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Abstract

On an odd dimensional manifold, we define a structure which general-
izes several known structures on almost contact manifolds, namely Sasakian,
trans-Sasakian, quasi-Sasakian, Kenmotsu and cosymplectic structures. This
structure, hereinafter called a G.Q.S. manifold, is defined on an almost con-
tact metric manifold and satisfies an additional condition (1.5). We then con-
sider a codimension-one distribution on a G.Q.S. manifold. Necessary and
sufficient conditions for the normality of the complemented framed struc-
ture on the distribution defined on a G.Q.S manifold are studied (Th. 3.2).
The existence of the foliation on G.Q.S. manifolds and of bundle-like metrics
are also proven. It is shown that under certain circumstances a new foliation
arises and its properties are investigated. Some examples illustrating these
results are given in the final part of this paper.

Introduction

The geometry of foliation on a Riemannian manifold has been intensively studied
in the latest years and many interesting results have been obtained, among others,
by Pitiş [11], Pang [10], Libermann [7]. In their book [2], Bejancu and Faran stud-
ied the foliations defined on a Riemannian manifold by using only two adapted
linear connections. The notion of bundle-like metric on a Riemannian manifold
was introduced by Reinhart [12] and intensively studied by several authors (see
Tondeur [15] and the related references cited therein.) It was subsequently proved
that there exists a bundle-like metric on a Riemannian manifold (M, g) endowed
with two complementary orthogonal non-integrable distributions (see [2] p.32).
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Blair [3] introduced the notion of complemented framed structure, on a Rieman-
nian manifold (M, g). This notion is defined for manifolds with an f -structure
and it is the analogue of the Kaehler structure in the almost complex case and
of the quasi-Sasakian structure in the almost contact case (see [3] p.155). Several
important results in this direction were established by Goldberg and Yano in [6].

The purpose of this paper is to study some properties of a foliated manifold
endowed with an almost contact metric structure satisfying an additional condi-
tion (1.5). The remaining part of this paper is structured as follows.

In the first section, several general results regarding quasi-Sasakian manifolds
are stated for later use. We introduce the notion of a generalised quasi-Sasakian
manifold (on short a G.Q.S manifold), defined as a manifold endowed with an
almost contact metric structure enjoying property (1.5). Some important results
of the G.Q.S manifolds are proven, for later use (Proposition 1.2). In the second
section, it is introduced for the first time in literature, after the best of this au-
thor’s knowledge, the notion of complemented framed structure (Definition 2.1)
on any codimension-one distribution tangent to the structure vector field of a
G.Q.S manifold. Th. 2.1 proves the existence of this structure. The third section
is aims at studying the existence of normal complemented framed structure. The
existence of a normal complemented framed structure is proved by veryfing the
necessary and sufficient conditions for the existence of this structure. (Th. 3.2,
Th. 3.3). Next, it is shown in Th. 3.6 that the existence of a normal complemented
framed structure implies the existence of a foliation of dimension three. The exis-
tence of a bundle-like metric and of a minimal foliation are also studied in Th. 3.7
and 3.8, respectively. The paper is concluded with an example which illustrates
the above-mentioned theoretical results.

1 Preliminaries

Throughout this paper, all manifolds and maps are differentiable of class C∞.
Consider M be an (n + p)-dimensional paracompact manifold and TM be the
tangent bundle of M. F(M) represents the algebra of the differentiable functions
on M and Γ(E) the F(M)-module of the sections of a vector bundle E over M. In
the following M is supposed to be a Riemannian manifold with the Riemannian
metric g.

Now suppose that there exists a pair of complementary orthogonal distribu-
tions D and D⊥ on M, that is, TM has the decomposition

TM = D⊕D⊥, (1.1)

with respect to the Riemannian metric g.
We denote by Q and Q′ the projection morphisms of TM on D and D⊥, respec-

tively. Based on the ideas from [2] p.97 we consider two connections denoted by
D and D⊥ on the distributions D and D⊥, called intrinsic linear connections and
defined by

a) DXQY = Q∇̃QXQY + Q[Q′X, QY],

b) D⊥
X Q′Y = Q′∇̃Q′XQ′Y + Q′[QX, Q′Y], ∀ X, Y ∈ Γ(TM),
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where ∇̃ is the Levi-Civita connection on (M, g). Suppose that the distribution
D is integrable. Then D defines a foliation on M, which we denote by F . The
Riemannian metric g is said to be bundle-like for the foliation F (cf. [12] ), if each
geodesic in (M, g) that is tangent to the normal distribution to F at one point
remains tangent for its entire length. Bejancu-Faran (see [2] p.110) gave a charac-
terization for a bundle-like metric on a Riemannian manifold (M, g) as follows:
the Riemannian metric g on M is bundle-like for the foliation F if the Rieman-
nian metric induced by g on D⊥, denoted by the same symbol g, is parallel with
respect to the intrinsic connection D⊥, that is, we have

