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FOLIATION OF 3-DIMENSIONAL SPACE FORMS BY SURFACES WITH
CONSTANT MEAN CURVATURE

J.L.M. BARBOSA, JM. GOMES AND A.M. SILVEIRA

1. Introduction

Let Y vrepresent a 3-dimensional complete simply-connected
space form. We study c*-foliations F of Y by leaves with the
same constant mean curvature. We prove that if the curvature of Y
is positive such foliations can not exist. When Y s the
Euclidean space then such a foliation must consist of parallel
planes. When Y s the hyperbolic space, if we further assume
that the mean curvature satisfies # > 1, then F must be a
foliation by horospheres. These results are still true if F is a
folfation of an open set U of Y and if we further assume that
the leaves are complete and orientable.

We observe that on hyperbolic space there are examples of
nontrivial foliations of open sets by complete surfaces with the
same constant mean curvature 0 < H < 1. One example can be
obtained from the l-parameter family of catenoids studied by do
Carmo and Dajczer [CD] and by Gomes [G].

To prove the results, we consider a codimension-one foljation
of an orientable Riemannian manifold, whose leaves are orientable
and have the same constant mean curvature, and first show that its
leaves are strongly stable in the sense defined in BCE]. We then
apply the classification theorem for complete stable surfaces of
a 3-dimensional space forﬁ proved in [BCE] and [}].

Since the first version of this work was announced, some
progress was made on this subject. W. Meeks [M] showed that the
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only c®-foliation of the 3-dimensional Eucliean space, for which
each Jeaf L has constant mean curvature HL, is the foliation
by planes. In his proof he uses theorem (3.12) below, Barbosa,
Kenmotsu and Oshikiri [BKO] have shown that if ¥ {is a compact
Riemannian manifold with nonnegative curvature, then any
codimension-one c’-foliation of M, for which each leaf L has

constant mean curvature # is a foliation with totally geodesic

L!
leaves.

2. Preliminary results

Let ¥ be an orientable n-dimensional manifoid and Y be an
orientable Riemannian manifold of dimension n+l., <,,.> will
represent the metric on Y. Let x: M - Y be an immersion. We
will consider M endowed with the induced metric so that <«
becomes an isometry. & will represent a unit normal vector field
to M that defines its orientation.

If f{eys...he )} is a local orthonormal frame field then the
second fundamental form of the immersion is given by

n
(2.1) . B(ei) = -veiN = j-_z‘l hijej’

where ¥V 1is the Riemannian connection of Y., The mean curvature
of =x 1is then defined as )

(2.2)

o
i
S|

n
7,=Z 1 "3

and the norm of the second fundamental forms is given by

(2.3) N E o

We will now assume that the immersion * has constant mean
curvature. D will represent a relatively compact domain with
smooth boundary. We say that D is stable when, for each function
u: D + R such that



3-DIMENSIONAL SPACE FORMS

(2.4) “laD'= 0
and
(2.5) J udM = 0
D
we have
(2.6) J {~utu-~(|B|* +r )u*ydu >0,
D

Here A represents the Laplacian on ¥ and R represents the
Ricci curvature in the normal direction. When condition (2.6) is
satisfied, whether if (2.5) occurs or not, we say that D is
strongly stable. Observe that if D s strongly stable then it
is stable.

We say that the immersion =z {s stable when each relatively
compact domain D on M, with smooth boundary, is stable. We
make a similar definition for =z strongly stable. For a more
detailed discussion of the concept of stability see [BCE],

2.7 Theorem, Let z, i M >Y be a T-parameter family of immersions
with constant mean curvature #(¢t), Then, for each fixed t there

is a function f: M~->PpR satisfying:
2
(2.8) of + (IIBI° + B)f = nez

Proof. Let X: (-e,e) x M » Y be the mapping defined by
X(t,p) = =, (p). Set

(o %4
bt

(2.9) £ =

I

Q
o

Let N(t,p) represent the unit vector field normal to z (M) at
the point p. Define a function F:(-g,e)x M >R by

F(t,p) = <g(t,p), ¥(t,p)>

and, for a fixed value of ¢, set
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(2.10) flp) = F(¢t, p).

We are going to show that the function f satisfies the equation
(2.8).

