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Abstract—Mobile robots that interact with humans in an
intuitive way must be able to follow directions provided by
humans in unconstrained natural language. In this work we
investigate how statistical machine translation techniques can
be used to bridge the gap between natural language route
instructions and a map of an environment built by a robot.
Our approach uses training data to learn to translate from
natural language instructions to an automatically-labeled map.
The complexity of the translation process is controlled by taking
advantage of physical constraints imposed by the map. As a
result, our technique can efficiently handle uncertainty in both
map labeling and parsing. Our experiments demonstrate the
promising capabilities achieved by our approach.

Index Terms—Human-robot interaction; instruction following;
navigation; statistical machine translation; natural language

I. INTRODUCTION

Following natural-language route instructions through a

building is a challenging, error-prone activity. Maps of spaces

are often incomplete or inaccurate, and the variety of ways a

single path can be described is enormous. Furthermore, people

are surprisingly poor at giving directions. Instructions may be

ambiguous or incorrect; people confuse left and right, omit

instructions for important decision points, or fail to mention

intervening decision points or landmarks. Nonetheless, giving

and following directions naturally is a crucial aspect of smooth

human/robot interactions.

The problem of following instructions can be described as

finding a way of going from the natural language description,

or layer, to an underlying map layer that is grounded in a

map built by a robot. Although there are a number of ways

to consider this problem, our approach is to apply statistical

machine translation (SMT) to the task of translating from

natural language into a formal intermediate path description

language, designed to closely mimic what current robotic

sensors and actuators can handle in a real-world environment.

This has the potential to reduce intermediate translation steps

and dependence on heuristic handling of input, while mini-

mizing assumptions about available information.

There exists a substantial body of work on robotic navi-

gation, and specifically on direction-following in navigation

and other tasks, which is described in more detail in Section

IV. We provide the following additional contributions: Initial

demonstration of a system that takes full advantage of existing

robot mapping and place-identification technology, by showing
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pathfinding in an environment where available information

is limited to automatically obtained map segmentation and

labels—neither human labeling nor manual landmark identi-

fication are required. Our approach takes uncertainty in both

the map and the language parsing into account by combining

the two into a single analysis of the most likely interpretation

of a set of directions. Finally, we show how to incorporate

map information into the parsing process, so as to manage the

combinatorics of a very non-restrictive formal language with

an extraordinarily high degree of ambiguity.

To achieve this, we use existing topological place-labeling

techniques [8], which enable robots to autonomously build

maps that can be described in terms of typed areas (such

as hallways, rooms, and intersections). We define a formal

language that describes movement through a sequence of such

areas, and a statistical machine translation (SMT) system is

used to learn a probabilistic translation model between natural

language and the formal description of paths. The SMT system

is trained on examples of natural language route directions

and the corresponding paths through a map built by a mobile

robot. Because natural language directions are very ambiguous

with respect to the types of areas being traversed, the space of

possible movements through the map is used to constrain the

parsing process, which is otherwise infeasibly large. The map

uncertainty and parser probabilities are used to find a path that

corresponds to the spoken directions.

This paper is organized as follows. In the next section,

we present our approach, starting with some background on

statistical machine translation. Experimental results are given

in Section III, followed by a discussion of related work in

Section IV. We conclude in Section V.

II. APPROACH

Our approach involves using machine translation to learn

to parse natural language instructions into a sequence of

instructions that can be executed by a robot equipped only

with a map and a laser range-finder. Specifically, there are

three representations of navigation through a map: statements

in NL (the natural language route instructions), statements in

a formal path description language, and an actual path through

a map at the map layer.

We use SMT to learn a parser that transforms NL in-

structions into the path description layer (parsing), which can

then be transformed into the map layer (path-finding). Both

parsing and path-finding must handle uncertain information.



Fig. 1. The stages of converting a statement in natural language to a path
through a map. Parsing is performed by a parser trained on example route
instructions and map traces.

