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Abstract—Device-free localization (DFL) enables localizing
people by monitoring the changes in the radio frequency (RF)
attenuation field of an area where a wireless network is deployed.
Notably, this technology does not require people to participate
in the localization effort by carrying any electronic device.
This paper presents a DFL system for long-term residential
monitoring. Due to the daily activities carried out by the people
being monitored, the radio signals’ propagation patterns change
continuously. This would make a system relying only on an
initial calibration of the radio environment highly inaccurate
in the long run. In this paper, we use an on-line recalibration
method that allows the system to adapt to the changes in the
radio environment, and then provide accurate position estimates
in the long run. A finite-state machine (FSM) defines when
the person is located at specific areas-of-interest (AoI) inside
the house (e.g. kitchen, bathroom, bed, etc.). Moreover, each
time a state transition is triggered, the system tweets the new
AoI in a Twitter account. The FSM allows extracting higher
level information about the daily routine of the person being
monitored, enabling interested parties (e.g. caretakers, relatives)
to check that everything is proceeding normally in his life. In the
long-term experiment carried out in a real domestic environment,
the system was able to accurately and reliably localize the person
during his daily activities.

Index Terms—device-free localization, finite-state machine,
wireless sensor networks, residential monitoring

I. INTRODUCTION

Device-free localization (DFL) systems locate and track

objects (people) by monitoring the changes over time of

the received signal strength (RSS) of many static links of

a wireless network deployed in the area [1]. These systems,

which use the radio channel as the only source of information,

do not require people being monitored to carry or wear any

electronic device (e.g. mobile phone, RFID tag, low-power

transceiver) to participate in the localization task. Potential

applications of this technology include surveillance, security

and rescue operations, safety systems in industrial areas, and

assisted living and elderly care in domestic environments. A

DFL system brings several advantages over other traditional

technologies, being able to work in cluttered environments and

to see through walls [2], smoke and darkness. In addition, this

technology does not raise as high privacy concerns as video

cameras since identification of people and detailed activity

recognition is not possible. Moreover, a DFL system can

be composed of low-cost commercial wireless devices which

measure RSS. In contrast, ultra-wideband radar devices are

also RF-based and can track people through walls, but are

prohibitively expensive for many commercial applications.

The different methods used in RSS-based DFL [3], [4], [5],

[6], [7] assume that a person affects the propagation of radio

signals traveling through the area where he is located. As

a consequence, a link’s RSS measurements change while a

person is located near it, compared to when the person was

not near the link. These methods must learn the reference char-

acteristics of the RSS on each link while a person is not nearby

to be able to quantify the change when a person is located near

the link. However, in cluttered domestic environments, objects

of different size, shapes, and material are moved around the

house during various daily activities. These movements change

the baseline characteristics of RSS on many links. For this

reason, the DFL system has to adapt to the changes in the

monitored area and recalibrate on-line the reference RSS of

the links in order to guarantee a high localization accuracy over

an extended period of time. While DFL systems have been de-

ployed for short-term tests, mostly in idealized environments,

we are unaware of any long-term tests (more than an hour of

measurements) performed in real environments. Besides the

traditional challenges associated with enabling reliable com-

munication in long-term wireless network deployments, the

DFL system must be able to accurately measure changes in the

radio environment without requiring any manual recalibration,

reconfiguration, or restarting, even if any particular node fails

temporarily. We address these challenges in this paper.

Another challenge to RSS-based DFL systems is that, in

a cluttered multipath environment, the statistics of link RSS

vary as a function of fade level [8]. When a person affects

a link in deep fade (with lower than average RSS), the RSS

fluctuates, with tendency to increase on average. In contrast,

for a link in anti-fade (with higher than average RSS), the

RSS tends to decrease when a person is on the line between

the transmitter and receiver. At different frequency channels,

a link will be at different fade levels [9]. Thus to improve

localization accuracy in challenging residential environments,

we exploit the capability of the low-power nodes composing

the network to communicate on multiple frequency channels.
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This increases the probability that for each link, at least one

frequency channel will be in an anti-fade. Channel diversity

requires low latency communication among the nodes, while

a long-term deployment requires a highly reliable protocol.

