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FOLIATION OF3-DIMENSIONAL SPACE FORMS BY SURFACES WITH 
CONSTANT MEAN CURVATURE 

J.L.M. BARBOSA, J.M. GOMES AND A.M. SILVEIRA 

1. In t roduct ion  

Let Y represent a 3-dimensional complete simply-connected 

space form. We study C2- fo l ia t ions  g of Y by leaves with the 

same constant mean curvature. We prove that i f  the curvature of Y 

is pos i t i ve  such f o l i a t i o n s  can not ex is t ,  When Y is the 

Euclidean space then such a f o l i a t i o n  must consist of p a r a l l e l  

planes. When Y is the hyperbol ic space, i f  we fu r ther  assume 

that the mean curvature s a t i s f i e s  H > l ,  then F must be a 

f o l i a t i o n  by horospheres. These resul ts  are s t i l l  true i f  F is a 

f o l~a t l on  of an open set U of Y and i f  we fu r ther  assume that 

the leaves are complete and o r ien tab le .  

We observe that  on hyperbol ic space there are examples of 

n o n t r l v i a l  f o l i a t i o n s  of open sets by complete surfaces with the 

same constant mean curvature 0 < H < I .  One example can be 

obtained from the l-parameter fami ly  of catenoids studied by do 

Carmo and Da jczer  ~D]  and by Gomes ~ ] .  

To prove the r e s u l t s ,  we cons ide r  a cod imens ion-one f o l i a t i o n  

o f  an o r i e n t a b l e  Riemannian m a n i f o l d ,  whose leaves  are o r i e n t a b l e  

and have the same cons tan t  mean c u r v a t u r e ,  and f i r s t  show t h a t  i t s  

l eaves  are s t r o n g l y  s t a b l e  in  the sense de f i ned  in  ~CE] .  We then 

app ly  the c l a s s i f i c a t i o n  theorem f o r  complete s t a b l e  su r f aces  of  

a 3 -d imens iona l  space form proved in  ~CE] and ~ ] .  

Since the f i r s t  v e r s i o n  of  t h i s  work was announced, some 

progress  was made on t h i s  s u b j e c t .  W. Meeks ~ ]  showed t h a t  the 
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only C2- fo l ia t ion  of the 3-dimensional Eucliean space, for  which 

each leaf  L has constant mean curvature H L, is the f o l i a t i o n  

by planes. In his proof he uses theorem (3.12) below. Barbosa, 

Kenmotsu and 0sh ik i r i  ~K~ have shown that i f  M is a compact 

Riemannian manifold with nonnegat~ve curvature, then any 

codimension-one C2- fo l ia t ion of M, for  which each leaf  L has 

constant mean curvature H L, is a f o l i a t i o n  with t o t a l l y  geodesic 

leaves. 

2. Preliminary resu l ts  

Let M be an or ientable n-dimensional manifold and ~ be an 

or ientable Riemannian manifold of dimension n+l. <., .> w i l l  

represen~ the metric on s Let x: M + Y be an immersion. We 

w i l l  consider M endowed with the induced metric so that x 

becomes an isometry. N w i l l  represent a unit  normal vector f i e l d  

to M that defines i ts  o r ien ta t ion .  

I f  {e I . . . . .  en} i s  a l o c a l  o r t hono rma l  f rame f i e l d  t h e n  the 

second fundamen ta l  form o f  the immers ion is  g i ven  by 

n 

B(e i )  = -V e N : Z h i j e  j '  
i j = l  

(2.1) 

where V is the Riemannian connection of 

of x is then defined as 

(2.2) H = ~ h. .  
i= I  ~J 

and the norm o f  the second fundamenta l  forms is  g i ven  by 

Y. The mean curvature 

2 n h~ " 
(2.3) IIBII = ~ �9 

i , j = l  ~J 

We w i l l  now assume that the immersion z has constant mean 

curvature. D w i l l  represent a r e l a t i v e l y  compact domain with 

smooth boundary. We say that D is stable when, for  each function 

u: D § B such that 
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(2 .4 )  

and 

( 2 .5 )  

we have 

(2 .6 )  