The natural language instructions are constrained by the maps

provided, which do not contain landmarks, and are further

limited by our grammar’s inability to express context (infor-

mation about the nodes surrounding those that are actually

traversed). These constraints are not a fundamental limitation

of our proposed technique, but rather a limitation of our current

path description language; the impact of these simplifications

is discussed in Section III and Section V.

A. LABELED MAPS AND FORMAL LANGUAGE

1) Labeled Topology Using Voronoi Random Fields: In

this paper, the maps being used for training and testing

are constructed from laser range-finder data, and have been

automatically segmented and labeled using Voronoi Random

Fields [8]. In this approach, a Voronoi graph is initially

extracted from an occupancy grid generated with a laser range-

finder; each point on the graph is represented as a node of a

conditional random field, which is a discriminatively trained

graphical model. The resulting VRF estimates the label of

each node, integrating features from both the map and the

Voronoi topology. The labels provide a segmentation of an

environment, with the different segments corresponding to

rooms, hallways, intersections, or doorways (as in Figure 3

(a)).

These maps can then be segmented to provide topological-

metric maps of the labeled Voronoi graph. The spatial layout

of rooms and hallways is retained, along with connectivity

structure based on identification of intersections. This structure

can be readily transformed to an idealized map of typed

nodes with connecting edges; the stochastic classification is

not perfect, but has an accuracy above 90% [8].

The synchronous context-free grammar (SCFG) parsing

model (see Section II-B) requires that the target language

(the path description layer) be defined by an unambiguous

grammar (Figure 2). Furthermore, path-finding—going from

the path description layer to the map layer—must be robust

against uncertainty in the segmenting and labeling of the map.

The path description layer devised for this process is quite

simple: a path is defined as a series of nodes through the

topological graph-map, connected by edges. Junction nodes

are parameterized with available exits and information about

the orientation of the robot as it traverses the junction, which

captures rotation. Nodes are described relative to the agent’s

point of view, rather than in absolute terms; for example, a 3-

way junction may be a T-junction, meaning there are openings

to the robot’s right and left, but could not be described as

having openings to the east and west.

The grammar contains both terminals—the lexicon of words

in the path description language—and nonterminals, which

can be decomposed into terminals or other nonterminals.

Nonterminals in Figure 2 are explicitly marked with n:, such

as n:Action, whereas terminals (such as rt or room) are are not

marked. While the names of the terminals are chosen to be

human-readable, it should be noted that there is no semantic

information encoded; the connection between the word “right”

and the terminal rt is entirely learned.

n:Statement → ({ ( go n:Action ) })
n:Action → ({ n:Vertex n:Movement })
n:Movement → ({ n:Edge n:Vertex })
n:Movement → ({ n:Edge n:Vertex n:Movement })
n:Vertex → ({ ( room ) })
n:Vertex → ({ ( hall ) })
n:Edge → ({ ( n:Junction ) })
n:Junction → ({ n:Jtype n:Jdir })
n:Junction → ({ n:Jtype n:Jorient n:Jdir })
n:Jtype → ({ j4 })
n:Jtype → ({ j3 })
n:Jorient → ({ t })
n:Jorient → ({ r })
n:Jorient → ({ l })
n:Jdir → ({ rt })
n:Jdir → ({ st })
n:Jdir → ({ lt })

Fig. 2. The grammar of the path description language into which natural
language directions are parsed. Hallways and rooms are treated as nodes of a
map, connected by intersections, which are three-way or four-way junctions
(j3 and j4); the direction in which a junction is traversed is given as right,
straight, or left (rt, st, and lt); and the orientation of three-way junctions
is given (t, r, and l indicate which direction is traversible). The key “n:”
is used to mark nonterminals.

2) Formal Language Path Descriptions: This statistical ap-

proach allows this system to handle noise (such as previously

unseen or irrelevant words), as well as avoiding any explicit

definition of structure such as labeling parts of speech or pre-

defining the words that correlate to actions such as turning.

