Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2013) 37: $348-359$
(C) TÜBİTAK
doi:10.3906/mat-1102-36

Foliations and a class of metrics on tangent bundle

Esmaeil PEYGHAN*, Leila NOURMOHAMMADI FAR

Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
Received: 23.02.2011 • Accepted: 12.11.2011 • Published Online: 19.03.2013 • Printed: 22.04 .2013

Abstract

Let M be a smooth manifold with Finsler metric F, and let $T M^{\circ}$ be the slit tangent bundle of M with a generalized Riemannian metric G, which is induced by F. In this paper, we extract many natural foliations of $\left(T M^{\circ}, G\right)$ and study some of their geometric properties. Next we use this approach to obtain new characterizations of Finsler manifolds with positive constant curvature.

Key words: Finsler manifold, foliation, constant curvature, Riemannian metric

1. Introduction

Several monographs present methods of differential geometry used in the study of Finsler manifolds $[1,2,3,5,6]$. As the geometric objects that occur in Finsler geometry depend on both point and direction, the tangent bundle of a Finsler manifold plays a major role in this study. To emphasize this Bejancu and Farran in [4], by using Sasaki-Finsler metric G_{S}, initiate a study of interrelations between the geometry of foliations on the tangent bundle of a Finsler manifold and the geometry of the Finsler manifold itself. Then, Peyghan and Tayebi introduce new metric G on slit bundle of Finsler manifold and they study geometric properties of this metric [10]. In this paper, we use this metric on $T M^{\circ}$ and we show that the vertical and horizontal Liouville vector fields L and L^{*} determine three totally geodesic foliations on $\left(T M^{\circ}, G\right)$. Finally, the main properties of the two foliations defined by F on $\left(T M^{\circ}, G\right)$ are presented in Propositions 1 and 2 . In the last section, for any $c>0$ we consider the indicatrix-bundle $I M(c)$ and by using the horizontal Liouville foliation on $(I M(c), G)$ and the curvature-angular form we obtain three new characterizations of Finsler manifolds of positive constant curvature.

2. Preliminaries

Let (M, F) be a Finsler manifold, where M is a real n-dimensional smooth manifold and F is the fundamental function of $(M, F)[2]$. Consider $T M^{\circ}=T M \backslash\{0\}$ and denote by $V T M^{\circ}$ the vertical vector bundle over $T M^{\circ}$, that is, $V T M^{\circ}=\operatorname{ker} \pi_{*}$, where π_{*} is the tangent mapping of the canonical projection $\pi: T M^{\circ} \rightarrow M$. We may think of the Finsler metric $\left(g=g_{i j}(x, y)\right)$, where we set $g_{i j}(x, y)=\frac{1}{2} \frac{\partial^{2} F^{2}}{\partial y^{2} \partial y^{j}}$ as a Riemannian metric on $V T M^{\circ}$. The canonical nonlinear connection $H T M^{\circ}=\left(N_{i}^{j}(x, y)\right)$ of (M, F) is given by $N_{i}^{j}=\frac{\partial G^{j}}{\partial y^{2}}$, where $G^{j}=\frac{1}{4} g^{j h}\left(\frac{\partial^{2} F^{2}}{\partial y^{h} \partial x^{k}} y^{k}-\frac{\partial F^{2}}{\partial x^{h}}\right)$. Then on any coordinate neighborhood $\mathfrak{u} \subset T M^{\circ}$ the vector fields

[^0]$\frac{\delta}{\delta x^{i}}=\frac{\partial}{\partial x^{i}}-N_{i}^{j} \frac{\partial}{\partial y^{j}}, i=1, \cdots, n$ form a basis for $\Gamma\left(H T M^{\circ}{ }_{\mid \mathfrak{u}}\right)$. By straightforward calculation, we obtain the following Lie brackets:
\[

$$
\begin{equation*}
\left[\frac{\delta}{\delta x^{i}}, \frac{\delta}{\delta x^{j}}\right]=R_{i j}^{k} \frac{\partial}{\partial y^{k}}, \quad\left[\frac{\delta}{\delta x^{i}}, \frac{\partial}{\partial y^{j}}\right]=G_{i j}^{k} \frac{\partial}{\partial y^{k}}, \tag{2.1}
\end{equation*}
$$

\]

where $R_{i j}^{k}=\frac{\delta N_{i}^{k}}{\delta x^{j}}-\frac{\delta N_{j}^{k}}{\delta x^{i}}$ and $G_{i j}^{k}=\frac{\partial N_{i}^{k}}{\partial y^{j}}$. Note that $R_{i j}^{k}$ is a skew symmetric Finsler tensor field of type (1,2) while $G_{i j}^{k}$ are the local coefficients of the Berwald connection associated to (M, F). Some other Finsler tensor fields defined by $R^{k}{ }_{i j}$ will be useful in the study of Finsler manifolds of constant flag curvature (see [4])

$$
\begin{equation*}
\text { (i) } R_{h i j}=g_{h k} R_{i j}^{k}, \quad \text { (ii) } R_{h j}=R_{h i j} y^{i}, \quad \text { (iii) } R_{j}^{k}=g^{k h} R_{h j} \tag{2.2}
\end{equation*}
$$

From their properties, we mention the following:

$$
\begin{equation*}
\text { (i) } y^{h} R_{h i j}=0, \quad(i i) y^{h} R_{h j}=0, \quad \text { (iii) } R_{i j}=R_{j i}, \quad \text { (iv) } R_{i j}^{k}=\frac{1}{3}\left\{\dot{\partial}_{i} R_{j}^{k}-\dot{\partial}_{j} R_{i}^{k}\right\} \tag{2.3}
\end{equation*}
$$

We also need the angular metric $h_{i j}$ of (M, F) given by

$$
\begin{equation*}
h_{i j}=g_{i j}-l_{i} l_{j}, \tag{2.4}
\end{equation*}
$$

where $l_{i}=\frac{y_{i}}{F}$ and $y_{i}=g_{i j} y^{j}$. Moreover, we have the following theorem:

Theorem 1 ([7]) A Finsler manifold (M, F) is of constant curvature k if and only if the following holds

$$
\begin{equation*}
R_{i j}=k F^{2} h_{i j}, \quad i, j=1, \ldots, n \tag{2.5}
\end{equation*}
$$