When the reference RSS is updated on-line and the moni-

tored person is stationary, with the passing of time the person

would slowly stop causing a consistent change in the RSS of

the links crossing the area where he is located. Consequently,

the estimated attenuation would be close to zero, and therefore

the system would assume that the monitored area is empty. In

addition, at these times the estimated RSS attenuation images

mostly consist of measurement noise. Due to this, the position

estimates extracted from the attenuation images move back and

forth different areas of the house. To solve these problems,

we design a finite-state machine (FSM) capable of keeping

track of the person’s location when stationary and of filtering

out noisy position estimates. The FSM positions the person in

one of several pre-defined areas-of-interest (AoI), e.g. kitchen,

sofa, bed, bathroom, etc., and allows to extract higher level

information about his daily activities. We define state transition

rules so as to make the FSM reactive to the person movements

while avoiding triggering false state transitions due to noise

in the attenuation images.

We present a system which addresses the above challenges

and operates in real-time. At each transition of the FSM, the

system automatically posts a tweet on the Twitter account

associated to the monitored house. The tweet reports include

the new AoI and the time of the state transition. The timeline

of the tweets posted by the system, which can be made

accessible only to authorized individuals, provides a user-

friendly and ubiquitous tool allowing interested parties to

ensure everything is proceeding normally in the life of the

person being monitored. To the best of our knowledge, the

system described in this paper is the first to present such long-

term, reliable RSS-based DFL of a person during his daily

routine in a non-stationary, real-world domestic environment.

II. RELATED WORK

Assisted living and elderly care applications promise a

means to improve the quality of life as long as possible

for people whose health may be declining. New low-power,

minimally-invasive and ubiquitous wireless technologies have

paved the way to novel healthcare and medical systems to

increase a person’s health care outcomes while simultane-

ously reducing healthcare costs. Several works have proposed

various approaches to address degenerative diseases (e.g.,

diabetes, dementia, etc.) and conditions (posture, fall, body

positions and movements during sleep, etc.). These works fall

in two categories: in the first, the health and activities of the

person being monitored are inferred from data collected by

wearable sensors and devices, such as MEMS accelerometers,

gyroscopes, microphones, skin conductivity sensors, etc. [10],

[11], [12]. Professional athletes often use the same wearable

technologies during their training sessions to monitor the stress

their bodies undergo during activity or to correct movements’

mechanics (e.g., basketball shooting, baseball pitching and

batting, etc.) in order to improve their performance [13]. In

the second category, sensors and monitoring devices such

as cameras, microphones, and radars are scattered in the

environment where the person being monitored lives in order

to capture patterns representing physical and cognitive health

conditions and recognize when these start deviating from the

norm [14], [15], [16]. The sensors can also be embedded

in the furniture found in the house to monitor the patient

during specific activities, as in [17], or to measure the home

occupancy time and movement level 24/7 [18].

Our work falls into the latter category – we assume that

the person being monitored is not wearing or carrying any

electronic device. This is desirable, for example, in the case a

person is monitored for possible dementia, because this person

may forget to wear sensors, or that such sensors might feel

uncomfortable or invasive to some. We target RSS-based DFL

as an enabling technology for such elder-care applications.

One recent work has run a test of an RSS-based DFL system

in an apartment [19] and shown that it can be accurate in

room-level localization during a test period. However, the

testing period comprised a total of about 5-6 minutes of RSS

data. In this work, we target for the first time a long-term

deployment of a DFL system in a real domestic environment

for residential monitoring purposes. In addition, we aim at sub-

meter localization accuracy. We propose methods allowing the

system to adapt to the small changes in the radio propagation

field caused by the daily activities of the monitored people,

such as moving objects of small size around the house, and

opening and closing of windows blinds. This self-training

ability improves the reliability of the FSM used to position

the person in the pre-defined AoIs and avoids triggering false

state transitions.

