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Folo: Latency and Quality Optimized Task
Allocation in Vehicular Fog Computing

Chao Zhu, Jin Tao, Giancarlo Pastor, Yu Xiao∗, Yusheng Ji, Quan Zhou, Yong Li and Antti Ylä-Jääski

Abstract—With the emerging vehicular applications such as real-time situational awareness and cooperative lane change, there exist

huge demands for sufficient computing resources at the edge to conduct time-critical and data-intensive tasks. This paper proposes

Folo, a novel solution for latency and quality optimized task allocation in Vehicular Fog Computing (VFC). Folo is designed to support

the mobility of vehicles, including vehicles that generate tasks and the others that serve as fog nodes. Considering constraints on

service latency, quality loss, and fog capacity, the process of task allocation across stationary and mobile fog nodes is formulated into a

joint optimization problem. This task allocation in VFC is known as a non-deterministic polynomial-time hard (NP-hard) problem. In this

paper, we present the task allocation to fog nodes as a bi-objective minimization problem, where a trade-off is maintained between the

service latency and quality loss. Specifically, we propose an event-triggered dynamic task allocation (DTA) framework using Linear

Programming based Optimization (LBO) and Binary Particle Swarm Optimization (BPSO). To assess the effectiveness of Folo, we

simulated the mobility of fog nodes at different times of a day based on real-world taxi traces and implemented two representative

tasks, including video streaming and real-time object recognition. Simulation results show that the task allocation provided by Folo can

be adjusted according to actual requirements of the service latency and quality, and achieves higher performance compared with naive

and random fog node selection. To be more specific, Folo shortens the average service latency by up to 27% while reducing the quality

loss by up to 56%.

Index Terms—Computing Offloading, Vehicular Fog Computing (VFC), Dynamic Task Allocation, Linear Programming (LP), Binary

Particle Swarm Optimization (BPSO).

✦

1 INTRODUCTION

Future vehicles are becoming smarter and more connected.
The white paper [1] published by 5G Automotive Asso-
ciation describes emerging automotive applications, such
as real-time situational awareness, see-through for passing
and high-definition local maps, which closely involve data-
intensive and latency-sensitive computing tasks, e.g., pat-
tern recognition [2, 3] and augmented reality (AR) [4, 5].

Cloud models are not applicable to environments where
operations are critical to latency. As an example, the pre-
vention of collisions and accidents cannot afford the latency
caused by round trips between the vehicle and the remote
cloud. In order to solve this problem, a new computing
paradigm called fog computing [6] has been proposed. Its
key idea is to push intelligence (e.g., computing resources,
application services) to the edge where data is being gener-
ated and acted upon [7].
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Due to the mobility of vehicles, the computational and
communication workloads generated by vehicular applica-
tions vary with time and location. At the same time, as Xiao
et al. proposed [8] and Satyanarayanan et al. [9], fog nodes
in Vehicular Fog Computing (VFC) scenarios can be either
stationary or mobile. For instance, commercial fleets with
sufficient computing resources and network connectivity
can become mobile fog nodes to handle service instances
generated by neighboring vehicles and passengers. The
mobility of fog nodes opens up new opportunities, such as
on-demand computing [8]. However, it also adds a layer of
complexity to the task allocation process in VFC.

According to [10, 11], by relaxing the tolerance of quality
loss, service latency could be reduced to a certain extent. We
explore a novel dimension, Quality Loss of Results (QLR)
to represent the user acquired service with lower or less-
than-optimal quality compared with the perfect result. In
this paper, a dynamic task allocation solution, called Folo,
is designed that optimizes service latency and QLR under
the application-specific requirements, e.g., communicating
and computing demands. Furthermore, the process of task
allocation across stationary and mobile fog nodes is for-
mulated as a bi-objective optimization problem. The op-
timization objectives include both minimizing the average
service latency and reducing the overall quality loss. As it
proves to be an NP-hard problem, an event-triggered task
allocation architecture, i.e., Dynamic Task Allocation (DTA)
is proposed using Linear Programming based Optimization
(LBO) and Binary Particle Swarm Optimization (BPSO) to
solve it.

To evaluate the effectiveness of Folo, a set of real-world
taxi traces collected in Shanghai city is used to simulate



the mobility of fog nodes at different times of day, and
two example tasks, including video streaming and real-
time object recognition is implemented [12]. The resource
consumption of the example tasks is measured through
real-world experiments, and the performance of vehicle-to-
fog communications is analyzed using veinsLTE, which is
an inter-vehicle communication simulator [13]. Compared
with the existing solutions, e.g., naive and random, Folo
shortens the average service latency while reducing the
overall quality loss, and achieves a better balance between
service latency and quality loss.

The key contributions of this work are summarized
below:

• Folo is designed, which is a novel solution for latency
and quality optimized task allocation across stationary
and mobile fog nodes in VFC.

