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Abstract: Let M be a smooth manifold with Finsler metric F , and let TM◦ be the slit tangent bundle of M with

a generalized Riemannian metric G , which is induced by F . In this paper, we extract many natural foliations of

(TM◦, G) and study some of their geometric properties. Next we use this approach to obtain new characterizations of

Finsler manifolds with positive constant curvature.
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1. Introduction

Several monographs present methods of differential geometry used in the study of Finsler manifolds [1, 2, 3, 5, 6].
As the geometric objects that occur in Finsler geometry depend on both point and direction, the tangent bundle
of a Finsler manifold plays a major role in this study. To emphasize this Bejancu and Farran in [4], by using
Sasaki-Finsler metric GS , initiate a study of interrelations between the geometry of foliations on the tangent
bundle of a Finsler manifold and the geometry of the Finsler manifold itself. Then, Peyghan and Tayebi
introduce new metric G on slit bundle of Finsler manifold and they study geometric properties of this metric
[10]. In this paper, we use this metric on TM◦ and we show that the vertical and horizontal Liouville vector

fields L and L∗ determine three totally geodesic foliations on (TM◦, G). Finally, the main properties of the

two foliations defined by F on (TM◦, G) are presented in Propositions 1 and 2. In the last section, for any

c > 0 we consider the indicatrix-bundle IM(c) and by using the horizontal Liouville foliation on (IM(c), G)
and the curvature-angular form we obtain three new characterizations of Finsler manifolds of positive constant
curvature.

2. Preliminaries

Let (M, F ) be a Finsler manifold, where M is a real n-dimensional smooth manifold and F is the fundamental

function of (M, F ) [2]. Consider TM◦ = TM \ {0} and denote by V TM◦ the vertical vector bundle over
TM◦ , that is, V TM◦ = kerπ∗ , where π∗ is the tangent mapping of the canonical projection π : TM◦ → M .

We may think of the Finsler metric (g = gij(x, y)), where we set gij(x, y) = 1
2

∂2F2

∂yi∂yj as a Riemannian metric

on V TM◦ . The canonical nonlinear connection HTM◦ = (N j
i (x, y)) of (M, F ) is given by N j

i = ∂Gj

∂yi ,

where Gj = 1
4gjh( ∂2F2

∂yh∂xk yk − ∂F2

∂xh ). Then on any coordinate neighborhood u ⊂ TM◦ the vector fields
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δ
δxi = ∂

∂xi − N j
i

∂
∂yj , i = 1, · · · , n form a basis for Γ(HTM◦|u). By straightforward calculation, we obtain

the following Lie brackets: [
δ

δxi
,

δ

δxj

]
= Rk

ij

∂

∂yk
,

[
δ

δxi
,

∂

∂yj

]
= Gk

ij

∂

∂yk
, (2.1)

where Rk
ij = δNk

i

δxj − δNk
j

δxi and Gk
ij = ∂Nk

i

∂yj . Note that Rk
ij is a skew symmetric Finsler tensor field of type (1,2)

while Gk
ij are the local coefficients of the Berwald connection associated to (M, F ). Some other Finsler tensor

fields defined by Rk
ij will be useful in the study of Finsler manifolds of constant flag curvature (see [4])

(i) Rhij = ghkRk
ij, (ii) Rhj = Rhijy

i, (iii) Rk
j = gkhRhj. (2.2)

From their properties, we mention the following:

(i) yhRhij = 0, (ii) yhRhj = 0, (iii) Rij = Rji, (iv) Rk
ij =

1
3

{
∂̇iR

k
j − ∂̇jR

k
i

}
. (2.3)

We also need the angular metric hij of (M, F ) given by

hij = gij − lilj , (2.4)

where li = yi

F and yi = gijy
j . Moreover, we have the following theorem:

Theorem 1 ([7]) A Finsler manifold (M, F ) is of constant curvature k if and only if the following holds

Rij = kF 2hij, i, j = 1, . . . , n. (2.5)

Consider now the energy density 2t(x, y) = F 2 = gij(x, y)yiyj defined by the Finsler metric F and also the

smooth functions u, v : [0,∞) → R such that u + 2tv > 0 for every t . The above conditions assure that the

symmetric (0, 2)-type tensor field of TM◦ , Gij = u(t)gij + v(t)yiyj is positive definite. The inverse of this

matrix has the entries Hkl = 1
ugkl + ω(t)ykyl , where (gkl) are the components of the inverse of the matrix