As mentioned, we make two noteworthy simplifications to

the language: we do not represent landmarks (other than the

nodes themselves) or context. Landmarks are any element of

the environment that could be used to describe an area, such

as “go past the couch” or “the room with the blue rug,” while

context describes nodes on the map that surround the path,

but are not actually traversed. Examples of contextual path

descriptions might include sentences such as “Go to the end

of the hall,” which requires information about the step one

past the steps actually taken, or “go past a hall, then a room.”

In these cases, the spaces being described are not on the path

taken by the agent, and so are not represented in the path

descriptions, making it impossible to learn a translation into

the path description language.



Fig. 3. The test map used for evaluation. (far left) An occupancy map constructed from laser range-finder data, with a Voronoi-based route graph shown.
(left) The labeled Voronoi graph defines a place type for each point on the map. Hallways are colored red, rooms are green, and junctions are indicated by
blue circles. (right) A topological-metric map given by the segmentation of the labeled Voronoi graph. (far right) The topological metric map transformed
into the typed-node representation, with junctions representing edges between rooms and halls.

B. STATISTICAL MACHINE TRANSLATION

The underlying parsing approach used is Statistical Machine

Translation, in which a large body of example sentence pairs

are used to learn a translation system automatically [11]. We

use a modified version of the Word Alignment-based Semantic

Parser (WASP) developed by Wong & Mooney [25], which

learns a parser that translates from novel strings in a source

language to a formally defined target language.

WASP implements a synchronous translation learning

model, meaning that parse trees are constructed simultaneously

for sentences in the source and target language by applying

a sequence of production rules to higher-level nonterminals.

For example, in translating between two natural languages, the

nonterminals NP and V might refer to noun phrases and verbs;

a production would describe how NP could be synchronously

replaced by the strings “I” in English and “je” in French.1

The learning process can be described at a high level as

follows. First, a statistical word alignment model [3] is learned.

In word alignment, pairs of corresponding strings between

source and target languages are discovered, for example, je/I or

“turn right”/rt. For this task the off-the-shelf word-alignment

tool GIZA++ [16] is used. A lexicon of production rules is

then generated by creating a rule for each aligned string pair

in each training pair; for example, the paired training sentences

“I will” and “je vais” provide evidence for the existence of the

production rules “je←NP→I” and “vais←V→will.” If sufficient

training data is present, the set of production rules learned will

implicitly define the set of all possible derivations of target

strings. Finally, a set of parameters is learned that define a

probability distribution over derivations (a sequence of rule ap-

plications). This is a probabilistic extension of the synchronous

context-free grammar (SCFG) parsing framework [1].

A probabilistic SCFG G is then defined as follows:

G = < N , Tin, Tout , L , S , λ >

In which N is a finite set of nonterminals, Tin and Tout

are finite sets of terminals (words) in the source and target

languages, L is a lexicon of production rules, S is a defined

start symbol, and λ is the set of parameters defining a

probability distribution over derivations.

1[5] is recommended to the reader seeking a clear overview of SCFGs; we
follow the terminology of [24] in describing grammars, rules, and derivations.

WASP uses a log-linear probabilistic model described by a

set of parameters λ. The model applies to the probability of

a particular derivation (a sequence of translation steps); the

probability of a derivation d given an input sentence e is:

Prλ(d|e) =
1

Zλ(e)
exp∑

i

λi fi(d)

Where fi is one of three types of features:

• For a rule, the number of times that rule is used in any

derivation.

• For a word, the number of times that word is generated

from a word gap in a derivation.

• The total number of words generated from word gaps.