(D⊥
X g)(Q′Z, Q′Y) = 0, ∀X, Y, Z ∈ Γ(TM).

From [2] p.112, we recall the following result.

Theorem 1.1. If (M, g,F ) is a foliated Riemannian manifold, then the following
assertions are equivalent

a) g is bundle-like metric for F ,

b) QX is a D⊥-Killing vector field, that is

g(∇̃Q′YQX, Q′Z) + g(∇̃Q′ZQX, Q′Y) = 0, ∀ X, Y, Z ∈ Γ(TM).

Now, we denote by ∇ (resp. ∇⊥) the connection induced by ∇̃ on D (resp. D⊥)
and by h, h′ the F(M)-bilinear mappings

h : Γ(TM)× Γ(D) → Γ(D⊥), h′ : Γ(TM) × Γ(D⊥) → Γ(D).

The connections ∇, ∇⊥ and the F(M)-bilinear mappings h, h′ are given by

∇XQY = Q∇̃XQY, ∇⊥
X Q′Y = Q′∇̃XQ′Y,

h(X, QY) = Q′∇̃XQY, h′(X, Q′Y) = Q∇̃XQ′Y,

for any X, Y ∈ Γ(TM). In connection with the decomposition (1.1) we have (see
[2] p.27)

a) ∇̃XQY = ∇XQY + h(X, QY),

b) ∇̃XQ′Y = ∇⊥
X Q′Y + h′(X, Q′Y), ∀X, Y ∈ Γ(TM),

(1.2)

relations which are called the Gauss formulae for the Riemannian distributions
(D, g) and (D⊥, g), respectively. For any Q′X ∈ Γ(D⊥) and QX ∈ Γ(D), we
define two F(M)-linear operators (see [2] p.27), namely

AQ′X : Γ(D) → Γ(D), AQX : Γ(D⊥) → Γ(D⊥),

by
AQ′XQY = −h′(QY, Q′X),

A′
QXQ′Y = −h(Q′Y, QX), ∀X, Y ∈ Γ(TM).

According to the theory of submanifolds, AQ′X, and A′
QX are called the shape

operators of D and D⊥ with respect to the normal sections Q′X and QX, respec-
tively.
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It is easy to see that (see [2] p.28)

a) g(h(QX, QY), Q′Z) = g(AQ′ZQX, QY),

b) [QX, QY] ∈ Γ(D) ⇔ h(QX, QY) = h(QY, QX),

∀X, Y, Z ∈ Γ(TM).

(1.3)

Next, let M be a real (2n + 1)-dimensional differentiable manifold, endowed
with an almost contact metric structure ( f , ξ, η, g). As a result, the following
equalities are satisfied (see [3])

a) f 2 = −I + η ⊗ ξ, b) η(ξ) = 1, c) η ◦ f = 0,

d) f (ξ) = 0, e) η(X) = g(X, ξ),

f ) g( f X, Y) + g(X, f Y) = 0, ∀X, Y ∈ Γ(TM),

(1.4)

where I is the identity of the tangent bundle TM of M, f is a tensor field of type
(1,1), η is a 1-form, ξ is a vector field tangent to M and g is a metric tensor field on
M. The Nijenhuis tensor field with respect to the tensor field f , denoted by N f , is
given by

N f (X, Y) = [ f X, f Y] + f 2[X, Y]− f [ f X, Y] − f [X, f Y],

∀X, Y ∈ Γ(TM).

An almost contact metric manifold M( f , ξ, η, g) is said to be normal if the
almost complex structure J on the manifold M × R, given by

J(X, λ
d

dt
) = ( f X − λξ, η(X)

d

dt
), X ∈ Γ(TM), t ∈ R,

is integrable, where λ is a real-valued function on M × R. This condition is equiv-
alent to

N f (X, Y) + 2dη(X, Y)ξ = 0, ∀ X, Y ∈ Γ(TM).

