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In these notes we survey some aspects of the theory of
holomorphic foliations on complex manifolds. The ori-
gins of the theory go back to works of Darboux, Poincaré
and Painlevé, where it was developed to study solutions of
ordinary differential equations on ℂ2. We briefly discuss
some of the early works on this theory, mostly concerned
with the local behavior of the leaves near the singularities.
We then move the focus from local to global properties.
Birational geometry has had a great influence on the de-
velopment of a global theory of holomorphic foliations.
After reviewing the Enriques-Kodaira classification of pro-
jective surfaces and explaining the general philosophy of
the Mininal Model Program, we explore some of their re-
cent counterparts for foliations.
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Foliations
A foliation ℱ of dimension 𝑟 on a differentiable manifold
𝑀𝑛 is a decomposition of 𝑀 into a disjoint union of im-
mersed submanifolds of dimension 𝑟, called leaves, which
pile up locally like fibers of a submersion. Formally, ℱ is
defined by an atlas {𝜑𝑖 ∶ 𝑈 𝑖 → 𝑀}, with 𝑈 𝑖 ⊂ ℝ𝑟 × ℝ𝑛−𝑟,
and differentiable transition functions of the form

𝜑𝑖𝑗(𝑥, 𝑦) = (𝑓(𝑥, 𝑦), 𝑔(𝑦)), (𝑥, 𝑦) ∈ ℝ𝑟 × ℝ𝑛−𝑟.
The leaves of ℱ are locally given by the fibers of the projec-
tion 𝑈 𝑖 → ℝ𝑛−𝑟. If the transition functions are 𝐶∞, we say
thatℱ is a 𝐶∞ foliation. The integer 𝑛−𝑟 is called the codi-
mension of the foliation ℱ. In the literature, the integer 𝑟
is also referred to as the rank of the foliation.

Despite their simple local description, the existence of
a foliation on a compact manifold 𝑀 is subject to global
topological constraints, and carries relevant information
about the geometry of 𝑀. For instance, consider the 2-
dimensional sphere 𝑆2. If there were a foliation ℱ of
dimension one on 𝑆2, then one could cook up a non-
vanishing smooth vector field everywhere tangent to ℱ,
contradicting the Poincaré-Hopf theorem. On the other
hand, when 𝑀 = ℝ2/ℤ2 is a 2-dimensional torus, one can
construct plenty of foliations of dimension one on𝑀. For
any choice of angle 𝜃, the foliation by lines on ℝ2 having
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slope equal to 𝜃 induces a foliation ℱ𝜃 of dimension one
on the quotient ℝ2/ℤ2. If 𝜃 is rational, then the leaves of
ℱ𝜃 are homeomorphic to 𝑆1. If 𝜃 is irrational, then the
leaves are homeomorphic to ℝ, and dense in 𝑀 by a theo-
rem of Kronecker.

Figure 1. Foliation on the torus.

More generally, we have the following result by
Thurston characterizing which closed manifolds admit a
𝐶∞ foliation of codimension one in terms of the topolog-
ical Euler characteristic.

Theorem 1 ([Thu76]). Let 𝑀 be a closed connected smooth
manifold. Then𝑀 admits a 𝐶∞ foliation of codimension one if
and only if 𝜒(𝑀) = 0.

When 𝑋 is a complex manifold, it is natural to consider
holomorphic foliations on 𝑋 . These are defined by atlases
{𝜑𝑖 ∶ 𝑈 𝑖 → 𝑋}, with 𝑈 𝑖 ⊂ ℂ𝑟 × ℂ𝑛−𝑟, and biholomorphic
transition functions of the form

𝜑𝑖𝑗(𝑥, 𝑦) = (𝑓(𝑥, 𝑦), 𝑔(𝑦)), (𝑥, 𝑦) ∈ ℂ𝑟 × ℂ𝑛−𝑟.
The integer 𝑛 is the complex dimension of 𝑋 , 𝑟 is the di-
mension of the holomorphic foliation, and 𝑛 − 𝑟 its codi-
mension. The geometric theory of holomorphic foliations
was first introduced to better understand solutions of com-
plex ordinary differential equations on the plane ℂ2. In
this context, it is natural to allow for singularities. Given a
meromorphic function 𝐹 on ℂ2, consider the ODE

𝑑𝑦
𝑑𝑥 = 𝐹(𝑥, 𝑦). (1)

By the theorem of existence and uniqueness of so-
lutions of ordinary differential equations, the solutions
of (1) induce a holomorphic foliation of dimension 1 on
the complement of a closed subset of ℂ2. Indeed, if 𝐹(𝑥, 𝑦)
is holomorphic at a point (𝑥0, 𝑦0) ∈ ℂ2, then the ODE (1)
admits a unique holomorphic solution 𝑦 = 𝑦(𝑥) satisfying
𝑦(𝑥0) = 𝑦0.

