of the air and B) relative 

humidity at different temperatures. 
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Figure 3. A number of leaf surface and internal structures have been implicated as 

pathways for foliar water uptake. Water faces resistance as it enters and moves through 

the leaf. Where known, relative size of resistors is based on values from Buckley (2015). 

Resistances provide illustrative examples but all these can vary significantly based on 

leaf anatomy and water gradients within the leaf. Example images of surface properties 

are taken from Burgess & Dawson (2004; endophyte), Martin & Von Willert (2000; 

hydathode), Goldsmith (unpublished; cuticle), and Emery (2016; stomata and 

trichome).  
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Figure 4: The A) rate of foliar water uptake should decrease exponentially as a function 

of time with B) the decreasing change in leaf water potential as a function of time. 

However, these relationships should differ in plants with high (solid line), medium 

(dash) and low (short dash) rates of foliar water uptake. Additionally, capacitance of the 

rehydrating leaf (C) should modulate the rate of water potential change such that a leaf 

with a higher C (dash-dot line) will take longer to reach equilibrium than a leaf with 

lower capacitance but the same initial FWU rate (solid line). Individuals with high rates 

of foliar water uptake improve leaf water potential as much as 0.9 MPa in 60 min, while 

individuals with low rates only changed water potential 0.09 MPa over 60 min. All data 

are constrained by rates taken for species in the database where FWU was 

quantified over 1 h. 
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Figure 5. A summary of data from studies reporting A) the change in leaf water 

potential as a function of foliar water uptake (n = 75 species) and B) the rate of foliar 

water uptake (n = 24). In studies with changes in water potential, all values were 

standardized per minute, even if the study measured uptake for a different duration. 

Rates of uptake were converted to mmol m-2 s-1 for comparison with transpiration 

rates, which typically are reported in these units 
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