III. SYSTEM ARCHITECTURE

A. Hardware and Communication Protocol

We deployed in a 58 square meters apartment 33 Texas

Instruments CC2531 USB dongles [20], which are equipped

with a low-power, 802.15.4-compliant radio operating in the

2.4 GHz band. We attach the nodes to the wall sockets of the

apartment through USB extension cables and power adapters.

The nodes are set to transmit at the maximum power (+4.5
dBm) over four of the 16 channels defined by the 802.15.4

standard [21]. To collect RSS measurements, we use a multi-

channel, TDMA protocol in which each transmitted packet

contains the ID of the transmitting node and the most recent

RSS measurements of the packets received from the other

nodes. When a packet is dropped, the next sensor in the

sequence transmits after a back-off time, thus ensuring the net-

works tolerance to packet drops. At the end of a transmission

cycle, the nodes switch synchronously to the next frequency

channel in sequence. To avoid the interference generated by

coexisting Wi-Fi networks (more than ten found belonging

to residents of the neighboring apartments), which would

increase the floor noise level of the RSS measurements [22],

we selected to use interference-free channels, i.e., channels

15, 20, 25, and 26. A node that overhears all the traffic is
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connected to a laptop which processes in real-time the RSS

data. On average, the time interval between two consecutive

transmissions is 2.9 ms, resulting in a total cycle length of 96
ms. The short transmission interval allows measuring the RSS

of each link and channel once every 400 ms.

B. Radio Tomographic Imaging

The goal of an RTI system is to estimate the changes in the

attenuation field of the monitored area and to locate the people

causing the measured shadowing. The change in RSS between

the calibration period and the current instant can be used to

estimate the shadowing experienced by each link [3]. However,

over long periods of time the propagation patterns of radio

signals can change considerably, thus requiring recalibration

of the system or adaptation to the changes. Since our system is

deployed over an extended period of time, the reference RSS

value of each link is calculated using a moving average, which

dynamically adjusts to the changing propagation patterns. The

sliding average of the RSS measured by the receiver of link i

at time k on channel c is:

r̄i,c[k] = (1− α)r̄i,c[k − 1] + α · ri,c[k], (1)

where α ∈ [0, 1] is a smoothing factor defining how fast the

mean is updated, and ri,c[k] is the current RSS value. The

change at time k in link shadowing is estimated as:

Si,c = r̄i,c[k]− ri,c[k]. (2)

The change in shadowing on a link is assumed to be a spatial

integral of the attenuation field of the monitored area, affected

only by voxels of the discretized attenuation field close to the

line between the transmitter and receiver. To model this, it is

assumed that Si,c is a linear combination of voxel attenuations

plus noise:

Si,c =

K
∑

j=1

wijxj,c + ni,c, (3)

where xj,c is the change in attenuation in voxel j on channel

c, wij the weight (4) of voxel j for link i, ni,c the noise of

link i on channel c, and K the total number of voxels in the

estimated image.

The weighting wij represents how each voxel’s attenuation

impacts each link. The spatial relationship is modelled geo-

metrically as an ellipse, in which the transmitter and receiver

are located at the foci [2], [3], [23], [9]. In this model, voxels

j that are overlapped by link i’s ellipse have their weight wij

set to a constant, which is inversely proportional to the square

root of the Euclidean distance of the nodes. The weight of

voxels that are not overlapped are otherwise set to zero. The

model can be formulated as:

wij =
1√
d

{

1 if dtij + drij < d+ λ

0 otherwise
, (4)

where d is the distance between the transmitter and receiver,

dtij and drij are the distances from the center of voxel j to

the transmitter and receiver of link i respectively, and λ is the

ellipse’s excess path length which is used to define its width.