(gij) and ω(t) = − v
u(u+2tv)

. The components Hkl define symmetric (0, 2)-type tensor field of TM◦ . It is

easy to see that if the matrix (Gij) is positive definite, then matrix Hkl is positive definite, too. We use

also the components Hij of symmetric (0, 2)-type tensor field of TM◦ obtained from the components Hkl by

“lowering” the indices Hij = gikHklglj = 1
ugij + ωyiyj , where yi = gikyk . The following Riemannian metric

may be considered on TM◦ (cf. [8]):

G

(
δ

δxi
,

δ

δxj

)
= Gij, G

(
∂

∂yi
,

∂

∂yj

)
= Hij, G

(
δ

δxi
,

∂

∂yj

)
= G

(
∂

∂yi
,

δ

δxj

)
= 0. (2.6)

If u = 1 and v(t) = 0, then the above metric gives us the Sasaki-Finsler metric GS as follows [4]:

GS(
δ

δxi
,

δ

δxj
) = GS(

∂

∂yi
,

∂

∂yj
) = gij, GS(

δ

δxi
,

∂

∂yj
) = GS(

∂

∂yi
,

δ

δxj
) = 0. (2.7)
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Lemma 1 The Levi-Civita connection of the Riemannian metric G defined by (2.6) is as follows:

∇̃∂ī
∂j̄ =

1
u2

(−F s
ij + Gs

ij)
δ

δxs
+ (Cs

ij + α1gijy
s − α2(yiδ

s
j + yjδ

s
i )

+α3yiyjy
s)

∂

∂ys
, (2.8)

∇̃δiδj = F s
ij

δ

δxs
+ (−u2Cs

ij + α4(yjδ
s
i + yiδ

s
j ) + α5yiyjy

s + α6gijy
s

+
1
2
Rs

ij)
∂

∂ys
, (2.9)

∇̃∂ī
δj = (Cs

ij + α7yiyjy
s + α8gijy

s + α2yiδ
s
j + α9yjδ

s
i +

1
2u

RikjH
ks)

δ

δxs

+(F s
ij − Gs

ij)
∂

∂ys
, (2.10)

∇̃δi∂j̄ = (Cs
ij + α7yiyjy

s + α8gijy
s + α2yjδ

s
i + α9yiδ

s
j +

1
2u

RjkiH
ks)

δ

δxs

+F s
ij

∂

∂ys
, (2.11)

where α1 = u′u+2tu′v+2wu2(u+2tv)
2u2 , α2 = u′

2u , α3 = −2u′v+w′u2(u+2tv)
2u2 , α4 = −vu

2 , α5 = −v′(u+2tv)+2v2

2 ,

α6 = −u′(u+2tv)
2 , α7 = wu′u+wvu+v′(1+2twu)

2u , α8 = v(1+2twu)
2u , α9 = v

2u and Cs
ij|t is the h-covariant derivative

of Cs
ij with respect to Cartan connection.

3. Foliations on (TM◦, G)

In this section, we shall study various kinds of foliation which are naturally associated to (TM◦, G). For this
purpose, we consider two globally defined vector fields on TM◦ locally given by

L = yi∂̇i, (3.12)

L∗ = yiδi. (3.13)

L and L∗ are called the vertical and horizontal Liouville vector fields, respectively. The line distribution
L = span{L} and L∗ = span{L∗} are called the vertical and horizontal Liouville distributions, respectively.

Theorem 2 Let (M, F ) be a Finsler manifold. Then we have the following assertions:

(i) The vertical Liouville vector field determines a totally geodesic foliation on (TM◦, G) .

