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Abstract.  The mammalian ovary is an extremely dynamic organ in which a large majority of follicles are effectively 
eliminated throughout their reproductive life. Due to the numerous efforts of researchers, mechanisms regulating 
follicular growth and atresia in mammalian ovaries have been clarified, not only their systemic regulation by hormones 
(gonadotropins) but also their intraovarian regulation by gonadal steroids, growth factors, cytokines and intracellular 
proteins. Granulosa cells in particular have been demonstrated to play a major role in deciding the fate of follicles, 
serving molecules that are essential for follicular growth and maintenance as well as killing themselves by an apoptotic 
process that results in follicular atresia. In this review, we discuss the factors that govern follicular growth and atresia, 
with a special focus on their regulation by granulosa cells. First, ovarian folliculogenesis in adult life is outlined. Then, 
we explain about the regulation of follicular growth and atresia by granulosa cells, in which hormones, growth factors 
and cytokines, death ligand-receptor system and B cell lymphoma/leukemia 2 (BCL2) family members (mitochondria-
mediated apoptosis) are further discussed.
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O
varian follicle development is a process regulated by various 

endocrine, paracrine and autocrine factors that act coordinately 

to select follicles for ovulation. The vast majority of follicles (more 

than 99% of all follicles) fail to reach the preovulatory stage, but 

instead undergo the degenerative process called atresia. After the 

endocrine mechanisms by a hypothalamo–pituitary–ovarian axis 

were elucidated, granulosa cells have been the focus of interest 

in numerous studies that examined the mechanisms of follicular 

growth and atresia. From in vivo and in vitro experiments, factors 

secreted from granulosa cells, including gonadal steroids, growth 

factors, and cytokines, were shown to be essential for the survival 

of granulosa cells and their eventual follicular growth. Moreover, 

granulosa cells were observed as initial cell populations that 

underwent apoptosis in atretic follicles earlier than oocytes and 

theca cells, suggesting their role as the initiator of follicular atresia. 

Factors so far associated with apoptosis expressed in granulosa cells 

were shown to be crucial for the precise regulation of follicular 

growth and atresia. Here, we provide an overview of ovarian fol-

liculogenesis in adult life and then discuss the intraovarian factors 

that govern follicular growth and atresia, with special emphasis 

on the precise mechanisms of granulosa cell survival and death.

Ovarian Folliculogenesis in Adult Life

In mammals, ovarian folliculogenesis originates from the forma-

tion of primordial follicles (oocytes surrounded by a single layer of 

flattened granulosa cells) that occur before or immediately after birth 
[1]. After puberty, a number of primordial follicles start growing 

to ovulate in each estrus cycle throughout the female reproductive 

life span. Primordial follicles are activated to grow into primary 

follicles (those with a single layer of cuboidal granulosa cells) 

and subsequently into secondary follicles (those with stratified 
granulosa cells without an antrum). Thecal cells begin to emerge 

and form a layer around the granulosa layers after the formation 

of secondary follicles [2]. Antral follicles with mature thecal cells 

and a vascular network within the thecal layer are then formed, 

and further developed antral follicles are finally ovulated. Thus, 
a follicle is composed of three distinct compartments: an oocyte 

and two kinds of somatic cells, granulosa cells and theca cells. A 

granulosa cell is further classified into a cumulus granulosa and 
a mural granulosa, and a theca cell is further classified into an 
internal and external theca. Though atresia can occur at any time 

during folliculogenesis, the majority of follicles become atretic 

during the antral stage [3]; most follicles at the antral stage undergo 

atresia, and few are selected for ovulation.

In many species including domestic animals, preantral follicular 

development does not strictly require stimulation by the pituitary 

gonadotropins, while follicles become gonadotropin-dependent at 

the antral stage [1, 4]. The pituitary gonadotropins, i.e., follicle-
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stimulating hormone (FSH) and luteinizing hormone (LH), whose 

secretion is stimulated by hypothalamus-derived gonadotropin-

releasing hormone (GnRH), provide the primary mechanisms that 

control follicular selection and dominance via feedback loops with 

the hypothalamo–pituitary–ovarian axis. FSH is the main hormone 

controlling follicular growth, resulting in the secretion of estradiol 

and inhibin from a large dominant follicle(s) [5]. Granulosa cells 

produce inhibin, while theca cells produce androgens that are 

used by the granulosa cells to synthesize estradiol-17β (estradiol). 
Estradiol and inhibin act on the hypothalamo–pituitary system and 

decrease FSH secretion (known as ovarian negative feedback) to 

suppress the further growth of subordinate follicles. By that time, 

the dominant follicle(s) acquires LH receptors on granulosa cells 

and transfers dependency to LH for further development, finally 
resulting in ovulation induced by an LH surge.