• The process of task allocation is formulated as a joint
optimization problem and solved with LBO and BPSO
based DTA approach.

• The effectiveness of Folo is evaluated through simu-
lation, using real-world application profiles and taxi
traces as input. The results show that Folo outperforms
the existing solutions in terms of service latency and
quality.

The rest of the paper is organized as follows. An
overview of Folo is given in Section 2. Section 3 describes
the system model and problem formulation. The dynamic
task allocation approach is presented in Section 4. Section
5 explains an application profiling. Section 6 discusses the
evaluation configuration and final results before we con-
clude in Section 7.

2 RELATED WORK

Fog computing shares the same principle of moving com-
puting resources to the edge with mobile edge computing
[14]. Different architectures of VFC have been proposed
in the literature. For example, Satyanarayanan et al. [9]
proposed to turn each vehicle into one fog node and select
a coordinator for each zone. Xiao et al. [8] preferred to turn
commercial fleets into fog nodes so as to serve neighboring
vehicles and passengers, while Hou et al. [15] recommended
utilizing additional computing power on slow moving or
parked vehicles. In addition, Ni et al. [16] studied the ar-
chitecture of fog-based vehicular crowdsensing considering
security, fairness, and privacy.

Relevant to our work, previous research works have
investigated task allocation in fog/edge computing [17–24].
Li et al. [11] minimized service response time and energy
consumption by jointly optimizing the offloading strategy
and the QoR for all edge nodes. Sardellitti et al. [25] jointly
optimized radio and computational resources of multiple
cells in edge computing. Liu et al. [26] studied the multi-
task allocation problem for the edge environment with con-
sideration of resource-intensive and latency-sensitive mo-
bile applications. Dinh et al. [27] presented an offloading
framework to jointly minimize the execution latency of tasks
and power consumption of devices considering CPU fre-
quency. Deng et al. [28] studied the trade-off between energy
consumption and transmission delay in a cloud computing
system. However, these existing results cannot be directly
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Fig. 1: Overview of Folo. The light magenta circle indicates
the communication range of the client vehicle in the center.
Here the communication is limited to one hop of DSRC.

applied to VFC, for they did not consider the mobility of ve-
hicles. Feng et al. [29] proposed a job caching framework in
VFC based on ant colony optimization algorithm. However,
it focused on caching and did not consider other scenarios
e.g., local processing. To the best of our knowledge, Folo is
the first joint optimization to provide service latency and
quality in VFC, with consideration of the mobility of fog
nodes.

3 SYSTEM OVERVIEW

In this section, the related terms are defined and an
overview of the process of task allocation in Folo is given.

3.1 Related Terms

Fog Nodes: In Folo, two types of fog nodes is considered as
follows:

* Stationary Fog Nodes: The computing nodes co-located
with cellular base stations, road side units, Wi-Fi access
points, or any other stationary infrastructure.

* Mobile Fog Nodes: The computing nodes carried by
moving vehicles with onboard Dedicated Short-range
Communication (DSRC) [30] and Long-Term Evolution
(LTE) communication modules.

Tasks: The process of an application can be broken
down into a set of services. For example, AR-based driving
assistance includes services such as object recognition and
video streaming. Services are independently deplorable.
And each service has its own latency, quality constraints,
and workload profiles. In Folo, a task refers to a service
instance. For instance, suppose there is a vehicle demand
for recognizing potential obstacles from a video clip taken
by its camera and requires to offload this service instance to
fog nodes due to its limited computing ability. Then, the
task in this service instance consists of video uploading,
video preprocessing, feature extraction, pattern matching
and results downloading. The task is considered to be
the basic unit for task allocation. That is to say, from the
perspective of task allocation, a task cannot be divided into
sub-tasks.

Client Vehicles: The Vehicle that generates tasks are de-
fined as the client vehicle. Each client vehicle may generate



multiple tasks simultaneously. Tasks generated from one
client vehicle can be assigned to different fog nodes.

Service Zones: It is safe to assume that urban areas in
modern cities are completely covered by cellular networks.
In a like manner, according to [31], an urban area is divided
into service zones and a stationary fog node within a zone
is selected to manage and coordinate all the fog nodes in
the same zone. The coordinator is called zone head. For
simplification of the system model, a Long-Term Evolution
(LTE) base station is always selected to be the zone head,
and assume that mobile fog nodes are deployed on com-
mercial fleets, e.g., taxis and buses. With the existing cellular
registration mechanisms, mobile fog nodes always inform
the zone head as they enter or leave the zone. In addition,
they regularly report their moving directions, locations and
available capacities to the zone head. Note that locations
and dynamics of fog nodes, client vehicles, as well as base
stations are visible to Folo.

3.2 Process of Task Allocation

The task allocation process in Folo is manifested in Figure 1.
The whole process consists of 4 steps as shown below.