Consider now the energy density $2 t(x, y)=F^{2}=g_{i j}(x, y) y^{i} y^{j}$ defined by the Finsler metric F and also the smooth functions $u, v:[0, \infty) \rightarrow \mathbb{R}$ such that $u+2 t v>0$ for every t. The above conditions assure that the symmetric $(0,2)$-type tensor field of $T M^{\circ}, G_{i j}=u(t) g_{i j}+v(t) y_{i} y_{j}$ is positive definite. The inverse of this matrix has the entries $H^{k l}=\frac{1}{u} g^{k l}+\omega(t) y^{k} y^{l}$, where $\left(g^{k l}\right)$ are the components of the inverse of the matrix $\left(g_{i j}\right)$ and $\omega(t)=-\frac{v}{u(u+2 t v)}$. The components $H^{k l}$ define symmetric (0,2)-type tensor field of $T M^{\circ}$. It is easy to see that if the matrix $\left(G_{i j}\right)$ is positive definite, then matrix $H^{k l}$ is positive definite, too. We use also the components $H_{i j}$ of symmetric (0,2)-type tensor field of $T M^{\circ}$ obtained from the components $H^{k l}$ by "lowering" the indices $H_{i j}=g_{i k} H^{k l} g_{l j}=\frac{1}{u} g_{i j}+\omega y_{i} y_{j}$, where $y_{i}=g_{i k} y^{k}$. The following Riemannian metric may be considered on $T M^{\circ}$ (cf. [8]):

$$
\begin{equation*}
G\left(\frac{\delta}{\delta x^{i}}, \frac{\delta}{\delta x^{j}}\right)=G_{i j}, \quad G\left(\frac{\partial}{\partial y^{i}}, \frac{\partial}{\partial y^{j}}\right)=H_{i j}, \quad G\left(\frac{\delta}{\delta x^{i}}, \frac{\partial}{\partial y^{j}}\right)=G\left(\frac{\partial}{\partial y^{i}}, \frac{\delta}{\delta x^{j}}\right)=0 . \tag{2.6}
\end{equation*}
$$

If $u=1$ and $v(t)=0$, then the above metric gives us the Sasaki-Finsler metric G_{S} as follows [4]:

$$
\begin{equation*}
G_{S}\left(\frac{\delta}{\delta x^{i}}, \frac{\delta}{\delta x^{j}}\right)=G_{S}\left(\frac{\partial}{\partial y^{i}}, \frac{\partial}{\partial y^{j}}\right)=g_{i j}, \quad G_{S}\left(\frac{\delta}{\delta x^{i}}, \frac{\partial}{\partial y^{j}}\right)=G_{S}\left(\frac{\partial}{\partial y^{i}}, \frac{\delta}{\delta x^{j}}\right)=0 . \tag{2.7}
\end{equation*}
$$

Lemma 1 The Levi-Civita connection of the Riemannian metric G defined by (2.6) is as follows:

$$
\begin{align*}
\widetilde{\nabla}_{\partial_{\bar{i}}} \partial_{\bar{j}}= & \frac{1}{u^{2}}\left(-F_{i j}^{s}+G_{i j}^{s}\right) \frac{\delta}{\delta x^{s}}+\left(C_{i j}^{s}+\alpha_{1} g_{i j} y^{s}-\alpha_{2}\left(y_{i} \delta_{j}^{s}+y_{j} \delta_{i}^{s}\right)\right. \\
& \left.+\alpha_{3} y_{i} y_{j} y^{s}\right) \frac{\partial}{\partial y^{s}}, \tag{2.8}\\
\widetilde{\nabla}_{\delta_{i}} \delta_{j}= & F_{i j}^{s} \frac{\delta}{\delta x^{s}}+\left(-u^{2} C_{i j}^{s}+\alpha_{4}\left(y_{j} \delta_{i}^{s}+y_{i} \delta_{j}^{s}\right)+\alpha_{5} y_{i} y_{j} y^{s}+\alpha_{6} g_{i j} y^{s}\right. \\
& \left.+\frac{1}{2} R_{i j}^{s}\right) \frac{\partial}{\partial y^{s}}, \tag{2.9}\\
\widetilde{\nabla}_{\partial_{i}} \delta_{j}= & \left(C_{i j}^{s}+\alpha_{7} y_{i} y_{j} y^{s}+\alpha_{8} g_{i j} y^{s}+\alpha_{2} y_{i} \delta_{j}^{s}+\alpha_{9} y_{j} \delta_{i}^{s}+\frac{1}{2 u} R_{i k j} H^{k s}\right) \frac{\delta}{\delta x^{s}} \\
& +\left(F_{i j}^{s}-G_{i j}^{s}\right) \frac{\partial}{\partial y^{s}}, \tag{2.10}\\
\widetilde{\nabla}_{\delta_{i}} \partial_{\bar{j}}= & \left(C_{i j}^{s}+\alpha_{7} y_{i} y_{j} y^{s}+\alpha_{8} g_{i j} y^{s}+\alpha_{2} y_{j} \delta_{i}^{s}+\alpha_{9} y_{i} \delta_{j}^{s}+\frac{1}{2 u} R_{j k i} H^{k s}\right) \frac{\delta}{\delta x^{s}} \\
& +F_{i j}^{s} \frac{\partial}{\partial y^{s}}, \tag{2.11}
\end{align*}
$$

where $\alpha_{1}=\frac{u^{\prime} u+2 t u^{\prime} v+2 w u^{2}(u+2 t v)}{2 u^{2}}, \alpha_{2}=\frac{u^{\prime}}{2 u}, \alpha_{3}=\frac{-2 u^{\prime} v+w^{\prime} u^{2}(u+2 t v)}{2 u^{2}}, \alpha_{4}=-\frac{v u}{2}, \alpha_{5}=-\frac{v^{\prime}(u+2 t v)+2 v^{2}}{2}$, $\alpha_{6}=-\frac{u^{\prime}(u+2 t v)}{2}, \alpha_{7}=\frac{w u^{\prime} u+w v u+v^{\prime}(1+2 t w u)}{2 u}, \alpha_{8}=\frac{v(1+2 t w u)}{2 u}, \alpha_{9}=\frac{v}{2 u}$ and $C_{i j \mid t}^{s}$ is the h-covariant derivative of $C_{i j}^{s}$ with respect to Cartan connection.
3. Foliations on $\left(T M^{\circ}, G\right)$

In this section, we shall study various kinds of foliation which are naturally associated to $\left(T M^{\circ}, G\right)$. For this purpose, we consider two globally defined vector fields on $T M^{\circ}$ locally given by

$$
\begin{align*}
& L=y^{i} \dot{\partial}_{i} \tag{3.12}\\
& L^{*}=y^{i} \dot{\delta}_{i} \tag{3.13}
\end{align*}
$$

L and L^{*} are called the vertical and horizontal Liouville vector fields, respectively. The line distribution $\mathcal{L}=\operatorname{span}\{L\}$ and $\mathcal{L}^{*}=\operatorname{span}\left\{L^{*}\right\}$ are called the vertical and horizontal Liouville distributions, respectively.