(ii) The horizontal Liouville vector field determines a totally geodesic foliation on (TM◦, G) if and only
if u and v satisfy in

uv +
1
2
u′u + t(vu′ + v′u) + 2t2vv′ + 2tv2 = 0. (3.14)

(iii) The distribution Γ(L ⊕L∗) is integrable and its tangent foliation is totally geodesic on (TM◦, G) .
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Proof By using Lemma 1, we get

∇̃LL =
(
1 + 2t(α1 − 2α2 + 2tα3)

)
L, (3.15)

∇̃L∗L∗ =
(
2t(2α4 + α6 + 2tα5)

)
L, (3.16)

∇̃L∗L =
(
2t(α2 + α9 + α8 + 2tα7)

)
L∗, (3.17)

∇̃LL∗ =
(
1 + 2t(α2 + α9 + α8 + 2tα7)

)
L∗. (3.18)

Relation (3.15) tell us that L is totally geodesic. Also, from (3.16) we derive that L∗ is totally geodesic if and

only if (3.14) holds. Relations (3.17) and (3.18) give us [L, L∗] = L∗ ∈ Γ(L ⊕ L∗). Now let X = XL + X∗L∗

and Y = Y L + Y ∗L∗ belong to Γ(L ⊕ L∗), then by Dirac calculation we obtain

∇̃XY =
(
XL(Y ) + X∗L∗(Y ) + XY (1 + 2t(α1 − 2α2 + 2tα3))

+2tX∗Y ∗(2α4 + α6 + 2tα5)
)
L +

(
XL(Y ∗) + X∗L∗(Y ∗)

+XY ∗(1 + 2t(α2 + α9 + α8 + 2tα7))

+2tX∗Y (α2 + α9 + α8 + 2tα7)
)
L∗.

Hence we derive that ∇̃XY ∈ Γ(L ⊕ L∗) for any X, Y ∈ Γ(L ⊕ L∗). Therefore the foliation determined by

Γ(L ⊕ L∗) is totally geodesic. �

Remark 1 It is remarkable that the foliation in (ii) is also totally geodesic with respect to the Sasaki-Finsler

metric (cf. [4]).

Also, by using (2.8)–(2.9) we can conclude the following:

Lemma 2 Let (M, F ) be a Finsler manifold. Then we have

∇̃XL = Xi
(
(2tα7 + α8 + α9)yiy

k + 2tα2δ
k
i

)
δk

+Ẋi
(
(α1 − α2 + 2tα3)yiy

k + (1 − 2tα2)δk
i

)
∂̇k, (3.19)

∇̃XL∗ = Ẋi
(
(1 + 2tα9)δk

i + (2tα7 + α8 + α2)yiy
k +

1
2u

yjRisjH
ks

)
δk

+Xi
(1

2
yjRk

ij + 2tα4δ
k
i + (α4 + 2tα5 + α6)yiy

k
)
∂̇k, (3.20)

where X = Xiδi + Ẋi∂̇i ∈ Γ(TTM◦) .

To introduce two more foliations on (TM◦, G) we denote by L′ and L⊥ the complementary orthogonal

distributions to L in V TM◦ and TTM◦ , respectively. Now, let X, Y ∈ Γ(L⊥). Since G is parallel with
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respect to ∇̃ , then we get

G([X, Y ], L) = G(∇̃XY, L) − G(∇̃Y X, L) = G(X, ∇̃Y L) − G(Y, ∇̃XL). (3.21)

By using (3.19), we derive

G(X, ∇̃Y L) =
[
[(α9 + α8 + 2tα7)(u + 2tv) + 2tvα2]yiyj + 2tuα2gij

]
XiY j

+
[
(α1 − α2 + 2tα3)(

1
u

+ 2tw) + w(1 − 2tα2)]yiyj

+
1
u

(1 − 2tα2)gij

]
ẊiẎ j. (3.22)

Similarly we have

G(Y, ∇̃XL) =
[
[(α9 + α8 + 2tα7)(u + 2tv) + 2tvα2]yiyj + 2tuα2gij

]
Y iXj

+
[
(α1 − α2 + 2tα3)(

1
u

+ 2tw) + w(1 − 2tα2)]yiyj

+
1
u

(1 − 2tα2)gij

]
Ẏ iẊj . (3.23)

Since i, j, k in (3.22) and (3.23) are summation indices, then (3.22) is equal (3.23). Therefore, by according to

(3.21) we infer

G([X, Y ], L) = 0. (3.24)

Hence [X, Y ] ∈ Γ(L⊥), that is, L⊥ is integrable. It is obvious that L′ is integrable, too. Therefore, we have
the following theorem.