3.2.1 Mobile fog nodes discovering

In the initial phase, a client vehicle needs to determine
which mobile fog nodes are within its communication range.
It broadcasts one-hop probe messages through DSRC and
collects responses from fog nodes.Any fog nodes that re-
spond are included in the list of fog candidates. As shown
in Figure 1, the fog candidates of the client vehicle A are the
fog nodes within the communication range of A.

3.2.2 Requests sending

After the fog candidates are discovered, the client vehicle
sends a request to the zone head via LTE. The request
contains information about the tasks to be offloaded to fog
candidates.

* Task ID: The unique ID of a task.
* Application Type: The type of the application.
* Task Profiles: Description of the generated workload and

the task-specific constraints, such as tolerable latency,
supported video resolutions and data size.

* Task Generator: The client vehicle that generates data
and sends the request.

* Fog Candidates: The fog nodes within the communica-
tion range of the client vehicle.

3.2.3 Tasks to fog candidates assigning

When receiving a request from any client vehicles, the
zone head executes the task allocation algorithm to decide
where to run the tasks. Concerning the frequent changes in
network topology, the zone head would estimate the service
time of the fog node candidates according to their predicted
paths and filter out the fog nodes which can only provide
services for very short time. Furthermore, with the exist-
ing cellular registration mechanisms, the zone head would
check the positions of mobile fog nodes periodically to avoid
out-of-date information. The details of the algorithm will be
presented in Section 5.

3.2.4 Task migration scheduling

The connection between client vehicles and mobile fog
nodes may not last until the assigned tasks complete due
to their mobility. For instance, when the corresponding fog
node moves out from the current service zone, the execution
of a task may be interrupted. In this case, the zone head of
the current service zone must call another fog node to take
over the task.

In Folo, we propose to utilize the light-weight containers
(e.g., LXD) for service provisioning [32]. Task migration can
be event-triggered and the tasks would be migrated with
Iterative Live Migration (i.e., pre-copy) [33]. When the task
migration is triggered (e.g., the signal strength decays to a
certain threshold), with the Checkpoint & Restore in User-
space (CRIU) technology, the disk files and memory pages
of the container would be copied from source fog node to
destination fog node while the container keeps running.

4 SYSTEM MODELING AND PROBLEM FORMULA-

TION

4.1 System Model

In this section, the system model of Folo is presented. Ki is
defined as the set of tasks generated by the client vehicle
i, and Ji is defined as the set of fog candidates for the
client vehicle i. A binary variable xik is defined to indicate
whether the task k is generated by i, and another binary
variable xij is defined to indicate whether fog node j is
available for i (i.e., the fog node j is in the list of fog
candidate). The detailed notations and definitions are listed
in Table 1. Then, we have

xik =

{

1, k ∈ Ki

0, Otherwise
, xij =

{

1, j ∈ Ji

0, Otherwise
(1)

Furthermore, a binary variable xjk is defined to indicate
whether task k is assigned to fog node j. The task k will be
successfully assigned to the fog node j only if the fog node
j is available for the generator of the task k. Therefore,

∀i ∈ I, j ∈ J , k ∈ K, xjk ≤ min{xik, xij} (2)

4.1.1 Service Latency

Transmission Delay: Given limited bandwidth, the trans-
mission delay depends on the size of data to be transmitted.
In this paper, Quality Loss of Results (QLR) is proposed to
quantify the near-optimal of the user acquired service qual-
ity (i.e, quality degradation). For each task k, qk is defined
as the level of QLR, and D(qk) as the corresponding size
of data to be transmitted. The transmission delay TComm

k is
calculated according to the transmission data rate Cij of the
link between the selected fog node j and the client vehicle i.

TComm
k =

D(qk)

Cij

(3)

Processing Delay: P (qk) is used to denote the processing
delay of task k with QLR equal to qk, thus, the processing
latency TProc

k is expressed as follows:

TProc
k = P (qk) (4)



Notations Definitions
k,K task index, set
i, I client vehicle index, set
j,J fog node index, set
Ki the set of tasks generated by client vehicle i
Ji the set of fog candidates available for client vehicle i
qk the QLR level of task k

D(qk) the data size of task k with the QLR level equal to qk
xjk whether task k is assigned to fog node j
xij whether fog node j is available for client vehicle i
xik whether task k is generated by client vehicle i

R(qk) the demand from task k with QLR level equal to qk
P (qk) the processing delay of task k with QLR level equal

to qk
Cij the data rate between client vehicle i and fog node j.
Sj the capacity of fog node j
τk the maximum tolerable service latency of task k

TComm
k

the transmission delay
TProc
k

the processing delay
ℓ round trip time (RTT) overhead
Tk the total service latency
T the maximum service latency of all tasks

Qsum the total quality loss of all tasks
Q the set of selected QLR levels
X the set of selected fog nodes
U the unassigned task set

TABLE 1: Notations and definitions

The service latency of each task k can be written as
follows:

Tk = TComm
k + TProc

k + ℓ, (5)

where ℓ refers to a constant overhead, which captures RTT
between a fog node and a client vehicle.