In [4] the author proved that the almost contact metric structure, ( f , ξ, η, g) is
normal if and only if

(∇̃ f X f )Y = f (∇̃X f )Y − g(∇̃ f Xξ, Y)ξ, ∀X, Y ∈ Γ(TM).

The above result was used by Tanno [13], who cites Nakagawa [9].
We now consider a class of almost contact metric manifolds introduced by

Eum [5]. The structure tensor field f of this class of manifolds is assumed to
satisfy

(∇̃X f )Y = g(∇̃ f Xξ, Y)ξ − η(Y)∇̃ f Xξ, ∀X, Y ∈ Γ(TM). (1.5)

The integrability of invariant hypersurfaces immersed in an almost contact
Riemannian manifold complying with condition (1.5) was also studied in [5].
For convenience, we define a tensor field F of type (1,1) by

FX = −∇̃Xξ, ∀X ∈ Γ(TM). (1.6)
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Using (1.4a), (1.5) and (1.6), one obtains the following result through direct calcu-
lation,

Proposition 1.1. If M is an almost contact metric manifold enjoying property (1.5),
the following equalities hold

a) M is normal, b) f ◦ F = F ◦ f , c) Fξ = 0,

d) η ◦ F = 0, e) (∇̃ξ f )X = 0, ∀X ∈ Γ(TM).
(1.7)

Next we prove the following characterization result for quasi-Sasakian manifold

Proposition 1.2. Any integral curve of the structure vector field ξ on an almost
contact metric manifold M enjoying property (1.5), is a geodesic, that is ∇̃ξξ = 0.
Moreover, ξ is a Killing vector field if and only if M is a quasi-Sasakian manifold, that is
dΦ = 0, where Φ(X, Y) = g(X, f Y).

Proof. The first assertion is obviously equivalent to (1.7c). Next, by using (1.5)
we infer that

3dΦ(X, Y, Z) = g((∇̃X f )Z, Y) + g((∇̃Z f )Y, X)+

g((∇̃Y f )X, Z) = η(X)(g(Y, ∇̃ f Z ξ) + g( f Z, ∇̃Yξ))+

η(Y)(g(Z, ∇̃ f X ξ) + g( f X, ∇̃Zξ)) + η(Z)(g(X, ∇̃ f Y ξ)+

g( f Y, ∇̃Xξ)).

(1.8)

Now, suppose that ξ is a Killing vector field. Then from (1.8) one deduces that
dΦ = 0. Conversely, if dΦ = 0, then we put X = ξ in (1.8), and for η(Y) =
η(Z) = 0, we obtain

g(Y, ∇̃ f Zξ) + g( f Z, ∇̃Yξ) = 0.

Finally, replacing Y by Y − η(Y)ξ and Z by f Z in the relation above, we obtain
that ξ is a Killing vector field.

Remark 1. It is easy to see that on an almost contact metric manifold M
enjoying property (1.5) the structure vector field ξ is not necessarily a Killing
vector field. Also, it is interesting to see that:

1) if FX = − f X, then M is a Sasakian manifold,
2) if FX = −X + η(X)ξ, then M becomes a Kenmotsu manifold,
3) if FX = 0, then M is a cosymplectic manifold,
4) if ξ is a Killing vector field, then M is a quasi-Sasakian manifold,
5) if FX = α f X + β f 2X, α, β ∈ F(M), then M is trans-Sasakian manifold.

This was the reason for which we called M a generalized quasi-Sasakian manifold
(shortly G.Q.S manifold).

2 Distributions with complemented framed structures

In this paragraph, we first define the notion of complemented framed structure
and study its normality. We then prove that a codimension-one distribution tan-
gent to the structure vector field of G.Q.S manifold M admits a complemented
framed structure and further on we establish some of its properties.
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First, we suppose that a tensor field φ of type (1,1) is defined on a n-dimensio-
nal Riemannian manifold (M, g). The tensor field φ defines on M an f -structure
(see [16]) if

φ3 + φ = 0.

Stong [13] has proved that the rank of φ is constant, say r.
If n = r then an f -structure gives an almost complex structure and n is even.
If n − 1 = r and M is orientable, then an f -structure defines an almost contact
structure and n is necessarily odd.

