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Abstract: Let M be a smooth manifold with Finsler metric F', and let TM° be the slit tangent bundle of M with
a generalized Riemannian metric G, which is induced by F'. In this paper, we extract many natural foliations of
(TM°,G) and study some of their geometric properties. Next we use this approach to obtain new characterizations of

Finsler manifolds with positive constant curvature.
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1. Introduction

Several monographs present methods of differential geometry used in the study of Finsler manifolds [1, 2, 3, 5, 6].
As the geometric objects that occur in Finsler geometry depend on both point and direction, the tangent bundle
of a Finsler manifold plays a major role in this study. To emphasize this Bejancu and Farran in [4], by using
Sasaki-Finsler metric Gg, initiate a study of interrelations between the geometry of foliations on the tangent
bundle of a Finsler manifold and the geometry of the Finsler manifold itself. Then, Peyghan and Tayebi
introduce new metric G on slit bundle of Finsler manifold and they study geometric properties of this metric
[10]. In this paper, we use this metric on TM° and we show that the vertical and horizontal Liouville vector
fields L and L* determine three totally geodesic foliations on (T'M°,G). Finally, the main properties of the
two foliations defined by F on (T'M°,G) are presented in Propositions 1 and 2. In the last section, for any
¢ > 0 we consider the indicatrix-bundle M (c) and by using the horizontal Liouville foliation on (IM(c), G)
and the curvature-angular form we obtain three new characterizations of Finsler manifolds of positive constant

curvature.

2. Preliminaries

Let (M, F) be a Finsler manifold, where M is a real n-dimensional smooth manifold and F is the fundamental
function of (M, F) [2]. Counsider TM° = TM \ {0} and denote by VTM®° the vertical vector bundle over
TM°, that is, VI'M° = ker m, , where m, is the tangent mapping of the canonical projection 7 : TM° — M.

We may think of the Finsler metric (g = g;j(z,y)), where we set g;;(z,y) = % 8‘?;5; as a Riemannian metric

on VI'M°. The canonical nonlinear connection HTM® = (N/(z,y)) of (M,F) is given by N} = %G,-j,
(2 (2 Y

where G7 = %gjh(%yk - gTFi)- Then on any coordinate neighborhood u C TM° the vector fields
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521- = a‘zi — Nij%, i =1,---,n form a basis for I'(HTM°®),). By straightforward calculation, we obtain

the following Lie brackets:

y 9 0 g 0 0
— Y — | =RF.—, | —, | =Gk —, 2.1
[5951 5953] Y oyk [5951 Byﬂ] Oy (2.1)
k
where Rkij = ‘g; — 66];[{ and ij = %Jﬁ . Note that Rkij is a skew symmetric Finsler tensor field of type (1,2)

while ij are the local coefficients of the Berwald connection associated to (M, F'). Some other Finsler tensor

fields defined by R*; will be useful in the study of Finsler manifolds of constant flag curvature (see [4])
(i) Rnij = gneRYj, (i) Rnj = Ryijy’, (i) RY; = g"" Ry;. (2.2)

From their properties, we mention the following:

(i) y" Ras; =0, (ii) 4" Ra; =0, (iid) Rij = Ry, (iv) RY, = % {a’iRkj - a'jR’z.}. (2.3)
We also need the angular metric h;; of (M, F) given by
hij = gij — lily, (2.4)
where I; = % and y; = gi;y’ . Moreover, we have the following theorem:

Theorem 1 ([7]) A Finsler manifold (M, F') is of constant curvature k if and only if the following holds
Rij:kF2hij, i,jzl,...,n. (25)

Consider now the energy density 2t(z,y) = F? = g;;(z,y)y'y’ defined by the Finsler metric F and also the
smooth functions w, v : [0,00) — R such that u + 2tv > 0 for every t. The above conditions assure that the
symmetric (0,2)-type tensor field of TM®, Gi; = u(t)gi; + v(t)y;y; is positive definite. The inverse of this
matrix has the entries H*! = % gt + w(t)ykyl, where (gkl) are the components of the inverse of the matrix
(gs5) and w(t) = — itz The components H kl define symmetric (0,2)-type tensor field of TM°. It is
easy to see that if the matrix (Gj;) is positive definite, then matrix H*' is positive definite, too. We use
also the components H;; of symmetric (0,2)-type tensor field of TM®° obtained from the components H*! by
“lowering” the indices H;; = g klglj = %gij + wy,y;, where y; = giry®. The following Riemannian metric
may be considered on TM° (cf. [8]):

o 9 g 0 o 0 a 4

If w=1 and v(t) =0, then the above metric gives us the Sasaki-Finsler metric Gg as follows [4]:

0 6 o 0 6o 9, ., 0 ¢

GS(@» w) = Gs(a—yi» @) = 9ij» GS(@» @) = Gs(a—yi» w)

= 0. (2.7)
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Lemma 1 The Levi-Civita connection of the Riemannian metric G defined by (2.6) is as follows:

o 1 S S 6 S S S S
+ 52 (2.8)
asyiyiy ) m3—=> .
J 6ys
~ )
V5.0 = Fisj% + (—uPCy; + aa(y; 07 + 1id5) + asyiy;y® + asgisy®
1 0
ZRS.)— 2.9
+2 ”)Bys’ (2.9)
Vol = (C° iy o 55 55 iR- Frks 0
v&z J ( ij + arYiy;y + aggijy + a2y ' + Qa9Y;0; + 2 ikj )(5.%'5
S S 6
+(F — Gij)a—ys» (2.10)
= 1 )
Vs, 0; = (ij + aryiy;y° + asgiy’ + oy, 08 + agyiéj + %Rjkins)(sxs
0
Fji— 2.11
+ 1] 8ys’ ( )
! ! 2 4 —2u'v+w'u?(u v VU v (u v v?
where ay = SCERIBoU () gy = 2 gy = SRt () g = o gy = Sl
ag = —M} a7 = w“,“"’w”“;u”,(l”tw“) , ag = ”(1"’21“”“) ;a9 =g, and C, is the h-covariant derivative

of C}; with respect to Cartan connection.

3. Foliations on (T'M°,G)

In this section, we shall study various kinds of foliation which are naturally associated to (T'M°,G). For this

purpose, we consider two globally defined vector fields on TM° locally given by
L = y'0;, (3.12)

L* = y'6;. (3.13)
L and L* are called the wertical and horizontal Liouville vector fields, respectively. The line distribution

L =span{L} and L* = span{L*} are called the vertical and horizontal Liouville distributions, respectively.

Theorem 2 Let (M, F) be a Finsler manifold. Then we have the following assertions:
(i) The vertical Liouville vector field determines a totally geodesic foliation on (TM°,G).
(ii) The horizontal Liouville vector field determines a totally geodesic foliation on (TM°,G) if and only

if w and v satisfy in

1
uv + §u'u + t(ou’ +v'u) + 26200 + 2t = 0. (3.14)
(i4i) The distribution T'(L @ L*) is integrable and its tangent foliation is totally geodesic on (TM°,G).
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Proof By using Lemma 1, we get

VL = (1 +2t(ar — 200 + 2ta3))L, (3.15)
VoLt = (2t(2a4 +ag+ 2ta5))L, (3.16)
VL= (2t(a2 + a9+ ag + 2ta7))L*, (3.17)
VoLt = (1 +2t(0g + g + o + 2ta7))L*. (3.18)

Relation (3.15) tell us that £ is totally geodesic. Also, from (3.16) we derive that £* is totally geodesic if and
only if (3.14) holds. Relations (3.17) and (3.18) give us [L,L*] = L* € T(L ¢ L*). Now let X = XL + X*L*
and Y =YL+ Y*L* belong to T'(L & L*), then by Dirac calculation we obtain

VxY = (XL(Y) +XTLH(Y) + XY (1 + 2t(01 — 203 + 2tas))

F2UXTY (204 + ag + 2ta5)) L+ (XL(Y*) +XFLA(YY)
+XY*(1 + 2t(a2 + ag + as + 2tay))

XY (g + o + s + 2ta7)) L*.