Here A 

ul~D. = o 

I udM = 0 
] 
D 

I { - u A ~ - d B 1 1 2  + R ) ~ 2 } d M  > 0, 
D 

r e p r e s e n t s  the L a p l a c i a n  on M and R r e p r e s e n t s  the 

R icc i  c u r v a t u r e  in  the normal d i r e c t i o n .  When c o n d i t i o n  ( 2 .6 )  is  

s a t i s f i e d ,  whe ther  i f  ( 2 .5 )  occurs or  no t ,  we say t h a t  D is  

s t r o n g l y  s t a b l e .  Observe t h a t  i f  D is  s t r o n g l y  s t a b l e  then i t  

is  s t a b l e .  

We say t h a t  the immers ion x is  s t a b l e  when each r e l a t i v e l y  

compact domain p on M, w i t h  smooth boundary ,  is  s t a b l e .  We 

make a s i m i l a r  d e f i n i t i o n  f o r  x s t r o n g l y  s t a b l e .  For a more 

d e t a i l e d  d i s c u s s i o n  o f  the concept  o f  s t a b i l i t y  see ~ C E ] ,  

2.7 Theorem. Let  x t :  M § Y be a l - p a r a m e t e r  f a m i l y  o f  immers ions 

w i t h  c o n s t a n t  mean c u r v a t u r e  H ( t ) .  Then, f o r  each f i x e d  t t he re  

is  a f u n c t i o n  f :  M+R s a t i s f y i n g :  

~H 
~f + "" "(/IBll 2 + ~).f" = n ~  ( 2 . 8 )  

P r o o f .  Let  X: ( - ~ , E )  x M + Y be the mapping d e f i n e d  by 

x ( t , p )  = x t ( P ) .  Set 

Bx (2 .9 )  ~ - 
~t"  

Let  N ( t , p )  r e p r e s e n t  the u n i t  v e c t o r  f i e l d  normal to x t ( M  ) 

the p o i n t  p. De f i ne  a f u n c t i o n  F : ( - ~ , ~ ) x  M + H by 

F ( t , p )  = < ~ ( t , p ) ,  N ( t , p ) >  

and, f o r  a f i x e d  va l ue  o f  t ,  se t  

at  
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(2.10) f ( p )  : F( t ,  p). 

We are going to show that  the func t ion  f s a t i s f i e s  the equat ion 

(2 .8) .  

To s imp l i f y  the notat ion we w i l l  i d e n t i f y  each vector V, 

tangent to M t = { t }  • wi th the vector dxt(V ). B/Bt w i l l  

denote the un i t  vector f i e l d  on ( -c ,  ~) • M orthogonal to  M 

wi th  respect to the product metr ic so that  

(2.11) ~ = dx(B/@t) 

Fix t = t o . In a neighborhood of a point  p of" M t choose an 

orthon~ormal frame f i e l d  {e i ( t  , p), e2{t , p),  . . . .  en( t ,~  tangent 

to M t and such that  

(2.12) (V e.)T(p) = 0 i,j = 1,2 n 
e i J ' ' ' ' ,  

where ( . )T(p) means the orthogonal pro jec t ion  in to  T M, For 
P 

th is  choice of frame i t  is true that  

( 2 . 1 3 )  

and 

(2.14) 

[~, ~ i ]CP)  = o i = I ,  2 . . . . .  . 

n 

= 
Af(p) i~=l ei(ei(f) ). 

Decomposing ~ by i t s  tangent ia l  and normal components, ~ =~T+~N, 

we obta in:  

(2.15) f = <{N, N>, 

S ince  Ve.N i s  t a n g e n t  to Mr,  i t  f o l l o w s  t h a t  

ei(f) = <V ~N N> 

a n d  s o  we h a v e  

(2.16) e iCe i ( f ) )  = <V ~ e i N> + <V ~ i , cN ] ,  N>§ ~N,v e N>. 
e ~ N ' e i ei i 
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Using that the curvature tensor of Y is given by 

(2.17) B(v,w)z = VwVvz - VVVW~ + V~,w]Z 

where rewrite (2.16) as 

(2.18) e i ( e i { f ) )  = -<RCei,~)ei ,  N> + <V NV e el ,  N> 
~ i 

+ <v~i,~ ],~,~, § ~,§ v~iN,. 