4.1.2 Constraints

Quality Loss Constraint: The tolerance for quality loss is
application-specific. In Folo, 5 levels of QRL is defined.
Level 1 refers to the strictest demand for quality, while
Level 5 represents the highest tolerance for quality loss. In
practice, qk can be defined based on video resolution e.g., in
the case of video streaming.The QLR constraint for the task
k is represented as follows:

∀k ∈ K, qk ∈ {1, 2, 3, 4, 5} (6)

Assignment Constraint: One task is supposed to be the
basic unit for task allocation. Therefore, it must be assigned
as a whole to one fog node.

∀k ∈ K,
∑

j∈J

xjk = 1 (7)

Service Latency Constraint: According to measurements
in [34], the maximum tolerable service latency for an AR
navigation application is 250 ms, whereas the maximum
tolerable service latency for video streaming application can
be as much as 1 second.τk is used to denote the maximum
tolerable service latency for the task k. In order to ensure
that the task can be completed in time, the service constraint
is as follows:

∀k ∈ K, T (k) ≤ τk (8)

Capacity Constraint: The demand for capacity (i.e.,
GPU, CPU and memory) is affected by the service latency
and the expected quality. The total demand received by a fog
node cannot exceed its capacity. Sj is defined as the capacity

of fog node j, and R(qk) as the demand from task k with
QLR qk. The capacity constraint is formulated as below.

∀j ∈ J ,
∑

k∈K

R(qk)xjk ≤ Sj (9)

4.2 Problem Formulation

The maximum service latency of all tasks is denoted by T =
max
k∈K

{Tk}, and the total quality loss by summation of the

QLR levels of all tasks: Qsum =
∑

j∈J ,k∈K

{qkxjk}.

Folo is designed to minimize the maximum service
latency T while minimizing the total quality loss Qsum.
Nonetheless, the two objectives are coupled by qk and
cannot be optimized simultaneously. In the following, the
trade-off between the two objectives is investigated and the
joint objectives function is defined as ϕtT +ϕqQ

sum, where
ϕt, ϕq ∈ [0, 1] are two scalar weights.

X = {xjk} is used to denote the set of selected fog
nodes, and Q = {qk} to denote the set of selected QLR
levels. The optimization problem is formulated as:

ξ1 : min
X ,Q

ϕtT + ϕqQ
sum (10)

s.t.

∀j, k, xjk ∈ {0, 1}, qk ∈ {1, 2, 3, 4, 5} (10a)

∀k,
∑

i∈I,j∈J

(
D(qk)

Cij

+ P (qk) + ℓ)xjk ≤ τk (10b)

∀j,
∑

k∈K

R(qk)xjk ≤ Sj (10c)

∀k,
∑

j∈J

xjk = 1 (10d)

T = max
∀k∈K

{
∑

i∈I,j∈J

(
D(qk)

Cij

+ P (qk) + ℓ)xjk} (10e)

Qsum =
∑

j∈J ,k∈K

qkxjk (10f)

∀i, j, k, xjk ≤ min{xij , xik} (10g)

Proposition 1: ξ1 is a NP-hard problem.
Proof 1: See Appendix A.

5 DYNAMIC TASK ALLOCATION APPROACH

In the vehicular scenario, because of the mobility of client
vehicles, the geographic locations of tasks are changing.
In order to solve the dynamic task allocation problem,
an event-triggered DTA algorithm is proposed. In DTA,
the task allocation solvers (TAS) will be triggered by the
upcoming events (such as new task generation and service
interruption) to solve the problem of task allocation. Con-
sidering the highly mobile environment (i.e., the topology
of the network is changing frequently) of VFC, the system
should make decisions of task allocation in real time. In this
section, we first propose LBO (Linear Programming based
Optimization) to solve Problem ξ1. With the help of the
linear programming solver (e.g., glpk), the system can make
an efficient task allocation decision with a balanced multi-
objective optimization in a short time. To further shortcut
the computing time, we then choose a PSO-based algorithm



called BPSO (Binary Particle Swarm Optimization) because
of its relatively low computational complexity, since there
are no crossover, decoding, and encoding of a genetic al-
gorithm (GA) compared with other bio-inspired algorithms
(e.g., ant colony optimization).

5.1 Linear Programming based Optimization

5.1.1 Problem Linearization

Problem ξ1 is a non-linear optimization problem because
Constraint (10b) and Constraint (10c) contain a production
of two variables qk and xjk. To convert the optimization into
an LP problem, yjk = qkxjk is defined and Y = {yjk} is
used to denote the set of variable yjk. Moreover, the discrete
variable qk is relaxed into a continuous one, that is qk ∈
[1, 5].

