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Abstract

We consider the problem of online learning and its application to solving minimax
games. For the online learning problem, Follow the Perturbed Leader (FTPL) is
a widely studied algorithm which enjoys the optimal O

`
T

1{2˘
worst case regret

guarantee for both convex and nonconvex losses. In this work, we show that when
the sequence of loss functions is predictable, a simple modification of FTPL which
incorporates optimism can achieve better regret guarantees, while retaining the
optimal worst case regret guarantee for unpredictable sequences. A key challenge
in obtaining these tighter regret bounds is the stochasticity and optimism in the
algorithm, which requires different analysis techniques than those commonly used
in the analysis of FTPL. The key ingredient we utilize in our analysis is the dual
view of perturbation as regularization. While our algorithm has several applications,
we consider the specific application of minimax games. For solving smooth convex-
concave games, our algorithm only requires access to a linear optimization oracle.
For Lipschitz and smooth nonconvex-nonconcave games, our algorithm requires
access to an optimization oracle which computes the perturbed best response. In
both these settings, our algorithm solves the game up to an accuracy of O

`
T

´1{2˘

using T calls to the optimization oracle. An important feature of our algorithm
is that it is highly parallelizable and requires only OpT 1{2q iterations, with each
iteration making O

`
T

1{2˘
parallel calls to the optimization oracle.

1 Introduction

In this work, we consider the problem of online learning, where in each iteration, the learner chooses
an action and observes a loss function. The goal of the learner is to choose a sequence of actions
which minimizes the cumulative loss suffered over the course of learning. The paradigm of online
learning has many theoretical and practical applications and has been widely studied in a number of
fields, including game theory and machine learning. One of the popular applications of online learning
is in solving minimax games arising in various contexts such as boosting [1], robust optimization [2],
Generative Adversarial Networks [3].

In recent years, a number of efficient algorithms have been developed for regret minimization. These
algorithms fall into two broad categories, namely, Follow the Regularized Leader (FTRL) [4] and
FTPL [5] style algorithms. When the sequence of loss functions encountered by the learner are convex,
both these algorithms are known to achieve the optimal O

`
T

1{2˘
worst case regret [6, 7]. While

these algorithms have similar regret guarantees, they differ in computational aspects. Each iteration
of FTRL involves optimization of a non-linear convex function over the action space (also called the
projection step). In contrast, each step of FTPL involves solving a linear optimization problem, which
can be implemented efficiently for many problems of interest [8, 9, 10]. For example, if the action
space is an `p ball for some p R t1, 2,8u, then projecting onto this set is much more computationally
expensive than performing linear optimization over this set. As another example, consider the
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scenario where the action space is the set of all positive semidefinite matrices. Then projecting onto
this set requires performing expensive singular value decompositions. Whereas, linear optimization
only requires computation of the leading eigenvector. This crucial difference between FTRL and
FTPL makes the latter algorithm more attractive in practice. Even in the more general nonconvex
setting, where the loss functions encountered by the learner can potentially be nonconvex, FTPL
algorithms are attractive. In this setting, FTPL requires access to an offline optimization oracle which
computes the perturbed best response, and achieves O

`
T

1{2˘
worst case regret [11]. Furthermore,

these optimization oracles can be efficiently implemented for many problems by leveraging the rich
body of work on global optimization [12].

Despite its importance and popularity, FTPL has been mostly studied for the worst case setting, where
the loss functions are assumed to be adversarially chosen. In a number of applications of online
learning, the loss functions are actually benign and predictable [13]. In such scenarios, FTPL can not
utilize the predictability of losses to achieve tighter regret bounds. While [11, 13] study variants of
FTPL which can make use of predictability, these works either consider restricted settings or provide
sub-optimal regret guarantees (see Section 2 for more details). This is unlike FTRL, where optimistic
variants that can utilize the predictability of loss functions have been well understood [13, 14] and
have been shown to provide faster convergence rates in applications such as minimax games. In
this work, we aim to bridge this gap and study a variant of FTPL called Optimistic FTPL (OFTPL),
which can achieve better regret bounds, while retaining the optimal worst case regret guarantee for
unpredictable sequences. The main challenge in obtaining these tighter regret bounds is handling the
stochasticity and optimism in the algorithm, which requires different analysis techniques to those
commonly used in the analysis of FTPL. In this work, we rely on the dual view of perturbation as
regularization to derive regret bounds of OFTPL.