Theorem 2 Let (M, F) be a Finsler manifold. Then we have the following assertions:
(i) The vertical Liouville vector field determines a totally geodesic foliation on $\left(T M^{\circ}, G\right)$.
(ii) The horizontal Liouville vector field determines a totally geodesic foliation on $\left(T M^{\circ}, G\right)$ if and only if u and v satisfy in

$$
\begin{equation*}
u v+\frac{1}{2} u^{\prime} u+t\left(v u^{\prime}+v^{\prime} u\right)+2 t^{2} v v^{\prime}+2 t v^{2}=0 \tag{3.14}
\end{equation*}
$$

(iii) The distribution $\Gamma\left(\mathcal{L} \oplus \mathcal{L}^{*}\right)$ is integrable and its tangent foliation is totally geodesic on $\left(T M^{\circ}, G\right)$.

Proof By using Lemma 1, we get

$$
\begin{align*}
\widetilde{\nabla}_{L} L & =\left(1+2 t\left(\alpha_{1}-2 \alpha_{2}+2 t \alpha_{3}\right)\right) L \tag{3.15}\\
\widetilde{\nabla}_{L^{*}} L^{*} & =\left(2 t\left(2 \alpha_{4}+\alpha_{6}+2 t \alpha_{5}\right)\right) L \tag{3.16}\\
\widetilde{\nabla}_{L^{*}} L & =\left(2 t\left(\alpha_{2}+\alpha_{9}+\alpha_{8}+2 t \alpha_{7}\right)\right) L^{*} \tag{3.17}\\
\widetilde{\nabla}_{L} L^{*} & =\left(1+2 t\left(\alpha_{2}+\alpha_{9}+\alpha_{8}+2 t \alpha_{7}\right)\right) L^{*} \tag{3.18}
\end{align*}
$$

Relation (3.15) tell us that \mathcal{L} is totally geodesic. Also, from (3.16) we derive that \mathcal{L}^{*} is totally geodesic if and only if (3.14) holds. Relations (3.17) and (3.18) give us $\left[L, L^{*}\right]=L^{*} \in \Gamma\left(\mathcal{L} \oplus \mathcal{L}^{*}\right)$. Now let $X=X L+X^{*} L^{*}$ and $Y=Y L+Y^{*} L^{*}$ belong to $\Gamma\left(\mathcal{L} \oplus \mathcal{L}^{*}\right)$, then by Dirac calculation we obtain

$$
\begin{aligned}
\widetilde{\nabla}_{X} Y= & \left(X L(Y)+X^{*} L^{*}(Y)+X Y\left(1+2 t\left(\alpha_{1}-2 \alpha_{2}+2 t \alpha_{3}\right)\right)\right. \\
& \left.+2 t X^{*} Y^{*}\left(2 \alpha_{4}+\alpha_{6}+2 t \alpha_{5}\right)\right) L+\left(X L\left(Y^{*}\right)+X^{*} L^{*}\left(Y^{*}\right)\right. \\
& +X Y^{*}\left(1+2 t\left(\alpha_{2}+\alpha_{9}+\alpha_{8}+2 t \alpha_{7}\right)\right) \\
& \left.+2 t X^{*} Y\left(\alpha_{2}+\alpha_{9}+\alpha_{8}+2 t \alpha_{7}\right)\right) L^{*}
\end{aligned}
$$

Hence we derive that $\widetilde{\nabla}_{X} Y \in \Gamma\left(\mathcal{L} \oplus \mathcal{L}^{*}\right)$ for any $X, Y \in \Gamma\left(\mathcal{L} \oplus \mathcal{L}^{*}\right)$. Therefore the foliation determined by $\Gamma\left(\mathcal{L} \oplus \mathcal{L}^{*}\right)$ is totally geodesic.

Remark 1 It is remarkable that the foliation in (ii) is also totally geodesic with respect to the Sasaki-Finsler metric (cf. [4]).

Also, by using (2.8)-(2.9) we can conclude the following:
Lemma 2 Let (M, F) be a Finsler manifold. Then we have

$$
\begin{gather*}
\widetilde{\nabla}_{X} L=X^{i}\left(\left(2 t \alpha_{7}+\alpha_{8}+\alpha_{9}\right) y_{i} y^{k}+2 t \alpha_{2} \delta_{i}^{k}\right) \delta_{k} \\
+\dot{X}^{i}\left(\left(\alpha_{1}-\alpha_{2}+2 t \alpha_{3}\right) y_{i} y^{k}+\left(1-2 t \alpha_{2}\right) \delta_{i}^{k}\right) \dot{\partial}_{k} \tag{3.19}\\
\widetilde{\nabla}_{X} L^{*}=\dot{X}^{i}\left(\left(1+2 t \alpha_{9}\right) \delta_{i}^{k}+\left(2 t \alpha_{7}+\alpha_{8}+\alpha_{2}\right) y_{i} y^{k}+\frac{1}{2 u} y^{j} R_{i s j} H^{k s}\right) \delta_{k} \\
+X^{i}\left(\frac{1}{2} y^{j} R_{i j}^{k}+2 t \alpha_{4} \delta_{i}^{k}+\left(\alpha_{4}+2 t \alpha_{5}+\alpha_{6}\right) y_{i} y^{k}\right) \dot{\partial}_{k} \tag{3.20}
\end{gather*}
$$

where $X=X^{i} \delta_{i}+\dot{X}^{i} \dot{\partial}_{i} \in \Gamma\left(T T M^{\circ}\right)$.
To introduce two more foliations on $\left(T M^{\circ}, G\right)$ we denote by \mathcal{L}^{\prime} and \mathcal{L}^{\perp} the complementary orthogonal distributions to \mathcal{L} in $V T M^{\circ}$ and $T T M^{\circ}$, respectively. Now, let $X, Y \in \Gamma\left(\mathcal{L}^{\perp}\right)$. Since G is parallel with
respect to $\widetilde{\nabla}$, then we get

$$
\begin{equation*}
G([X, Y], L)=G\left(\widetilde{\nabla}_{X} Y, L\right)-G\left(\widetilde{\nabla}_{Y} X, L\right)=G\left(X, \widetilde{\nabla}_{Y} L\right)-G\left(Y, \widetilde{\nabla}_{X} L\right) \tag{3.21}
\end{equation*}
$$