More generally, a singular holomorphic foliation ℱ of
dimension 𝑟 on a complex manifold 𝑋 is an equivalence
class of holomorphic foliations of dimension 𝑟 defined on
the complement of a proper closed subset of codimension
at least 2 in 𝑋 . There is a minimal closed subset Sing(ℱ)
such that ℱ can be extended to a holomorphic foliation

of dimension 𝑟 on 𝑋 ⧵ Sing(ℱ). This closed set is called
the singular locus ofℱ. Outside of Sing(ℱ), the vectors that
are tangent to the leaves of ℱ form a sub-vector bundle of
rank 𝑟 of the tangent bundle 𝑇𝑋 , which can be extended
on the whole 𝑋 to a coherent subsheaf 𝑇ℱ of 𝑇𝑋 , called
the tangent sheaf of ℱ. The subsheaf 𝑇ℱ is closed under
the Lie bracket: if 𝑣 and 𝑤 are two local vector fields on
𝑋 ⧵ Sing(ℱ) everywhere tangent to the leaves of ℱ, then
their Lie bracket [𝑣, 𝑤] is also everywhere tangent to the
leaves of ℱ. Conversely, we have the following classical
theorem:

Theorem 2 (Frobenius). There is a one to one correspondence
between singular holomorphic foliation on 𝑋 and saturated co-
herent subsheaves of the tangent bundle 𝑇𝑋 that are closed under
the Lie bracket.

Much of the early work on singular holomorphic foli-
ations focused on the behavior of the leaves near the sin-
gular locus. Let ℱ be a singular holomorphic foliation on
ℂ2 with an isolated singularity at the origin, defined by a
holomorphic vector field

𝑣 = 𝑝(𝑥, 𝑦) 𝜕𝜕𝑥 + 𝑞(𝑥, 𝑦) 𝜕𝜕𝑦 ,

where 𝑝 and 𝑞 are holomorphic functions. Denote by
𝑝1(𝑥, 𝑦) = 𝑎𝑥+𝑏𝑦 and 𝑞1(𝑥, 𝑦) = 𝑐𝑥+𝑑𝑦 the linear parts of
𝑝 and 𝑞, respectively, and suppose that they are not both
identically zero. Under some genericity assumptions, the
local behavior of the leaves near the origin is controlled by
the eigenvalues of the nonzero matrix

𝐴 = (𝑎 𝑏
𝑐 𝑑) .

Denote by 𝜆1 and 𝜆2 the two eigenvalues of 𝐴, with
𝜆2 ≠ 0, and suppose that 𝜆1/𝜆2 is not real, or it is a pos-
itive real number that is not an integer nor the inverse of
an integer. A fundamental theorem of Poincaré states that
𝑣 is linearizable. This means that locally around the singu-
larity, after a suitable analytic change of coordinates, the
vector field 𝑣 can be written in the form

𝑣 = 𝜆1𝑧
𝜕
𝜕𝑧 + 𝜆2𝑤

𝜕
𝜕𝑤 , (2)

where 𝑧 and𝑤 are the new coordinates. The vector field (2)
can be easily integrated. On a punctured neighborhood of
the origin, the leaves of the foliation are parametrised by

𝛾(𝑡) = (𝑐1𝑒𝜆1𝑡, 𝑐2𝑒𝜆2𝑡), 𝑡 ∈ ℂ.
The ones given by the equations 𝑧 = 0 and 𝑤 = 0 accumu-
late in the origin.

If 𝜆1/𝜆2 is a positive integer 𝑛 or the inverse of a positive
integer 1/𝑛, then Dulac proved that, in suitable analytic
coordinates 𝑧 and 𝑤, the vector field 𝑣 can be written in
the form

𝑣 = 𝑧 𝜕𝜕𝑧 + (𝑛𝑤 + 𝜇𝑧𝑛) 𝜕𝜕𝑤 ,
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Figure 2. Singularity of a foliation on the plane.

where 𝜇 ∈ ℂ. Again we see that there are leaves of the
foliation on a punctured neighborhood of the origin that
accumulate in (0, 0). More generally, let 𝑝 ∈ 𝑆 be an iso-
lated singularity for a foliationℱ of dimension 1 on a non-
singular complex surface 𝑆. A separatrix is a complex curve
𝐶 ⊂ 𝑆 through 𝑝 such that 𝐶 ⧵ {𝑝} is a leaf of ℱ on a punc-
tured neighborhood of 𝑝 in 𝑆. By a theorem of Camacho
and Sad [CS82], a separatrix always exists for foliations on
surfaces.