To demonstrate the usefulness of OFTPL, we consider the problem of solving minimax games.
A widely used approach for solving such games relies on online learning algorithms [6]. In this
approach, both the minimization and the maximization players play a repeated game against each
other and rely on online learning algorithms to choose their actions in each round of the game. In our
algorithm for solving games, we let both the players use OFTPL to choose their actions. For solving
smooth convex-concave games, our algorithm only requires access to a linear optimization oracle. For
Lipschitz and smooth nonconvex-nonconcave games, our algorithm requires access to an optimization
oracle which computes the perturbed best response. In both these settings, our algorithm solves the
game up to an accuracy of O

`
T

´1{2˘
using T calls to the optimization oracle. While there are prior

algorithms that achieve these convergence rates [11, 15], an important feature of our algorithm is that
it is highly parallelizable and requires only OpT 1{2q iterations, with each iteration making O

`
T

1{2˘

parallel calls to the optimization oracle. We note that such parallelizable algorithms are especially
useful in large-scale machine learning applications such as training of GANs, adversarial training,
which often involve huge datasets such as ImageNet [16].

2 Preliminaries and Background Material

Online Learning. The online learning framework can be seen as a repeated game between a learner
and an adversary. In this framework, in each round t, the learner makes a prediction xt P X Ñ Rd

for some compact set X , and the adversary simultaneously chooses a loss function ft : X Ñ R and
observe each others actions. The goal of the learner is to choose a sequence of actions txtuTt“1 so
that the following notion of regret is minimized:

∞T
t“1 ftpxtq ´ infxPX

∞T
t“1 ftpxq.

When the domain X and loss functions ft are convex, a number of efficient algorithms for regret
minimization have been studied. Some of these include deterministic algorithms such as Online Mirror
Descent, Follow the Regularized Leader (FTRL) [4, 7], and stochastic algorithms such as Follow the
Perturbed Leader (FTPL) [5]. In FTRL, one predicts xt as argminxPX

∞t´1
i“1 xri,xy`Rpxq, for some

strongly convex regularizer R, where ri “ rfipxiq. FTRL is known to achieve the optimal OpT 1{2q
worst case regret in the convex setting [4]. In FTPL, one predicts xt as m´1

∞m
j“1 xt,j , where xt,j

is a minimizer of the following linear optimization problem: argminxPX
A∞t´1

i“1 ri ´ �t,j ,x
E
.

Here, t�t,jumj“1 are independent random perturbations drawn from some appropriate probability
distribution such as exponential distribution or uniform distribution in a hyper-cube. Various choices
of perturbation distribution gives rise to various FTPL algorithms. When the loss functions are
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linear, Kalai and Vempala [5] show that FTPL achieves O
`
T

1{2˘
expected regret, irrespective of the

choice of m. When the loss functions are convex, Hazan [7] showed that the deterministic version of
FTPL (i.e., as m Ñ 8) achieves O

`
T

1{2˘
regret. While projection free methods for online convex

learning have been studied since the early work of [17], surprisingly, regret bounds of FTPL for
finite m have only been recently studied [10]. Hazan and Minasyan [10] show that for Lipschitz
and convex functions, FTPL achieves O

`
T

1{2 ` m
´1{2

T
˘

expected regret, and for smooth convex
functions, the algorithm achieves O

`
T

1{2 ` m
´1

T
˘

expected regret.

When either the domain X or the loss functions ft are non-convex, no deterministic algorithm can
achieve opT q regret [6, 11]. In such cases, one has to rely on randomized algorithms to achieve
sub-linear regret. In randomized algorithms, in each round t, the learner samples the prediction
xt from a distribution Pt P P , where P is the set of all probability distributions supported on X .
The goal of the learner is to choose a sequence of distributions tPtuTt“1 to minimize the expected
regret

∞T
t“1 Ex„Pt rftpxqs ´ infxPX

∞T
t“1 ftpxq. A popular technique to minimize the expected

regret is to consider a linearized problem in the space of probability distributions with losses
f̃tpP q “ Ex„P rftpxqs and perform FTRL in this space. In such a technique, Pt is computed
as: argminPPP

∞t´1
i“1 f̃ipP q ` RpP q, for some strongly convex regularizer RpP q. When RpP q is

the negative entropy of P , the algorithm is called entropic mirror descent or continuous exponential
weights. This algorithm achieves O

`
T

1{2˘
expected regret for bounded loss functions ft. Another

technique to minimize expected regret is to rely on FTPL [11, 18]. Here, the learner generates the
random prediction xt by first sampling a random perturbation � and then computing the perturbed
best response, which is defined as argminxPX

∞t´1
i“1 fipxq ´ x�,xy. In a recent work, Agarwal et al.

[18] show that this algorithm achieves O
`
T

2{3˘
expected regret, whenever the sequence of loss

functions are Lipschitz. This was later improved to O
`
T

1{2˘
by Suggala and Netrapalli [11]. We now

briefly discuss the computational aspects of FTRL and FTPL. Each iteration of FTRL (with entropic
regularizer) requires sampling from a non-logconcave distribution. In contrast, FTPL requires solving
a nonconvex optimization problem to compute the perturbed best response. Of these, computing the
perturbed best response seems significantly easier since standard algorithms such as gradient descent
seem to be able to find approximate global optima reasonably fast, even for complicated tasks such as
training deep neural networks.