Learn from [11], two linear approximate trade-off func-
tions, P (qk) = atqk + bt, and R(qk) = arqk + br are
considered. In addition, a new variable t with an additional
constraint t ≥ max

k∈K
Tk is introduced.

When D(qk) = adqk + bd, P (qk) = atqk + bt, R(qk) =
arqk+br , we get ξ3, the LP problem that is equal to Problem
ξ1:

ξ3 : min
X ,Q,Y,t

ϕtt+ ϕq

∑

j∈J ,k∈K

qkxjk (11)

s.t.

∀j, k, 0 ≤ xjk ≤ 1, 1 ≤ qk ≤ 5 (11a)

∀j, k, 0 ≤ yjk ≤ 5xjk (11b)

∀j, k, qk − 5(1− xjk) ≤ yjk ≤ qk (11c)

∀k,
∑

i∈I,j∈J

(
bd
Cij

+ bt + ℓ)xjk + (
ad
Cij

+ at)yjk ≤ τk (11d)

∀j,
∑

k∈K

brxjk + aryjk ≤ Sj (11e)

∀k,
∑

j∈J

xjk = 1 (11f)

∀k,
∑

i∈I,j∈J

(
bd
Cij

+ bt + ℓ)xjk + (
ad
Cij

+ at)yjk ≤ t (11g)

∀i, j, k, xjk ≤ xij , xjk ≤ xik (11h)

Proposition 2: Constraints (11b) and (11c) are equal to the
constraint yjk = xjkqk
Proof 2: See Appendix B.

5.1.2 Linear Programming based Optimization

In LBO, the input is the unassigned tasks set U , which
contains the information about client vehicles set I , fog
nodes set J , tasks set K. Furthermore, based on information
of tasks and location of vehicles, the optimization matrix is
formulated, which contains the available fog nodes infor-
mation xij , the host vehicle information xik and the trans-
mission data rate information Cij between client vehicles
and fog nodes. Next, the LBO would take the end-to-end
latency and overall quality loss of tasks into consideration
to implement an LP solver to get the balanced optimization
solution with continuous values. After that, the continuous
values are reshaped to integral ones. Similar to [27], for each
task k, if ∃m ∈ J , xmk = max

j∈J
(xjk), xmk is set to 1 and the

TABLE 2: BPSO Particles

Assign1 ... Assign|K| QLR1 ... QLR|K|

Particle1 ass1 ... ass|K| q1 ... q|K|

... ... ... ... ... ... ...
Particlep ass1 ... ass|K| q1 ... q|K|

... ... ... ... ... ... ...
Particle|P | ass1 ... ass|K| q1 ... q|K|

rest to 0. Meanwhile, each qk is rounded up to its nearest
integer.

5.1.3 Complexity Analysis

According to [35], the LBO has the complexity in polynomial
time O(v3.5B2), where v is the number of variables and B
is the number of the bits in the input. Given fog nodes set J
and tasks set K, the time complexity of LBO is O((|J ||K|+
2|K|+ 1)3.5B2).

5.2 Binary Particle Swarm based Optimization

5.2.1 Parameterization

Due to the high computation complexity of LBO, a heuris-
tic algorithm BPSO based on Partial Swarm Optimization
(PSO) [36] is proposed. However, the original PSO algorithm
is designed for solving problems with continuous solutions.
To fit for the problem, we first parameterized the particles.

Similar with LBO, BPSO uses the unassigned tasks set U
as input and manages to find the assignment decision xjk

and quality loss level qk for each task k.Firstly, a swarm
set P with |P | particles are generated. Each particle has a
search space of 2 × |K| dimension. As shown in TABLE 2,
the dimensions 1 ∼ |K| demonstrate the decision of the
task assignment. Each part of dimension has a discrete set
of possible values limited to {1 ≤ assk ≤ |J |}. Therefore,
the results of dimensions 1 ∼ |K| can be transferred to task
assignment set X , where xjk = 1 when assk = j. The last
part of dimensions from |K|+ 1 to 2× |K| refer to the QLR
selected for each task k, and each dimension has a discrete
set of possible values limited to {1 ≤ qk ≤ 5}.

Using such a particle parameterization, the swarm is rep-
resented as a |P |×(2∗|K|) two-dimensional array consisting
of |P | particles. Each particle is represented as a vector of
|K| task assignment decisions and |K| QLR selections. Thus,
each particle flies in a (2 ∗ |K|)-dimensional search for space
to search for the best solution for Problem ξ1.