Next, suppose that there exists the unit vector fields ξ1, ..., ξr ∈ Γ(TM) and the
1-forms η1, ..., ηr on a (2n + r)-dimensional manifold M with an f -structure φ of
rank 2n.

We say that the f -structure φ defines an complemented framed structure on
the manifold M, if the following conditions are fulfilled for i, j ∈ {1, ..., r} (see [3])

a) φ2X = −X +
r

∑
i=1

ηi(X)ξi , X ∈ Γ(TM),

b) φi(ξ j) = 0, c) ηi(ξ j) = δij; d) ηi ◦ φ = 0,

where δij is the Kronecker delta.
In the following we suppose there exist an f -structure defined by the tensor

field φ, a distribution D′ and the 1-dimensional distributions D′′ and D′′′ on a
Riemannian manifold (M, g) so that we have the orthogonal decomposition be-
low

TM = D′ ⊕D′′ ⊕D′′′; φ(D′′) = φ(D′′′) = 0; φ(D′) = D′. (2.1)

Definition 2.1. We say that a complemented framed structure is defined on a Rie-
mannian manifold (M, g) if there exist a tensor field φ of type (1,1), the unit vector fields
U1 ∈ Γ(D′′), U2 ∈ Γ(D′′′), the 1-forms η1, η2 so that (2.1) and

a) φ2X = −X + η1(X)U1 + η2(X)U2, X ∈ Γ(TM),

b) φ(Ua) = 0, c) ηa(Ub) = δab; d) ηa ◦ φ = 0

are fulfilled, where δab is the Kronecker delta, a, b ∈ {1, 2}.

The Riemannian manifold M(φ, U1, U2, η1, η2, g) is called a complemented framed
metric manifold if (see [6])

ηa(X) = g(X, Ua), a = 1; 2 and g(φX, Y) + g(X, φY) = 0.

Definition 2.2. We say that the Riemannian manifold (M, g) with complemented
framed structure is normal if

S(X, Y) = Nφ(X, Y) + 2dη1(X, Y)U1 + 2dη2(X, Y)U2 = 0,

∀ X, Y ∈ Γ(TM).
(2.2)

Next, we consider a G.Q.S manifold M with the almost contact metric struc-
ture ( f , ξ, η, g). Suppose that on M there exist a distribution D1 of codimension 1,
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tangent to the structure vector field ξ, and let D2 be the orthogonal complemen-
tary distribution to D1 in TM, that is

TM = D1 ⊕D2, dim D2 = 1, ξ ∈ Γ(D1). (2.3)

Because dim D2 = 1, one deduces by using (1.4f) that fD2 ⊆ D1. Next, let
D be the complement orthogonal distribution of fD2 ⊕ {ξ} in D1. Subsequently,
we have the following orthogonal decomposition

D1 = D ⊕ {ξ} ⊕ D⊥; D⊥ = fD2. (2.4)

Now, we consider a locally-defined unit vector field N ∈ Γ(D2) and U =
f N ∈ Γ(D⊥). From (1.4a) and (1.4f) one deduces that U is also a unit vector field.

Next, let ∇ be the connection induced by ∇̃ on D1. Relative to the decompo-
sition (2.3), the formulae (1.2) have the following expression (see [1])

a) ∇̃XY = ∇XY + B(X, Y)N,

b) ∇̃XN = −AX, ∀X, Y ∈ Γ(D1), N ∈ Γ(D2),
(2.5)

where A is the shape operator with respect to the section N and B is given by
B(X, Y) = g(∇̃XY, N), X, Y ∈ Γ(D1).

Remark 2. Because ∇̃ is the Levi-Civita connection, one obtains from (1.3b)
that B(X, Y) = B(Y, X) ⇔ g(AX, Y) = g(X, AY), X, Y ∈ Γ(D1) if and only if
the distribution D1 is involutive. In this case, we denote by F1 the foliation on M
defined by the involutive distribution D1.

Next, let us denote by P the projection morphism of TM on D. Taking into
account the decompositions (2.3) and (2.4), we may express X in the following
way

X = PX + a(X)U + η(X)ξ, ∀X ∈ Γ(D1), (2.6)

where a is a 1-form defined by a(X) = g(X, U). From (1.4d) and (2.6), we see that

f X = tX − a(X)N, ∀X ∈ Γ(D1), (2.7)

where t is a tensor field of type (1,1) given by

tX = f PX, X ∈ Γ(D1).