Online Learning with Optimism. When the sequence of loss functions are convex and predictable,
Rakhlin and Sridharan [13, 14] study optimistic variants of FTRL which can exploit the predictability
to obtain better regret bounds. Let gt be our guess of rt at the beginning of round t. Given gt, we
predict xt in Optimistic FTRL (OFTRL) as argminxPX

A∞t´1
i“1 ri ` gt,x

E
`Rpxq. Note that when

gt “ 0, OFTRL is equivalent to FTRL. [13, 14] show that the regret bounds of OFTRL only depend
on pgt ´ rtq. Moreover, these works show that OFTRL provides faster convergence rates for solving
smooth convex-concave games. In contrast to FTRL, the optimistic variants of FTPL have been less
well understood. [13] studies OFTPL for linear loss functions. But they consider restrictive settings
and their algorithms require the knowledge of sizes of deviations pgt ´ rtq. [11] studies OFTPL
for the more general nonconvex setting. The algorithm predicts xt as argminxPX

∞t´1
i“1 fipxq `

gtpxq ´ x�,xy, where gt is our guess of ft. However, the regret bounds of [11] are sub-optimal and
weaker than the bounds we obtain in our work (see Theorem 4.2). Moreover, [11] does not provide
any consequences of their results to minimax games. We note that their sub-optimal regret bounds
translate to sub-optimal rates of convergence for solving smooth minimax games.

Minimax Games. Consider the following problem, which we refer to as minimax game:
minxPX maxyPY fpx,yq. In these games, we are often interested in finding a Nash Equilibrium (NE).
A pair pP,Qq, where P is a probability distribution over X and Q is a probability distribution over
Y , is called a NE if: supyPY Ex„P rfpx,yqs § Ex„P,y„Q rfpx,yqs § infxPX Ey„Q rfpx,yqs . A
standard technique for finding a NE of the game is to rely on no-regret algorithms [6, 7]. Here, both
x and y players play a repeated game against each other and use online learning algorithms to choose
their actions. The average of the iterates generated via this repeated game can be shown to converge
to a NE.

Projection Free Learning. Projection free learning algorithms are attractive as they only involve
solving linear optimization problems. Two broad classes of projection free techniques have been
considered for online convex learning and minimax games, namely, Frank-Wolfe (FW) methods
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and FTPL based methods. Garber and Hazan [8] consider the problem of online learning when the
action space X is a polytope. They provide a FW method which achieves O

`
T

1{2˘
regret using T

calls to the linear optimization oracle. Hazan and Kale [17] provide a FW technique which achieves
O

`
T

3{4˘
regret for general online convex learning with Lipschitz losses and uses T calls to the linear

optimization oracle. In a recent work, Hazan and Minasyan [10] show that FTPL achieves O
`
T

2{3˘

regret for online convex learning with smooth losses, using T calls to the linear optimization oracle.
This translates to O

`
T

´1{3˘
rate of convergence for solving smooth convex-concave games. Note

that, in contrast, our algorithm achieves O
`
T

´1{2˘
convergence rate in the same setting. Gidel et al.

[9] study FW methods for solving convex-concave games. When the constraint sets X ,Y are strongly
convex, the authors show geometric convergence of their algorithms. In a recent work, He and
Harchaoui [15] propose a FW technique for solving smooth convex-concave games which converges
at a rate of O

`
T

´1{2˘
using T calls to the linear optimization oracle. We note that our simple OFTPL

based algorithm achieves these rates, with the added advantage of parallelizability. That being said,
He and Harchaoui [15] achieve dimension free convergence rates in the Euclidean setting, where
the smoothness is measured w.r.t } ¨ }2 norm. In contrast, the rates of convergence of our algorithm
depend on the dimension.

Notation. } ¨ } is a norm on some vector space, which is typically Rd in our work. } ¨ }˚ is the
dual norm of } ¨ }, which is defined as }x}˚ “ suptxu,xy : u P Rd

, }u} § 1u. We use  1, 2 to
denote norm compatibility constants of } ¨ }, which are defined as  1 “ supx‰0 }x}{}x}2,  2 “
supx‰0 }x}2{}x}.
We use the notation f1:t to denote

∞t
i“1 fi and ri to denote rfipxiq. In some cases, when clear

from context, we overload the notation f1:t and use it to denote the set tf1, f2 . . . ftu. For any
convex function f , Bfpxq is the set of all subgradients of f at x. For any function f : X ˆ Y Ñ R,
fp¨,yq, fpx, ¨q denote the functions x Ñ fpx,yq,y Ñ fpx,yq. For any function f : X Ñ R
and any probability distribution P , we let fpP q denote Ex„P rfpxqs . Similarly, for any function
f : X ˆ Y Ñ R and any two distributions P,Q, we let fpP,Qq denote Ex„P,y„Q rfpx,yqs . For
any set of distributions tPjumj“1, 1

m

∞m
j“1 Pj is the mixture distribution which gives equal weights

to its components. We use Expp⌘q to denote the exponential distribution, whose CDF is given by
P pZ § sq “ 1 ´ expp´s{⌘q.