By using (3.19), we derive

$$
\begin{align*}
G\left(X, \widetilde{\nabla}_{Y} L\right)= & {\left[\left[\left(\alpha_{9}+\alpha_{8}+2 t \alpha_{7}\right)(u+2 t v)+2 t v \alpha_{2}\right] y_{i} y_{j}+2 t u \alpha_{2} g_{i j}\right] X^{i} Y^{j} } \\
& +\left[\left(\alpha_{1}-\alpha_{2}+2 t \alpha_{3}\right)\left(\frac{1}{u}+2 t w\right)+w\left(1-2 t \alpha_{2}\right)\right] y_{i} y_{j} \\
& \left.+\frac{1}{u}\left(1-2 t \alpha_{2}\right) g_{i j}\right] \dot{X}^{i} \dot{Y}^{j} \tag{3.22}
\end{align*}
$$

Similarly we have

$$
\begin{align*}
G\left(Y, \widetilde{\nabla}_{X} L\right)= & {\left[\left[\left(\alpha_{9}+\alpha_{8}+2 t \alpha_{7}\right)(u+2 t v)+2 t v \alpha_{2}\right] y_{i} y_{j}+2 t u \alpha_{2} g_{i j}\right] Y^{i} X^{j} } \\
& +\left[\left(\alpha_{1}-\alpha_{2}+2 t \alpha_{3}\right)\left(\frac{1}{u}+2 t w\right)+w\left(1-2 t \alpha_{2}\right)\right] y_{i} y_{j} \\
& \left.+\frac{1}{u}\left(1-2 t \alpha_{2}\right) g_{i j}\right] \dot{Y}^{i} \dot{X}^{j} \tag{3.23}
\end{align*}
$$

Since i, j, k in (3.22) and (3.23) are summation indices, then (3.22) is equal (3.23). Therefore, by according to (3.21) we infer

$$
\begin{equation*}
G([X, Y], L)=0 \tag{3.24}
\end{equation*}
$$

Hence $[X, Y] \in \Gamma\left(\mathcal{L}^{\perp}\right)$, that is, \mathcal{L}^{\perp} is integrable. It is obvious that \mathcal{L}^{\prime} is integrable, too. Therefore, we have the following theorem.

Theorem 3 Let (M, F) be a Finsler manifold. Then both distributions \mathcal{L}^{\perp} and \mathcal{L}^{\prime} are integrable.
Also, similar to the proof of Proposition 2.1 in [4], we can prove the following:
Proposition 1 (i) The fundamental foliation \mathcal{F}_{F} determined by the level hypersurfaces of the fundamental function F of the Finsler manifold (M, F) is just the foliation determined by the integrable distribution \mathcal{L}^{\perp}.
(ii) The vertical Liouville vector field is orthogonal to foliation \mathcal{F}_{F}.
(iii) The horizontal Liouville vector field is tangent to foliation \mathcal{F}_{F}.

Next, we consider a fixed point $x_{0}=\left(x_{0}^{i}\right)$ in M and the hypersurfaces $I_{x_{0}} M(c)$ in $T_{x_{0}} M^{\circ}=T_{x_{0}} M-\{0\}$ given by the equation

$$
F\left(x_{0}, y\right)=c, \quad \forall y \in T_{x_{0}} M^{\circ}
$$

where c is a positive constant. We call it the c-indicatrix of (M, F) at x_{0}. Then the set of all c-indicatrices at x_{0} determines a foliation of codimension one of the m-dimensional Riemannian manifold ($T_{x_{0}} M^{\circ}, g_{x_{0}}$), where $g_{x_{0}}=\left(g_{i j}\left(x_{0}, y\right)\right)$ (see [4]). Now, let

$$
l=\frac{1}{F} \sqrt{u+2 t v} L=\sqrt{u+2 t v} l^{i} \dot{\partial}_{i}, \quad l^{i}=\frac{y^{i}}{F}
$$

then we have $G(l, l)=1$. Also, we denote by the same symbol $g_{x_{0}}$ the induced Riemannian metric by $g_{x_{0}}$ on $I_{x_{0}} M(c)$. Now, we put

$$
\begin{align*}
\widetilde{\nabla}_{X} Y & =\nabla_{X}^{\prime} Y+h(X, Y) \tag{3.25}\\
\nabla_{X}^{\prime} Y & =\nabla_{X}^{\prime \prime} Y+B(X, Y) l \tag{3.26}
\end{align*}
$$

for any $X, Y \in \Gamma\left(T I_{x_{0}} M(c)\right)$, where ∇^{\prime} and $\nabla^{\prime \prime}$ are the Levi-Civita connections on $\left(T_{x_{0}} M^{\circ}, g_{x_{0}}\right)$ and $\left(I_{x_{0}} M(c), g_{x_{0}}\right)$, respectively, while $h(\cdot, \cdot)$ and $B(\cdot, \cdot) l$ are the second fundamental forms of $T_{x_{0}} M^{\circ}$ and $I_{x_{0}} M(c)$ as submanifolds of $\left(T M^{\circ}, G\right)$ and $\left(T_{x_{0}} M^{\circ}, g_{x_{0}}\right)$, respectively. Since l is orthogonal to $I_{x_{0}} M(c)$, then we have $g_{x_{0}}\left(\nabla_{X}^{\prime \prime} Y, l\right)=0$. Hence by using (3.26), we obtain

$$
\begin{align*}
g_{x_{0}}\left(\nabla_{X}^{\prime} Y, l\right) & =g_{x_{0}}(B(X, Y) l, l)=\frac{u+2 t v}{2 t} B(X, Y) y^{i} y^{j} g_{i j} \\
& =(u+2 t v) B(X, Y) . \tag{3.27}
\end{align*}
$$