In general, we say that a vector field 𝑣 is in normal form

if 𝑣 = 𝑣𝑠 + 𝑣𝑛, where 𝑣𝑠 = 𝜆1𝑧
𝜕
𝜕𝑧

+ 𝜆2𝑤
𝜕
𝜕𝑤

is a semi-
simple vector field, 𝑣𝑛 is a nilpotent vector field (i.e., the
matrix associated to the linear part of 𝑣𝑛 is nilpotent), and
[𝑣𝑠, 𝑣𝑛] = 0. We say that 𝑣 is analytically normalizable if
there is an analytic change of coordinates putting it in nor-
mal form. So we have seen that if 𝜆1/𝜆2 ∉ ℝ−, then 𝑣
is analytically normalizable. There exist examples of vec-
tor fields which are not analytically normalizable, such as

𝑣 = (𝑧+𝑤) 𝜕
𝜕𝑧
+𝑤2 𝜕

𝜕𝑤
. In this case, after the formal change

of coordinates

(𝑍, 𝑤) = (𝑧 + ∑
𝑛≥1

(𝑛 − 1)! 𝑤𝑛, 𝑤),

𝑣 becomes 𝑍 𝜕
𝜕𝑍

+ 𝑤2 𝜕
𝜕𝑤

, which is in normal form. How-
ever, this formal change of coordinates is not holomor-
phic, since∑𝑛≥1(𝑛−1)! 𝑤𝑛 diverges. Questions about ana-
lytic linearization and normalization of local vector fields
on the plane were very much studied in the twentieth cen-
tury (see for instance [Mar81]).

Global Aspects
Now we move the focus from local to global properties of
foliations. One example of a global invariant of a codi-
mension one foliation ℱ on ℂℙ𝑛 is its degree. It is defined
as the number of tangencies of a generic line in ℂℙ𝑛 with
ℱ. Codimension one foliations on ℂℙ𝑛 of small degree
were classified by Jouanolou in [Jou79]. In order to ex-
plain this classification, it is convenient to describe folia-
tions using differential forms. The tangent sheaf of a codi-
mension one (singular) foliation ℱ on ℂℙ𝑛 can be given

by a polynomial one-form

Ω =
𝑛
∑
𝑖=0

𝑃𝑖(𝑥0, … , 𝑥𝑛)𝑑𝑥𝑖, (3)

where the 𝑃𝑖’s are homogeneous polynomials of the same
degree without common factors. This polynomial form
is uniquely determined up to scalar, and the 𝑃𝑖’s satisfy
∑𝑛

𝑖=0 𝑥𝑖𝑃𝑖(𝑥0, … , 𝑥𝑛) = 0. In the language of differen-
tial forms, the Frobenius’ integrability condition translates
into the condition

Ω ∧ 𝑑Ω = 0. (4)

If ℱ has degree 𝑑, then the homogeneous polynomials 𝑃𝑖
in (3) have degree 𝑑 + 1. Using this description, it is not
difficult to deduce that any codimension one foliation ℱ
on ℂℙ𝑛 of degree 𝑑 = 0 is induced by a linear projection
ℂℙ𝑛 99K ℂℙ1. We say that ℱ is induced by a pencil of hy-
perplanes containing a fixed linear subspaceℂℙ𝑛−2, which
is the singular locus of ℱ. In particular, the leaves of ℱ are
algebraic submanifolds of ℂℙ𝑛.

Figure 3. Foliation of degree 0 on ℂℙ3.

In general, the following result characterizes foliations
with infinitely many algebraic leaves. It is often referred to
as the Darboux-Jouanolou integrability theorem.

Theorem 3 ([Jou79, Théorème 3.3]). Let ℱ be a codimen-
sion one foliation on ℂℙ𝑛 with infinitely many algebraic leaves.
Then ℱ has a first integral, i.e., it is induced by a rational map
𝑓∶ ℂℙ𝑛 99K ℂ. In particular, all the leaves of ℱ are algebraic.

The set Fol(𝑑, 𝑛) of codimension one foliations of de-
gree 𝑑 on ℂℙ𝑛 has a natural structure of a quasi-projective
variety. When 𝑛 = 2, the Frobenius’ integrability condi-
tion (4) is automatic, and thus Fol(𝑑, 2) is an open sub-
set of the projective space of polynomial one-forms as in
(3), where the 𝑃𝑖’s are homogeneous polynomials of de-
gree 𝑑 + 1 without common factors. When 𝑑 = 0, we
have seen above that Fol(0, 𝑛) can be identified with the
Grassmannian parametrizing codimension 2 linear sub-
spaces of ℂℙ𝑛. Jouanolou also classified the next case,
𝑑 = 1. When 𝑛 ≥ 3, he showed that Fol(1, 𝑛) has two
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irreducible components. One of these irreducible com-
ponents corresponds to foliations given by homogeneous
one-forms that depend only on three variables, after suit-
able projective change of coordinates. Geometrically, they
are pullbacks under linear projections of foliations onℂℙ2
induced by global vector fields. The other irreducible com-
ponent of Fol(1, 𝑛) corresponds to foliations having a first
integral of the form