To simplify the notation we will identify each vector V,
tangent to M, = {t} xM, with the vector dxt(V). 3/3t will
denote the unit vector field on (-¢, €) x M orthogonal to M

with respect to the product metric so that

(2.11) » £ = dX(23/3¢)
Fix tii t,. In a neighborhood of a point p of’ M, choose an
orthonormal frame field {e (%, p), e,(t, P)y.vuse (t,op)} tangent

to M, and such that

n

f T ~ .,
(2.12) (Veiej) (p) =0 2,75 = 1,2,..., 1

where ( )T(p) means the orthogonal projection into TpM' For
this choice of frame it is true that

(2.13) . (&, ei](p) =0 i =1, 2,...,n
and

n
(2.14) ‘ Af(p) = z e (e (f)).

Decomposing £ by its tangential and normal components, & =ET+EN,

we obtain:
- N
(2.15) =<7, »r,
Since Ve N 1is tangent to M., it follows that
e (f) = <veis”, >

and so we have

(2.16) ei(ei(f)) = <V, 7 e., N>-+<Vei @i,EN], N>4-<Ve EN,Ve N>,

1{” * 7 A
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Using that the curvature tensor of Y is given by
(2.17) R(V.W)Z = vVsz - It V[V,WJZ

where rewrite (2.16) as

{2.18) ei(ei{f)) = -<R(e£,gﬂ)e£, N> + <VENVe.ei' ¥>
: z

N
+ <V e.,N>+<V Je. N>+<V_ &, V_ N>,
‘[e1:!51‘ﬁ ! eil:i'gv:l’ € ' e

Since E” = f¥ and v, N is tangent to Mt we have:
1

ne~1 ]
-

N 2
(2.19y <V, E .ve_N>=f|ve_N| = f
. (A 2 J

i 1 ¥

From (2.13) we have that

;s E(0) = ~[e .87 (p).

Therefore [ei,EN](p) is tangent to M, . From the symmetry of

the second fundamental form of z, it %oIlows that, at 22

(2.20) = <v, [e;06"], #>
1

<V e., N>
” ’
(e;087] ¢

Since (V NN)(p) is tangent to M, and, also making use of
(2.12), we obtain: ’

(2.21) <vg”ve.ei' ¥>(p) = 5N<veiei, N> (p)

k2
= -teesn v, (p) = E(r ) (R),
1

Using that [ki,g”] is tangent to M at the point p and

to
also (2.15) we have
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(2.22) <w,9, [ £"]5(p) = -<[e,, 6], v, #>(p)
ei T 1 ei

EN n
<Vei - VENei’ jz] hijej>(p) =

h..(p) -

= -f(p) , id

J

e~ 3
Hes %

sy Ped<Tntar 27(R)

Since (hij) is a symmetric matrix, the last term vanishes. Thus

: {p).

n
(2.23) W7, Lo 8'1>(p) = ~flp) ) Bl
1

J=1

Putting together (2.14), (2.18), (2.19), (2.20), (2.21) and (2.23)
we obtain

n n n 2
(2.28)  87(p) = -f(p) 1 <Bley, Mley, 0+ [ &'k - flp) L AL
=] =] z,4=1
n
Observing that R = ] <R(e;» W) e, N>, that Zh;j = IIB||2 and
that =
(2.25) 2o(n#) = E(nH) = £7(nH) + £ (nE) = £¥(nE)

(where the last equality was obtained by using that H is constant
along each M.) we may then rewrite (2.24) as

(2.26) @7 + (181" + BF)(p) = gx(n8) (p).

Since p was arbitrary the theorem is proved,

3. Foliations

For basic facts about foliations see [CN]. We start this

section by proving the following theorem.