Now, let $\widetilde{\nabla}_{X} Y=\left(\widetilde{\nabla}_{X} Y\right)^{i} \delta_{i}+\left(\widetilde{\nabla}_{X} Y\right)^{i} \dot{\partial}_{i}$. According to (2.6), we get

$$
\begin{align*}
G\left(\widetilde{\nabla}_{X} Y, l\right) & =G\left(\left(\widetilde{\nabla}_{X} Y\right)^{i} \delta_{i}+\left(\widetilde{\nabla}_{X}^{\cdot} Y\right)^{i} \dot{\partial}_{i}, \frac{1}{F} \sqrt{u+2 t v} y^{j} \dot{\partial}_{j}\right) \\
& =\left(\widetilde{\nabla}_{X} Y\right)^{i} \frac{\sqrt{u+2 t v}}{F} y^{j}\left(\frac{1}{u} g_{i j}-\frac{v}{u(u+2 t v)} y_{i} y_{j}\right) \\
& =\frac{1}{F \sqrt{u+2 t v}}\left(\widetilde{\nabla}_{X} Y\right)^{i} y_{i} . \tag{3.28}
\end{align*}
$$

Similarly, we obtain

$$
\begin{align*}
g_{x_{0}}\left(\widetilde{\nabla}_{X} Y, l\right) & =g_{x_{0}}\left(\left(\widetilde{\nabla}_{X} Y\right)^{i} \delta_{i}+\left(\widetilde{\nabla}_{X}^{\cdot} Y\right)^{i} \dot{\partial}_{i}, \frac{1}{F} \sqrt{u+2 t v} y^{j} \dot{\partial}_{j}\right) \\
& =\left(\widetilde{\nabla}_{X} Y\right)^{i} \frac{\sqrt{u+2 t v}}{F} y^{j} g_{i j}=\left(\widetilde{\nabla}_{X} Y\right)^{i} \frac{\sqrt{u+2 t v}}{F} y_{i} . \tag{3.29}
\end{align*}
$$

The relations (3.27), (3.28) and (3.29) give us

$$
\begin{align*}
B(X, Y) & =\frac{1}{u+2 t v} g_{x_{0}}\left(\nabla_{X}^{\prime} Y, l\right)=G\left(\widetilde{\nabla}_{X} Y, l\right)=-G\left(Y, \widetilde{\nabla}_{X} l\right) \\
& =-G\left(Y, X\left(\frac{\sqrt{u+2 t v}}{F}\right) L+\frac{\sqrt{u+2 t v}}{F} \widetilde{\nabla}_{X} L\right) \\
& =-\frac{\sqrt{u+2 t v}}{F} G\left(Y, \widetilde{\nabla}_{X} L\right) \tag{3.30}
\end{align*}
$$

Let $X=\dot{X}^{i} \dot{\partial}_{i} \in \Gamma\left(T I_{x_{0}} M(c)\right)$. Since L is orthogonal to $I_{x_{0}} M(c)$, then we have

$$
0=G(X, L)=G\left(\dot{X}^{i} \dot{\partial}_{i}, y^{j} \dot{\partial}_{j}\right)=\dot{X}^{i} y^{j}\left(\frac{1}{u} g_{i j}-\frac{v}{u(u+2 t v)} y_{i} y_{j}\right)=\frac{1}{u+2 t v} \dot{X}^{i} y_{i}
$$

Hence we infer that

$$
\begin{equation*}
\dot{X}^{i} y_{i}=0 \tag{3.31}
\end{equation*}
$$

because $u+2 t v \neq 0$. By using (3.19) and (3.31), we deduce

$$
\begin{equation*}
\widetilde{\nabla}_{X} L=\left(1-2 t \alpha_{2}\right) X \tag{3.32}
\end{equation*}
$$

The relation (3.32) in (3.30) implies

$$
\begin{equation*}
B(X, Y)=\frac{\left(2 t \alpha_{2}-1\right) \sqrt{u+2 t v}}{F} G(X, Y) \tag{3.33}
\end{equation*}
$$

But by direct calculation we derive $G(X, Y)=\frac{1}{u} g_{x_{0}}(X, Y)$. Thus for any $X, Y \in \Gamma\left(T I_{x_{0}} M(c)\right)$ we obtain

$$
B(X, Y)=\frac{\left(2 t \alpha_{2}-1\right) \sqrt{u+2 t v}}{u F} g_{x_{0}}(X, Y)
$$

Therefore any c-indicatrix at x_{0} is a totally umbilical manifold immersed in $\left(T_{x_{0}} M^{\circ}, g_{x_{0}}\right)$. Finally, we deduce that the leaves of the integrable distribution \mathcal{L}^{\prime} are c-indicatrices, because L is the normal vector field to each c-indicatrix.

Proposition 2 Let (M, F) be a Finsler manifold. Then we have the following assertions:
(i) At any point $x \in M$, the indicatrix foliation $I_{x} M$ is a totally umbilical foliation of $\left(T_{x} M, g_{x}\right)$.
(ii) The leaves of the foliation $\mathcal{F}_{\mathcal{L}^{\prime}}$ determined by the integrable distribution \mathcal{L}^{\prime} are c-indicatrices of (M, F).
(iii) The foliation $\mathcal{F}_{\mathcal{L}^{\prime}}$ is a totally umbilical subfoliation of the vertical foliation \mathcal{F}_{V}.

4. Finsler manifolds of positive constant curvature

In this section, we give some necessary and sufficient conditions for (M, F) to be of constant curvature.
Let (M, F) be a Finsler manifold and consider the symmetric tensor fields $R=\left(R_{i j}\right)$ and $h=\left(h_{i j}\right)$, where $R_{i j}$ and $h_{i j}$ are given by (2.2) and (2.4). We define the symmetric Finsler tensor field $\Lambda=\left(\Lambda_{i j}\right)$ by

$$
\begin{equation*}
\Lambda_{i j}=R_{i j}-h_{i j} \tag{4.34}
\end{equation*}
$$

We consider Λ as a symmetric bilinear form on the $\mathcal{F}\left(T M^{\circ}\right)$-module $\Gamma\left(H T M^{\circ}\right)$ and call it the curvatureangular form of (M, F) (see [4]).

Proposition 3 For any $X \in \Gamma\left(H T M^{\circ}\right)$ we have

$$
\begin{equation*}
\Lambda\left(L^{*}, X\right)=0=R\left(L^{*}, X\right) \tag{4.35}
\end{equation*}
$$

Proof Let $X=X^{i} \delta_{i} \in \Gamma\left(H T M^{\circ}\right)$. Using (ii) of (2.3) and (2.4), we have

$$
\begin{align*}
\Lambda\left(L^{*}, X\right)=y^{i} X^{j} \Lambda_{i j} & =X^{j} y^{i} R_{i j}-X^{j} y^{i} g_{i j}+X^{j} y^{i} \frac{y_{i}}{F} \frac{y_{j}}{F} \\
& =-X^{j} y_{j}+X^{j} y_{j}=0 \tag{4.36}
\end{align*}
$$

Also, part (ii) of (2.3) gives us

$$
\begin{equation*}
R\left(L^{*}, X\right)=X^{j} y^{i} R_{i j}=0 \tag{4.37}
\end{equation*}
$$

The relations (4.36) and (4.37) imply (4.35).