Theorem 3 Let (M, F ) be a Finsler manifold. Then both distributions L⊥ and L′ are integrable.

Also, similar to the proof of Proposition 2.1 in [4], we can prove the following:

Proposition 1 (i) The fundamental foliation FF determined by the level hypersurfaces of the fundamental

function F of the Finsler manifold (M, F ) is just the foliation determined by the integrable distribution L⊥ .

(ii) The vertical Liouville vector field is orthogonal to foliation FF .

(iii) The horizontal Liouville vector field is tangent to foliation FF .

Next, we consider a fixed point x0 = (xi
0) in M and the hypersurfaces Ix0M(c) in Tx0M

◦ = Tx0M −{0} given
by the equation

F (x0, y) = c, ∀y ∈ Tx0M
◦,

where c is a positive constant. We call it the c-indicatrix of (M, F ) at x0 . Then the set of all c-indicatrices at

x0 determines a foliation of codimension one of the m-dimensional Riemannian manifold (Tx0M
◦, gx0), where

gx0 =
(
gij(x0, y)

)
(see [4]). Now, let

l =
1
F

√
u + 2tvL =

√
u + 2tvli∂̇i, li =

yi

F
,
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then we have G(l, l)=1. Also, we denote by the same symbol gx0 the induced Riemannian metric by gx0 on

Ix0M(c). Now, we put

∇̃XY = ∇′
XY + h(X, Y ), (3.25)

∇′
XY = ∇′′

XY + B(X, Y )l, (3.26)

for any X, Y ∈ Γ(TIx0M(c)), where ∇′ and ∇′′ are the Levi-Civita connections on (Tx0M
◦, gx0) and

(Ix0M(c), gx0), respectively, while h(·, ·) and B(·, ·)l are the second fundamental forms of Tx0M
◦ and Ix0M(c)

as submanifolds of (TM◦, G) and (Tx0M
◦, gx0), respectively. Since l is orthogonal to Ix0M(c), then we have

gx0(∇′′
XY, l) = 0. Hence by using (3.26), we obtain

gx0(∇′
XY, l) = gx0(B(X, Y )l, l) =

u + 2tv

2t
B(X, Y )yiyjgij

= (u + 2tv)B(X, Y ). (3.27)

Now, let ∇̃XY = (∇̃XY )iδi + ( ˙∇̃XY )i∂̇i . According to (2.6), we get

G(∇̃XY, l) = G((∇̃XY )iδi + ( ˙∇̃XY )i∂̇i,
1
F

√
u + 2tvyj ∂̇j)

= ( ˙∇̃XY )i

√
u + 2tv

F
yj (

1
u

gij −
v

u(u + 2tv)
yiyj)

=
1

F
√

u + 2tv
( ˙∇̃XY )iyi. (3.28)

Similarly, we obtain

gx0(∇̃XY, l) = gx0((∇̃XY )iδi + ( ˙∇̃XY )i∂̇i,
1
F

√
u + 2tvyj ∂̇j)

= ( ˙∇̃XY )i

√
u + 2tv

F
yjgij = ( ˙∇̃XY )i

√
u + 2tv

F
yi. (3.29)

The relations (3.27), (3.28) and (3.29) give us

B(X, Y ) =
1

u + 2tv
gx0(∇′

XY, l) = G(∇̃XY, l) = −G(Y, ∇̃X l)

= −G(Y, X(
√

u + 2tv

F
)L +

√
u + 2tv

F
∇̃XL)

= −
√

u + 2tv

F
G(Y, ∇̃XL). (3.30)

Let X = Ẋi∂̇i ∈ Γ(TIx0M(c)). Since L is orthogonal to Ix0M(c), then we have

0 = G(X, L) = G(Ẋi∂̇i, y
j ∂̇j) = Ẋiyj(

1
u

gij −
v

u(u + 2tv)
yiyj) =

1
u + 2tv

Ẋiyi.