Hence we derive that VxY € T (L& L*) for any X, Y € T'(L @ L*). Therefore the foliation determined by
D(L @ L*) is totally geodesic. O

Remark 1 It is remarkable that the foliation in (ii) is also totally geodesic with respect to the Sasaki-Finsler
metric (cf. [4]).
Also, by using (2.8)—(2.9) we can conclude the following:
Lemma 2 Let (M, F) be a Finsler manifold. Then we have
VL = X' ((2ta7 +ag + ag)yiyk + 2ta2§f) Ok

+X ((a1 — ag + 2tas)yiyt + (1 — 2ta2)5f)6k, (3.19)

- g 1
Vxl* = XZ((l + 2t0) ) + (2tar + as + a2)yiy® + %yJRistks) O

1. .
+X (§y3 Rkij + 2ta4§f + (g + 2tas + aﬁ)yiyk)(?k, (3.20)
where X = X6; + X'9; € T(TTM°).

To introduce two more foliations on (T'M°,G) we denote by £’ and L+ the complementary orthogonal

distributions to £ in VIT'M° and TTM®, respectively. Now, let X,Y € I'(L1). Since G is parallel with
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respect to 6, then we get
G(X,Y],L) = G(VxY,L) — G(VyX,L) = G(X,VyL) — G(Y,VxL). (3.21)
By using (3.19), we derive
G(X,VyL) = [[(ag + ag + 2taq)(u + 2tv) + 2tvas]yiy; + 2tuasg ;| XY
-

1
(1 — s + 2ta3)(a + 2tw) + w(l — 2tas)]yy;

—

+—(1 — 2tag)gij | XYY, (3.22)

Sl

Similarly we have

G(Y,VxL) = [[(ag + g + 2tar) (u + 2t0) + 2tvas]yiy + 2tucngs; | VX
J’_

—

1
(a1 —as+ 2ta3)(a + 2tw) + w(l — 2tas)]yiy;

+=(1 — 2tan)gi; | Y X7, (3.23)

S

Since i, 7, k in (3.22) and (3.23) are summation indices, then (3.22) is equal (3.23). Therefore, by according to
(3.21) we infer
G([X,Y],L)=0. (3.24)

Hence [X,Y] € (L)), that is, £ is integrable. It is obvious that L’ is integrable, too. Therefore, we have

the following theorem.

Theorem 3 Let (M, F) be a Finsler manifold. Then both distributions £ and L' are integrable.

Also, similar to the proof of Proposition 2.1 in [4], we can prove the following:

Proposition 1 (i) The fundamental foliation Fr determined by the level hypersurfaces of the fundamental
function F of the Finsler manifold (M, F) is just the foliation determined by the integrable distribution Lt .
(i) The vertical Liouville vector field is orthogonal to foliation Fp .

(i4i) The horizontal Liouville vector field is tangent to foliation Fp .

Next, we consider a fixed point xg = (x{) in M and the hypersurfaces I,,M/(c) in T, M° = T,, M — {0} given
by the equation

F(zo,y) =c¢, YyeT,,M°,
where ¢ is a positive constant. We call it the c-indicatrix of (M, F') at xo. Then the set of all c-indicatrices at

xo determines a foliation of codimension one of the m-dimensional Riemannian manifold (Ty,M°, g,,), where

Jao = (gij(xo,y)) (see [4]). Now, let

1 . .
IZF\/u+2tvL:\/u+2tleBi, "= =,

s
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then we have G(I,1)=1. Also, we denote by the same symbol g,, the induced Riemannian metric by g,, on
I.,M(c). Now, we put
VxY = V4V +h(X,Y), (3.25)

Y = V4Y + B(X, V), (3.26)

for any XY € I'(TI,,M(c)), where V' and V" are the Levi-Civita connections on (T,,M°,g.,) and
(Izo M (c), gz, ), respectively, while h(-,-) and B(-,-)l are the second fundamental forms of T,,M° and I,, M (c)
as submanifolds of (TM°,G) and (T,,M°®, g,), respectively. Since ! is orthogonal to I, M (c), then we have
920 (V%Y. 1) = 0. Hence by using (3.26), we obtain

u + 2tv

9o (VY3 1) = gao (B(X, Y1, 1) = B(X,Y)y'y’ gij

= (u+2t0)B(X,Y). (3.27)
Now, let VxY = (VxY)id; + (6XY)18Z According to (2.6), we get