𝑓 = ℓ2
𝑞 ∶ ℂℙ𝑛 99K ℂ,

where ℓ is a linear form and 𝑞 is a quadratic form. Geo-
metrically, they are induced by pencils of quadric hyper-
surfaces containing a double hyperplane. Later in [CN96],
Cerveau and Lins Neto showed that Fol(2, 𝑛) has six irre-
ducible components when 𝑛 ≥ 3, and described each of
them. More recently, Da Costa, Lizarbe, and Pereira stud-
ied the case 𝑑 = 3, 𝑛 ≥ 3 in [dCLP21]. They classify the 18
irreducible components of Fol(3, 𝑛) whose general mem-
ber does not have a first integral. They also show that there
are at least 6 components whose generalmember has a first
integral.

Another global invariant of a foliation is the algebraic
dimension, or algebraic rank. The algebraic dimension 𝑟𝑎(ℱ)
of a foliation ℱ on a complex projective manifold 𝑋 is the
maximumdimension of an algebraic subvariety 𝑍 through
a general point of 𝑋 that is tangent to ℱ. By this we mean
that for every point 𝑧 ∈ 𝑍 ⧵ Sing(ℱ), we have 𝑇𝑧𝑍 ⊂ 𝑇𝑧ℱ.
A foliation is said to be purely transcendental if its algebraic
dimension is 0. It is said to be algebraically integrable if its
algebraic dimension equals the dimension.

From the classification of codimension one foliations
on ℂℙ𝑛 of small degree, we observe a lower bound for the
algebraic dimension in terms of the degree. Indeed, let ℱ
be a codimension one foliation on ℂℙ𝑛 of degree 𝑑. If
𝑑 = 0, then ℱ is algebraically integrable. If 𝑑 = 1, then
𝑟𝑎(ℱ) ≥ 𝑛 − 2, and this bound is attained when ℱ is the
pullback under a linear projection of a purely transcenden-
tal foliation on ℂℙ2 induced by a global vector field. In
general, we have that

𝑟𝑎(ℱ) ≥ 𝑛 − 1 − 𝑑.

This is a special case of Theorem 4, which gives a lower
bound for the algebraic dimension of foliations in a
more general context. Notice that the algebraic dimen-
sion makes sense for foliations on any complex manifold,
while the notion of degree is particular to ℂℙ𝑛 or other va-
rieties covered by lines. As we shall see, the degree can be
read off from a more general object that can be attached to
any foliation, its canonical class. This notion has its origin
in connection with birational geometry.

Birational Geometry
A central theme in algebraic geometry is the classification
of complex projective varieties up to birational equiva-
lence. Two projective varieties are said to be birationally
equivalent if they have isomorphic dense open subsets. Ex-
amples of birational invariants of projective manifolds are
the genus and irregularity. Given a complex projective man-
ifold 𝑋 , we consider the tangent bundle 𝑇𝑋 of 𝑋 , and its
dual vector bundle Ω1

𝑋 = 𝑇∨𝑋 . Let 𝜔𝑋 = det(Ω1
𝑋) denote

the canonical bundle of 𝑋 . It is the line bundle on 𝑋 whose
sections are the top holomorphic differential forms on 𝑋 .
The genus 𝑝𝑔(𝑋) of 𝑋 is the dimension of the space of holo-
morphic global sections of the canonical bundle 𝜔𝑋 :

𝑝𝑔(𝑋) ≔ dimΓ(𝑋, 𝜔𝑋).

The irregularity 𝑞(𝑋) of 𝑋 is the dimension of the space of
holomorphic global sections of the cotangent bundle:

𝑞(𝑋) ≔ dimΓ(𝑋,Ω1
𝑋).

Moreover, some special arithmetical properties of alge-
braic varieties turn out to be invariant under birational
equivalence, making this notion fundamental also in con-
nection with number theory and arithmetic geometry.

The Minimal Model Program (MMP for short) is an al-
gorithmic surgery process designed to transform a given
projective variety 𝑋 into a simplest representative 𝑋 ′ in its
birational equivalence class. In this way, if one is inter-
ested in understanding a birational property of 𝑋 , one can
investigate it in the simpler model 𝑋 ′.