Next, we consider a leaf $I M(c)$ of the fundamental foliation \mathcal{F}_{F} on $\left(T M^{\circ}, G\right)$. As we can write

$$
I M(c)=\bigcup_{x \in M} I_{x} M(c),
$$

we call $I M(c)$ the c-indicatrix bundle over M. Also, we consider the horizontal Liouville foliation $\mathcal{F}_{L^{*}}$ determined by the integral curves of L^{*}. According to Theorem $2, \mathcal{F}_{L^{*}}$ is a totally geodesic foliation on ($T M^{\circ}, G$) if and only if

$$
u v+\frac{1}{2} u^{\prime} u+t\left(v u^{\prime}+v^{\prime} u\right)+2 t^{2} v v^{\prime}+2 t v^{2}=0 .
$$

Therefore we infer that $\mathcal{F}_{L^{*}}$ is totally geodesic on any c-indicatrix bundle $(I M(c), G)$ if and only if

$$
u v+\frac{1}{2} u^{\prime} u+\frac{1}{2}\left(v u^{\prime}+v^{\prime} u\right)+\frac{1}{2} v v^{\prime}+v^{2}=0 .
$$

Here and in the sequel, we denote by the same symbol G the Riemannian metric on $I M(c)$ which is induced by the metric G on $T M^{\circ}$.

Theorem 4 Let (M, F) be a Finsler manifold and $I M(c)$ be a c-indicatrix over M. Then the Riemannian metric G on IM(c) is bundle-like for horizontal Liouville foliation $\mathcal{F}_{L^{*}}$ on IM(c) if and only if $\Lambda=\left(1-\frac{1}{u^{2}}\right) R$ on $I M(c)$.
Proof First, we note that all the vector bundles in this proof are considered to be over $I M(c)$. Let $\mathcal{L}^{\prime \prime}$ be the complementary orthogonal distribution to the horizontal Liouville distribution \mathcal{L}^{*} in $H T M^{\circ}$. Then $\mathcal{L}^{\perp}=\mathcal{L}^{\prime} \oplus \mathcal{L}^{\prime \prime} \oplus \mathcal{L}^{*}$ is the tangent bundle of $I M(c)$. It is known that the Riemannian metric G is bundle-like for $\mathcal{F}_{L^{*}}$ on $I M(c)$ if and only if

$$
\begin{equation*}
G\left(\widetilde{\nabla}_{X} Y, L^{*}\right)+G\left(\widetilde{\nabla}_{Y} X, L^{*}\right)=0, \tag{4.38}
\end{equation*}
$$

where $X, Y \in \Gamma\left(\mathcal{L}^{\prime} \oplus \mathcal{L}^{\prime \prime}\right)$ and $\widetilde{\nabla}$ is the Levi-Civita connection on ($\left.I M(c), G\right)$. Since $\widetilde{\nabla}$ is parallel with respect to G and $G\left(X, L^{*}\right)=G\left(Y, L^{*}\right)=0$, then we have $G\left(\widetilde{\nabla}_{X} Y, L^{*}\right)=G\left(Y, \widetilde{\nabla}_{X} L^{*}\right)$ and $G\left(\widetilde{\nabla}_{Y} X, L^{*}\right)=G\left(X, \widetilde{\nabla}_{Y} L^{*}\right)$. Therefore (4.38) is equivalent to

$$
\begin{equation*}
G\left(\widetilde{\nabla}_{X} L^{*}, Y\right)+G\left(\widetilde{\nabla}_{Y} L^{*}, X\right)=0, \quad \forall X, Y \in \Gamma\left(\mathcal{L}^{\prime} \oplus \mathcal{L}^{\prime \prime}\right), \tag{4.39}
\end{equation*}
$$

where $\widetilde{\nabla}$ is the Levi-Civita connection on $(I M(c), G)$. Since \mathcal{L} is the normal bundle to $I M(c)$, then (4.39) is equivalent to

$$
\begin{equation*}
G\left(\widetilde{\nabla}_{X} L^{*}, Y\right)+G\left(\widetilde{\nabla}_{Y} L^{*}, X\right)=0, \quad \forall X, Y \in \Gamma\left(\mathcal{L}^{\prime} \oplus \mathcal{L}^{\prime \prime}\right), \tag{4.40}
\end{equation*}
$$

where $\tilde{\nabla}$ is the Levi-Civita connection on $\left(T M^{\circ}, G\right)$.
Now, we consider three cases to analyze (4.40). In the first case, let X and Y belong to $\Gamma\left(\mathcal{L}^{\prime}\right)$. Then by using (3.20), we conclude that $\widetilde{\nabla}_{X} L^{*}$ and $\widetilde{\nabla}_{Y} L^{*}$ belong to $\Gamma\left(H T M^{\circ}\right)$. Thus we have $G\left(\widetilde{\nabla}_{X} L^{*}, Y\right)=$ $G\left(\widetilde{\nabla}_{Y} L^{*}, X\right)=0$, because \mathcal{L}^{\prime} and $H T M^{\circ}$ are orthogonal vector bundles with respect to G. Consequently, in this case (4.40) is identically satisfied. In the second case, we let X and Y belong to $\Gamma\left(\mathcal{L}^{\prime \prime}\right)$. Then by using (3.20), we conclude that $\widetilde{\nabla}_{X} L^{*}$ and $\widetilde{\nabla}_{Y} L^{*}$ belong to $\Gamma\left(V T M^{\circ}\right)$. Similar to the previous case, we can deduce
that (4.40) is again identically satisfied. In the third case, we let $X=X^{i} \dot{\partial}_{i} \in \Gamma\left(\mathcal{L}^{\prime}\right)$ and $Y=Y^{i} \delta_{i} \in \Gamma\left(\mathcal{L}^{\prime \prime}\right)$. Since $\mathcal{L}^{\prime \prime}$ is the complementary orthogonal distribution to \mathcal{L}^{*} in $H T M^{\circ}$, then we have

$$
\begin{equation*}
0=G\left(Y, L^{*}\right)=Y^{i} y^{j} G\left(\delta_{i}, \delta_{j}\right)=Y^{i} y^{j}\left(u g_{i j}+v y_{i} y_{j}\right)=(u+2 t v) Y^{i} y_{i} \tag{4.41}
\end{equation*}
$$