TABLE I
IMAGE RECONSTRUCTION PARAMETERS USED IN THE EXPERIMENTS

Parameter Value Description

p 0.2 Pixel width [m]
λ 0.1 Excess path length of weighting ellipse [m]
σx 0.2236 Voxels standard deviation [dB]
σN 3.1623 Noise standard deviation [dB]
δc 4 Decorrelation distance [m]
nc 2 Number of used channels
α 0.01 Smoothing factor

In [9], it is shown that the accuracy of RTI can be consis-

tently improved by using channel diversity. In this paper, as in

[9], we use the fade level as a criterium to select which specific

channel’s measurements should be used for RTI. In this work,

we estimate the fade level of each channel from r̄i,c measured

during an initial calibration period. A link is said to be in a

deeper fade on channel c1 then on c2 if r̄i,c1 < r̄i,c2 . In RTI,

we consider only the nc channels whose fade levels are the

highest. The average shadowing yi measured on the nc most

highest fade levels of link i can now be computed as follows:

yi =
1

nc

∑

c∈Fi

Si,c, (5)

where Fi is a set of size nc including the nc channels with the

highest r̄i,c. It is to be noted that if nc < N where N is the

total number of used channels, then generally for links i and

j, Fi 6= Fj . In future work, we will include estimating the

channels’ fade level on-line to gurantee that the best channels

for RTI are used at all times.

When all the links of the RF sensor network are considered,

the attenuation field can now be modeled as:

y = Wx+ n, (6)

where y = [y1, . . . , yL]
T is the average change in RSS and

n = [n1, . . . , nL]
T is the measurement noise on the nc

channels, x = [x1, . . . , xK ]T is the attenuation field to be

estimated, and W is the weight matrix of size L×K defined

in (4). The linear model for shadowing loss is based on the

works presented in [3], [24], [25].

Estimating the image vector x from the link measure-

ments y is an ill-posed inverse problem, thus regularization

is required. To form the image, a regularized least-squares

approach [24], [23], [9] is used:

x̂ = Πy, Π = (WTW +C−1

x σ2

N )
−1

WT , (7)

where σ2

N is the noise variance. The a priori covariance matrix

Cx is calculated by using an exponential spatial decay:

[Cx]jh = σ2

xe
−djh/δc , (8)

where djh is the Euclidean distance of voxels j and h, σ2

x

is the variance of voxel attenuation, and δc is a correlation

coefficient. The linear transformation Π can be calculated be-

forehand, enabling real-time image reconstruction. The image

reconstruction parameters used in the experiments of Section

IV are listed in Table I.

1569618091 7th IEEE International Workshop on Practical Issues in Building Sensor Network Applications 2012 SenseApp 2012, Clearwater, Florida

986



Fig. 1. The system architecture: the RSS measurements collected in the network are processed in real-time to produce radio tomographic images and estimate
the current position of the person. This estimate is passed as an input to the finite-state machine, which eventually triggers state transitions. A tweet is posted
on the Internet each time a new event (change of AoI) is detected.

C. State Machine

When the monitored person is stationary, the measured

attenuation approaches zero over time, since the reference

RSS is updated using the moving average (1). Due to this,

other methods are needed to keep track of the person when

stationary. A finite-state machine (FSM) is designed to define

in real-time in which AoI the person is located at and to

trigger state transitions in correspondence to his movements.

We divide the apartment into six areas-of-interest (AoI),

i.e. E=entrance, K=kitchen, T=table, S=sofa, D=bed and

B=bathroom as shown in Fig. 2(a), and assign a state to each

of them. Another state is added to consider the condition in

which the apartment is empty. The states, apart the O=empty

state, are fully connected, as shown in Fig. 1 and a transition

between any two of these states is possible. We set the FSM

to be allowed to switch from the state empty exclusively to

the state entrance. Similarly, the entrance state is the only one

allowed to switch to the state empty. In the following, the

state transition conditions between the fully connected part

l ∈ {E, T, S,K,B,D} of the FSM is explained in detail

followed by the rules that must be fulfilled to switch to the

state empty.