We start by reviewing the classical MMP for surfaces. It
was established by the Italian school of algebraic geome-
try by the beginning of the 20th century, and reviewed in
modern language in the 1960’s, most notably by Kodaira,
Zariski and Shafarevich. Given a smooth projective surface
𝑆, the blowup of a point 𝑃 ∈ 𝑆 is a morphism 𝜋 ∶ ̃𝑆 → 𝑆
from a smooth projective surface ̃𝑆 that replaces the point
𝑃 ∈ 𝑆 with the exceptional curve 𝐶 = 𝜋−1(𝑃) ≅ ℂℙ1, and re-
stricts to an isomorphism between ̃𝑆⧵𝐶 and 𝑆⧵{𝑃}. Viewed
as an element of H2( ̃𝑆, ℤ), the exceptional curve 𝐶 has
self-intersection 𝐶2 = −1. Conversely, Castelnuovo’s con-
tractibility theorem asserts that any curve 𝐶 on a smooth
surface 𝑆 such that 𝐶 ≅ ℂℙ1 and 𝐶2 = −1 is the excep-
tional curve of a blowup. Such a curve is called a (−1)-curve.
It turns out that any smooth projective surface can be ob-
tained from a distinguished representative of its birational
equivalence class by a sequence of blowups. Such distin-
guished representatives are characterized by the property
that they do not contain any (−1)-curve, and are classically
called minimal surfaces. Figure 4 summarizes the classical
MMP for surfaces. The MMP terminates after a finite num-
ber of steps because the second Betti number 𝑏2(𝑆) drops
by one every time we blow down a (−1)-curve.
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𝑆 smooth
projective surface

Does 𝑆 contain
a (−1)-curve?

Yes No

Stop!
𝑆 is a minimal

surface

Pick a (−1)-curve
𝐶 ⊂ 𝑆

Apply Castelnuovo’s
contractibility theorem
to blow-down 𝐶 ⊂ 𝑆

𝜋∶ 𝑆 → 𝑆′

Replace 𝑆 with 𝑆′

Figure 4. The classical MMP for surfaces.

In order to generalize this to higher dimensions, the
question

“Does 𝑆 contain a (−1)-curve?” (5)

must be rephrased in a way that it makes sense in any di-
mension. This is done with the aid of the canonical class.

Definition 1. Let 𝑋 be a complex projective manifold 𝑋 .
The canonical class 𝐾𝑋 of 𝑋 is the first Chern class of the
canonical line bundle of 𝑋 :

𝐾𝑋 ≔ 𝑐1(𝜔𝑋) ∈ H2(𝑋, ℤ).
For any compact complex curve 𝐶 ⊂ 𝑋 , the intersection

number −𝐾𝑋 ⋅ 𝐶 measures the Ricci curvature of 𝑋 along
𝐶. Usually, the sign of −𝐾𝑋 ⋅𝐶 varies with the curve 𝐶 ⊂ 𝑋 .
Varieties whose canonical class has a definite sign are very
special, and play a distinguished role in algebraic geometry.
Particularly important are Fano varieties. A Fano variety is a
projective variety 𝑋 with −𝐾𝑋 > 0 (i.e., −𝐾𝑋 is ample).

Let 𝑋 be a complex projective manifold. In order to
generalize to higher dimensions the classical MMP for sur-
faces, question (5) is replaced with

“Is the canonical class 𝐾𝑋 nef?”

We say that 𝐾𝑋 is nef if 𝐾𝑋 ⋅ 𝐶 ≥ 0 for every curve 𝐶 ⊂ 𝑋 .
The goal of the MMP is to produce a finite sequence of
elementary birational maps

𝑋 = 𝑋0 99K 𝑋1 99K 𝑋2 99K ⋯ 99K 𝑋𝑛 = 𝑋 ′,

ending with a variety𝑋 ′ in the same birational equivalence
class of 𝑋 , and satisfying exactly one of the following two
conditions.

1. 𝐾𝑋′ is nef. Such a variety 𝑋 ′ is called a minimal model.
2. There is a morphism 𝑓 ∶ 𝑋 ′ → 𝑌 onto a lower dimen-

sional variety whose fibers are Fano varieties. Such a
morphism 𝑓 ∶ 𝑋 ′ → 𝑌 is called a Mori fiber space.

The MMP involves making some choices, and the out-
come is not unique in general. However, whether the
MMP for 𝑋 ends with a minimal model or a Mori fiber
space depends only on the birational equivalence class of
𝑋 . Next we introduce a fundamental birational invariant
for projective manifolds, the Kodaira dimension, defined in
terms of the rate of growth of holomorphic sections of the
line bundle 𝜔⊗𝑚𝑋 as 𝑚 increases.

Definition 2. Let ℒ be a line bundle on a complex pro-
jective manifold 𝑋 . The Iitaka dimension 𝜅(ℒ) of ℒ is de-
fined as follows. Consider the semigroup ℕ(ℒ) of non-
negative integers 𝑚 for which ℒ⊗𝑚 admits nonzero holo-
morphic sections. If ℕ(ℒ) = {0}, then we set 𝜅(ℒ) = −∞.
If ℕ(ℒ) ≠ {0}, then there is an integer 𝜅 such that, for
𝑚 ∈ ℕ(ℒ) sufficiently large,

𝑐1 ⋅ 𝑚𝜅 ≤ dimΓ(𝑋,ℒ⊗𝑚) ≤ 𝑐2 ⋅ 𝑚𝜅,
for suitable positive constants 𝑐1 and 𝑐2. We set 𝜅(ℒ) = 𝜅.