Regulation of Follicular Growth and Atresia by 
Granulosa Cells

Factors secreted from granulosa cells such as estradiol and 

insulin-like growth factor (IGF) are revealed to be essential for 

follicular growth/development. If these key survival-promoting 

factors are depleted, granulosa cells not only lose their appropri-

ate functions but also undergo cell death. The granulosa layer is 

aligned along the follicular basal lamina, and no apoptotic cells are 

observed in growing healthy follicles (Fig. 1A). Apoptotic granulosa 

cells start appearing and gradually increase their numbers in early 

atretic follicles (Fig. 1B, C). Finally, the majority of granulosa cells 

undergo apoptosis in progressed atretic follicles, with a severely 

disrupted granulosa layer (Fig. 1D), and those follicles will then 

be eliminated. Morphologically, apoptosis is induced in granulosa 

cells located in the inner surface of the granulosa layer, but not in 

cumulus cells, oocytes or inner or extra theca layers in the early 

stages of atresia [6], indicating an initiating role of granulosa cell 

apoptosis in follicular atresia [7, 8] (Fig. 1B). The deprivation of 

key survival-promoting factors or stimulation by death ligands is 

the main cause of apoptosis, both of which contribute to granulosa 

cell apoptosis [9]. These two apoptotic stimulations induce differ-

ent intracellular signaling pathways, both of which result in the 

common features of the apoptosis, i.e., the activation of caspase-3 

(CASP3) and subsequent internucleosomal DNA fragmentation. 

Recent studies have reported many apoptotic-signaling molecules 

at work in granulosa cells and have revealed that they affect each 

other during the progression of apoptosis.

In this section, we discuss how hormones/growth factors/cyto-

kines, a death ligand-receptor system and B cell lymphoma/leukemia 

2 (BCL2) family members (mitochondria-mediated apoptosis) in 

granulosa cells regulate follicular growth and atresia. Schematic 

models of growing granulosa cells (granulosa cells in healthy fol-

licles) and those undergoing apoptosis (granulosa cells in atretic 

follicles) are shown in Figs. 2 and 3, respectively.

1. Hormones, growth factors and cytokines

Estradiol
Estradiol is not only one of the main systemic regulators of 

ovarian follicles by the hypothalamo–pituitary–ovarian axis but is 

also essential for the local stimulation of granulosa cell survival. 

Granulosa cells are the main source of estradiol and also one of the 

targets of estradiol, as they express estrogen receptors (ERα and 
ERβ) in cattle, sheep, pigs, mice, rats and humans [10–13]. Estradiol 
has various actions on granulosa cells, such as promoting follicu-

logenesis, increasing the expression of gonadotropin receptors and 

inhibiting cell apoptosis [10, 14, 15]. Cyp19 (aromatase) null mice, 

which are unable to produce estradiol, were infertile, exhibiting 

many abnormal antral follicles with uneven granulosa cell layers 

[16]. Similarly, mice with double knockout of ERα and ERβ were 
found to be infertile, and adult ovaries lacking sufficiently large 
antral follicles and granulosa cell disruption were observed [17]. 

ERβ is expressed in granulosa cells of growing follicles, whereas 
ERα is predominantly expressed in theca and interstitial cells in 
mice [18], suggesting the significance of ERβ rather than ERα in 
granulosa cells. However, ERα may also have redundant effects on 
granulosa cells, since ERβ single knockout mice were subfertile in 
contrast to ERα single knockout mice, which were infertile [17]. In 
bovine ovaries, granulosa cells were dominant cells that express 

ERα and ERβ [19], indicating the varied roles of estrogen recep-

tors among species. In any case, estradiol is essential for normal 

folliculogenesis, whose target is likely to be granulosa cells.