However, only the results of derivations—that is, in-

put/output sentence pairs (fj,ej)—are provided as training

data. We can compute the conditional probability of an output

sentence being produced by an input sentence by summing

over all the derivations that perform such a translation:

Prλ(fj|ej) = ∑
d

Prλ(d|e)

WASP uses a variant of the Inside-Outside algorithm to

avoid enumerating all possible derivations, since the number

of derivations may be intractably large. An estimate of λ can

then be obtained by maximizing the conditional log-likelihood

of the training set, i.e. maximizing the sum of the conditional

log likelihoods of each sentence pair, using gradient-descent

techniques (L-BFGS in WASP’s case). A detailed description

of this approach can be found in [24].

The advantages of using this approach to parser learning

are twofold. First, rules with nested non-terminals can readily

represent commands that do not specify a fixed number of

actions, such as “take the second left,” which may traverse

an arbitrary number of map nodes. Second, it minimizes

commitment to a specific domain. This approach can be

applied to any domain for which a simple grammar can be

defined and examples can be readily expressed using that

grammar. However, because the process of parsing from route

instructions to path descriptions is not dependent on a specific

map, and because the formal language being parsed into does

not have complex or deeply nested structural constraints, the

parse ambiguity is very large compared to parsing problems



which target more constrained formal languages such as [24],

[4], [7] (see Figure 5 for an example); further work is required

to manage this complexity.

C. PATH SEARCH

The parsing process produces uncertain information; addi-

tionally, because the map is automatically labeled, there is

uncertainty in the annotation of the underlying map graph.

(For instance, the robot might not be sure if a certain node in

the topological graph is a hallway or a room.) This combined

uncertainty means that evaluation of parses against the map

is not necessarily reliable. Because we wish for our direction-

following approach to be robust in the face of such uncertainty,

we backtrack to lower-probability paths if the most probable

path does not lead to the desired destination. As a result, all

parses of a sequence of route instructions must be retained

and considered when choosing the most probable path to take,

leading to an exponential blowup in possible path traces for a

given input description. The large fan-out of possible parses

makes a brute-force approach to this problem intractable (see

Figure 6 for example parses of a single segment).

Fig. 5. An example of parsing ambiguity. Without reference to a specific
map, all of the following are correct parses of the phrase “turn right,” with
the distinct path descriptions (j4 rt), (j3 t rt) , and (j3 r rt).
Combinations of such commands (such as “turn right, then turn right again”)
quickly become intractable.

We treat complexity in the parsing stage and in the path-

finding stage separately.

1) Parse Complexity: Route instructions may be thought

of as a sequence of semi-independent segments, each of

which describes a separable set of steps between decision

points. Because the parse grammar does not have much nested

structure, it is rare for the parse of a segment to rely on

other segments; as a result, segments of the natural language

inputs can generally be parsed separately. For example, given

the instructions “Go left, then turn right,” the meaning of

“turn right” is unlikely to depend on the meaning of “Go

left”—unlike unconstrained natural language, in which a later

phrase may refer back to the subject of a previous phrase.

Segmentation can be done either automatically (e.g., by relying

on phrase boundaries learned by the parser [4]), or by pre-

processing route instructions in some way; in our experiments,

we segmented instructions by splitting on defined keywords.

(room) (4j rt) (room) (room) (4j rt) (hall)

(room) (3j r rt) (room) (room) (3j r rt) (hall)

(room) (3j t rt) (room) (room) (3j t rt) (hall)

(hall) (4j rt) (room) (hall) (4j rt) (hall)

(hall) (3j r rt) (room) (hall) (3j r rt) (hall)

(hall) (3j t rt) (room) (hall) (3j t rt) (hall)

Fig. 6. All possible ways to describe a right turn, as specified by the grammar
of the path description language.

In this terminology, the natural language route instructions

“Go out of the room and go right, then go past two inter-

sections, then turn left” contains four segments: “Go out of

the room; go right; go past two intersections; turn left.” The

correct path description when these instructions are applied to

Figure 3 is (room) (j4 rt) (hall) (j3 r st) (hall) (j3 l

st) (hall) (j3 t lt) (room), corresponding to a path going

from the entryway down to the room on the lower right.