3 Dual view of Perturbation as Regularization

In this section, we present a key result which shows that when the sequence of loss functions are
convex, every FTPL algorithm is an FTRL algorithm. Our analysis of OFTPL relies on this dual
view to obtain tight regret bounds. This duality between FTPL and FTRL was originally studied
by Hofbauer and Sandholm [19], where the authors show that any FTPL algorithm, with perturbation
distribution admitting a strictly positive density on Rd, is an FTRL algorithm w.r.t some convex
regularizer. However, many popular perturbation distributions such as exponential and uniform
distributions don’t have a strictly positive density. In a recent work, Abernethy et al. [20] point out
that the duality between FTPL and FTRL holds for very general perturbation distributions. However,
the authors do not provide a formal theorem showing this result. Here, we provide a proposition
formalizing the claim of [20].

Proposition 3.1. Consider the problem of online convex learning, where the sequence of loss func-
tions tftuTt“1 encountered by the learner are convex. Consider the deterministic version of FTPL algo-
rithm, where the learner predicts xt as E� rargminxPX xr1:t´1 ´ �,xys. Suppose the perturbation
distribution is absolutely continuous w.r.t the Lebesgue measure. Then there exists a convex regular-
izer R : Rd Ñ RYt8u, with domain dompRq Ñ X , such that xt “ argminxPX xr1:t´1,xy`Rpxq.
Moreover, ´r1:t´1 P BRpxtq, and xt “ BR´1 p´r1:t´1q , where BR´1 is the inverse of BR in the
sense of multivalued mappings.
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Algorithm 1 Convex OFTPL
1: Input: Perturbation Distribution PPRTB, number of samples m, number of iterations T
2: Denote r0 “ 0
3: for t “ 1 . . . T do
4: Let gt be the guess for rt

5: for j “ 1 . . .m do
6: Sample �t,j „ PPRTB
7: xt,j P argminxPX xr0:t´1 ` gt ´ �t,j ,xy
8: end for
9: Let xt “ 1

m

∞m
j“1 xt,j

10: Play xt and observe loss function ft

11: end for

4 Online Learning with OFTPL

4.1 Online Convex Learning

In this section, we present the OFTPL algorithm for online convex learning and derive an upper bound
on its regret. The algorithm we consider is similar to the OFTRL algorithm (see Algorithm 1). Let
gtrf1 . . . ft´1s be our guess for rt at the beginning of round t, with g1 “ 0. To simplify the notation,
in the sequel, we suppress the dependence of gt on tfiut´1

i“1. Given gt, we predict xt in OFTPL as
follows. We sample independent perturbations t�t,jumj“1 from the perturbation distribution PPRTB

and compute xt as m´1
∞m

j“1 xt,j , where xt,j is a minimizer of the following linear optimization
problem

xt,j P argmin
xPX

xr1:t´1 ` gt ´ �t,j ,xy .

We now present our main theorem which bounds the regret of OFTPL. A key quantity the regret
depends on is the stability of predictions of the deterministic version of OFTPL. Intuitively, an
algorithm is stable if its predictions in two consecutive iterations differ by a small quantity. To capture
this notion, we first define function r� : Rd Ñ Rd as: r� pgq “ E� rargminxPX xg ´ �,xys .
Observe that r� pr1:t´1 ` gtq is the prediction of the deterministic version of OFTPL. We say the
predictions of OFTPL are stable, if r� is a Lipschitz function.
Definition 4.1 (Stability). The predictions of OFTPL are said to be �-stable w.r.t some norm } ¨ }, if

@g1, g2 P Rd }r� pg1q ´ r� pg2q }˚ § �}g1 ´ g2}.
Theorem 4.1. Suppose the perturbation distribution PPRTB is absolutely continuous w.r.t Lebesgue
measure. Let D be the diameter of X w.r.t } ¨ }, which is defined as D “ supx1,x2PX }x1 ´ x2}.
Let ⌘ “ E� r}�}˚s , and suppose the predictions of OFTPL are C⌘

´1-stable w.r.t } ¨ }˚, where C is
a constant that depends on the set X . Finally, suppose the sequence of loss functions tftuTt“1 are
convex, Holder smooth and satisfy

@x1,x2 P X }rftpx1q ´ rftpx2q}˚ § L}x1 ´ x2}↵,
for some constant ↵ P r0, 1s. Then the expected regret of Algorithm 1 satisfies

sup
xPX

E
«

Tÿ

t“1

ftpxtq ´ ftpxq
�

§ ⌘D `
Tÿ

t“1

C

2⌘
E

“
}rt ´ gt}2˚

‰
´

Tÿ

t“1

⌘

2C
E

“
}x8

t ´ x̃8
t´1}2

‰

` LT

ˆ
 1 2D?

m

˙1`↵

.

where x8
t “ E rxt|gt, f1:t´1,x1:t´1s and x̃8

t´1 “ E rx̃t´1|f1:t´1,x1:t´1s and x̃t´1 denotes the
prediction in the t

th iteration of Algorithm 1, if guess gt “ 0 was used. Here,  1, 2 denote the
norm compatibility constants of } ¨ }.