Estradiol implantation prevented granulosa cell apoptosis caused 

by hypophysectomy in the antral follicles of rat ovaries [20]. In the 

granulosa cell culture of ovine and porcine large antral follicles, 

estradiol protected cells from oxidative (H2O2) stress-induced 

Fig. 1. Apoptosis during follicular atresia in porcine antral follicles. 
Apoptotic cells were detected by terminal deoxynucleotidyl 
transferase-mediated dUTP nick end labeling (TUNEL) stain-
ing. No apoptotic cells were found in healthy follicles (A). With 
the progression of follicular atresia, apoptotic cells increase and 
the granulosa layer degenerates (B, C and D). Apoptotic cells 
are found in the inner granulosa layers of early atretic follicles 
(arrowheads) (B). Apoptosis extends across the granulosa layer 
(arrowheads) and is also detected in theca cells (arrows) (C). In 
progressed atretic follicles, a highly disrupted granulosa layer 
with strongly stained apoptotic granulosa cells was observed 
(D). G, granulosa layer; T, theca layer. Original magnification x 
200. Scale bar = 100 μm.
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apoptosis [21, 22]. A disruption of Cyp19 increased follicular atresia 

and granulosa cell apoptosis with age, which was suggested to be 

due to an upregulation of the proapoptotic genes, p53 and Bcl2 

homologous antagonist/killer (Bax), in granulosa cells [16, 23]. 

Such in vivo and in vitro studies suggest the inhibitory effect of 

estradiol on granulosa cell apoptosis and subsequent follicular atresia.

Insulin-like growth factor (IGF)
IGF has been well characterized as the local growth factor system 

essential for folliculogenesis. Granulosa cells express both IGF-I 

and its receptor, type-I IGF receptor (IGF-IR), in cattle, sheep, 

pigs, mice, rats and humans [24–30]. In mice, Igf1 transcripts 

in granulosa cells were low during the primary follicular stage 

and increased to a maximum in the late preantral and early antral 

stages but were low in apoptotic follicles [27]. Mice lacking IGF-I 

are infertile, since their follicular development is arrested at the 

small antral stage, so no mature large antral follicles are produced 

[31, 32]. The expression of FSH receptor in granulosa cells was 

deficient in mice lacking IGF-I [32], while IGF-I enhanced FSH-
induced aromatase production and LH receptor expression in 

cultured murine granulosa cells [33]. In cattle, sheep and pigs, the 

addition of IGF-I also increased the responsiveness to FSH in a 

granulosa cell culture [34–36]. Thus, IGF promoted an increased 

responsiveness of the dominant follicle to gonadotropins at the 

time of follicle selection, which should act as the main mechanism 

of IGF-I to ensure follicular survival. Another common function 

of IGF-I is to increase the estradiol secretion of granulosa cells 

[35, 36]. It was also reported that estradiol or FSH promotes the 

synthesis of IGF-I [37, 38], indicating that these three factors es-

sential for follicular growth stimulate the expression among each 

other and amplify their survival effect. In addition, IGF promotes 

the proliferation and suppresses the apoptosis of granulosa cells, 

an issue to be discussed in detail in the next section.

Apoptosis by depletion of cell survival factors
Estradiol, as mentioned above, IGF, FSH, epidermal growth factor 

(EGF), basic fibroblast growth factor (bFGF), interleukin-1β (IL-1β) 
and interleukin-6 (IL-6) have been characterized as prosurvival 

factors of granulosa cells [39–45]. Isolated granulosa cells cultured 

with serum-free medium undergo apoptosis, showing that in the 

absence of survival factors, endogenous apoptosis pathways within 

the granulosa cells become activated and lead to follicular atresia. 

Addition of anti-apoptotic molecules rescues granulosa cells from 

a spontaneous onset of apoptosis [39, 40, 42–44].

Phosphatidylinositol 3-kinase (PI3K)-AKT signaling is the 

central anti-apoptotic intracellular signal transduction pathway 

that is initiated by hormones or growth factors. The PI3K-AKT 

pathway exerts its anti-apoptotic efficacy in part by phosphorylating 
the forkhead box O (FOXO) subfamily of forkhead transcription 

factors. When survival-promoting factors are depleted, FOXOs 

are dephosphorylated and translocate to the nucleus, resulting in 

enhancement of the transcription of proapoptotic factors [46–49]. 

In granulosa cells, both IGF-I and FSH activate the PI3K-AKT 

Fig. 2. Schematic model of growing granulosa cells (granulosa cells in 
healthy follicles). FSH secreted from the pituitary is essential 
for granulosa cell survival. IGF-I, estradiol, IL-6 and IL-6sR are 
expressed from granulosa cells, acting as the survival factors of 
granulosa cells in a paracrine/autocrine manner. IGF-I and FSH 
activate the intracellular PI3K/AKT pathway and phosphory-
late FOXO transcription factors, which retain FOXO within the 
cytoplasm. Estradiol inhibits the transcription of proapoptotic 
genes, p53 and Bax. Death ligands-receptors (FASLG-FAS and 
TRAIL-DcR1) are expressed on the cellular membranes. An in-
tracellular molecule, cFLIP, inhibits the FASLG-FAS death sig-
nal. The TRAIL signal is inhibited by its decoy receptor, DcR1. 
BCL2 inhibits mitochondria-mediated apoptosis.