The FSM receives as an input the current position which

can be estimated by finding the voxel j of the RTI image that

has the maximum value:

j = argmax
N

x̂. (9)

The position estimate is therefore ẑ = zj . At each time

instant, we find the AoI Al to which the position estimate

TABLE II
PARAMETERS OF THE FINITE-STATE MACHINE USED IN THE EXPERIMENT

Parameter Value Description

Th 20 Number of required ẑ ∈ Al

Tl l = O 0.05 Initial value for state empty

Tl l 6= O 0.1 Initial value for other states
nx 20 Number of samples to calculate median
β 0.25 Smoothing factor

belongs to, ẑ ∈ Al, where l ∈ {E, T, S,K,B,D}. A positive

counter variable hl (∀ l : hl ≥ 0) is incremented by one if

ẑ ∈ Al. Otherwise, it is decremented by one if hl 6= 0. A state

transition is triggered if the following conditions are met:

1) Minimum Duration: Typically, the position estimates are

accurate and could be used on their own to trigger

state transitions. However, inaccurate position estimates

would cause false transitions if the system would trigger

transitions based only on a single one. Thus, to increase

the robustness of the system, multiple position estimates

have to locate in the same AoI before triggering the

state transition. The state transition is triggered when

the counter hl exceeds a pre-defined threshold Th, i.e.,

hl ≥ Th. This condition defines the reactivity of the state

machine. Small values of Th cause the state machine

to quickly trigger a transition when an AoI is entered,

increasing the probability of false transitions, whereas

large values improve the robustness of the system, but

also the probability of reacting slowly to real movements

of the person.
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(a) (b) (c)

Fig. 2. In (a), the six identified AoI (E=entrance, K=kitchen, T=table, S=sofa, D=bed, B=bathroom), in (b) the detail of a USB dongle plugged into a wall
socket, in (c) the apartment used for the deployment.

2) Expiration Time: The counter hl used for the first con-

dition can increment over a long time period, eventually

triggering a false state transition. To avoid this, an expira-

tion timer is used. Whenever the current position estimate

belongs to a new AoI, a timer tl = 3Th is started. In

order for the FSM to trigger a transition, the other two

conditions have to be fulfilled before the timer expires,

i.e., tl ≥ 0.

3) Image Intensity: In this paper, we use image intensity as

a synonym for the voxel j of the RTI image that has

the maximum value, i.e., x̂j . High image intensity values

are recorded when multiple links crossing the person’s

location measure attenuation simultaneously. On the other

hand, low values are measured when the monitored area

is not occupied or when the person is stationary for a

long period of time. A median m̃ is calculated from the

last nx image intensities. The median value has to exceed

a threshold for this condition to be valid, i.e. m̃ ≥ 0.5Tl,

where Tl = (1−β)Tl,k−1+β ·x̂j . In the on-line threshold

update, k − 1 is the time when the previous transition

to state l was triggered, and β ∈ [0, 1] is a smoothing

factor. This condition filters spurious state transitions by

neglecting images with low intensity, i.e. x̂j ≈ 0.

The state transition from the state entrance to empty is

exclusive and the state transition condition differs from the

other conditions. The transition is made only when m̃ ≤ 2Tl,

i.e. the image intensity is low. In addition, conditions 1 and

2 must be fulfilled. The FSM parameters are derived using

experimental data and the ones used in the experiments of

Section IV are listed in Table II.

When a state transition is triggered, the current state s

is set to sl, the counter hl is reset to zero, and a tweet

is posted. However, if the current state is the same as the

previous one, the transition is not triggered. The adaptive

thresholding method implemented in the FSM guarantees real-

time reactivity to the movements of the person and filters out

false transitions that can be triggered by particular events, such

as wind blowing through the windows and moving the curtains.

The tweets are posted on the Internet at [26] each time the

FSM triggers a state transition. The tweets consist of time of

the event and the new AoI occupied by the person. The tweets

can be made accessible to authorized individuals (followers),

such as relatives or caretakers of the person being monitored.

In this paper, the account is made accessible to everyone. The

overall architecture of the system is shown in Fig. 1.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the system

described in Section III. We deploy the network in a typical

single floor, single bedroom apartment, shown in Fig. 2(c), for

one week. During this time, we do not recalibrate the reference

RSS or restart the system. Our goal is to prove that the system

can accurately trigger the state transitions among the AoI (Fig.