Also, from (1.6) and (2.5b), the vector field FX can be expressed in the following
way

FX = αX − η(AX)N, ∀X ∈ Γ(D1), (2.8)

where α is a tensor field of type (1,1) so that αX ∈ Γ(D1), X ∈ Γ(D1).
By straightforward calculations, using (1.4a), (1.4d), (1.4f) we obtain the fol-

lowing result

Proposition 2.1. The next equalities hold on a G.Q.S manifold M

a) tU = 0, b) tξ = 0, c) t2X = −X + a(X)U + η(X)ξ,

d) g(tX, Y) + g(X, tY) = 0, ∀X, Y ∈ Γ(D1).
(2.9)
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According to Definition 2.1 and Proposition 2.1, we can state the following theo-
rem

Theorem 2.1. On a 2n-dimensional distribution D1 of a G.Q.S manifold M, tangent
to the structure vector field ξ, there exists a complemented metric framed structure
given by (t, ξ, U, η, a, g).

Using (1.5), (1.6), (2.5a), (2.5b), (2.7) and (2.8), we infer the next result through
direct calculations,

Propositon 2.2. The covariant derivatives of t and a on a 2n-dimensional distribu-
tion D1 of a G.Q.S manifold M are given by

a) (∇Xt)Y = η(Y)(tα(X) − η(AX)U) − a(Y)AX+

g(FX, f Y)ξ + g(AX, Y)U,

b) (∇Xa)Y = g(AX, tY) + η(Y)η(AtX), ∀X, Y ∈ Γ(D1).

(2.10)

We also establish the following proposition for later use

Proposition 2.3. Let M be a G.Q.S manifold and let D1 be a 2n-dimensional
distribution tangent to the structure vector field ξ. The following equalities hold

a) ∇XU = −tAX + (η(AtX) + a(X)a(FU))ξ,

b) ∇ξU = −tAξ, c) [U, ξ] = f [N, ξ],

d) a(FX) = η(AtX) + a(X)a(FU),

e) g(X, FU) = −g(tX, Aξ) − g(X, [U, ξ]), ∀ X ∈ Γ(D1).

(2.11)

Proof. Taking Y = U in (2.10a), one deduces the assertion a) by using (2.9a) - (2.9c)
and (2.7). The assertion b) comes from (2.9a), (2.9b) and (2.11a). The statement c)
is a consequence of (1.7b) and (1.7e). Finally the assertions d) and e) are obtained
through direct calculation using (2.7), (2.5b) and the fact that ∇̃ is a torsion free
connection.

3 Normality for a complemented framed structure on a G.Q.S

manifold M

The purpose of this section is to study the normality of complemented framed
structure on the distribution D1 of a G.Q.S manifold M and to establish a neces-
sary and sufficient condition for the existence of normal complemented framed
structure.

First, for the complemented framed structure (t, ξ, U, η, a) on the distribution
D1, the normality tensor S defined in (2.2) can be expressed as follows

S(X, Y) = Nt(X, Y) + 2da(X, Y)U + 2dη(X, Y)ξ, ∀X, Y ∈ Γ(D1). (3.1)

Thus the complemented framed structure (t, ξ, U, η, a) is normal if S(X, Y) = 0,
∀ X, Y ∈ Γ(D1). Next, we state the following result
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Theorem 3.1. On a 2n-dimensional distribution D1 of a G. Q. S manifold, tangent
to the structure vector field ξ, the tensor field S is expressed by

S(X, Y) = a(X)(AtY − tAY + η(Y)αU − g(Y, FU)ξ)−

a(Y)(AtX − tAX + η(X)αU − g(X, FU)ξ) + [g(AtX, Y)−

g(tX, AY) + g(AX, tY) − g(AtY, X)]U+

[B(tX, tY) − B(tY, tX)]N, ∀X, Y ∈ Γ(D1).

(3.2)

Proof. Because ∇̃ is a torsion free connection, using (2.5a), (2.10a) we infer that

Nt(X, Y) = (∇tXt)Y − (∇tYt)X + t((∇Yt)X − (∇Xt)Y)

= η(Y)(tαtX − t2αX)− η(X)(tαtY − t2αY) + a(X)(AtY−

tAY)− a(Y)(AtX − tAX) + (g( f Y, FtX) − g( f X, FtY)ξ+

[B(tX, Y) − B(X, tY) + η(X)η(AtY) − η(Y)η(AtX)]U+

[B(tX, tY) − B(tY, tX)]N, ∀X, Y ∈ Γ(D1).