Fig. 3. Schematic model of granulosa cells undergoing apoptosis 
(granulosa cells in atretic follicles). Cell survival signals such 
as FSH, IGF, estradiol and IL-6 decline. As a result, FOXO is 
dephosphorylated and transferred into the nucleus, where it 
transactivates proapoptotic factors, FASLG and BCL2L11. Death 
ligands-receptors (FASLG-FAS and TRAIL-DR4) expressed on 
the cellular membrane increase. Subsequent activation of intra-
cellular signaling (FADD, CASP8 and CASP3) induces DNA 
fragmentation. CASP8 also stimulates the mitochondrial apop-
totic pathway by inducing BID, BAX, Cyt c release, APAF1 and 
CASP9.
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pathway [50, 51] and regulate transcription of the FOXO1 gene 

and phosphorylation of the FOXO1 protein that impacts the pro-

liferation, differentiation and survival of granulosa cells [52–54]. 

Another FOXO transcription factor, FOXO3, is also indicated to 

act on follicular atresia in pig ovaries; the expression of FOXO3 in 

granulosa cells increased during follicular atresia, and an overex-

pression of FOXO3 induced granulosa cell apoptosis that is likely to 

be caused by the upregulation of proapoptotic factors such as FAS 

ligand (FASLG) and BCL2-like 11 (BCL2L11) [55]. The addition 

of FSH significantly decreased FASLG mRNA levels and attenu-

ated apoptosis in porcine granulosa cells [56]. This response may 

be mediated by FOXO transcription factors, i.e., FSH inactivated 

FOXO and after which the transcription of FASLG decreased.

Treatment with EGF, bFGF or IL-1β also inhibited the spontane-

ous initiation of apoptosis in rat granulosa cells [39, 40, 43]. The 

inclusion of a tyrosine kinase inhibitor completely blocked the 

ability of EGF and bFGF to suppress apoptosis in granulosa cells 

[39], indicating that the PI3K-AKT-FOXO pathway may be involved 

in these processes. IL-6 was shown to induce the PI3K-AKT path-

way and then inhibit apoptosis in several types of cells [57, 58]. 

Transcripts of IL-6 and its receptor subunit, gp130, in granulosa 

cells and proteins of IL-6 and IL-6 soluble receptor (IL-6sR) in 

follicular fluid decreased during atresia [45, 59], suggesting that 
the intrafollicular IL-6 system plays a significant role in porcine 
follicular growth and atresia.

2. Death ligand-receptor system

FAS ligand (FASLG) and FAS system
One main death ligand-receptor system, FASLG and FAS (CD95), 

is the common apoptosis inducer of granulosa cells across spe-

cies, as both FASLG and FAS are expressed in granulosa cells, 

and apoptosis is inducible by FASLG-FAS stimulation in vitro 

[9]. Treatment of female mice with the FAS-activating antibody 

promoted granulosa cell apoptosis and follicular atresia [60, 61]. In 

human females, FAS is expressed in the granulosa cells of antral 

follicles at the early stage of atresia, and its expression increases 

as atresia progresses [62]. FASLG and FAS are expressed in bo-

vine granulosa cells, being higher in atretic subordinate follicles 

relative to healthy dominant follicles on day 5 of the estrous cycle 

[63, 64]. Moreover, the killing of granulosa cells by FASLG was 

greater in subordinate compared with healthy dominant follicles 

isolated on day 5 [63, 65]. In porcine granulosa cells of antral fol-

licles, both FASLG and FAS are expressed, their expressions being 

higher in atretic antral follicles than in healthy ones [56, 66], and 

stimulation by anti-FAS antibody induced cell death in a porcine 

granulosa cell line [67].