The Kodaira dimension of 𝑋 is

𝜅(𝑋) ≔ 𝜅(𝜔𝑋) ∈ {−∞, 0, … , dim(𝑋)}.
It is a birational invariant for complex projective mani-
folds.

For surfaces, the elementary birational maps in the
MMP are blowups of points. Surfaces that are birational
to products ℂℙ1 × 𝐶 are called ruled surfaces, and are char-
acterized by the condition that 𝜅(𝑆) = −∞. Surfaces
with non-negative Kodaira dimension have a unique min-
imal model in their birational class. They can be divided
into the following classes. This is known as the Enriques-
Kodaira classification.

• 𝜅(𝑆) = 0. There are 4 classes.
∘ Enriques’ surfaces: 𝑝𝑔(𝑆) = 𝑞(𝑆) = 0.
∘ Bielliptic surfaces: 𝑝𝑔(𝑆) = 0, 𝑞(𝑆) = 1.
∘ K3 surfaces: 𝑝𝑔(𝑆) = 1, 𝑞(𝑆) = 0.
∘ Abelian surfaces: 𝑝𝑔(𝑆) = 1, 𝑞(𝑆) = 2.

• 𝜅(𝑆) = 1. These surfaces are not ruled, and admit
a fibration 𝑓 ∶ 𝑆 → 𝐵 onto a smooth curve whose
generic fiber is an elliptic curve.

• 𝜅(𝑆) = 2. Most surfaces lie in this class. These are
called surfaces of general type.

In higher dimensions, there are two types of elementary
birational maps in the MMP, called divisorial contractions
and flips. Divisorial contractions can be viewed as gener-
alizations of the blowup of a point on a surface. Flips are
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birational maps 𝑋 99K 𝑋 ′ that restrict to isomorphisms
between the complements of small subsets of 𝑋 and 𝑋 ′,
i.e., subsets of codimension ≥ 2. They have no parallel in
surface theory. Another source of complication in higher
dimensions is that the birational models 𝑋𝑖’s may not be
smooth, although they only have very mild singularities,
called terminal singularities. In dimension three, the MMP
was completed in [Mor88]. In higher dimensions a ma-
jor breakthrough was achieved in [BCHM10], where it was
proved that the flip surgery can always be performed. The
major open problem in general is to show that there is
no infinite sequence of flips. However, [BCHM10] estab-
lishes a weaker version of termination of flips, which al-
lows them to prove the MMP in the following cases:

1. 𝜅(𝑋) = dim(𝑋), in which case the MMP ends with a
minimal model; and

2. 𝑋 is uniruled (i.e., 𝑋 is covered by rational curves), in
which case the MMP ends with a Mori fiber space.

The abundance conjecture predicts that 𝑋 is uniruled if and
only if 𝜅(𝑋) = −∞. What is currently known is that the
condition that 𝑋 is uniruled is equivalent to the condi-
tion that 𝐾𝑋 is not pseudo-effective, i.e., 𝐾𝑋 is not a limit
of classes of effective divisors (with rational coefficients).
We refer to [KM98] for an introduction to the MMP.

Canonical Class of Foliations
Similarly, there are relevant properties of holomorphic fo-
liations ℱ that depend only on the birational equivalence
class of ℱ. The algebraic rank is an example of birational
invariant for foliations. In recent years, techniques from
birational geometry and the MMP have been successfully
applied to the study of global properties of holomorphic
foliations. This led, for instance, to a birational classifi-
cation of codimension one foliations on surfaces similar
to the Enriques-Kodaira classification, which we review be-
low.

Starting with the tangent sheaf 𝑇ℱ of a foliation ℱ
on a complex projective manifold 𝑋 , we can define its
canonical class 𝐾ℱ ∈ H2(𝑋, ℤ) and Kodaira dimension
𝜅(ℱ) ∈ {−∞, 0, … , dim(𝑋)}. This is analogous to the def-
inition of the canonical class and Kodaira dimension of 𝑋
starting with 𝑇𝑋 . The Kodaira dimension of codimension
one foliations on projective surfaces was first considered
in [Men00]. Under restrictions on the singularities of ℱ,
the Kodaira dimension 𝜅(ℱ) is a birational invariant for
foliations.

Motivated by the special role of Fano varieties in bira-
tional geometry, we introduce the following class of folia-
tions.

Definition 3. A foliation ℱ on a complex projective man-
ifold is called a Fano foliation if −𝐾ℱ > 0 (i.e., −𝐾ℱ is am-
ple).