5.2.2 Binary Partial Swarm Optimization

In PSO, the pth particle is denoted by Xp =
(xp1, xp2, ..., xpD) and the best position it has experienced
(with the best fitness value) is recorded as Xp

best. The index
number of the best position experienced by all particles
in the swarm is called Gbest. The velocity of particle p is
represented by Vp = (vp1, vp2, ..., vpD). For each generation,
its d dimension (1 ≤ d ≤ D) updates according to the
following equation:

Vpd = wVpd+C1rand1[X
p
best−Xpd]+C2rand2[Gbest−Xpd]

(12)

Xpd = Xpd + Vpd+1 (13)



Algorithm 1 BPSO: Binary Paticle Swarm Optimization

Input: Unassigned task set U
Output: Assignment decision set X ; QLR set Q

1: Extract the client vehicles set I , fog nodes set J , tasks
set K from the unassigned task set U

2: Initialize a particle swarm with |P | population, global
velocity (C2), local velocity vector (C1), inertia weight
(w) and velocity vector (V ) for each particle in a popu-
lation, iterator = 1

3: while iterator ≤ Max Iteration Number do
4: Calculate the fitness value for each particle using Eq.

(10)
5: Xp

best = Best position value for each particle
6: Gbest = Minimum fitness value from the set of service

allocation vectors
7: Calculate Vpd according to Eq. (12)
8: Calculate Xtry

pd according to Eq. (13)

9: Round Xtry
pd to discrete values

10: if Xtry
pd satisfy all constraints in Problem ξ1 then

11: update Xpd (Xpd = Xtry
pd )

12: end if
13: iterator = iterator + 1
14: end while
15: return Gbest

where w is the inertia weight, C1 and C2 are acceleration
constants, and rand1 and rand2 are two random functions
with a range [0, 1].

To order to adapt to the problem, we customize the
method in [37] and propose the BPSO algorithm, which is
illustrated in Algorithm 1. As illustrated in Line 2, we first
initialize the related parameters, which are global velocity
(C2), local velocity vector (C1), inertia weight (w), according
to [37] (C1 = C2 = 1, w = 0.9). Simultaneously, we
randomly generate as many potential assignments for the
problem as the size of the initial population |P |. Here, we
used Eq. (10) as the fitness function.

The algorithm keeps an updated version of two special
variables through out the course of its execution: global
best position Gbest and local best position Xp

best. It does
that by conducting two ongoing comparisons: for each
particle, compare its fitness value with the best position
Xp

best it has experienced. If it is better, then it will be set
as the current best position Xp

best; for each particle, compare
its fitness value with the best position Gbest experienced
globally. If it is better, reset Gbest’s index number. These
two positions affect the new velocity of every particle in the
population according to Eq. (12). As shown in this equation,
two random parameters control the amount of effect the two
positions (i.e., Gbest and Xp

best) impose over the new particle
velocity. The algorithm uses the new velocity to update the
particle’s current position with a new position according to
Eq. (13). Note that, until now the new positions of particles
are consist of continuous values, which are meaningless
solutions for the task allocation problem. Thus, as shown
in Line 9, we round the values of all dimensions in each
particle to their nearest integers and check whether the
values fit all the constraints listed in Problem ξ1. Then, the
algorithm evaluates the fitness of these particles according
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Fig. 2: Evolution of BPSO

to their rounded positions. Once the current positions are
better than the previous ones and all the constraints are sat-
isfied, all particles will adjust their positions and constitute
the new status of the population. This process continues
until the termination condition is satisfied (e.g., maximum
iteration or getting the required result).

5.2.3 Convergence Analysis

To explore the convergence of BPSO, we conduct one round
of BPSO with an input of 14 tasks for 200 iterations. We
record the fitness value of each iteration and illustrate the
results of the evolution of BPSO in Figure 2. In Figure 2, we
can see there is a dramatic drop in fitness value (from 250
to 180) when ϕt/ϕq = 50. However, when ϕt/ϕq = 500,
the BPSO does not have an apparent convergence (from 50
to 48). The most likely reason is that the BPSO falls into a
local optimum and can not reach a further better solution.
We may introduce chaos searching [38], induce Niching
Behavior [39], or use other strategies, such as resampling
technique [40], or weight-digression strategy [41] to balance
its global search ability and convergence speed in future
work.

5.3 Dynamic Task Allocation

In this section, an event-triggered algorithm DTA based
on two designed TASs, e.i., LBO and BPSO are proposed,
and the detailed algorithm is described in Algorithm 2.

5.3.1 Initialization

In the service zone, the client vehicles generate tasks and
send service requests to the zone head. The zone head will
collect the information and add the tasks to the unassigned
tasks set U , as shown in Line 1. DTA generates an empty set
A to load the tasks assigned by the zone head, as shown in
Line 2.