~ ~ . ~ R | ..
G(VXK l) = G((VXY)Z(SZ + (VXY)Z(?Z-, F\/U + 2t1}y]8j)

Vut2tv 51 v

= (VXY) Ia Y (Egij - myiyj)
1 ~ .
= ——(VxY)'y,. 3.28

Similarly, we obtain

~ ~ . ~ N | ..
gm)(va', l) = g$0((vXY)Z§i + (VXY)Z(?Z-, F\/u + 2t1}y]8j)

Vu + 2tv

= uVvu+2v = i
= (VxY)' ———vgi; = (VxY) Yi- (3.29)
F F
The relations (3.27), (3.28) and (3.29) give us
1 ) - -
BX.Y) = sy (VY1) = G(VxY,1) = ~G(Y, V1)
V 2t V 2tv ~
= ey x (I L YA
F F
V 2t =
= —%G(Y, VxL). (3.30)
Let X = X'9; € I(TI,,M(c)). Since L is orthogonal to I,,M(c), then we have
0= G(X,L) = G(X'8,,y/8)) = X'y (-9, - ————yiy) = ———X'ys.
’ e u?? u(u+2t0) 7 w2t
Hence we infer that
X'y =0, (3.31)
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because u + 2tv # 0. By using (3.19) and (3.31), we deduce

VxL = (1 - 2tas)X. (3.32)
The relation (3.32) in (3.30) implies
— 1)V
B(x,v) = 2oz } U XY, (3.33)

But by direct calculation we derive G(X,Y) = 1g, (X,Y). Thus for any X,Y € I'(TI,,M(c)) we obtain

(2tas — 1)Vu + 2tv

B(X,Y) = =

9zo (X, Y).

Therefore any c-indicatrix at zq is a totally umbilical manifold immersed in (7,,M°, g»,). Finally, we deduce

that the leaves of the integrable distribution £’ are c-indicatrices, because L is the normal vector field to each

c-indicatrix.

Proposition 2 Let (M, F) be a Finsler manifold. Then we have the following assertions:

(i) At any point x € M, the indicatriz foliation I, M is a totally umbilical foliation of (Ty M, g.).

(i) The leaves of the foliation Fr. determined by the integrable distribution L' are c-indicatrices of (M, F).
(i4i) The foliation Fr/ is a totally umbilical subfoliation of the vertical foliation Fy .

4. Finsler manifolds of positive constant curvature

In this section, we give some necessary and sufficient conditions for (M, F') to be of constant curvature.
Let (M, F) be a Finsler manifold and consider the symmetric tensor fields R = (R;;) and h = (h;;),
where R;; and h;; are given by (2.2) and (2.4). We define the symmetric Finsler tensor field A = (A;;) by

Aij = Rij — hij. (4.34)

We consider A as a symmetric bilinear form on the F(TM°)-module T'(HTM°) and call it the curvature-
angular form of (M, F) (see [4]).

Proposition 3 For any X € I'(HTM®) we have

A(L*,X) =0 = R(L*, X). (4.35)
Proof Let X = X'5; € (HTM?®). Using (ii) of (2.3) and (2.4), we have

A(L*, X) = y' X7 Ay = X9y Rij — Xy gij + Xy 2o %0

FF
= X7y, + X7y; = 0. (4.36)
Also, part (ii) of (2.3) gives us
R(L*, X) = X?y'R;; = 0. (4.37)
The relations (4.36) and (4.37) imply (4.35). O

354



PEYGHAN and NOURMOHAMMADI FAR/Turk J Math

Next, we consider a leaf TM (c¢) of the fundamental foliation Fr on (TM°,G). As we can write

IM(c) = | J LM(c),
xeM

we call TM(c) the c-indicatrix bundle over M. Also, we consider the horizontal Liouville foliation Fr-
determined by the integral curves of L*. According to Theorem 2, Fp« is a totally geodesic foliation on
(TM°, Q) if and only if

1
uv + §u'u + t(vu +v'u) + 26200 + 2tv? = 0.

Therefore we infer that Fp- is totally geodesic on any c-indicatrix bundle (IM(c), G) if and only if

1 1 1
uv + §u'u + §(vu' +v'u) + 51}1/ + 0?2 = 0.