Example 1. Recall that H2(ℂℙ𝑛, ℤ) ≅ ℤ, where we choose
the positive generator to be the cohomology class of a
hyperplane section. Under this identification, 𝐾ℂℙ𝑛 =
−(𝑛 + 1) ∈ ℤ. Let ℱ be a codimension one foliation
of degree 𝑑 on ℂℙ𝑛. An easy computation shows that
𝐾ℱ = 𝑑 − 𝑛 + 1 ∈ ℤ. In particular, Fano foliations on
ℂℙ𝑛 are those with small degree, 𝑑 < 𝑛 − 1.

In a series of papers started in [AD13], the first named
author and S. Druel have developed the theory of Fano fo-
liations. They showed that the positivity of −𝐾ℱ has an
effect on the algebraicity of the leaves of ℱ. In order to
measure the positivity of −𝐾ℱ , define the index 𝜄(ℱ) of a
Fano foliationℱ on a complex projectivemanifold 𝑋 to be
the largest integer dividing −𝐾ℱ in 𝐻2(𝑋, ℤ). This is analo-
gous to the index 𝜄(𝑋) of a Fanomanifold 𝑋 . The following
result is a lower bound for the algebraic dimension 𝑟𝑎(ℱ)
of Fano foliations in terms of the index, and a classification
of the cases when this bound is attained.

Theorem 4 ([AD19, Corollary 1.6.]). Let ℱ be a Fano foli-
ation of index 𝜄(ℱ) on a complex projective manifold 𝑋. Then
𝑟𝑎(ℱ) ≥ 𝜄(ℱ), and equality holds if and only if 𝑋 ≅ ℂℙ𝑛 and
ℱ is the pullback under a linear projection of a purely transcen-
dental foliation on ℂℙ𝑛−𝑟𝑎(ℱ) with zero canonical class.

Fano manifolds with large index have been classified.
By a theorem of Kobayachi and Ochiai, the index 𝜄(𝑋) of a
Fanomanifold 𝑋 satisfies 𝜄(𝑋) ≤ dim(𝑋)+1, equality holds
if and only if 𝑋 is a projective space, and 𝜄(𝑋) = dim(𝑋) if
and only if 𝑋 is a quadric hypersurface. Fano manifolds
with 𝜄(𝑋) = dim(𝑋) − 1 are called del Pezzo manifolds, and
were classified by Fujita. Those with 𝜄(𝑋) = dim(𝑋)−2were
later classified byMukai. We refer to [AC13] for a survey on
the classification of Fano manifolds with large index, with
many references. As a corollary of Theorem 4 above, we
have a version of the Kobayachi-Ochiai’s theorem for foli-
ations: the index 𝜄(ℱ) of a Fano foliation ℱ is bounded by
the dimension, 𝜄(ℱ) ≤ 𝑟. Moreover, equality holds if and
only if 𝑋 ≅ ℂℙ𝑛 and ℱ is induced by a linear projection
𝜑 ∶ ℂℙ𝑛 99K ℂℙ𝑛−𝑟. This means that, away from the cen-
ter of the projection, where 𝜑 is not defined, the leaves of
ℱ are the fibers of 𝜑. These foliations are precisely the ones
of degree 0. The next cases have also been investigated. In
analogywith the theory of Fanomanifolds, Fano foliations
ℱ with index 𝜄(ℱ) = 𝑟−1 are called del Pezzo foliations. Un-
der restrictions on the singularities, there is a classification
of del Pezzo foliations of rank 𝑟 ≥ 3, parallel to Fujita’s
classification of del Pezzo manifolds. We refer to [Fig22]
for an account on the classification of del Pezzo foliations.

The birational classification of codimension one foli-
ations on surfaces can be summarized as follows (see
[Bru15] and [McQ08]). First of all, by a theorem of Sei-
denberg [Sei68], after a sequence of blowups, it is always
possible to reduce the singularities of a foliation ℱ on a
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surface. A point 𝑝 ∈ Sing(ℱ) is a reduced singularity if,
locally around 𝑝, ℱ is given by a vector field whose lin-
ear part has eigenvalues 𝜆1 and 𝜆2, with 𝜆2 ≠ 0, and
𝜆1/𝜆2 ∉ ℚ+. This condition implies that there are only
finitely many separatices through 𝑝. For foliations with re-
duced singularities, the Kodaira dimension 𝜅(ℱ) is a bira-
tional invariant. We have the following birational classifi-
cation of foliations with reduced singularities and Kodaira
dimension 𝜅(ℱ) < 2.

• 𝜅(ℱ) = 1. Then ℱ is birational to one of the fol-
lowing.

∘ Riccati foliation: there is a rational fibration
𝑆 → 𝐶 with general fiber everywhere trans-
verse to ℱ.

∘ Turbulent foliation: there is an elliptic fibra-
tion 𝑆 → 𝐶 with general fiber everywhere
transverse to ℱ.

∘ Foliations induced by non-isotrivial elliptic
fibrations.