(3.3)

On the other hand, from (2.10b) we deduce that

2da(X, Y) = (∇Xa)Y − (∇Ya)X = B(tY, X)+

η(Y)a(FX) − B(tX, Y) − η(X)a(FY), ∀X, Y ∈ Γ(D1).
(3.4)

From (1.7b), (2.9c), (2.9d) and (2.11d), we infer that

g(FtX, f Y) − g(FtY, f X) = g(Ft2Y, X)− g(Ft2X, Y)

= g(FX, Y) − g(X, FY) + a(Y)g(X, FU) − a(X)g(FU, Y)

= −2dη(X, Y) + a(Y)g(X, FU) − a(X)g(Y, FU).

(3.5)

Next, by using (1.7b), (2.9c), (2.9d), (2.7), (2.8) and (2.11d) we obtain that

tαtX = t(FtX + η(AtX)N) = tF( f X + a(X)N) + η(AtX)U =

t( f αXη(AX)U) + a(X)( f FN + a(FN)N) + η(AtX) = t2αX−

a(αX)U + a(X)αU + η(AtX)U = t2αX + a(X)(αU − a(FU)U)

∀X ∈ Γ(D1).

(3.6)

Finally, the relation (3.2) comes from (3.1), (3.3) - (3.6) and the proof is complete.
We now give a characterization for the normality of complemented metric framed
structures defined on the distribution D1 of a G.Q.S manifold M.

Theorem 3.2. The complemented metric framed structure on a 2n-dimensional dis-
tribution D1 of a G.Q.S manifold M, tangent to ξ, is normal if and only if the following
conditions are fulfilled

a) D⊕ {ξ} is integrable,

b) AtX = tAX + a(AtX)U, ∀ X ∈ Γ(D),

c) [U, ξ] = −g([U, ξ], N)N, d) tAU = 0 = tAξ.

(3.7)



508 C. Călin

Proof. First, for X, Y ∈ Γ(D), the relation (3.2) becomes

S(X, Y) = [g(AtX, Y) − g(tX, AY) + g(AX, tY)−

g(X, AtY)]U + [g(AtX, tY) − g(AtY, tX)]N.
(3.8)

Also, from the same relation (3.2) we obtain

S(X, ξ) = [η(AtX) − g(tX, Aξ)]U, ∀X ∈ Γ(D). (3.9)

S(X, U) = tAX − AtX + g(X, FU)ξ+

[a(AtX) − g(AU, tX)]U, ∀ X ∈ Γ(D).
(3.10)

S(U, ξ) = αU − tAξ = −[U, ξ]− g([U, ξ], N)N. (3.11)

Now, suppose that S(X, Y) = 0, ∀X, Y ∈ Γ(D1). Then, the relations (3.8) and
(3.9) imply

a) g(AtX, tY) = g(AtY, tX),

b) η(AtX) = g(tX, Aξ), ∀X ∈ Γ(D).
(3.12)

The relations (1.3b), (3.12a) and (3.12b) yield the assertion (3.7a). Using the fact
that S(X, U) = 0, from (3.10) we obtain g(AU, tX) = 0, X ∈ Γ(D), that is,
tAU = 0. The same relation (3.10) implies the fact that η(AtX) = g(X, FU),
which together with (3.12b) and (2.11e) prove that η(AtX) = g(X, FU) = 0 ⇒
tAξ = 0, X ∈ Γ(D). Next, it is easy to see that (3.7c) comes from (3.11). The
relations (3.7) are proved. Conversely, if the relations (3.7) are true, then it is easy
to see that S(X, Y) = 0, ∀ X, Y ∈ Γ(D). Taking into account that tAξ = 0, we
infer that S(X, ξ) = 0. Finally, from (3.10), (3.7a) - (3.7e) and (2.11e) one deduces
that S(X, U) = 0, ∀X ∈ Γ(D). This completes the proof.

Remark 3. The result proved above justifies the fact that the existence of the
normal complemented metric framed structure implies the existence of the invo-
lutive distribution D ⊕ {ξ} and consequently the existence of a foliation which
we shall denote by F1. We shall also say that the foliation F1 is normal provided
that Theorem 3.2 is true.