However, without oracular knowledge of the correct parse and

correct map labeling, this is only one many thousands of path

descriptions that must be considered.

2) Pathfinding Complexity: While segmenting controls the

complexity of the parsing step, the path-finding step must still

consider every possible combination of segment parses. In

addition, each step in a parse has an associated uncertainty,

produced by combining the parse weight with the current

belief as to whether the step is correct with respect to the map.

An example helps ground this description. A single parse of

the phrase “go right” may be (room) (j4 rt) (hall), with

an associated parse weight of 0.5. If this command is given

while the robot is at node 418 on Figure 7(a), the first step,

(room), is believed to be consistent with the map, and so

should be scored highly. The second step, however, describes

a 4-way intersection, when it is in fact believed to be a 3-

way intersection; that parse receives a lower score. These

scores, when combined with the parse score, must be treated

individually. Sequences of nodes can be stored in a weighted

tree (Figure 4 shows such a tree for the instruction “go right”);

however, the size of that tree rapidly becomes intractable for

larger sequences of commands.

Fig. 4. The complete set of possible correct parses of the command “go right,” with weights provided by the agent’s beliefs about the map. Because
instruction-giving is often noisy, incorrect parses should also be considered with low weight, making the fan-out of the actual tree larger.



Fig. 7. The components of the tractable search problem. (a) A small section of a map through which a right turn is to be taken, starting from room 418
(outlined). (b) A portion of the parse tree showing possible interpretations of the command “turn right,” with the combined probabilities of the parses and
map node types. (c) The collapsed map/parse tree. (d) The search tree used to iteratively find the k-shortest paths from the source to possible destinations.

In order to search this space feasibly, we first introduce a

combined map/parse tree, in which the structure of the map

is used to both constrain and efficiently store possible parses.

We construct a tree of nodes corresponding to regions of the

map, rooted in the robot’s starting position, disallowing cycles

by terminating a branch when the only possible step is a node

that already exists on that branch. Because there are a sharply

limited number of map nodes that are n steps from a known

starting point, this tree is feasible to construct. The n-th nodes

of possible parses are then stored as a list attached to each tree

node (see Figure 7 (c)). This representation is substantially

more compact than the full tree.

We assume that the robot is in possession of a complete

map, the ability to follow the path through the map, and a

starting point on the map, but not a goal-point in the map.

We additionally supply a test for whether the destination has

been reached once a path has been traversed. Our goal is to

produce an ordered list of paths to attempt to take through

the map. If the first proposed path does not reach the desired

destination, the next highest-probability path is selected and

the robot backtracks to the point where the next proposal

diverges from the path already traveled before exploring the

new path.

If a path fails, it is often not obvious at what step the

problem occurred, meaning it is not obvious how to prune

the tree. The need to try several paths (due to map or parsing

errors, or due to human errors in giving the directions) there-

fore means finding the first, second, . . . k-th highest-probability

walk through list entries on the map/parse tree. This task can

be considered as a variant of the well-studied problem of

finding the k-th best (lowest cost) path through a graph. We

treat the individual steps as edges between nodes, with a cost

proportional to their probability; Figure 7(d) shows this new

graph.

The canonical solution to this task is Yen’s Kth-shortest-

path algorithm [26], which is O(kn(m + n logn)) for a graph

with n nodes and m edges; [13] provides a more efficient

variant which we use for this work, with some modifications.

First, because probabilities are combined via multiplication

and path costs are combined by addition, we use the log of

the probabilities, negated in order to make higher probabilities

consistent with lower costs. Second, the Kth-shortest-path

algorithm does not handle multiple edges between nodes, so

dummy nodes (not shown in Figure 7) are inserted between

each pair of map/parse tree nodes. Each dummy node contains

a pointer to the actual step value (for example, room), which

makes reconstructing a path description from a graph walk

trivial.