Though their levels are relatively low, both FASLG and FAS are 

clearly expressed in granulosa cells of healthy preantral and antral 

follicles [66]. In addition, when granulosa cells are cultured with 

serum in vitro, a single stimulation by FASLG is insufficient to 
kill them, and additional treatment by interferon-gamma (IFN-γ) 
or cycloheximide (an inhibitor of protein biosynthesis) is required 

[63, 65, 68–70]. These findings suggest that the factor(s) that 

blocks the FASLG-FAS-mediated apoptotic signal is at work in 

granulosa cells, which is essential for maintaining granulosa cells 

and preserving the follicles healthy. In contrast to the expression 

patterns of FASLG and FAS, that of cellular FADD-like interleukin-

1β-converting enzyme (FLICE)-inhibitory protein (cFLIP), an 
intracellular inhibitory factor of FAS-signaling, decreases during 

atresia in the granulosa cells of pig ovaries [71]. cFLIP inhibited 

FAS-mediated apoptosis, and the suppression of cFLIP by small 

interfering RNA induced cell death in a porcine granulosa cell line 

[67]. It is presumed that cFLIP blocks the intracellular cascade of 

FAS-signaling and subsequent apoptosis in the granulosa cells of 

healthy follicles. Other intracellular molecules that mediate the 

FASLG-FAS death signal, such as FAS-associated death domain 

(FADD) and caspase-8 (CASP8), are also involved in porcine 

granulosa cell apoptosis [72, 73], suggesting that FASLG-FAS 

stimulation and subsequent intracellular signaling are among the 

main factors causing follicular atresia.

Some reports suggest that prosurvival hormones, growth factors 

or cytokines affect FASLG-FAS-mediated granulosa cell apoptosis. 

In cultured bovine granulosa cells, FASLG-induced apoptosis was 

inhibited by the addition of IGF, bEGF or EGF [68]. Treatment with 

estradiol protected cultured bovine granulosa cells from FASLG-

induced apoptosis [74]. The addition of FSH significantly decreased 
FASLG and FAS mRNA levels in granulosa cells isolated from 

porcine antral follicles and could attenuate apoptosis [56]. Though 

the precise mechanism is unclear, the addition of IL-6 upregulated 

cFLIP expression in a human granulosa tumor cell line [59].

Tumor necrosis factor-alpha (TNF-α)
Tumor necrosis factor-alpha (TNF-α) and TNF receptor (TNFR) 

are also among the death ligands and death receptors, respectively. 

The characteristic of TNF-α is that it can induce both cell death and 
cell proliferation, exerting its effects by binding to either TNFR1 

or 2 [75]. The binding of TNF-α to TNFR1 works as a death 
ligand-receptor, while binding to TNFR2 upregulates survival/

anti-apoptotic gene expressions. TNF-α is reported to localize 
within adult ovaries, i.e., oocytes, granulosa cells and theca cells 

[76–78], while information on ovarian TNF-α receptors is very 
limited. TNF-α deficient mice exhibit an increased proliferation of 
granulosa cells and a decreased apoptosis of oocytes [79]. TNFR1 

knockout mice have exhibited early senescence and poor fertility, 

whereas TNFR2 knockout has no effect on female fertility [80]. 

Thus, it is difficult to define the role of TNF-α in follicular growth 
and atresia based on the phenotypes of knockout mice. Primary 

cultured bovine granulosa cells underwent apoptosis after treat-

ment with TNF-α and IFN-γ, but not by treatment with TNF-α 
alone [65]. Addition of recombinant TNF-α to primary cultured 
porcine granulosa cells significantly increased Ki-67-positive 
cells (proliferating cells) as well as terminal deoxynucleotidyl 

transferase-mediated dUTP nick end labeling (TUNEL)-positive 

cells (apoptotic cells), indicating that TNF-α could induce both cell 
proliferation and cell death in granulosa cells [81]. TNF-α likely 
induces follicular atresia, since its mRNA expression is higher 

in bovine granulosa cells of subordinate follicles than in those 

of dominant follicles [78]. Meanwhile, TNF-α seems to have an 
effect on cell survival based on the expression pattern in porcine 

granulosa cells; the expression levels of both TNF-α and TNFR2 
decrease during atresia [77]. Based on research to date, it is dif-
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ficult to judge whether TNF-α promotes the survival or apoptosis 
of granulosa cells and the growth or atresia of follicles, which may 

be due to its quite complex activities in numerous cells and organs.

