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FOLIATIONS TRANSVERSE TO FIBERS OF A BUNDLE

J.  F.  PLANTE

Abstract. Consider a fiber bundle where the base space and

total space are compact, connected, oriented smooth manifolds

and the projection map is smooth. It is shown that if the fiber is

null-homologous in the total space, then the existence of a foliation

of the total space which is transverse to each fiber and such that each

leaf has the same dimension as the base implies that the fundamental

group of the base space has exponential growth.

Introduction. Let (E, p, B) be a locally trivial fiber bundle where

/»:£-*-/? is the projection, E and B are compact, connected, oriented

smooth manifolds and p is a smooth map. (By smooth we mean C for

some r^l and, henceforth, all maps are assumed smooth.) Let b denote

the dimension of B and k denote the dimension of the fiber (thus, dim E=

b+k). By a section of the fibration we mean a smooth map a:B-+E such

that p o a=idB. It is well known that if a section exists then the fiber

over any point in B represents a nontrivial element in Hk(E; Z) since the

image of a section is a compact orientable manifold which has intersection

number one with the fiber over any point in B. The notion of a section

may be generalized as follows.

Definition. A polysection of (E,p,B) is a covering projection

tr:B-*B together with a map Ç:B-*E such that the following diagram

commutes.

Note that if the covering projection is a diffeomorphism then the map

f o 7T_1 is a section in the usual sense.

One important situation in which polysections arise is the following.

Suppose that F is a smooth foliation of E such that each leaf of F is
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transverse to the fibers and has the same dimension as B. In such a

situation, a well-known theorem of Ehresmann says that the restriction

of p to each leaf L of ¿F is a covering projection and, thus, the inclusion

map i:L-+E represents a polysection of (E,p, B). The problem of finding

which circle bundles over compact surfaces admit such transverse folia-

tions has been completely solved by J. Wood [8]. Theorem 1 below

implies a partial result for higher dimensional bundles.

Statement of results. Before stating results it is necessary to recall

certain definitions and facts concerned with the notion of growth [3], [5].

Definition. Let M be a connected Riemannian manifold and let

x e M. The growth function at x is the continuous increasing function

g:R+^R+ defined by

g(r) = vol{y e M | dist(x, y) 2Í i}.

M has exponential growth if there exist positive numbers A, a such that for

sufficiently large t, g(t)^.A exp xt. (Note that this last concept is inde-

pendent of the point x which is chosen.)

Definition. Let V be a finitely generated discrete group with a fixed

finite generating set Sf. For y e Y let m(y) denote the minimum possible

word length that y can have (with respect to the generating set Sf). The

growth function of (T, Sf) is the increasing function g:Z+-+Z+ defined by

g(n) = number of elements y e T such that m(y) ^ n.

r has exponential growth if for some A, a>0, g(«)_/l exp a«. (This last

concept is independent of the generating set 6r°.)

Proposition ([3], [5]). If M is a compact connected Riemannian

manifold then the universal covering space of M (with induced metric) has

exponential growth iff'rry(M) has exponential growth.

We assume from now on that the manifolds E and B of our fibration

have fixed Riemannian metrics. It will be noted, however, that because

of the compactness the results stated below are independent of the

Riemannian metrics chosen. Also any covering space of the Riemannian

manifold B will be assumed to have the Riemannian metric induced by

the covering projection.

Definition. A polysection n:B^*B, Ç:B->-E is bounded if the deriva-

tive of | has bounded norm.

As above, this definition is independent of the Riemannian metrics

chosen for B and E. Also note that polysections which arise from foli-

ations transverse to the fibers of E are bounded.
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Theorem 1. If v. B-+B, f : B-+E is a bounded polysection of the bundle

(E,p, B) and if the fiber over some point in B is homologous to zero in

Hk(E; R) then S has exponential growth.

In particular the conclusion of Theorem 1 together with the proposition

stated above imply that ir^B) has exponential growth. Thus, we have

Corollary 1. If Trx(B) does not have exponential growth and some

fiber is null-homologous in Hk(E;R) then the bundle (E,p,B) does not

have any bounded polysections.

Corollary 2. If (E,p, B) is as in Corollary 1 then there is no foliation

transverse to the fibers with leaves having the same dimension as B.