3-DIMENSIONAL SPACE FORMS 7

3.1 Theorem. Let Y be a n-dimensional orientable Riemannian
manifold and F be a c’-foliation of ¥ by orientable
hypersurfaces. Assume that each leaf of F has the same constant
mean curvature. Then each leaf of F 1is strongly stable,

Proof. Let [ be a leaf of F. By definition of a foliation,
for any point p of L[, there is a neighborhood Dp of p on
L and an embedding

:D -€, > Y
wp PX( € €)

such that
(a) for each t in (-g,¢), wp(Dpx{t}) Ties in a leaf of F

(b} v (¢g,0) =g for each g 1in D_.
p p

If the images of two such mabs, say ¢p and wq, have a common
intersection, then w;lowp is of the form

(3.2) h(r,t) = (hl(r,t), h,(t)),

Represent by gp:Dp ~ R the mapping (associated to wp) defined
by
3y

(3.3) g,(r) = <=R(r 0), #(r)>

where & is the unit normal field that defines the orientation
of . If ¢4 is the mapping associated wq then, at the points
of p_. N p , we will have

p q

(3.4) 7,(r) = —5(0)g

Hence gp and g differ by multiplication by a nonzero number

q
on each connected component of Dpﬂ Dq. Consider now the universal
covering L' of L and the covering projection w:L' +~ L., We use

the projection m to pull back the metric of L[ and the local
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function Ip - Since L' 1is simply connected, we may use the
Tocal functions gp to construct, via a monodromy type reasoning,
a nonzero real function g defined on L', that locally will

be given by
(3.5) g = <, N>
where
_ 9
(3.6) £@) = 5% ¥y(a, ct)

for some p on L and some nonzero constant ¢, If we compare
this local expression of g with the definition given in (2.10)
for f, we conclude that g satisfies the equation (2,8), Since
we are assuming that the mean curvature, besides being constant
on each leaf, does not change from leaf to leaf, then (2.8)
simplifies to

(3.7) sg + (181" + R)g = o,

We observe that, although g 1is not well defined on L, the
field X = Vg/g is well defined on L. Using the equation (3.7)
in the computation of & log g, we obtain

2 2
(3.8) : div,x = - [l - & - |X| .

This equation allows us to prove that L is strongly stable.

Let D represent a locally compact domain on L with smooth
boundary and let u: D > R be any differentiable function which
is zero on 23D. Observe that

2 2
(3.9)  [vul’ - (1B + B)® = fvu|® o+ uPdiv X+ x|
and that
(3.10) divL(uZX) = 2u<Vu, X> + uzdivLX,

Hence we obtain

(3.11) lvul® - (18" + B)u® = |vu + ux]” + div, («°X).
L
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It follows that

f {-ubu - (HBH2 + R)u’}dM = l | 72 + uX|2 M > 0

D -
where we have used twice Stokes' theorem and the fact that u s
zero on 3D, Therefore D is stable. Since D is arbitrary we
conclude that L[ s stable,

In what follows we will represent by Qg(a) a 3-dimensional
orientable complete Riemannian manifold with constant sectional
curvature a. ‘

3.12 Theorem. Let U < Qa(a) be an open set and F be a
Cz-fo1iation of U whose Teaves are complete orientable surfaces
with the same constant mean curvature. Then

(i) a < 0.

(ii) If a = 0 the leaves of F are totally geodesic
submanifolds of Qa(a).

(iii) If a < 0 and the mean curvature of the leaves is greater
than or equal to (-a)l/z, we have H = (-a)l/2 and all the
leaves flat

Proof. Let Y be the_universa] covering space of Qa(a). and U'
be the open set of Y that covers U, Consider Y with the
induced metric so that it is locally isometric to Qs(a). We may
then 1ift the foliation F of U to a foliation F' of U

with the same properties as F, It follows from the previous
theorem that each leaf of F' 1{s strongly stable and, in particular,
is stable. ‘

Barbosa, do Carmo and Eschenburg [BCE] have shown that stable
compact surfaces with constant mean curvature in Y are geodesic
spheres, and they are not strongly stable. This shows that no leaf
of F' can be compact.
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Stable immersions of complete noncompact surfaces in Y have
been studied by A. Silveira [S]. He showed that there are no such
immersions when Y is the sphere 5%(a), that the images of such
immersion must be planes when Y s R’ and must be horospheres
when Y is the hyperbolic space and # > (-a)l/Z. It follows
from this result that « < 0 and the leaves of F must be images
of planes (when a = 0) or of horospheres (when a < 0) through
the covering projection =. Since =m is a local isometry the
theorem is now a consequence of the properties of planes in R®

and horospheres in the hyperbolic space.

The next theorem is a corollary of (3.12),

3.13 Theorem., (a) There is no CZ—fo]iation of the Euclidean
sphere Sa(a) by surfaces with the same constant mean curvature.