Here and in the sequel, we denote by the same symbol G the Riemannian metric on IM (¢) which is induced
by the metric G on TM°.

Theorem 4 Let (M, F) be a Finsler manifold and IM(c) be a c-indicatriz over M. Then the Riemannian
metric G on IM(c) is bundle-like for horizontal Liouville foliation Fr- on IM(c) if and only if A = (1— )R
on IM(c).

Proof First, we note that all the vector bundles in this proof are considered to be over ITM(c). Let L”
be the complementary orthogonal distribution to the horizontal Liouville distribution £* in HTM®. Then
Lt =L'® LD L* is the tangent bundle of IM(c). It is known that the Riemannian metric G is bundle-like
for Fr- on IM(c) if and only if

G(VxY, L")+ G(VyX,L*) =0, (4.38)

where X,Y € T'(£'®L") and V is the Levi-Civita connection on (IM(c), G). Since V is parallel with respect to
G and G(X,L*) = G(Y,L*) = 0, then we have G(VxY, L*) = G(Y,VxL*) and G(Vy X, L*) = G(X,VyL*).
Therefore (4.38) is equivalent to

G(VxL*Y)+G(VyL*,X)=0, VX,Y eT(L @L"), (4.39)

where V is the Levi-Civita connection on (IM(c),G). Since £ is the normal bundle to IM(c), then (4.39) is

equivalent to

G(VxL*Y)+G(VyL*,X)=0, VX,Y eT(L @L"), (4.40)

where V is the Levi-Civita connection on (TM°,G).
Now, we consider three cases to analyze (4.40). In the first case, let X and Y belong to I'(£’). Then
by using (3.20), we conclude that VxL* and VyL* belong to T(HTM?®). Thus we have G(VxL*,Y) =

G(%yL*,X ) =0, because £ and HTM® are orthogonal vector bundles with respect to G. Consequently, in
this case (4.40) is identically satisfied. In the second case, we let X and Y belong to I'(£”). Then by using

(3.20), we conclude that exL* and eyL* belong to T'(VTM*®). Similar to the previous case, we can deduce
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that (4.40) is again identically satisfied. In the third case, we let X = X'9; € T'(£’) and Y = Y'§; € T(L").

Since L£" is the complementary orthogonal distribution to £* in HTM?°, then we have
0=G(Y,L*) =Yy G(6;,6;) = Y (ugij +vyiy;) = (u + 2tv)Y'y;. (4.41)

Also, (3.31) gives us
Xiy; =0. (4.42)

According to (3.20), we get
- 1 .
G(VxL*,Y) = (u+to) X Y gy, — 5 XY Riy. (4.43)
Similarly, we obtain
- , 1.
G(VyL' X) = —toX"Y'gy — 2=V RyiX', (4.44)
u
Using (4.43) and (4.44), we obtain the following expression of (4.40):
1 i
(ugij — ERU)X Y7 =0. (445)
On other hand, (4.42) implies
hij X'Y9 = g;; XYY, (4.46)
By using (4.34), (4.45) and (4.46) we obtain
A XY = Ry XY — hij XY = Rj; X'Y7 — gi; XY
ivi L ivj 1 ivi
= RyX'Y) - Ry XY = (1 - F)RUX Y. (4.47)

Now, we consider the isomorphism of vector bundles ® : £ — £’ defined by ®(X?d;) = X%6; = X*. Then
(4.47) is equivalent to

* 1 * *
AX"Y) = (1= —5)R(X™,Y), X7, €T(L"). (4.48)
Finally, from (4.35) and (4.48) we deduce that (4.40) is equivalent to A = (1 — Z)R on IM(c). O

Taking into account that £ is orthogonal to the vertical Liouville distribution £ we deduce that L* is a
Killing vector field on IM(c) if and only if (see [11])

G(VxL*Y)+G(VyL*,X) =0, VX,Y eT(L"). (4.49)
Now, we can prove the following theorem.