5.3.2 Event Handling

In Folo, the zone head detects events in its service zone.
Here, two types of events are considered:



Algorithm 2 DTA: Dynamic Task Allocation

Input: Traces of client vehicles and mobile fog nodes; Loca-
tion of zone head; Unassigned task set U

Output: Assignment decision set X ; QLR set Q ; Assigned
task set A

1: Initialize unassigned task set U
2: Initialize assigned task set A = ⊘
3: while K 6= ⊘ do
4: Execute TAS for k ∈ U , calculate X ,Q
5: t → A, Remove k from U
6: Transmit and process assigned task t ∈ A
7: switch (Events)
8: case New task knew:
9: knew → U

10: Execute TAS for new coming task knew

11: case Service interrupted task kbreak:
12: Remove kbreak from A, kbreak → U
13: Execute TAS for migrating task kbreak

14: end switch
15: Remove finished task kdone from A
16: end while

* New Tasks: The zone head receives a new request from
a client vehicle.

* Service Interruption: When a client vehicle and a mobile
fog node are moving towards a different direction, the
connection between them may break down. Assuming
that mobile fog nodes keep monitoring the channel
states and report to the zone head when the disconnec-
tion is going to happen. The zone head will then find
another fog node for the task to migrate to, as described
from Line 12 to Line 13.

6 APPLICATION PROFILING

To test Folo, two example tasks, i.e., video streaming and
real-time object recognition are implemented. The reason
for choosing these two tasks is that they are building blocks
of many vehicular applications, such as AR-based driving
assistance. In the experiments, the impact of the variation
of service quality on the service latency and the amount of
resource consumption are explored. This section describes
the experiments of creating task profiles and analyzing the
performance of vehicle-to-fog communication. The hard-
ware devices used for the experiment are listed in Table 3.
The experimental results will be used later for configuring
the simulator described in Section 7.

Video streaming is implemented based on Kurento [42],
an open source platform for WebRTC-based real-time com-
munications. As shown in Figure 3a, the Kurento media
server is run on a Linux desktop and a client applica-
tion is run on three Android phones. The client applica-
tion captures video and sends it to the media server. The
CPU/GPU/memory usage of the media server is measured
while receiving video streams from phones.

Five different video resolutions, {1920 * 1080, 1280 *
960, 960 * 720, 640 * 480, 320 * 240} are tested. The frame
rate of video streaming is limited to 14 fps owing to the
hardware constraint. The QLR level of video streaming is
defined based on video resolution. The highest resolution

TABLE 3: Experiments Hardwares
Video Streaming

Server Client
Hardware Desktop Phone 2 * Phone

OS Linux Android 7.0 Android 7.0
Model N.A. Huawei Mate9 Huawei P10
CPU 4x3.2GHz 4x2.36GHz 4x2.36GHz

Memory 32GB 6GB 4GB

Object Recognition
Server Client

Hardware LapTop Web Camera
Model HP-zbook G3 Logitech HD
GPU Quadro M2000M N.A.
CPU 8x2.7GHz N.A.

(a) Video Streaming

●

●

(b) QLR v.s. Memory consump-
tion

(c) Real-time Object Recognition
in AR mode

●

●

(d) QLR v.s. Processing Time

Fig. 3: Application Profiles: the highest resolution cor-
responds to the lowest QLR level, i.e., video resolution
320*240, 640*480, 960*720, 1280*960, 1920*1080 correspond
to QLR level of 5, 4, 3, 2, 1 respectively.

corresponds to the lowest QLR level, and vice versa. As
shown in Figure 3b, the memory usage increases with video
resolution and decreases nearly linearly with the QLR level.
On the basis of the results, a linear model R(qk) is built to
estimate the memory usage (in MB).

R(qk) = −27.5× qk + 247.5 (14)

Given a fixed frame rate, the data size depends on the
video resolution. Assuming that the transmission video is
compressed with the Youtube-HD standard. According to
[43], the data size (in KB) of each frame D(qk) is formulated
as follows:

D(qk) = −7.7× qk + 41.2 (15)

In the second experiment, an AR-based object recog-
nition application is implemented based on Yolo [44]. As
shown in the Figure 3c, the objects recognized from video
streams are labeled in the camera view. Same with video
streaming, the QLR level of this task is also defined based
on video resolution. In experiments, the processing time is
measured considering recognizing objects from each frame.



TABLE 4: Simulation Configuration

Parameters Value
ad, bd(KB) -7.7, 41.2
ar, br(MB) -27.5, 247.5
at, bt(ms) -16.56, 176.5
ϕt/ϕq 50, 100, 150, 450, 500

Resolution/QLR 1920p/1, 1280p/2, 960p/3, 640p/4, 320p/5
Frame Rate (fps) 14

Delay Tolerance (s) 1[45]
Last Time (s) 10

Mobile Fog Node Zone Head
Capacity (GB) 0.5, 0.7, 0.9, 1.1, 1.3, 1.5 2.1

DSRC LTE
Range (m) 300 2000

Data Rate (kbps) 500 550, 450, 200, 150
RTT Overhead (ms) 20 300
No. Client Vehicles 100