Proof Sketch. For any x P X , we have
Tÿ

t“1

E rftpxtq ´ ftpxqs
paq
§

Tÿ

t“1

E rxxt ´ x,rtys “
Tÿ

t“1

E rxxt ´ x8
t ,rtys ` E rxx8

t ´ x,rtys ,
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Algorithm 2 Nonconvex OFTPL
1: Input: Perturbation Distribution PPRTB, number of samples m, number of iterations T
2: Denote f0 “ 0
3: for t “ 1 . . . T do
4: Let gt be the guess for ft
5: for j “ 1 . . .m do
6: Sample �t,j „ PPRTB
7: xt,j P argminxPX f0:t´1pxq ` gtpxq ´ �t,jpxq
8: end for
9: Let Pt be the empirical distribution over txt,1,xt,2 . . .xt,mu

10: Play xt, a random sample generated from Pt

11: Observe loss function ft

12: end for

where paq follows from convexity of ft. The first term in the RHS involves the difference between the
iterates of stochastic and deterministic versions of OFTPL. To bound this term, we use the following
two facts: (a) conditioned on the past randomness, xt ´ x8

t is the average of m i.i.d, bounded, mean
0 random variables and so its variance is OpD2{mq, (b) ft is Holder smooth. Using these two facts,
we get E rxxt ´ x8

t ,rtys “ O pD{?
mq1`↵

. The second term in the RHS is related to the regret of
deterministic OFTPL. To bound this term, we rely on the duality between deterministic OFTPL and
OFTRL (Proposition 3.1), and use a similar proof technique as the one used to derive regret bounds of
OFTRL. One key distinction between OFTRL and OFTPL is that in OFTRL it is typically assumed
that the regularizer R is differentiable. However, the regularizer corresponding to OFTPL need not be
differentiable. As a result, the traditional Bregmann divergence used in the analysis of OFTRL is not
well defined. So, our analysis instead relies on “pseudo” Bregmann divergence, which is obtained by
replacing the gradient of R in Bregmann divergence with an appropriately chosen sub-gradient.

Regret bounds that hold with high probability can be found in Appendix G. The above Theorem
shows that the regret of OFTPL only depends on }rt ´ gt}˚, which quantifies the accuracy of our
guess gt. In contrast, the regret of FTPL depends on }rt}˚ [7]. This shows that for predictable
sequences, with an appropriate choice of gt, OFTPL can achieve better regret guarantees than FTPL.
As we demonstrate in Section 5, this helps us design faster algorithms for solving minimax games.

Note that the above result is very general and holds for any absolutely continuous perturbation
distribution. The key challenge in instantiating this result for any particular perturbation distribution
is in showing the stability of predictions. Several past works have studied the stability of FTPL
for various perturbation distributions such as uniform, exponential, Gumbel distributions [5, 7, 10].
Consequently, the above result can be used to derive tight regret bounds for all these perturbation
distributions. As one particular instantiation of Theorem 4.1, we consider the special case of gt “ 0
and derive regret bounds for FTPL, when the perturbation distribution is the uniform distribution over
a ball centered at the origin.
Corollary 4.1 (FTPL). Suppose the perturbation distribution is equal to the uniform distribution
over tx : }x}2 § p1 ` d

´1q⌘u. Let D be the diameter of X w.r.t } ¨ }2. Then E� r}�}2s “ ⌘, and
the predictions of OFTPL are dD⌘

´1-stable w.r.t } ¨ }2. Suppose, the sequence of loss functions
tftuTt“1 are G-Lipschitz and satisfy supxPX }rftpxq}2 § G. Moreover, suppose ft satisfies the
Holder smooth condition in Theorem 4.1 w.r.t } ¨ }2 norm. Then the expected regret of Algorithm 1
with guess gt “ 0, satisfies

sup
xPX

E
«

Tÿ

t“1

ftpxtq ´ ftpxq
�

§ ⌘D ` dDG
2
T

2⌘
` LT

ˆ
D?
m

˙1`↵

.

This recovers the regret bounds of FTPL for general convex loss functions derived by [10].