∘ Foliations induced by isotrivial fibrations of
genus ≥ 2.

• 𝜅(ℱ) = 0. After a ramified covering, ℱ is bira-
tional to a foliation induced by a global holomor-
phic vector field with isolated zeroes.

• 𝜅(ℱ) = −∞. Either ℱ is birational to a foliation
on a ruled surface induced by a fibration by ratio-
nal curves, or to a Hilbert modular foliation.

A Hilbert modular surface 𝑆 is the minimal desingular-
ization of the Baily-Borel compactification of the quotient
of ℍ2 = ℍ × ℍ by an irreducible lattice in PSL(2, ℝ)2. The
two projections ℍ2 → ℍ induce two foliations on 𝑆 with
dense leaves, called Hilbert modular foliations. Hilbert mod-
ular foliations provide examples of a completely new be-
havior which is not seen in classical geometry. Namely, its
canonical class 𝐾ℱ is pseudo-effective, while 𝜅(ℱ) = −∞.
On the other hand, it is a remarkable theorem due to
Miyaoka that foliations with non-pseudo-effective canoni-
cal class are uniruled (i.e., their leaves are covered by ratio-
nal curves).

Much progress has been made toward the birational
classification of foliations on higher dimensional varieties.
Reduction theorems for foliations on threefolds have been
established by Cano in codimension one, and by McQuil-
lan and Panazzolo in dimension one. Building on works
of McQuillan, versions of the MMP for foliations on three-
folds were recently established by Cascini and Spicer. We
refer to [CS21] for details and references about the MMP
for codimension one foliations, and [CS20] for foliations
of dimension one on threefolds.

Regular Foliations
We end these notes by discussing the classification prob-
lem for regular foliations on complex projective manifolds.

These are holomorphic foliations ℱ with Sing(ℱ) = ∅. In
view of Theorem1, it is natural to ask for a characterization
of projective manifolds that admit regular foliations. For
surfaces, the first result in this direction is the following
classification of regular foliations on minimal ruled sur-
faces by Gomez-Mont.

Theorem 5 ([GM89]). Let 𝜋∶ 𝑆 → 𝐶 be a ℂℙ1-fibration,
with 𝑔(𝐶) ≠ 1, and let ℱ be a regular foliation of rank 1 on 𝑆.
Then

• either ℱ is induced by the fibration 𝜋 ∶ 𝑆 → 𝐶; or
• ℱ is transverse to the fibration 𝜋 ∶ 𝑆 → 𝐶, and con-

structed by suspension of a representation 𝜌∶ 𝜋1(𝐶) →
PSL(2, ℂ).

Brunella extended this result, and completely classified
regular foliations on complex projective surfaces 𝑆with Ko-
daira dimension 𝜅(𝑆) < 2. It is still not known whether
there exist purely transcendental regular foliations on sur-
faces of general type. The following is a corollary of this
classification.

Corollary 1. Letℱ be a regular foliation of rank 1 on a smooth
projective rational surface 𝑆. Then ℱ is induced by a ℂℙ1-
fibration 𝑆 → ℂℙ1.

In higher dimensions, there is no classification of reg-
ular foliations. However, Touzet has conjectured the fol-
lowing generalization of Corollary 1 (see [Dru17, Conjec-
ture 1.2]). From the point of view of birational geometry,
a natural higher dimensional analog of the class of ratio-
nal surfaces is that of rationally connected varieties. A com-
plex projective manifold 𝑋 is rationally connected if any two
points of 𝑋 can be connected by a rational curve. We refer
to [Kol01] for an introductory discussion on this topic.

Conjecture 1 (Touzet). Let ℱ be a regular foliation on a ra-
tionally connected projective manifold 𝑋. Then ℱ is induced by
a fibration 𝑋 → 𝑌 .

The class of rationally connected varieties includes that
of Fanomanifolds, for which the conjecture was verified in
[Dru17]. While Touzet’s conjecture is open already in di-
mension 3, for a regular codimension one foliation ℱ on
a projective threefold 𝑋 , the MMP can be used to greatly
reduce the problem. After a sequence of smooth blow-
downs centered at smooth curves,

𝑋 → 𝑋1 → 𝑋2 →⋯→ 𝑋𝑛,

one reaches a smooth threefold 𝑋𝑛, together with a regular
codimension one foliation ℱ𝑛 on 𝑋𝑛, such that either 𝐾ℱ𝑛
is nef, or 𝑋𝑛 → 𝑌𝑛 is a Mori fiber space with fibers tangent
to ℱ𝑛. In the latter case, the second named author showed
in [Fig21] that ℱ𝑛 is induced by a fibration by rational sur-
faces, and hence so is ℱ. This proves Touzet’s conjecture
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for codimension one foliations on threefolds in some spe-
cial cases, and reduces the problem to understanding reg-
ular foliations with nef canonical class.
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