Also, (3.31) gives us

$$
\begin{equation*}
X^{i} y_{i}=0 \tag{4.42}
\end{equation*}
$$

According to (3.20), we get

$$
\begin{equation*}
G\left(\widetilde{\nabla}_{X} L^{*}, Y\right)=(u+t v) X^{k} Y^{r} g_{k r}-\frac{1}{2 u} X^{i} Y^{r} R_{i r} \tag{4.43}
\end{equation*}
$$

Similarly, we obtain

$$
\begin{equation*}
G\left(\widetilde{\nabla}_{Y} L^{*}, X\right)=-t v X^{r} Y^{i} g_{i r}-\frac{1}{2 u} Y^{i} R_{r i} X^{r} \tag{4.44}
\end{equation*}
$$

Using (4.43) and (4.44), we obtain the following expression of (4.40):

$$
\begin{equation*}
\left(u g_{i j}-\frac{1}{u} R_{i j}\right) X^{i} Y^{j}=0 \tag{4.45}
\end{equation*}
$$

On other hand, (4.42) implies

$$
\begin{equation*}
h_{i j} X^{i} Y^{j}=g_{i j} X^{i} Y^{j} \tag{4.46}
\end{equation*}
$$

By using (4.34), (4.45) and (4.46) we obtain

$$
\begin{align*}
\Lambda_{i j} X^{i} Y^{j} & =R_{i j} X^{i} Y^{j}-h_{i j} X^{i} Y^{j}=R_{i j} X^{i} Y^{j}-g_{i j} X^{i} Y^{j} \\
& =R_{i j} X^{i} Y^{j}-\frac{1}{u^{2}} R_{i j} X^{i} Y^{j}=\left(1-\frac{1}{u^{2}}\right) R_{i j} X^{i} Y^{j} \tag{4.47}
\end{align*}
$$

Now, we consider the isomorphism of vector bundles $\Phi: \mathcal{L}^{\prime} \rightarrow \mathcal{L}^{\prime \prime}$ defined by $\Phi\left(X^{i} \dot{\partial}_{i}\right)=X^{i} \delta_{i}=X^{*}$. Then (4.47) is equivalent to

$$
\begin{equation*}
\Lambda\left(X^{*}, Y\right)=\left(1-\frac{1}{u^{2}}\right) R\left(X^{*}, Y\right), \quad \forall X^{*}, Y \in \Gamma\left(\mathcal{L}^{\prime \prime}\right) \tag{4.48}
\end{equation*}
$$

Finally, from (4.35) and (4.48) we deduce that (4.40) is equivalent to $\Lambda=\left(1-\frac{1}{u^{2}}\right) R$ on $I M(c)$.
Taking into account that \mathcal{L}^{\perp} is orthogonal to the vertical Liouville distribution \mathcal{L} we deduce that L^{*} is a Killing vector field on $I M(c)$ if and only if (see [11])

$$
\begin{equation*}
G\left(\widetilde{\nabla}_{X} L^{*}, Y\right)+G\left(\widetilde{\nabla}_{Y} L^{*}, X\right)=0, \quad \forall X, Y \in \Gamma\left(\mathcal{L}^{\perp}\right) \tag{4.49}
\end{equation*}
$$

Now, we can prove the following theorem.

Theorem 5 Let (M, F) be a Finsler manifold and IM(c) be a c-indicatrix bundle over M. Then the horizontal Liouville vector field L^{*} is a Killing vector field on $I M(c)$ if and only if $\Lambda=\left(1-\frac{1}{u^{2}}\right) R$ on $I M(c)$.

Proof If L^{*} is a Killing vector field on $I M(c)$, then according to (4.49), the relation (4.40) is held and consequently from Theorem 4 we infer that $\Lambda=\left(1-\frac{1}{u^{2}}\right) R$ on $I M(c)$. Conversely let $\Lambda=\left(1-\frac{1}{u^{2}}\right) R$ on $I M(c)$. Then (4.40) gives us (4.49), only for any X, Y belong to $\Gamma\left(\mathcal{L}^{\prime} \oplus \mathcal{L}^{\prime \prime}\right)$. Also, if $X=Y=L^{*}$ then (3.16) implies (4.49). Hence in order to complete the proof we need to show that (4.49) is held for $X=L^{*}$ and $Y \in \Gamma\left(\mathcal{L}^{\prime} \oplus \mathcal{L}^{\prime \prime}\right)$. According to (3.16), since $\widetilde{\nabla}_{L^{*}} L^{*}=2 t\left(2 \alpha_{4}+\alpha_{6}+2 t \alpha_{5}\right) L$ then we deduce that we should prove that

$$
\begin{equation*}
G\left(\widetilde{\nabla}_{Y} L^{*}, L^{*}\right)=0, \quad \forall Y \in \Gamma\left(\mathcal{L}^{\prime} \oplus \mathcal{L}^{\prime \prime}\right) \tag{4.50}
\end{equation*}
$$

We consider two cases to analyze (4.50).
Case 1. $Y \in \Gamma\left(\mathcal{L}^{\prime \prime}\right)$. Then from (3.20) we infer that $\widetilde{\nabla}_{Y} L^{*} \in \Gamma\left(V T M^{\circ}\right)$, and consequently (4.50) is held in this case.

Case 2. $Y \in \Gamma\left(\mathcal{L}^{\prime}\right)$. In this case we have $Y=Y^{i} \dot{\partial}_{i}$, where Y^{i} satisfy (4.42). Then by using (3.20), we obtain

$$
\widetilde{\nabla}_{Y} L^{*}=Y^{i}\left(\left(1+2 t \alpha_{9}\right) \delta_{i}^{k}+\frac{1}{2 u^{2}} y^{j} R_{i s j} g^{k s}\right) \delta_{k}
$$

Hence we get

$$
\begin{equation*}
G\left(\widetilde{\nabla}_{Y} L^{*}, L^{*}\right)=Y^{i}\left(\left(1+2 t \alpha_{9}\right)(u+2 t v) y_{i}+\frac{1}{2 u} y^{r} y^{j} R_{i r j}\right) \tag{4.51}
\end{equation*}
$$

But by using (ii) of (2.2), (ii) of (2.3) and (4.42) we have $Y^{k} y_{k}=0$ and $R_{i r j} y^{j} y^{r}=0$. Hence $G\left(\widetilde{\nabla}_{Y} L^{*}, L^{*}\right)=0$, where $Y \in \Gamma\left(\mathcal{L}^{\prime}\right)$.