4.2 Online Nonconvex Learning

We now study OFTPL in the nonconvex setting. In this setting, we assume the sequence of loss
functions belong to some function class F containing real-valued measurable functions on X . Some
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popular choices for F include the set of Lipschitz functions, the set of bounded functions. The
OFTPL algorithm in this setting is described in Algorithm 2. Similar to the convex case, we first
sample random perturbation functions t�t,jumj“1 from some distribution PPRTB. Some examples
of perturbation functions that have been considered in the past include �t,jpxq “ x�̄t,j ,xy , for
some random vector �̄t,j sampled from exponential or uniform distributions [11, 18]. Another
popular choice for �t,j is the Gumbel process, which results in the continuous exponential weights
algorithm [21]. Letting, gt be our guess of loss function ft at the beginning of round t, the learner first
computes xt,j as argminxPX

∞t´1
i“1 fipxq ` gtpxq ´ �t,jpxq. We assume access to an optimization

oracle which computes a minimizer of this problem. We often refer to this oracle as the perturbed best
response oracle. Let Pt denote the empirical distribution of txt,jumj“1. The learner then plays an xt

which is sampled from Pt. Algorithm 2 describes this procedure. We note that for the online learning
problem, m “ 1 suffices, as the expected loss suffered by the learner in each round is independent of
m; that is E rftpxtqs “ E rftpxt,1qs. However, the choice of m affects the rate of convergence when
Algorithm 2 is used for solving nonconvex nonconcave minimax games.

Before we present the regret bounds, we introduce the dual space associated with F . Let } ¨ }F be a
seminorm associated with F . For example, when F is the set of Lipschitz functions, } ¨ }F is the
Lipschitz seminorm. Various choices of pF , } ¨ }F q induce various distance metrics on P , the set of
all probability distributions on X . We let �F denote the Integral Probability Metric (IPM) induced by
pF , } ¨ }F q, which is defined as

�F pP,Qq “ sup
fPF,}f}F§1

ˇ̌
ˇEx„P rfpxqs ´ Ex„Q rfpxqs

ˇ̌
ˇ.

We often refer to pP, �F q as the dual space of pF , } ¨ }F q. When F is the set of Lipschitz functions
and when } ¨ }F is the Lipschitz seminorm, �F is the Wasserstein distance. Table 1 in Appendix E.1
presents examples of �F induced by some popular function spaces. Similar to the convex case, the
regret bounds in the nonconvex setting depend on the stability of predictions of OFTPL.
Definition 4.2 (Stability). Suppose the perturbation function �pxq is sampled from PPRTB. For any
f P F , define random variable xf p�q as argminxPX fpxq´�pxq. Let r� pfq denote the distribution
of xf p�q. The predictions of OFTPL are said to be �-stable w.r.t } ¨ }F if

@f, g P F �F pr� pfq ,r� pgqq § �}f ´ g}F .
Theorem 4.2. Suppose the sequence of loss functions tftuTt“1 belong to pF , } ¨ }F q. Suppose the
perturbation distribution PPRTB is such that argminxPX fpxq ´ �pxq has a unique minimizer with
probability one, for any f P F . Let P be the set of probability distributions over X . Define the
diameter of P as D “ supP1,P2PP �F pP1, P2q. Let ⌘ “ E r}�}F s. Suppose the predictions of OFTPL
are C⌘

´1-stable w.r.t } ¨ }F , for some constant C that depends on X . Then the expected regret of
Algorithm 2 satisfies

sup
xPX

E
«

Tÿ

t“1

ftpxtq ´ ftpxq
�

§ ⌘D `
Tÿ

t“1

C

2⌘
E

“
}ft ´ gt}2F

‰
´

Tÿ

t“1

⌘

2C
E

”
�F pP8

t , P̃
8
t´1q2

ı
,

where P
8
t “ E rPt|gt, f1:t´1, P1:t´1s , P̃8

t “ E
”
P̃t´1|f1:t´1, P1:t´1

ı
and P̃t´1 is the empirical

distribution computed in the t
th iteration of Algorithm 2, if guess gt “ 0 was used.

Proof Sketch. The proof uses similar arguments as in the proof of Theorem 4.1. For any P P P , we
have

E rftpxtq ´ ftpP qs “ E rftpPtq ´ ftpP8
t qs ` E rftpP8

t q ´ ftpP qs paq“ E rftpP8
t q ´ ftpP qs ,

where paq follows from the fact that E rftpPtq ´ ftpP8
t q|gt, f1:t´1, P1:t´1s “ 0. The RHS is related

to the regret of deterministic OFTPL. In the convex case, to bound this term, we relied on duality
between OFTRL and OFTPL. However, in the nonconvex case, we can not take this route as there
are no known analogs of Fenchel duality for infinite dimensional function spaces. As a result, more
careful analysis is needed to obtain the regret bounds. Our analysis mimics the arguments made in
the convex case, albeit without explicitly relying on duality theory.