Since ~N : fN 

(2.19) 

and Ve.N is tangent to M t we have: 

~N z fj~.= z ,V e N> : fly e N t = h.. 
<Vei i i l zJ 

From (2,13) we have that 

[ei, {N] CP} =-[~i,~] (P)" 
Therefore ~i ,~N](p)  is tangent to ~to. From the symmetry of 

the second fundamental form of x t i t  follows that,  at p, 

(2.20) <V _ <V e ~ i , {  N] N> ~ i , ~ ] e ~ ,  M> = ~ , 

Since (V_NN)(p) is tangent to M t 
(2.12), we obtain: 

and, also making use of 
0 

( 2 .2 I )  <V NV e.el, N>(p) : ~N<Ve.ei,z N>(p) 

: . ~ N < % ,  V e N>CP) = ~ ( h i j ) ( p )  ' 

Using tha t  ~ i ,~  N] is  tangent to Mto at the po in t  p and 

also (2.15) we have 
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(2.22) <N'%.~i "{~]>(P) : -<~'i':]" v .~>(p) 

n 

= <v ~ -  v " i '  ~ ~"~'>(P)  = ~i ~v j=] @: J 

n n 

= "f(P) jZl= hiJ(P) - j~l: hij<VNei, ej>(p). 

Since (hij) is a symmetric matrix, the last term vanishes. Thus 

~Z 
2 

(2.23) <N,V e ~ei,~N]>(p ) =- f (p)  ~ hij(P). 
j= l  

Putting together (2,14), (2.18), C2.19), (2.20), (2,21) and (2.23) 
we o b t a i n  

n n n 

(2.24) Af(p) : -f(p) [ <RCei, Nlei, N> + [ ~(hii ) - f(p) Z hl. 
~=1 ~=I i , j=l *J 

Observfng that B : [ <B@i N) el, N>, that Xh;~ II~II 2 , = and 
that i= l  

(2.25) 

(where the last equal i ty was obtained by using that H is constant 

along each Mt) we may then rewrite (2.24) as 

(2.26) ( A t  + ( I IB l l  ~ + R)f)(p) = ~t(nH)(p). 

Since p was arb i t rary  the theorem is proved, 

3. F o l i a t i o n s  

For basic facts about fo~iations see ECN], We star t  th is  

section by proving the fol lowing theorem. 
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3.1 Theorem. Let Y be a n-dimensional o r ien tab le  Riemannian 
C 2 

manifold and F be a - f o l i a t i o n  of Y by o r ien tab le  

hypersurfaces. Assume that each lea f  of F has the same constant 

mean curvature. Then each lea f  of F is strongly s table,  

Proof. Let L be a lea f  of F, By d e f i n i t i o n  of a f o l i a t i o n ,  

for  any point  p of L, there is a neighborhood D of p 
P 

L and an embedding 

:0 • ~) + Z 
P P 

such that / 

on 

(a) for  each t in ( - e ,e ) ,  @p(DpX{t}) 

(b) ~p(q, O) = q for  each q in Dp. 

l i e s  in a l e a f  of F 

I f  the images of two such maos, say @p and 

i n te rsec t i on ,  then ~qZO ~p is of the form 

~q, have a common 

(3 .2)  h(r, t )  = (hz(r, t ) ,  h 2 ( t ) ) ,  

Represent by gp:Dp § R the mapping (assoc ia ted  to ~p) de f ined  

by 

(3.3)  gp(r)  = < ~ ( ~  0) ,  N( r )>  

where N is the un i t  normal f i e l d  tha t  de f ines  the o r i e n t a t i o n  

of L. I f  gq is the mapping assoc ia ted ~q then,  at the po in ts  

of Dp n Dq, we w i l l  have 

~h 
2 

(3 .4)  gp(r)  = -~T(O)gq(r) .  