Hence we infer that
Ẋiyi = 0, (3.31)
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because u + 2tv 
= 0. By using (3.19) and (3.31), we deduce

∇̃XL = (1 − 2tα2)X. (3.32)

The relation (3.32) in (3.30) implies

B(X, Y ) =
(2tα2 − 1)

√
u + 2tv

F
G(X, Y ). (3.33)

But by direct calculation we derive G(X, Y ) = 1
ugx0(X, Y ). Thus for any X, Y ∈ Γ(TIx0M(c)) we obtain

B(X, Y ) =
(2tα2 − 1)

√
u + 2tv

uF
gx0(X, Y ).

Therefore any c-indicatrix at x0 is a totally umbilical manifold immersed in (Tx0M
◦, gx0). Finally, we deduce

that the leaves of the integrable distribution L′ are c-indicatrices, because L is the normal vector field to each
c-indicatrix.

Proposition 2 Let (M, F ) be a Finsler manifold. Then we have the following assertions:

(i) At any point x ∈ M , the indicatrix foliation IxM is a totally umbilical foliation of (TxM, gx) .

(ii) The leaves of the foliation FL′ determined by the integrable distribution L′ are c-indicatrices of (M, F ) .

(iii) The foliation FL′ is a totally umbilical subfoliation of the vertical foliation FV .

4. Finsler manifolds of positive constant curvature

In this section, we give some necessary and sufficient conditions for (M, F ) to be of constant curvature.

Let (M, F ) be a Finsler manifold and consider the symmetric tensor fields R = (Rij) and h = (hij),

where Rij and hij are given by (2.2) and (2.4). We define the symmetric Finsler tensor field Λ = (Λij) by

Λij = Rij − hij . (4.34)

We consider Λ as a symmetric bilinear form on the F(TM◦)-module Γ(HTM◦) and call it the curvature-

angular form of (M, F ) (see [4]).

Proposition 3 For any X ∈ Γ(HTM◦) we have

Λ(L∗, X) = 0 = R(L∗, X). (4.35)

Proof Let X = Xiδi ∈ Γ(HTM◦). Using (ii) of (2.3) and (2.4), we have

Λ(L∗, X) = yiXjΛij = XjyiRij − Xjyigij + Xjyi yi

F

yj

F

= −Xjyj + Xjyj = 0. (4.36)

Also, part (ii) of (2.3) gives us

R(L∗, X) = XjyiRij = 0. (4.37)

The relations (4.36) and (4.37) imply (4.35). �
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Next, we consider a leaf IM(c) of the fundamental foliation FF on (TM◦, G). As we can write

IM(c) =
⋃

x∈M

IxM(c),

we call IM(c) the c-indicatrix bundle over M . Also, we consider the horizontal Liouville foliation FL∗

determined by the integral curves of L∗ . According to Theorem 2, FL∗ is a totally geodesic foliation on
(TM◦, G) if and only if

uv +
1
2
u′u + t(vu′ + v′u) + 2t2vv′ + 2tv2 = 0.

Therefore we infer that FL∗ is totally geodesic on any c-indicatrix bundle (IM(c), G) if and only if

uv +
1
2
u′u +

1
2
(vu′ + v′u) +

1
2
vv′ + v2 = 0.

Here and in the sequel, we denote by the same symbol G the Riemannian metric on IM(c) which is induced
by the metric G on TM◦ .

Theorem 4 Let (M, F ) be a Finsler manifold and IM(c) be a c-indicatrix over M . Then the Riemannian

metric G on IM(c) is bundle-like for horizontal Liouville foliation FL∗ on IM(c) if and only if Λ = (1− 1
u2 )R

on IM(c) .

Proof First, we note that all the vector bundles in this proof are considered to be over IM(c). Let L′′

be the complementary orthogonal distribution to the horizontal Liouville distribution L∗ in HTM◦ . Then

L⊥ = L′ ⊕ L′′ ⊕L∗ is the tangent bundle of IM(c). It is known that the Riemannian metric G is bundle-like

for FL∗ on IM(c) if and only if

G(∇̃XY, L∗) + G(∇̃Y X, L∗) = 0, (4.38)

where X, Y ∈ Γ(L′⊕L′′) and ∇̃ is the Levi-Civita connection on (IM(c), G). Since ∇̃ is parallel with respect to

G and G(X, L∗) = G(Y, L∗) = 0, then we have G(∇̃XY, L∗) = G(Y, ∇̃XL∗) and G(∇̃Y X, L∗) = G(X, ∇̃Y L∗).