Because we do not know the desired endpoint, it is nec-

essary to find the k best paths from the start node to all

other nodes in the graph, making the actual complexity

O(kn2(m + n logn)) in the worst case. When this graph has

been constructed, the search process proceeds by creating a

list of the best (k=1) path to every node, ordering the resulting

n−1 paths by total probability, and exploring the first. If the

first fails, k is incremented, n− 1 more paths are generated

(the second-best path to every node except the starting point),

and the process is repeated.

III. EVALUATION

As described in Section II-C, we assume that the robot starts

with a complete (but possibly not correctly labeled) map, the

ability to follow a path through the map, a starting point but not

an end-point on the map, and a test to determine whether the

goal has been reached. We are interested in whether the robot

reaches the desired destination, and if so, whether the path

taken is the one described by the instructor—since both testing

and training maps contain loops, a destination can always be

reached in any of several ways, but our primary interest is in

how successfully the robot is following directions.

Fig. 8. The training map, produced from the Allen Center computer science
building. The red line shows one of the paths the route instructors were asked
to describe in the training data.

Training and testing maps were generated from Voronoi

graph maps of two buildings, the Allen Center and Intel

Research (pictured in Figure 8 and Figure 3, respectively.)

These maps were constructed from real laser range-finder data

collected by a SICK scanner mounted on a small Pioneer robot



base. Because the path description language is unambiguous

with respect to movement through a map, it is feasible to

generate the formally described component of training exam-

ples. Since paths can be generated randomly, the process of

collecting training data is primarily constrained by our ability

to obtain natural human descriptions of paths.

To obtain training data, five random paths were generated

on the map. on the training map; the paths were not always the

shortest possible route between start and end points. For this

work, we obtained a collection of 33 sets of route instructions

describing five paths from eight volunteers. Three of the five

paths were non-optimal. The paths varied in length from 4-

9 instruction segments and 15-20 nodes traversed. In order

to increase the size of the training set, the training data

was analyzed and phrases corresponding to individual actions

(such as “turn left”) were extracted and randomly combined

to describe other paths through the map, producing a much

larger synthetic data set, into which words were randomly

introduced to provide noise. (This allows for the learning

of word gap models, although those models would in this

case be strictly random.) Some examples of (noiseless) route

instructions produced in this way are:

Leave the room and go left, go past the next

junction, and then take the second right.

Go straight through the second junction and take a

right, pass the next junction, and go into the room

ahead.

As noted in Section II-A2, neither landmarks nor context

are considered in this work. The former do not appear in the

natural-language training data collected. Because volunteers

were shown only the final topological graph-map when giving

instructions, no additional landmarks were described. How-

ever, context-based instructions, which are not representable

in the current path description language, were used in some

route instructions.

We tested on a corpus of an additional five paths provided by

four volunteers over the Intel building testing map, providing

20 sets of route instructions.2 The testing map was not seen

during the training phase. We asked additional human volun-

teers to follow the directions provided in order to evaluate

their quality, and found that 70% of them were followed

successfully (fourteen). This is consistent with results reported

by others [12], [23].

We found no cases in which our system successfully fol-

lowed instructions that human evaluators could not follow;

this is a likely result of training data which contains very

few errors. A larger body of less-perfect training data would

probably allow the translation step to provide incorrect parses

with low probabilities, which would eventually be tried. Of

the fourteen human-followable direction sets, our system was

able to follow ten successfully, or 71% (50% of the total),

2Because there was no overlap among people providing directions for
training and testing, we asked the testing group to use approximately the
same style of giving directions; because direction-giving is known to employ
a fairly limited vocabulary, a larger body of training data would make this
step unnecessary.

getting to the correct destination along the specific route

described by the route director. For a perfect map, the route

selected to explore first was the correct one in all cases

except those that involved counting (e.g., “Go through two

interesctions,”), which entail taking an arbitrary number of

steps before the conditions described are met, and sometimes

have very strong parse probability differences based on the

specific cases encountered in training. Given the nature of the

statistical machine translation system, it seems very likely that

these results would improve with additional training data and

less reliance on synthetic data.