Hence gp and gq d i f f e r  by m u l t i p l i c a t i o n  by a nonzero number 

on each connected component of  DpN Dq. Consider now the un i ve rsa l  

cover ing L' of  L and the cover ing  p r o j e c t i o n  ~ :L '  ~ L. We use 

the p r o j e c t i o n  ~ to pu l l  back the met r i c  of L and the loca l  
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function gp. Since L' is simply connected, we may use the 

local functions gp to construct, via a monodromy type reasoning, 

a nonzero real function g defined on L', that l oca l l y  w i l l  

be given by 

( 3 . 5 )  

where 

(3.6) 

g = <~, N> 

g(q) = @-~ ~p(q, ct) 

for some p on L and some nonzero constant e. I f  we compare 

this local expression of g with the def in i t ion  given in (2.10) 

for f ,  we conclude that g sa t i s f ies  the equation (2,8). Since 

we are assuming that the mean curvature, besides being constant 

on each l?af,, does not change from leaf  to leaf ,  then (2.8) 

s impl i f ies  to 

(3.7) Ag + (JJBII ~ + B)g = O. 

We observe that ,  although g is not well defined on L, the 

f i e l d  X = Vg/g is well defined on L. Using the equation (3.7) 

in the computation of A log g, we obtain 

2 2 

( 3 . 8 )  diVLX = -  I IBII - R -  I x l  

This equation allows us to prove that L is strongly stable.  

Let D represent a loca l l y  compact domain on L with smooth 

boundary and le t  u: D ~ B be any d i f fe ren t iab le  function which 

is zero on BD. 

2 

(3.9) IV"I 

and that 

(3.10) 

Hence we obtain 

(3.11) lwl 

Observe that 

2 U2 2 
(IIBII + R)u ~ I w ,  I ~ ,,,~ = + diVLX + IXI 

U 2 diVL(U2X) = 2u<Vu, X> + diVLX. 

(ll ~ ]L ~ - + R)u  2 Jvu + uXl 2 2 
= + diVL(U X). 
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I t  fol lows that 

I {-uau - (IIBll 2 +R)u2}dM : i lw + uxi 2 dM > 0 
D 

w 

where we have used twice Stokes' theorem and the fact  that u is 

zero on BD. Therefore D is stable. Since D is a rb i t ra ry  we 

conclude that L is stable. 

In what fol lows we w i l l  represent by Q~(a) a 3-dimensional 

o r i e n t a b l e  c o m p l e t e  Riemannian  m a n i f o l d  wi th  c o n s t a n t  s e c t i o n a l  

curvature a .  

3.12 Theorem. Let u c Q3(a} be an open set and F be a 
2 

C - f o l i a t i o n  of U whose leaves are complete or ientable surfa.ces 

with the]same constant mean curvature. Then 

( i )  a ~ 0. 

( i i )  I f  a = 0 the leaves of F are t o t a l l y  geodesic 

submanifolds of Q~(a). 

( i i i )  I f  a < 0 and the mean curvature of the leaves is greater 

than or equal to (-a) I /2 ,  we have H ~ (-a) I/2 and a l l  the 

leaves f l a t  

Proof. Let Y be the unfversal covering space of Q3(a), and U' 

be the open set of Y that covers U, Consider Y with the 
3 

induced metric so that i t  is l o c a l l y  isometric to Q (a), We may 

then l i f t  the f o l i a t i o n  F Of U to a f o l i a t i o n  F' of u' 

with the same properties as F, I t  fol lows from the previous 

theorem that each leaf  of F' is strongly stable and, in part icular, 

is stable. 

Barbosa, do Carmo and Eschenburg [BCE] have shown that stable 

compact surfaces with cons-tant mean curvature in Y are geodesic 

spheres, and they are not strongly stable. This shows that no leaf  

of F' can be compact. 
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S t a b l e  immers ions o f  comple te  noncompact su r faces  in  % have 

been s t u d i e d  by A. S i l v e i r a  9 ] .  He showed t h a t  t h e r e  are  no such 

immers ions when Y is  the sphere S3(a) ,  t h a t  the images o f  such 

immers ion must be p lanes  when Y is R 3 and must be ho rosphe res  

when Y is  the h y p e r b o l i c  space and H ~ (-a) I /2 I t  f o l l o w s  

f rom t h i s  r e s u l t  t h a t  a < 0 and the leaves  o f  F must be images 

o f  p lanes (when a = 0) or  o f  horospheres  (when a < 0) t h r o u g h  

the c o v e r i n g  p r o j e c t i o n  7. S ince ~ is  a l o c a l  i s o m e t r y  the 

theorem is  now a consequence o f  the p r o p e r t i e s  o f  p lanes  i n  H 3 

and ho rospheres  in  the h y p e r b o l i c  space.  