The proof of Theorem 1 is given in the next section.

Remark ( [7]). Finitely generated groups which do not have exponential

growth include all finite extensions of nilpotent groups.

Example. When the fiber is Sk we have from the Gysin cohomology

sequence [6] (real coefficients)

Hk(B) ̂ > Hk(E) —>■ H°(B) -I* H^iB)

where T(l) 6 Hk+1iB) is just the Euler class of the bundle. Hence, the

fiber is null-homologous in HkiE) iff p* is surjective which is true iff the

Euler class is nonzero. Thus, a sphere bundle with nonzero Euler class and

a foliation transverse to the fibers has the property that ttxÍB) has ex-

ponential growth. In particular, consider the case where B is a compact

surface of negative curvature and (£, p, B) is its unit tangent bundle. By

the Gauss-Bonnet theorem the Euler class is nonzero and there exist

foliations which are transverse to the fibers [1]. Thus, we retrieve a special

case of Milnor's result [3] which says that vx(B) has exponential growth,

whenever B is a compact Riemannian manifold with negative sectional

curvatures.

Proof of Theorem 1. Suppose that $:B->-E is a polysection of

(E, p, B) and assume that B does not have exponential growth. We will

show that the fiber must represent a nonzero element in Hk(E; R). Our

argument will be analogous to the intersection number argument used

for sections except that we use the notion of an asymptotic homology

class as introduced in [4].

Definition. Let M be a compact Riemannian manifold and let JV¿

(/= 1, 2, • • •) be a sequence of compact submanifolds of M such that

(1) dimension N¡=q for all i.

(2) int N¡ is a smooth submanifold of M and dNt is piecewise-smooth.
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(3) lim,_0O(vol dNjvol ^=0, where the volumes are determined by

restricting the Riemannian metric on M to the submanifolds N( and dA^.

(4) There exist closed forms r¡y,---,r¡l generating H"(M; R) such that

h hlim-
»-« vol

exists fory'=l, • • • , /.
The asymptotic homology class A e Ha(M; R) of the sequence Nt is the

map A:H"(M; R)-*R defined by

A(r¡) = lim-     r¡
i-a> vol JVf J.v(

where 77 is a closed ty-form on M. (Here we think of HQ(M; R) as being

the dual of H"(M; R).) Conditions (3) and (4) together with Stokes'

theorem insure that A is well defined.

We return now to the proof of Theorem 1.

By taking a triangulation of B and lifting it upstairs to B we can

construct a collection of fundamental domains (with piecewise-smooth

boundaries) which cover B and intersect only along boundaries. Let x

be a fixed basepoint for B which is interior to some fundamental domain.

For ?>0 let At be the union of all fundamental domains which are within

distance t of x. Since we are assuming that B does not have exponential

growth we have

hm inf-= 0.
t-00    volA(

By taking subsequences (so as to satisfy (3) and (4) above) we obtain a

sequence /¿-»-co such that the sequence of submanifolds N¡=C(At)

defines an asymptotic homology class A e Hb(E; R). Roughly speaking

the proof will be completed by showing that Ç(B) has nonzero "asymptotic

intersection number" with a fiber. To do this let x=p(x) and let f:B-*R

be a smooth (bump) function which is nonnegative and has (nonempty)

support in an evenly covered (with respect to -n : B—-B) neighborhood. Now

let £2 be the Riemannian volume form on B. fO. is a closed form and,

therefore, so is p*(fLi). The proof will be completed by showing that

A(p*(fQ.))>0. By boundedness off there exists X< 00 such that vol £(D)<

X for any fundamental domain D (where vol 1(D) refers to the volume

as a submanifold of E). Since the integral of p*(fù) over the image

under f of a fundamental domain is equal to j"B/í¿ we have

A(p*(fQ)) = lim -J— f P*(fQ) 2: i f /Q > 0.
<-oo vol Ar,. J.v,. X Jb

This completes the proof of Theorem 1.
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Remark. This approach also yields a generalization of Theorem 1

of [4]. Namely, if a minimal set of a codimension k foliation intersects an

oriented compact /^-dimensional manifold (with trivial normal bundle)

which is transverse to the foliation then every leaf of the minimal set has

exponential growth. This fact has been observed independently by W.

Thurston.
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