As in the convex case, the key challenge in instantiating the above result for any particular per-
turbation distribution is in showing the stability of predictions. In a recent work, [11] consider
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linear perturbation functions �pxq “ x�̄,xy , for �̄ sampled from exponential distribution, and show
stability of FTPL. We now instantiate the above Theorem for this setting.
Corollary 4.2. Consider the setting of Theorem 4.2. Let F be the set of Lipschitz functions and } ¨ }F
be the Lipschitz seminorm, which is defined as }f}F “ supx‰y in X

|fpxq´fpyq|{}x´y}1. Suppose
the perturbation function is such that �pxq “ x�̄,xy, where �̄ P Rd is a random vector whose entries
are sampled independently from Expp⌘q. Then E� r}�}F s “ ⌘ log d, and the predictions of OFTPL
are O

`
d
2
D⌘

´1
˘
-stable w.r.t } ¨ }F . Moreover, the expected regret of Algorithm 2 is upper bounded

by O

´
⌘D log d ` ∞T

t“1
d2D
⌘ E

“
}ft ´ gt}2F

‰
´ ∞T

t“1
⌘

d2DE
”
�F pP8

t , P̃
8
t´1q2

ı¯
.

We note that the above regret bounds are tighter than the regret bounds of [11], where the authors
show that the regret of OFTPL is bounded by O

´
⌘D log d ` ∞T

t“1
d2D
⌘ E

“
}ft ´ gt}2F

‰¯
. These

tigher bounds help us design faster algorithms for solving minimax games in the nonconvex setting
(see Section 5 for a more detailed discussion).

5 Minimax Games

We now consider the problem of solving minimax games of the following form
min
xPX

max
yPY

fpx,yq. (1)

Nash equilibria of such games can be computed by playing two online learning algorithms against
each other [6, 7]. In this work, we study the algorithm where both the players employ OFTPL to
decide their actions in each round. For convex-concave games, both the players use the OFTPL
algorithm described in Algorithm 1 (see Algorithm 3 in Appendix D). The following theorem derives
the rate of convergence of this algorithm to a Nash equilibirum (NE).
Theorem 5.1. Consider the minimax game in Equation (1). Suppose both the domains X ,Y are
compact subsets of Rd, with diameter D “ maxtsupx1,x2PX }x1 ´ x2}2, supy1,y2PY }y1 ´ y2}2u.
Suppose f is convex in x, concave in y and is smooth w.r.t } ¨ }2

}rxfpx,yq ´ rxfpx1
,y1q}2 ` }ryfpx,yq ´ ryfpx1

,y1q}2 § L}x ´ x1}2 ` L}y ´ y1}2.
Suppose Algorithm 3 is used to solve the minimax game. Suppose the perturbation distributions used
by both the players are the same and equal to the uniform distribution over tx : }x}2 § p1`d

´1q⌘u.
Suppose the guesses used by x,y players in the tth iteration are rxfpx̃t´1, ỹt´1q,ryfpx̃t´1, ỹt´1q,
where x̃t´1, ỹt´1 denote the predictions of x,y players in the tth iteration, if guess gt “ 0 was used.
If Algorithm 3 is run with ⌘ “ 6dDpL ` 1q,m “ T , then the iterates tpxt,ytquTt“1 satisfy

sup
xPX ,yPY

E
«
f

˜
1

T

Tÿ

t“1

xt,y

¸
´ f

˜
x,

1

T

Tÿ

t“1

yt

¸�
“ O

ˆ
dD

2pL ` 1q
T

˙
.

Rates of convergence which hold with high probability can be found in Appendix G. We note that
Theorem 5.1 can be extended to more general noise distributions and settings where gradients of f
are Holder smooth w.r.t non-Euclidean norms, and X ,Y lie in spaces of different dimensions (see
Theorem D.1 in Appendix). We now discuss the above result.

• Theorem 5.1 shows that for smooth convex-concave games, Algorithm 3 converges to a NE at
O

`
T

´1
˘

rate using 4T 2 calls to the linear optimization oracle. Moreover, the algorithm runs in
T iterations, with each iteration making 4T parallel calls to the optimization oracle. In contrast,
FTPL makes 2T 3 calls to the linear optimization oracle to achieve O

`
T

´1
˘

rates of convergence
and runs for T 2 iterations, with each iteration making 2T parallel calls to the optimization oracle.
This can be obtained by setting m “

?
T ,↵ “ 1, and ⌘ “ O

`?
T

˘
in Corollary 4.1.

• The Frank-Wolfe technique of He and Harchaoui [15] achieves the same convergence rates as
our algorithm; that is, it achieves O

`
T

´1
˘

rates using T
2 calls to the linear optimization oracle.

However, unlike [15], our algorithm is parallelizable and can be run in T iterations.
• He and Harchaoui [15] achieve dimension free convergence rates in the Euclidean setting, where

the smoothness is measured w.r.t } ¨ }2 norm. In contrast, the rates of convergence of our algorithm
depend on the dimension. We believe the dimension dependence in the rates can be removed by
appropriately choosing the perturbation distributions based on domains X ,Y (see Appendix F).