The nex t  theorem is  a c o r o l l a r y  o f  ( 3 . 1 2 ) ,  

3 . 1 3  Theorem. (a) There is no O2-fo l ia t ion of the Euclidean 

sphere S3(a) by surfaces with the same constant mean curvature. 

(b) The only C2- fo l ia t ion  of the Euclidean space R 3 by 

surfaces with the same constant mean curvature is f o l i a t i o n  by 

planes. 

(c) The only C2- fo l ia t ion  of the 3-dimensional hyperbol ic 

space by surfaces with the same constant mean curvature H > l 

is the f o l i a t i o n  by horospheres. 

Proof. Let % be the sphere or the Euclidean space or the 

hyperbolic space. Let F be a C2- fo l ia t ion of Y by surfaces. 

Since % is complete, each leaf  of F is complete. Since Y is 

simply connected and or ientable,  the leaves are or ientab le .  Now 

th is  theorem fol lows from the proof of the previous one. 

The fact  that we do not need the hypothesis of completeness 

for the ambient manifold Y in theorem (3.1),  makes th is  theorem 

useful for understanding certain properties of s t a b i l i t y  on some 

fami l ies of surfaces with constant mean curvature. Consider for  

example the case of the family of minimal surfaces in the 

3-dimensional hyperbolic space invar ian t  under the group 0(2) of 
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i s o m e t r i e s .  (see [ ~  and [CD] f o r  d e t a i l s ) .  Each s u r f a c e  i n  t h i s  

f a m i l y  i s  c a l l e d  a Ca teno id .  The a s y m p t o t i c  boundary  o f  a c a t e n o i d  

c o n s i s t s  o f  two c i r c l e s  in  the i d e a l  boundary  S~ o f  the 

h y p e r b o l i c  space.  Moreove r ,  i t  i s  known (see [G])  t h a t  g i v e n  two 

c i r c l e s  i n  S , t he re  can e x i s t  at  most two c a t e n o i d s  h a v i n g  

those c i r c l e s  as a s y m p t o t i c  boundary .  

3 .14  Theorem. Given two c a t e n o i d s  w i t h  the same a s y m p t o t i c  

bounda ry ,  one of  them is  s t r o n g l y  s t a b l e .  

F 

P r o o f :  F i x  a r o t a t i o n  a x i s  ( t h a t  i s  i n v a r i a n t  under  the a c t i o n  o f  

0 ( 2 ) ) .  Given a p o s i t i v e  rea l  number d ,  the f a m i l y  F of  a l l  

+ F~, the c a t e n o i d s  i s ~ d i v i d e d  i n t o  two f a m i l i e s ,  F d and where 

f i r s t  one" c o n s i s t s  o f  the c a t e n o i d s  whose d i s t a n c e  to the r o t a t i o n  

ax i s  i s  l a r g e r  than d,  and the o t h e r  one c o n t a i n s  the r e m a i n i n g  

c a t e n o i d s .  In [ 4  i t  i s  shown t h a t  t h e r e  i s  a number d o > 0 such 

t h a t  F + do f o l i a t e s  an open se t  o f  the h y p e r b o l i c  space,  namely ,  

the complement of  the l ocus  of  a l l  c a t e n o i d s  whose d i s t a n c e  to 

the r o t a t i o n  ax i s  i s  l ess  than or equal  to d o . From ( 3 . 1 ) ,  each 

c a t e n o i d  on F + do is  s t r o n g l y  s t a b l e .  In ~G], i t  i s  a l so  shown 

t h a t ,  i f  two c a t e n o i d s  have the same i d e a l  bounda ry ,  then one 

of  them be longs to F~ and the o t h e r  one to F~ Th i s  proves 
0 0 

the theorem.  

EBq 

[BCE~ 

[BKO] 
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