2(a)) and adapt to the changing environment over an extended

period of time.

Before the long-term deployment is started, we estimate

the localization accuracy of the system. In the experiment, a

person is standing still at one of the 14 known positions for a

predetermined time, after which the person moves to the next

location. The positions are chosen to cover all areas of the

apartment and each position is visited two times. The position

estimates are obtained from the RTI images as described in

Section III and the root-mean-squared error (RMSE) of the

position estimates is 0.23 m. The true and estimated positions

of the experiment are shown in Fig. 4. Although we have

not done so, the accuracy is such that the system could be

designed to have more AoI and to recognize more specific

activities such as: cooking by the stove, washing laundry and

selecting clothes from the closet.

To validate the capability of the system to correctly identify

the AoI in which the person is in and to correctly switch

among the states, we conduct a two hours test during which

we record the correct sequence of visited AoI and the precise

instants of transition. During the test, each AoI is visited

1569618091 7th IEEE International Workshop on Practical Issues in Building Sensor Network Applications 2012 SenseApp 2012, Clearwater, Florida

988



02:00 08:00 14:00 20:00 02:00

O

E

K

T

S

D

B

Time [h]

A
o

I

(a)

17:00 17:05 17:10 17:15 17:20

O

E

K

T

S

D

B

Time [h]

A
o

I

(b)

O E K T S D B
0

2

4

6

8

10

AoI

T
im

e 
[h

]

(c)

Fig. 3. In (a) the daily activities (Wednesday-Thursday) of the test person and in (b) a 20 minute time window when the person arrives home from work.
In (c) the average time spent on each activity per day over the one week test period.
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Fig. 4. The localization accuracy of the system is tested in 14 different
positions marked in the figure with black crosses. The position estimates
calculated from the RTI images are illustrated with red circles. The RMSE in
the 14 different positions is 0.23 m.

multiple times, for a total of 60 state transitions. Also, to

better simulate the real life, we ask the person being monitored

to perform an activity in each AoI (e.g. wash his hands,

open and close the fridge, move an object, etc.) that would

change the radio signal propagation patterns in the area. The

correct sequence of transitions and their time stamps are then

compared to the tweets posted by the system. During this

test, the system correctly detected all of the state transitions

and generated no false transitions. However, during the one

week deployment it was noticed that the system triggered

occasionally false transitions. Despite the false transitions,

the system was capable of recovering to its true state after

some time or when the person visited another AoI. The false

transitions were caused by neighbours movement outside the

apartment.

From the higher level information extracted over a long

period of time it is possible to analyze the daily routines

of the person, as shown in Fig. 3. In (a), the activities of

the monitored person over a single day are shown. From this

figure, it can be pointed out when, e.g., the person wakes up,

relaxes on the sofa, leaves the apartment or returns home from

work as shown in (b). In (c), the average time spent per day

in each AoI is shown. The data are averaged over the whole

week, including working day and week-end.

For example in an assisted living scenario, if the caretakers

would be familiar with the expected daily routine of the

monitored person, they could interpret the daily activities of

the person to estimate the health or condition of the patient.

For example, if the person being monitored wakes up late in

the morning, does not spend sufficient time in the kitchen, and

does not leave the apartment as expected, one could reasonably

assume that the person might be depressed or sick. These signs

would indicate that the person should be visited soon so that

a closer examination could be made.

The system is able to produce accurate attenuation images

throughout the entire length of the test, as shown in Fig. 5.

Figures (a)-(e) show attenuation images obtained by applying

the moving average (1). With this method, the system is

capable of adapting to the varying environment. When the

radio signal propagation patterns change, due to e.g. opening

and closing of windows or movements of objects, the system

dynamically adjusts the reference RSS of the lines traveling

across the monitored area. On the other hand, a system that

would use as reference RSS only the measurements collected

during an initial calibration phase would not be able to adapt

to the changes of the propagation patterns caused by the daily

activities of the person being monitored. Figures (f)-(j) show

how in this case the noise of the images produced by the

system would quickly increase to the point of making a reliable

estimate of the person’s location impossible.