8



• Note that OFTRL also achieves O
`
T

´1
˘

rates of convergence after T iterations. However, each
iteration of OFTRL involves optimization of a non-linear convex function over the domains X ,Y ,
which can be quite expensive in practice.

We now consider the more general nonconvex-nonconcave games. In this case, both the players use the
nonconvex OFTPL algorithm described in Algorithm 2 to choose their actions. Instead of generating a
single sample from the empirical distribution Pt computed in t

th iteration of Algorithm 2, the players
now play the entire distribution Pt (see Algorithm 4 in Appendix E). Letting tPtuTt“1, tQtuTt“1,
be the sequence of iterates generated by the x and y players, the following theorem shows that´

1
T

∞T
t“1 Pt,

1
T

∞T
t“1 Qt

¯
converges to a NE.

Theorem 5.2. Consider the minimax game in Equation (1). Suppose the domains X ,Y are compact
subsets of Rd with diameter D “ maxtsupx1,x2PX }x1 ´ x2}1, supy1,y2PY }y1 ´ y2}1u. Suppose
f is Lipschitz w.r.t } ¨ }1 and satisfies

max

"
sup

xPX ,yPY
}rxfpx,yq}8, sup

xPX ,yPY
}ryfpx,yq}8

*
§ G.

Moreover, suppose f satisfies the following smoothness property

}rxfpx,yq ´ rxfpx1
,y1q}8 ` }ryfpx,yq ´ ryfpx1

,y1q}8 § L}x ´ x1}1 ` L}y ´ y1}1.
Suppose both x and y players use Algorithm 4 to solve the game with linear perturbation functions
�pzq “ x�̄, zy, where �̄ P Rd is such that each of its entries is sampled independently from Expp⌘q.
Suppose the guesses used by x and y players in the t

th iteration are fp¨, Q̃t´1q, fpP̃t´1, ¨q, where
P̃t´1, Q̃t´1 denote the predictions of x,y players in the t

th iteration, if guess gt “ 0 was used. If
Algorithm 4 is run with ⌘ “ 10d2DpL ` 1q,m “ T , then the iterates tpPt, QtquTt“1 satisfy

sup
xPX ,yPY

E
«
f

˜
1

T

Tÿ

t“1

Pt,y

¸
´ f

˜
x,

1

T

Tÿ

t“1

Qt

¸�
“ O

ˆ
d
2
D

2pL ` 1q log d
T

˙

` O

ˆ
min

"
D

2
L,

d
2
G

2 log T

LT

*˙
.

More general versions of the Theorem, which consider other function classes and general perturbation
distributions, can be found in Appendix E. We now discuss the above result.

• Theorem 5.2 shows that Algorithm 4 converges to a NE at Õ
`
T

´1
˘

rate using T
2 calls to the

perturbed best response oracle. This matches the rates of convergence of FTPL [11]. However,
the key advantage of our algorithm is that it is highly parallelizable and runs in T iterations, in
contrast to FTPL, which runs in T

2 iterations.
• As previously stated, [11] also study OFTPL for non-convex losses and upper bound its regret

as O
´
⌘D log d ` ∞T

t“1
d2D
⌘ E

“
}ft ´ gt}2F

‰¯
. However, by relying on this regret bound, we can

only obtain O
`
T

´3{4˘
convergence rates, even if we set m “ 8 and run the algorithm for T

iterations (see Appendix E.4).

6 Conclusion
We studied an optimistic variant of FTPL which achieves better regret guarantees when the sequence
of loss functions is predictable. As one specific application of our algorithm, we considered the
problem of solving minimax games. For solving convex-concave games, our algorithm requires
access to a linear optimization oracle and for nonconvex-nonconcave games our algorithm requires
access to a more powerful perturbed best response oracle. In both these settings, our algorithm
achieves O

`
T

´1{2˘
convergence rates using T calls to the oracles. Moreover, our algorithm runs

in O
`
T

1{2˘
iterations, with each iteration making O

`
T

1{2˘
parallel calls to the optimization oracle.

We believe our improved algorithms for solving minimax games are useful in a number of modern
machine learning applications such as training of GANs, adversarial training, which involve solving
nonconvex-nonconcave minimax games and often deal with huge datasets.
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Broader Impact

Many problems in machine learning and statistics have a game theoretic component to them. Two
popular modern applications that illustrate this are adversarial training and density estimation using
IPMs. These applications often involve solving large-scale minimax games. In many cases these
games are nonconvex-nonconcave, which makes it even more harder to find a NE. Existing approaches
for solving these games have mostly relied on algorithms from online convex learning. However,
such algorithms are not guaranteed to converge to a NE of nonconvex-nonconcave games. As a
result, there is a need for faster algorithms for provably solving large-scale nonconvex-nonconcave
games. Our work takes a first step towards this goal by proposing fast parallelizable algorithms which
provably converge to a NE in both convex and nonconvex settings.
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