Therefore (4.38) is equivalent to

G(∇̃XL∗, Y ) + G(∇̃Y L∗, X) = 0, ∀X, Y ∈ Γ(L′ ⊕ L′′), (4.39)

where ∇̃ is the Levi-Civita connection on (IM(c), G). Since L is the normal bundle to IM(c), then (4.39) is
equivalent to

G(∇̃XL∗, Y ) + G(∇̃Y L∗, X) = 0, ∀X, Y ∈ Γ(L′ ⊕ L′′), (4.40)

where ∇̃ is the Levi-Civita connection on (TM◦, G).

Now, we consider three cases to analyze (4.40). In the first case, let X and Y belong to Γ(L′). Then

by using (3.20), we conclude that ∇̃XL∗ and ∇̃Y L∗ belong to Γ(HTM◦). Thus we have G(∇̃XL∗, Y ) =

G(∇̃Y L∗, X) = 0, because L′ and HTM◦ are orthogonal vector bundles with respect to G . Consequently, in

this case (4.40) is identically satisfied. In the second case, we let X and Y belong to Γ(L′′). Then by using

(3.20), we conclude that ∇̃XL∗ and ∇̃Y L∗ belong to Γ(V TM◦). Similar to the previous case, we can deduce
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that (4.40) is again identically satisfied. In the third case, we let X = Xi∂̇i ∈ Γ(L′) and Y = Y iδi ∈ Γ(L′′).

Since L′′ is the complementary orthogonal distribution to L∗ in HTM◦ , then we have

0 = G(Y, L∗) = Y iyjG(δi, δj) = Y iyj (ugij + vyiyj) = (u + 2tv)Y iyi. (4.41)

Also, (3.31) gives us

Xiyi = 0. (4.42)

According to (3.20), we get

G(∇̃XL∗, Y ) = (u + tv)XkY rgkr −
1
2u

XiY rRir. (4.43)

Similarly, we obtain

G(∇̃Y L∗, X) = −tvXrY igir −
1
2u

Y iRriX
r . (4.44)

Using (4.43) and (4.44), we obtain the following expression of (4.40):

(
ugij −

1
u

Rij

)
XiY j = 0. (4.45)

On other hand, (4.42) implies

hijX
iY j = gijX

iY j . (4.46)

By using (4.34), (4.45) and (4.46) we obtain

ΛijX
iY j = RijX

iY j − hijX
iY j = RijX

iY j − gijX
iY j

= RijX
iY j − 1

u2
RijX

iY j =
(
1− 1

u2

)
RijX

iY j. (4.47)

Now, we consider the isomorphism of vector bundles Φ : L′ → L′′ defined by Φ(Xi∂̇i) = Xiδi = X∗ . Then

(4.47) is equivalent to

Λ(X∗, Y ) = (1 − 1
u2

)R(X∗, Y ), ∀X∗, Y ∈ Γ(L′′). (4.48)

Finally, from (4.35) and (4.48) we deduce that (4.40) is equivalent to Λ = (1 − 1
u2 )R on IM(c). �

Taking into account that L⊥ is orthogonal to the vertical Liouville distribution L we deduce that L∗ is a
Killing vector field on IM(c) if and only if (see [11])

G(∇̃XL∗, Y ) + G(∇̃Y L∗, X) = 0, ∀X, Y ∈ Γ(L⊥). (4.49)

Now, we can prove the following theorem.

Theorem 5 Let (M, F ) be a Finsler manifold and IM(c) be a c-indicatrix bundle over M . Then the horizontal

Liouville vector field L∗ is a Killing vector field on IM(c) if and only if Λ = (1 − 1
u2 )R on IM(c) .
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Proof If L∗ is a Killing vector field on IM(c), then according to (4.49), the relation (4.40) is held and

consequently from Theorem 4 we infer that Λ = (1 − 1
u2 )R on IM(c). Conversely let Λ = (1 − 1

u2 )R on

IM(c). Then (4.40) gives us (4.49), only for any X, Y belong to Γ(L′ ⊕ L′′). Also, if X = Y = L∗ then

(3.16) implies (4.49). Hence in order to complete the proof we need to show that (4.49) is held for X = L∗ and

Y ∈ Γ(L′ ⊕ L′′). According to (3.16), since ∇̃L∗L∗ = 2t(2α4 + α6 + 2tα5)L then we deduce that we should
prove that

G(∇̃Y L∗, L∗) = 0, ∀Y ∈ Γ(L′ ⊕L′′). (4.50)

We consider two cases to analyze (4.50).