As erroneous map labeling increases, so does the likelihood

of exploring an incorrect path initially. For example, if a four-

way intersection is incorrectly identified as being a three-

way intersection, then a robot instructed to “take the second

left” might pass through that intersection rather than turning,

preferring the parse that matched the (incorrect) map labels.

Because the robot backtracks when its explorations fail, this

error is recoverable; the correct parse will be explored and

the goal will be reached, although not as efficiently. This

behavior—exploring the “best” (i.e., most likely) interpretation

and backtracking if the goal is not reached—mimics human

direction following. We artificially introduce a random map-

labeling error of 90%, which is actually higher than that

produced by the Voronoi Random Field approach.

Fig. 9. One of the routes used for testing, with human-provided directions
that could be followed successfully. This set of navigation instructions demon-
strates the system’s learned capability to follow directions which include
counting information (e.g., “take the third right”).

Our system successfully generalizes from a few examples to

unfamiliar cases, making it able to handle not only input with

terms that were not previously encountered, but also cases that

require counting (such as in Figure 9) or an understanding

of semantic grouping, e.g., the similar uses of the terms

“right” and “left.” The training data provided to the system

for different types of actions is necessarily incomplete; for

example, in our tests, we successfully handle commands such

as “Take the third left,” which requires passing through an

unknown number of intersections and rooms or hallways of

unknown types. The training data provided examples of a

few possible ways of stating the command, with different



lengths, and novel parses of the command are generated. We

demonstrate learning of higher-level semantic groupings such

as generalization between the concepts of right and left. The

concept of “left” was learned automatically from examples; no

information on the meaning of left, as a motion, was explicitly

encoded in the map or in the path description. From the fact

that the two terms appear in otherwise identical examples

some of the time, the system was able to transfer learning

between left and right in cases where examples of only on

or the other was provided, thereby reducing the amount of

necessary training data.

IV. RELATED WORK

Navigation is a critical and widely-studied task in mo-

bile robotics, and following natural-language instructions is

a key component of natural, multi-modal human/robot inter-

action [21]. There has been substantial work on mapping and

localization [22], segmenting and describing a map from sen-

sor data [8], [9], and navigating through such an environment

[17], [27]. Our work fits into the broader class of grounded

language acquisition, in which language is learned from some

situated context, usually by learning over a corpus of parallel

language and context data [19], [15]. Learning to follow

natural-language directions has been explored in a wide variety

of tasks, including scene description [18] and controlling the

grasping behaviors of a robotic hand [10], interpreting written

software and game manuals [2], and generating commentaries

of simulated robocup soccer games [4]. Natural language-

directed navigation is the task most closely related to the work

presented in this paper.

[12] studied the inference requirements and language used

for natural-language navigational instructions in complex sim-

ulated environments, as well as providing experimental evi-

dence of the poor quality of instructions provided by human

direction-givers. The underlying model of the world used

in these trials is more complex than that available in our

limited-sensor model, and the instructions are annotated with a

semantic grammar based on the semantically rich environment.

Because we are using less rich map data collected by laser

sensors, we are constrained to solving a similar problem with

much less data. As well, we rely entirely on learning from

examples, with no human supplied heuristics for managing

missing or implies knowledge.

Our approach is similar to [20] with respect to the rep-

resentation of the path description layer and map layer, but

we do not rely on labeled training data, and our natural

language segmentation is not map-based. In contrast to [7],

the formal representation extracted from instructions defines

a path, rather than a set of action and goal representations

defined over a hand-annotated map. We share with [23] the

goal of probabilistic handling of uncertain environments and

noisy input, as well as reasoning over the entire trajectory.