By using the above cases, we deduce that (4.49) is identically satisfied, and therefore L^{*} is a Killing vector field on $I M(c)$.

Theorem 6 A Finsler manifold (M, F) is of positive constant curvature k if and only if $\Lambda=\left(1-\frac{1}{u^{2}}\right) R$ on the indicatrix bundle $I M(c)$ where $c=\frac{u}{\sqrt{k}}$.
Proof Let (M, F) be a Finsler manifold of constant curvature k. Then by Theorem 1, we have

$$
\begin{equation*}
R_{i j}=k F^{2} h_{i j} . \tag{4.52}
\end{equation*}
$$

But on $I M(c)$ we have $F(x, y)=c=\frac{u}{\sqrt{k}}$. Hence we obtain $F^{2}=\frac{u^{2}}{k}$ or equivalently

$$
\begin{equation*}
k F^{2}=u^{2} \tag{4.53}
\end{equation*}
$$

Substituting the above equation into (4.52), we obtain

$$
\begin{equation*}
h_{i j}=\frac{1}{u^{2}} R_{i j} . \tag{4.54}
\end{equation*}
$$

Substituting (4.54) into (4.34), we get

$$
\begin{equation*}
\Lambda_{i j}=R_{i j}-\frac{1}{u^{2}} R_{i j}=\left(1-\frac{1}{u^{2}}\right) R_{i j} . \tag{4.55}
\end{equation*}
$$

Conversely, let $\Lambda=\left(1-\frac{1}{u^{2}}\right) R$ on $I M(c)$. Then it follows from (4.53) and (4.34) that

$$
\begin{equation*}
R_{i j}(x, y)=u^{2} h_{i j}(x, y)=k F^{2}(x, y) h_{i j}(x, y), \quad \forall(x, y) \in I M(c) \tag{4.56}
\end{equation*}
$$

Now, we take a point $(x, y) \in T M^{\circ} \backslash I M(c)$. Since $T M^{\circ}$ admits the fundamental foliation \mathcal{F}_{F}, there exist $c^{*}>0$ such that $(x, y) \in I M\left(c^{*}\right)$, that is, $F(x, y)=c^{*}$. Since F is positively homogeneous of degree one, we have $F\left(x, \frac{c}{c^{*}} y\right)=\frac{c}{c^{*}} F(x, y)=c$, i.e., $\left(x, \frac{c}{c^{*}} y\right) \in I M(c)$. Hence by (4.56), we obtain

$$
\begin{equation*}
R_{i j}\left(x, \frac{c}{c^{*}} y\right)-h_{i j}\left(x, \frac{c}{c^{*}} y\right)=\left(1-\frac{1}{u^{2}}\right) R_{i j}\left(x, \frac{c}{c^{*}} y\right) \tag{4.57}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
R_{i j}\left(x, \frac{c}{c^{*}} y\right)=u^{2} h_{i j}\left(x, \frac{c}{c^{*}} y\right) . \tag{4.58}
\end{equation*}
$$

Since $h_{i j}$ and $R_{i j}$ are positively homogeneous of degree zero and two, respectively, equation (4.58) implies

$$
\begin{equation*}
R_{i j}(x, y)=u^{2} \frac{c^{* 2}}{c^{2}} h_{i j}(x, y) \tag{4.59}
\end{equation*}
$$

Since $c=\frac{u}{\sqrt{k}}$ and $F(x, y)=c^{*}$, it follows from (4.59) that

$$
\begin{equation*}
R_{i j}(x, y)=k F^{2}(x, y) h_{i j}(x, y), \quad \forall(x, y) \in T M^{\circ} \backslash I M(c) \tag{4.60}
\end{equation*}
$$

Thus it follows from (4.56), (4.60) and Theorem 1 that (M, F) is a Finsler manifold of positive constant curvature k.

Theorem 7 Let (M, F) be a Finsler manifold, and k, c two positive numbers such that $c=\frac{u}{\sqrt{k}}$. Then the following assertions are equivalent:
(i) (M, F) is a Finsler manifold of constant curvature k.
(ii) The Sasaki-Finsler metric G on the indicatrix bundle $I M(c)$ is bundle-like for the horizontal Liouville foliation $\operatorname{IM}(c)$.
(iii) The horizontal Liouville vector field is a Killing vector field on (IM(c), G).
(iv) The curvature-angular form Λ of (M, F) satisfy $\Lambda=\left(1-\frac{1}{u^{2}}\right) R$ on $I M(c)$.

References

[1] Antonelli, P. L., Ingarden, R. S. and Matsumoto, M.: The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Kluwer Acad. Publish, Dordrecht 1993.
[2] Bao, D., Chern, S. S. and Shen, Z.: An Introduction to Riemannian-Finsler Geometry, Spinger-Verlag, New York 2000.
[3] Bejancu, A.: Finsler Geometry and Applications, Ellis Horwood, New York 1990.
[4] Bejancu, A. and Farran, H. R.: Finsler geometry and natural foliations on the tangent bundle, Rep. Math. Phys. 58, 131-146, (2006).
[5] He, Q., Yang, W. and Zhao, W.: On totally umbilical submanifolds of Finsler spaces, Ann. Polon. Math. 100, 147-157, (2011).

PEYGHAN and NOURMOHAMMADI FAR/Turk J Math

[6] Li, J.: Stable harmonic maps between Finsler manifolds and Riemannian manifolds with positive Ricci curvature, Ann. Polon. Math. 99, 67-77, (2010).
[7] Matsumoto, M.: Foundations of Finsler geometry and special Finsler spaces, Kaiseisha, Japan, 1986.
[8] Oproiu, V. and Papaghiuc, N.: A Kaehler structure on the nonzero tangent bundle of a space form, Diff. Geom. Appl. 11, 1-12, (1999).
[9] Shen, Z.: Lectures on Finsler Geometry, Word Scientific, Singapore 2001.
[10] Tayebi, A. and Peyghan, E.: On a class of Riemannian metrics arising from Finsler structures, C. R. Acad. Sci. Paris, Ser. I. 349, 319-322, (2011).
[11] Yano, K. and Kon, M.: Structures on Manifolds, World Scientific, Singapore 1984.

[^0]: *Correspondence: epeyghan@gmail.com
 2000 AMS Mathematics Subject Classification: Primary 53C20, 53C22.