Corollary 3.1. If D1 is an involutive distribution of a G.Q.S manifold, tangent to
the structure vector field ξ, then the complemented framed structure is normal if and only
if

a) AtX = tAX, ∀ X ∈ Γ(D1), b) [U, ξ] = 0.

We consider the distribution D′
1 = D ⊕ D2 ⊕ {ξ} on a G.Q.S manifold M and

therefore we have the following decomposition TM = fD2 ⊕ D′
1. Next, we de-

note by A′ the shape operator with respect to the section U. Through direct cal-
culation, we obtain the next result

Proposition 3.1. The next equivalences hold on a G.Q.S manifold M

AtX = tAX + a(AtX)U ⇔ A′tX = tA′X + g(A′tX, N)N, X ∈ Γ(D),

[U, ξ] = −g([U, ξ], N)N, ⇔ [N, ξ] = −g([N, ξ], U)U.

We denote by F ′
1 the foliation corresponding to the distribution D′

1. The result of
Proposition 3.1 justifies the next result
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Theorem 3.3. On a G.Q.S manifold, the foliation F1 is normal if and only if the
foliation F ′

1 is normal, too.

Next we obtain a new characterisation of the normality of foliation F1.

Theorem 3.4. The foliation F1 on a G.Q.S manifold M is normal if and only if the
following conditions are fulfilled

a) D ⊕ {ξ} is involutive,

b) U is a D1-Killing vector field,

c) [U, ξ] = −g([U, ξ], N)N.

Proof. Using (2.11a), we obtain through direct calculation that

g(∇XU, Y) + g(∇YU, X) = g(AY, tX)+

g(AX, tY) + η(AtX)η(Y) + η(AtY)η(X)+

(η(X)a(Y) + η(Y)a(X))a(FU), ∀X, Y ∈ Γ(D1).

(3.13)

Suppose that the foliation F1 is normal. Then from (2.9d), (3.7a) - (3.7d) and (3.13)
we deduce that

g(∇XU, Y) + g(∇YU, X) = 0, ∀X ∈ Γ(D), Y ∈ Γ(D1).

Now, if we consider X = U in (3.13), using (3.7d) we get

g(∇UU, Y) = −g(tAU, Y) = 0, ∀ Y ∈ Γ(D1). (3.14)

Finally, the relation (3.13) for X = ξ is expressed as follows

g(∇YU, ξ) + g(∇ξU, Y) = η(AtY) − g(tAξ, Y) = 0, ∀ Y ∈ Γ(D1).

Consequently, U is a D1-Killing vector field. Conversely, suppose that U is a
D1-Killing vector field and [U, ξ] = −g([U, ξ], N)N. It follows from (3.13) that

g(AtX − tAX + η(AtX)ξ, Y) = 0, ∀X ∈ Γ(D ⊕ {ξ}), Y ∈ Γ(D1). (3.15)

In particular, from the relation above for Y = ξ, we get that η(AtX) = 0, X ∈
Γ(D) and by substituting it in (3.15) the proof of the Theorem is finalized.

From (3.14) and Theorem 3.3, we deduce the following consequence

Corollary 3.2. Let M be a G.Q.S manifold with normal foliation F1 (or equivalently
normal foliation F ′

1, respectively). Then

a) any integral curve of a D1-Killing vector field U is a geodesic,

b) any integral curve of a D′
1-Killing vector field N is a geodesic.

If M is a Kenmotsu manifold, then it can be proved by direct calculation that
[U, ξ] = −U + tAξ − a(Aξ)N, and consequently

Corollary 3.3. In a Kenmotsu manifold, there exists no normal foliation tangent to
the structure vector filed ξ.

Remark 4. The above result is also true in case of trans-Sasakian manifolds.
If M is a quasi-Sasakian manifold, we can state the following result
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Theorem 3.5. The next assertions are equivalent on a quasi-Sasakian manifold M

a) The foliations F1 and F ′
1 are normal,

b) AtX = tAX, ∀X ∈ Γ(D ⊕ {ξ}), D ⊕ {ξ} is involutive and [U, ξ] =
−g([U, ξ], N)N,

c) U is a D1-Killing vector field, D⊕{ξ} is involutive and [U, ξ] = −g([U, ξ], N)N,

d) N is a D′
1-Killing vector field, D⊕{ξ} is involutive and [N, ξ] = −g([N, ξ], U)U.