(b) The only ¢*-foliation of the Euclidean space R? by
surfaces with the same constant mean curvature is foliation by
planes.

(c) The only c*-foliation of the 3-dimensional hyperbolic
space by surfaces with the same constant mean curvature # > 1
is the foliation by horospheres.

Proof. Let Y be the sphere or the Euclidean space or the
hyperbolic space. Let F be a c*~foliation of Y by surfaces.
Since Y 1is complete, each leaf of F is complete. Since I s
simply connected and orientable, the Teaves are orientable. Now
this theorem follows from the proof of the previous one.

The fact that we do not need the hypothesis of completeness
for the ambient manifold Y 1in theorem (3.1), makes this theorem
useful for understanding certain properties of stability on some
families of surfaces with constant mean curvature. Consider for
example the case of the family of minimal surfaces in the
3-dimensional hyperbolic space invariant under the group 0(2) of
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isometries. (see [G] and [CD] for details). Each surface in this
family is called a Catenoid. The asymptotic boundary of a catenoid
consists of two circles in the ideal boundary S, of the
hyperbolic space. Moreover, it is known (see [G]) that given ‘two
circles in S_, there can exist at most two catenoids having
those circles as asymptotic boundary.

3.14 Theorem. Given two catenoids with the same asymptotic
boundary, one of them is strongly stable.

Proof: Fix a rotation axis (that is invariant under the action of
0(2)). Given a positive real number d, the family F of all

catenoids is-divided into two families, F; and Fé, where the
first one consists of the catenoids whose distance to the rotation
axis is larger than d, and the other one contains the remaining
catenoids. In [G] it is shown that there is a number d, > 0O such

that F;ﬂ foliates an open set of the hyperbolic space, namely,
the complement of the locus of all catenoids whose distance to
the rotation axis is Jess than or equal to d,. From {(3.1), each

catenoid on Fgo is strongly stable. In [G], it is also shown
that, if two catenoids have the same ideal boundary, then one

of them belongs to Féo and the other one to Féo. This proves
the theorem.

References

[(BC] J.L.M. Barbosa and M.F. do Carmo, Stability of Hypernsurfaces
with Constant Mean Curvature, Math, Z,, Vol, 185 (1984},
pp. 339-353.

[BCE] J.L.M. Barbosa, M.P, do Carmo and J. Eschenburg, Stabifity
0§ Hypensunfaces of Constant Mean Curvature Ln
Riemannian Manifofds, to appear in the Math., Z,

[Bko] J.L.M. Barbosa, K. Kenmotsu and G, Oshikiri, Foliations by
Hypensungaces with Constant Mean Cunvature, preprint.



12 J.L.M. BARBOSA, J.M. GOMES AND A.M. SILVEIRA

[CN] C. Camacho and A.L. Neto, Teoria Geometrica das Folheagdes,
Projeto Euclides, Rio de Janeiro, 1980,

[c0] M.P. do Carmo and M. Dajczer, Rotations Hypersunfaces 4n
Spaces of Constant Curvatunre, Trans, AM.S., Vol. 227
(1983), pp. 685-709.

(CP] M.P. do Carmo and C.K. Peng, Stable Complete Minimal
Surgaces {in R?® ane PlLanes, Bull. of the AMS, Vol. 1
(1979), pp. 903-306.

(6] J.M. Gomes, Spherical Surfaces with Constant Mean Curvature,
Ph.D. Theses, IMPA, 1984,

(M]  W. Meeks :III, The Topology and Geometry of Embedded Sunrfaces
0f Constant Mean Curvature, preprint,

N] S. Novikov, Topology of Foliations, Trans, Moscow Math,
Soc., 1965, pp. 268-304,

[S] A.M. Silveira, Stability of Complete Non-compact Surfaces
with Constant Mean Curvature, Ph.D. Thesis, IMPA, 1986,

Universidade Federal do Ceara Instituto de Matematica Pura e Aplicada

Departamento de Matematica Estrada Dona Castorina, 110

Campus do Pici 20.460 Rio de Janeiro-RJ

60.000 Fortaleza-CE

Universidade Federal do Rio de Janeiro
Instituto de Matematica

Caixa Postal 68530

20.000 Rjo de Janeiro-RJ