Case 1. Y ∈ Γ(L′′). Then from (3.20) we infer that ∇̃Y L∗ ∈ Γ(V TM◦), and consequently (4.50) is
held in this case.

Case 2. Y ∈ Γ(L′). In this case we have Y = Y i∂̇i , where Y i satisfy (4.42). Then by using (3.20), we
obtain

∇̃Y L∗ = Y i
(
(1 + 2tα9)δk

i +
1

2u2
yjRisjg

ks
)
δk.

Hence we get

G(∇̃Y L∗, L∗) = Y i
(
(1 + 2tα9)(u + 2tv)yi +

1
2u

yryjRirj

)
. (4.51)

But by using (ii) of (2.2), (ii) of (2.3) and (4.42) we have Y kyk = 0 and Rirjy
jyr = 0. Hence G(∇̃Y L∗, L∗) = 0,

where Y ∈ Γ(L′).

By using the above cases, we deduce that (4.49) is identically satisfied, and therefore L∗ is a Killing

vector field on IM(c). �

Theorem 6 A Finsler manifold (M, F ) is of positive constant curvature k if and only if Λ = (1 − 1
u2 )R on

the indicatrix bundle IM(c) where c = u√
k
.

Proof Let (M, F ) be a Finsler manifold of constant curvature k . Then by Theorem 1, we have

Rij = kF 2hij. (4.52)

But on IM(c) we have F (x, y) = c = u√
k
. Hence we obtain F 2 = u2

k or equivalently

kF 2 = u2. (4.53)

Substituting the above equation into (4.52), we obtain

hij =
1
u2

Rij. (4.54)

Substituting (4.54) into (4.34), we get

Λij = Rij −
1
u2

Rij = (1 − 1
u2

)Rij. (4.55)
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Conversely, let Λ = (1 − 1
u2 )R on IM(c). Then it follows from (4.53) and (4.34) that

Rij(x, y) = u2hij(x, y) = kF 2(x, y)hij(x, y), ∀(x, y) ∈ IM(c). (4.56)

Now, we take a point (x, y) ∈ TM◦\IM(c). Since TM◦ admits the fundamental foliation FF , there exist

c∗ > 0 such that (x, y) ∈ IM(c∗), that is, F (x, y) = c∗ . Since F is positively homogeneous of degree one, we

have F (x, c
c∗ y) = c

c∗ F (x, y) = c , i.e., (x, c
c∗ y) ∈ IM(c). Hence by (4.56), we obtain

Rij(x,
c

c∗
y) − hij(x,

c

c∗
y) = (1 − 1

u2
)Rij(x,

c

c∗
y), (4.57)

or equivalently

Rij(x,
c

c∗
y) = u2hij(x,

c

c∗
y). (4.58)

Since hij and Rij are positively homogeneous of degree zero and two, respectively, equation (4.58) implies

Rij(x, y) = u2 c∗2

c2
hij(x, y). (4.59)

Since c = u√
k

and F (x, y) = c∗ , it follows from (4.59) that

Rij(x, y) = kF 2(x, y)hij(x, y), ∀(x, y) ∈ TM◦\IM(c). (4.60)

Thus it follows from (4.56), (4.60) and Theorem 1 that (M, F ) is a Finsler manifold of positive constant cur-
vature k . �

Theorem 7 Let (M, F ) be a Finsler manifold, and k, c two positive numbers such that c = u√
k
. Then the

following assertions are equivalent:
(i) (M, F ) is a Finsler manifold of constant curvature k .

(ii) The Sasaki-Finsler metric G on the indicatrix bundle IM(c) is bundle-like for the horizontal Liouville

foliation IM(c) .

(iii) The horizontal Liouville vector field is a Killing vector field on (IM(c), G) .

(iv) The curvature-angular form Λ of (M, F ) satisfy Λ = (1 − 1
u2 )R on IM(c) .
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