Theorem 5 Let (M, F') be a Finsler manifold and IM (c) be a c-indicatriz bundle over M . Then the horizontal
Liouville vector field L* is a Killing vector field on IM(c) if and only if A= (1 — #)R on IM(c).
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Proof If L* is a Killing vector field on TM(c), then according to (4.49), the relation (4.40) is held and
consequently from Theorem 4 we infer that A = (1 — )R on IM(c). Conversely let A = (1 — )R on
IM(c). Then (4.40) gives us (4.49), only for any X,Y belong to T'(L @& L”). Also, if X =Y = L* then
(3.16) implies (4.49). Hence in order to complete the proof we need to show that (4.49) is held for X = L* and

Y e T(L£' @ L£"). According to (3.16), since Vp-L* = 2t(2a4 + ag + 2tas)L then we deduce that we should
prove that

G(VyL*,L*)=0, VY eT(L' ®L"). (4.50)

We consider two cases to analyze (4.50).

Case 1. Y € I'(£"). Then from (3.20) we infer that VyL* € T'(VTM®), and consequently (4.50) is

held in this case.

Case 2. Y € I'(£'). In this case we have Y = Y9;, where Y satisfy (4.42). Then by using (3.20), we

obtain

~ , 1 .

VYL* = Yz((l + 2ta9)§f + Wijisjgks)é‘k-
Hence we get

- , 1 ,
G(VyL*, L") = YZ((l + 2tag) (u + 2tv)y; + %yTyJ RiTj). (4.51)

But by using (ii) of (2.2), (ii) of (2.3) and (4.42) we have Y*y; = 0 and R;.;y’y" = 0. Hence G(VyL*,L*) =0,
where Y € T'(L').

By using the above cases, we deduce that (4.49) is identically satisfied, and therefore L* is a Killing
vector field on TM(c). 0

Theorem 6 A Finsler manifold (M, F) is of positive constant curvature k if and only if A = (1 — #)R on

the indicatriz bundle IM(c) where ¢ = ﬁ

Proof Let (M, F) be a Finsler manifold of constant curvature k. Then by Theorem 1, we have
Rij = kF?h;;. (4.52)
But on IM(c) we have F(z,y) =c = % Hence we obtain F? = “—kz or equivalently

kF? =2 (4.53)
Substituting the above equation into (4.52), we obtain

1

hij = ERZ'J‘. (4.54)

Substituting (4.54) into (4.34), we get

1 1
Aij = Rij = 5 Rij=(1-—

5 )Rij. (4.55)
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Conversely, let A = (1— 5)R on IM(c). Then it follows from (4.53) and (4.34) that
Rij(z,y) = uhij(z,y) = kF?(x, y)hij(z,y), Y(z,y) € IM(c). (4.56)

Now, we take a point (z,y) € TM°\IM(c). Since TM° admits the fundamental foliation Fp, there exist
¢* > 0 such that (x,y) € IM(c*), that is, F(z,y) = ¢*. Since F' is positively homogeneous of degree one, we
have F(x, Sy) = SF(x,y) =c, ie., (z, 5y) € IM(c). Hence by (4.56), we obtain

c c 1 c

Rii(x,—y) — hij(z, —y) = (1 — =) Rij(x, —y), 4.57
J(w c*y) J(‘T c*y) ( u2) J(‘T c*y) ( )
or equivalently
c c
Rij(z, C—*y) = u?hyj(z, C—*y) (4.58)

Since h;; and R;; are positively homogeneous of degree zero and two, respectively, equation (4.58) implies

*2
c
Rij(z,y) = U2?hij($»y)- (4.59)

Since ¢ = = and F(z,y) = c*, it follows from (4.59) that

Rij(z,y) = kF?(z,9)hi;(z,y), Y(z,y) € TM°\IM(c). (4.60)

Thus it follows from (4.56), (4.60) and Theorem 1 that (M, F') is a Finsler manifold of positive constant cur-

vature k. O

Theorem 7 Let (M, F) be a Finsler manifold, and k,c two positive numbers such that ¢ = ﬁ Then the
following assertions are equivalent:

(i) (M, F) is a Finsler manifold of constant curvature k.

(i) The Sasaki-Finsler metric G on the indicatriz bundle IM(c) is bundle-like for the horizontal Liouville
foliation TM(c).

(i4i) The horizontal Liouville vector field is a Killing vector field on (IM(c),G).

(iv) The curvature-angular form A of (M, F) satisfy A = (1 — L)R on IM(c).
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