V. LESSONS LEARNED

The long-term deployment of the RSS-based DFL system

in a real domestic environment has provided the opportunity

to gain useful insights about this measurement modality. In

a first deployment, we had positioned the nodes so to have

a homogeneous density of wireless links over the monitored

area. However, in few key areas of the apartment the lo-
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5. Attenuation images obtained when the reference RSS is calculated by applying the moving average (a)-(e) and when it is not updated after an initial
calibration (f)-(j). Starting from the left, the images are plotted over one day in 6 hours intervals : in (a) and (f), the person is located at the entrance, in (b)
and (g) on the sofa, in (c) and (h) in bed, in (d) and (i) in the bathroom and in (e) and (j) by the table. When the reference RSS is not updated, the images
become noisy over time due to changes in the radio signal propagation patterns, eventually providing wrong position estimates, as in (i).

calization accuracy provided by the system was poor. By

observing the raw RSS measurements traveling across these

challenging areas, we were able to identify which nodes had

been positioned in spots that were particularly hostile for the

propagation of the radio signals, e.g. leaning against a large

marble counter found in the kitchen. Our solution was to

distance the antennas of the nodes by few centimeters from this

marble surface and also from the walls of the apartment. After

this adjustment, the system was able to accurately localize the

person throughout the entire monitored area.

One of the main concerns in deploying a RSS-based DFL

system in a real environment is the number of nodes required

to provide a sufficiently accurate localization throughout the

monitored area. For this reason, we analyze in simulations

the effect of removing nodes from the system, i.e. lowering

the number of nodes composing the network. The results are

shown in Fig. 6. The simulations are conducted with the same

data used to validate the localization accuracy of the system.

Removing each number of nodes is simulated 20 times. The

removed nodes are selected randomly to validate the RMSE

when various nodes do not participate in the localization

effort. On average, the RMSE increases as more nodes are

removed from the network. The results of the simulations vary

considerably when different nodes are removed, indicating that

some nodes of the network are more important than others to

achieve accurate localization. Moreover, the smallest RMSEs

show that accurate positioning can be achieved also with fewer

nodes. However, these nodes would need to be positioned at

locations that would favor RTI. In addition, by analyzing the
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Fig. 6. Results of the simulations in which fewer nodes are used to collect
RSS measurements.

results of the simulations we were able to observe that, by

removing few particular nodes, higher localization accuracy

was achieved compared to a system relying on all the nodes.

While analyzing the RSS measurements collected by the

nodes and the overall performance of the system, we were

also able to identify few, unexpected sources of variance in the

data. For example, due to the limited thickness of the walls

separating the apartment from the neighboring ones and the

main corridor of the building, the movements of people found

in the surrounding apartments and along the corridor affected
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the RSS measured by the nodes deployed on the separating

walls. On few occasions, we were even able to track the

movements of people outside the apartment along the walls.

Thus, we had to keep in mind this issue while developing the

adaptive thresholding method used in the FSM.

VI. CONCLUSION

In this paper, we present a RSS-based DFL system for long-

term residential monitoring which is capable of accurately

localizing in real-time the person being monitored in a real

domestic environment over an extended period of time. To

achieve these goals, we propose the use of channel diversity

and of methods that adapt to the continuous changes in the

radio signal propagation patterns due to the daily activities

of the monitored person and the non-stationary nature of the

environment. Higher-level information is obtained through a

FSM which keeps track of the person location when he is sta-

tionary and filters out localization estimates which are affected

by random noise in the RSS measurements. The capability

of the system to provide accurate estimates in the long-term

may be exploited in the future for a variety of purposes,

such as monitoring the social interactions of people possibly

affected by depression, or the level of sedentarity of obese

people. The work presented in this paper shows that device-

free localization represents an inexpensive and minimally-

invasive technology that can improve the quality of life for

people whose health may be declining and simultaneously

provide a useful support to their caretakers.
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