However, we rely entirely on an automatically segmented and

labeled map with no information about objects encountered or

object co-occurence. Most importantly, however, our semantic

parser is not limited to nouns and explicit direction terms, as

it is trained over more general natural language.

This work would not have been possible without access to

WASP, a grounded language acquisition system that can be

trained over a parellel corpus of natural language and formal

representations in a wide variety of domains.3 WASP provides

SCFG-based statistical parsing and generation capabilities

[24], [25]. Additional related work on parsing is described

in Section II-B. The simplicity and lack of constraints on our

formal language mean that the core SMT approach taken by

WASP becomes unmanageable for sequences of instructions;

the additional work required to make the problem feasible is

described in Section II-C.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have demonstrated a novel system that

allows robots to learn, entirely from examples, how to use

statistical machine translation to follow natural language di-

rections in a tractable way. We have implemented a version

of this system and demonstrated that it shows promise for

route instruction following. No information was provided

about the alignment of natural language concepts and path

descriptions; learning was entirely based on example pairs of

instructions and map traces, with no pre-programmed concept

of the meaning of natural language phrases such as “room,”

“intersection,” or “turn.”

The search mechanism we describe feasibly combines man-

agement of uncertainty in parsing and in map labeling; this

makes our approach robust to imperfect labeling techniques,

meaning it is possible to demonstrate a system that goes all

the way from NLP to robot-built maps. Even though our

experiments were performed without using a real robot, all

the information used by our system was extracted from data

collected by a real robot. Our results show approximately a

70% success rate in following instructions given by humans

through an entirely novel map, including demonstrated ability

to interpret difficult concepts such as counting up to some

condition.

A. FUTURE WORK

The experimental results demonstrate the potential of

our approach. However, there are several improvements in

progress which will make human direction-giving easier and

more natural. Our tests were performed in a previously-

unseen map, suggesting that our training approach does lead

to learning of the semantic intent of English route instructions.

However, our current system uses a complete map of the

environment to perform route-finding. Since there are cases

when such a map may not be available a priori, we intend to

extend our current work to enable online parsing—that is, the

robot interprets the directions as it moves through an unknown

environment. We also plan to extend the current approach to

learn to label maps based on training data; in this way, we will

learn a topological map representation that is most suitable

3Retrieved from http://www.cs.utexas.edu/∼ml/wasp.



as a target for the natural language examples. In future, we

also intend to perform more extensive experiments with actual

robots in various environments.

Additionally, the version of this system for which we have

experimental results does not handle natural language descrip-

tions that relate to objects or the appearance of certain areas

in an environment (i.e., landmarks), which are an important

aspect of human navigation [23]. It also does not take context

into account; the grammar expresses only information about

rooms the robot traverses, and not surrounding spaces, which

makes certain commonly-occurring utterances (such as “go

to the end of the hall” or “pass the hallway on your left”)

impossible to express. Neither of these restrictions are inherent

limitations of our approach, but rather are a result of the

underlying map representation and path description grammar.

We are currently extending the Voronoi [6] representation to

a more fine-grained spatial resolution along with the ability

to represent landmark and object locations in the map, and a

more complex version of [14] the grammar has been designed

which allows for formal path descriptions which use landmarks

in the form of identifiable node types as well as contextual

information. We are confident that our approach will be able

to parse more general descriptions using such a representation.

Fig. 10. An example of a map that incorporates labeled nodes, which will
allow contributors to describe paths in terms of landmarks seen and passed
through. Contributors will be asked to describe the path shown in red through
the map.

Because these changes will allow more complex directions

to be learned and grounded in a more complex map, we expect

to need a larger set of training data to fully cover the richer

language allowed. We are pursuing gathering much larger

training and test sets using Amazon’s Mechanical Turk tool,

which will allow us to explore the effectiveness and tractability

of this scheme for unconstrained natural language input from

a large number of contributors.
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