Next, denote by A = D⊥ ⊕ fD⊥ ⊕ {ξ}. We shall now prove our next important
result.

Theorem 3.6. If the foliation F1 on a G.Q.S manifold M is normal, then the distri-
bution A defines a foliation F of dimension 3 on M.

Proof. It is enough to prove that the distribution A is involutive. As F1 is
normal, we have [U, ξ], [N, ξ] ∈ Γ(A). Using the fact that ∇̃ is a torsion free
connection and Theorem 3.4, we obtain through direct calculation that

g(∇̃U N, tX) = −g(AU, tX) = −g(U, AtX) = 0, g(∇̃NU, X) =

g((∇̃N f )N + f (∇̃N N, X) = −g(∇̃N N, f X) = 0, ∀X ∈ Γ(D).

Therefore [N, U] ∈ Γ(A). Also, in the case of quasi-Sasakian manifolds, a new
interesting result holds.

Theorem 3.7. Let (M, g,F ) be a 3-foliated G.Q.S manifold with the normal foliation
F1 . Then the metric tensor g is bundle-like for F if and only if M is quasi Sasaki
manifold.

Prof. Suppose that the metric tensor g is bundle-like. By using Theorem 1.1,
it follows that U, N, ξ are D-Killing vector fields. Then, we obtain through direct
calculation that

g(∇̃Nξ, N) = (∇̃Uξ, U) = a(FU) = 0;

g(∇̃Uξ, N) = −g(∇̃Nξ, U),

and hence ξ is a Killing vector field. Thus, from Proposition 1.2 we deduce that
M is a quasi-Sasaki manifold. The converse is trivial and the proof is complete.

Next, by using the result from [2] p.138, we define the mean curvature vector
field of the foliation F , denoted by H, as follows

H =
1

3
(h(N, N) + h(U, U) + h(ξ, ξ)), (3.17)

where h is the second fundamental form of the distribution A. In order to evalu-
ate H, we suppose that the foliation F1 is normal. Then h(X, Y) ∈ Γ(D), ∀X, Y ∈
Γ(A) since D is the orthogonal complement of A. Now, from Theorem 3.5 and
Propositon 1.2, it is easy to see that H = 0. Therefore, we obtain the following

Theorem 3.8. Let M be a G.Q.S manifold. If the foliation F1 is normal then the
foliation F is minimal, that is, the mean curvature vector field H vanishes.

At the end of this paper, we would like to offer some examples of foliations
in order to illustrate the results obtained in this paper. Let us suppose that R5
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is endowed with a quasi-Sasakian structure of rank 3 given by ( f , ξ, η, g). The
1-form is η = dz − 2y1dx1 where (x1, x2, x3, x4, x5) = (x1, x2, y1, y2, z), and the
structure vector field is ξ = (0, 0, 0, 0, 1). The matrix of the tensor f , F and g are
given by

[ f h
i ] =













0 0 1 0 0
0 0 0 1 0
−1 0 0 0 0
0 −1 0 0 0
0 0 2y1 0 0













, [Fh
i ] =













0 0 1 0 0
0 0 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 2y1 0 0













,

and

[gij] =













1 + 4(y1)2 0 0 0 −2y1

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

−2y1 0 0 0 1













,

respectively. On this manifold, we consider the following distributions

D = span{E1 = (1, 0, 0, 0, 2x4); E2 = (0, 0, 1, 0, 0)} = fD;

D⊥ = span{U = (0, 2x4, 0, 1, 0)}; D2 = fD⊥ = span{N = (0, 1, 0,−2x4, 0)};

ξ = ∂
∂x5 .

First, we see that the distribution D1 = D⊕D⊥ ⊕ {ξ} is involutive and therefore
on R5 one may define a foliation denoted by F1. Moreover, we may deduce the
following through direct calculation

Theorem 3.9. On the quasi-Sasakian manifold R5, endowed with the given metric
structure ( f , ξ, η, g) the next assertions are true

a) the foliation F1 is normal,

b) g is a bundle-like metric for the foliation F1,

c) the distribution A = D⊥ ⊕ fD⊥ ⊕ {ξ} defines a 3-dimensional foliation on R5,
and it is minimal.

After the best of this author’s knowledge, this minimal 3-dimensional folia-
tion appears here for the first time.

Acknowledgement. The author is thankful to the referee for his valuable
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