TNF-α-related apoptosis-inducing ligand (TRAIL)
As for the remaining death ligand-receptors, the TNF-α-related 

apoptosis-inducing ligand (TRAIL) and its receptors (Death recep-

tor 4 (DR4), Death receptor 5 (DR5), Decoy receptor 1 (DcR1) and 

Decoy receptor 2 (DcR2)), few studies have been reported in regard 

to follicular growth and atresia. Adult human ovaries expressed 

TRAIL, DR5, DcR1 and DcR2 in the granulosa cells and oocytes 

of small primary/secondary follicles as well as in granulosa and 

theca cells of antral follicles. In a human granulosa cell tumor-

derived cell line, TRAIL efficiently induced apoptosis, which was 
blocked by a caspase inhibitor [82]. The expression level of TRAIL 

increases during atresia, whereas that of its receptor, DR4, shows no 

change in the granulosa cells of pig antral follicles [83]. DcR1, the 

decoy receptor that inhibits the death signal triggered by TRAIL, 

was strongly expressed in the granulosa cells of healthy antral 

follicles, and a DcR1 inhibitor initiated TRAIL-induced apoptosis 

in a porcine granulosa cell culture [84, 85]. Thus, TRAIL and its 

receptors are suggested to have a role in granulosa cell apoptosis.

3. BCL2 family members (mitochondria-mediated 
apoptosis)

Death ligand-death receptor signaling undergoes different path-

ways following the activation of CASP8, whether passing through 

the mitochondrial pathway or not, before the subsequent activation 

of CASP3 [86]. Deprivation of a survival-promoting signal(s) is 

also known to stimulate the mitochondrial pathway. The BCL2 

family proteins, which include both anti-apoptotic (BCL2, B cell 

lymphoma/leukemia X (BCLX), etc.) and proapoptotic proteins 

(BCL2 interacting domain (BID), BCL2L11, BAX, BCL2 homolo-

gous antagonist/killer (BAK), etc.), are key regulators of apoptosis 

whose main action site is the mitochondrial membrane: the former 

inhibits while the latter initiates the release of cytochrome c (Cyt 

c) from mitochondria. Members of the BCL2 protein family play 

significant roles in follicular growth/atresia by regulating germ 
cell apoptosis as well as somatic cell apoptosis. BCL2-deficient 
mice exhibit a decrease in the number of oocytes and primordial 

follicles [87], whereas overexpression of BCL2 increases oocyte 

tumorigenesis and decreases granulosa cell apoptosis of large 

antral follicles, which lead to enhanced folliculogenesis [88]. 

BAX is expressed in both oocytes and granulosa cells, and Bax-

deficient mice exhibit excessive numbers of abnormal follicles [89]. 
BAX expression is strong in the granulosa cells of atretic follicles 

compared with that of healthy follicles in human ovaries [90]. In 

porcine granulosa cells, the expressions of BAX and BID are higher 

in atretic follicles than in healthy follicles [91].

After the release of Cyt c from mitochondria, apoptosis-activating 

factor 1 (APAF1) and caspase-9 (CASP9) mediate the apoptotic signal 

that results in the activation of CASP3 [86]. APAF1 and CASP9 

are expressed in granulosa cells and are demonstrated to cause 

follicular atresia in mice and pigs [92, 93]. Thus, the mitochondrial 

pathway is suggested to mediate the apoptotic signal in granulosa 

cells, which should be critical in the execution of apoptosis.

Some members of the BCL2 family proteins are regulated by 

other apoptosis-related factors in granulosa cells. The expression 

of BAX is increased in granulosa cells in both Cyp19 (aromatase)-

deficient mice and IGF-I-deficient mice [23, 94]. Bovine granulosa 
cells treated with IGF-I but not FSH exhibited increased mRNA 

expression of BAX [95]. In isolated monkey granulosa cells, gonado-

tropin depletion stimulated both BAX and CASP3 expressions and 

induced apoptosis [96]. In human granulosa tumor cells, BCL2L11 

was upregulated by FOXO3 overexpression [55].

Conclusion

From many studies, it is obvious that granulosa cells are essential 

in determining whether follicles continue growth or undergo atresia. 

As discussed above, secreted molecules, apoptotic signals from the 

cell surface and intracellular signaling molecules are themselves 

responsible for follicular fate but are also intricately interacting 

with each other within follicles and ovaries. Thus, the balance 

between those factors should determine the destiny of the follicles. 

It seems that the insufficiency of granulosa cells finally results in 
their death by apoptosis, and thus the apoptosis-related factor(s) 

in granulosa cells should be a promising target for industrial and 

clinical application. A number of known apoptosis-related factors 

were shown to contribute to a greater or lesser extent to granulosa 

cell survival/death. We need to ascertain the central factor(s) among 

those already known if we hope to put our knowledge into practice 

for treating disorders of the ovarian follicles or improving the low 

rate of gestation in domestic animals and humans. In vivo research 

that applies the above factor(s) to domestic animals or to those 

disease models would help to solve these problems.
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