As shown in Figure 3d, the processing time is compared
between 5 QLR levels. For the processing time has a nearly
negative linear correlation with the QLR level, the process-
ing time (in ms) per frame P (qk) is formulated as follows:

P (qk) = −16.56× qk + 176.5 (16)

7 EVALUATION

7.1 Evaluation Configuration

7.1.1 Vehicle Mobility and Task Generation

A set of real-world taxi traces is used to simulate the mobil-
ity of mobile fog nodes. The dataset contains the GPS traces
collected from April 13 to 30, 2015 in Shanghai city, which
was collected by the iData Laboratory of Tongji University
[12]. To evaluate the impact of the density of mobile fog
nodes, an area of 4 km2 acreage near Shanghai Pudong
Airport is selected, and the traces within the area during
two time periods are collected.

* Time Period I: 09 : 55 ∼ 10 : 00, April 20, 2015
* Time Period II: 13 : 55 ∼ 14 : 00, April 20, 2015

Time Period I belongs to rush hour. As visualized in
Figure 4a, the density of taxis traces in Time Period I is
higher. In details, 172 taxis appeared in the selected area
during the first time period, compared with 120 taxis in the
latter.

Besides the taxis, 100 vehicle routes in SUMO are gener-
ated, following the method used in [46]. These vehicles act
as client vehicles and generate video streams to be processed
on fog nodes. Each time a random number (no more than 8)
of video streams is generated, each stream lasts 10 seconds.
Our simulation runs last for 60 seconds. For instance, in
the first minute of Time Period I, 33 client vehicles generate
66 video streams, while 35 client vehicles are chosen to
generate 70 video streams during the first minute of Time
Period II.

When a client vehicle or a mobile fog node on duty
moves out of the current service zone, ongoing tasks should
be migrated to other fog nodes. Figure 4b shows the number
of task migration that occurred during Time Period I and
II. According to the figure, task migration happens more
frequently in Time Period I when the density of mobile fog
node is higher (Since the GPS fixes included in the taxi traces
are sparse, the actual need for task migration may be less).

7.1.2 Network Configuration

DSRC and LTE are the most popular in-vehicle networking
technologies. DSRC is designed based on IEEE 802.11p. The
data rate of DSRC can reach up to 27Mb/s with around
300 meters of coverage [45]. Compared with DSRC, LTE
has a much wider coverage and more deterministic quality
of service (QoS) guarantees. According to [47], LTE can
support User Equipment (UE) with high mobility at the
speed of 350 km/h.

In this paper, vehicles broadcast beacons through DSRC
to handshake with each other, such as detecting fog nodes
and scheduling task migration. In addition, the DSRC chan-
nels are responsible for data transmission between client
vehicles and mobile fog nodes. Alternatively, LTE is used
for communications between client vehicles and the corre-
sponding zone head (base station), e.g., sending requests
and notifications of entering/leaving a service zone. The
zone head itself is also a stationary fog node.

According to Appendix C, the default data rate of DSRC
is set to be 500kbps, and the data rates of LTE is set to
be {550kbps, 450kbps, 200kbps, 150kbps}, depending on the
channel state information. Additionally, according to the
measurements in [45], the RTT overhead is set to be 20ms for
DSRC and 300ms for LTE. And the other parameter values
are listed in TABLE 4.

7.1.3 Task Allocation Strategies

As mentioned in Section 4, the scalar weight ϕt and ϕq

refers to the optimization tendency toward service latency
and quality, respectively. When ϕt/ϕq is higher, the task al-
location strategy is latency sensitive; otherwise, it is quality
sensitive. For both of LBO and BPSO, we tune the ratio of
the scalar weights, ϕt/ϕq , from 50 to 500, and compare the
results between the two time periods in Figure 5.

When the density of mobile fog nodes is high, as illus-
trated in Figure 5a, the average service latency in case of
LBO is around 350 ms and that of BPSO is around 330 ms
when the QLR level is 1. The service latency in both cases
decreases with the tolerance of quality loss. However, LBO
outperforms BPSO when the algorithms are acting toward
the latency optimization. For example, when the QLR level
increases to 4, the average latency in case of LBO would
drop up to 200 ms but that of BPSO still remain at around
220 ms. The reason may be that the BPSO has been dragged
into local optimum as illustrated in Figure 2. Compared
with Figure 5b where less mobile fog nodes are available,

09:55!"#$## 13:55!"%$##

(a) Visualization of taxi traces
(b) Mobility-related task migra-
tion

Fig. 4: Simulation of Mobile Fog Nodes
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Fig. 5: Service Performance v.s. Scalar Weight

the service latency in Figure 5a is on average 50 ms shorter
when the QLR level is less than 2.

According to Figure 5, we define 4 variants of DTA based
on the value of ϕt/ϕq .

* LBO Q: QLR Sensitive LBO with ϕt/ϕq = 50.
* LBO T: Latency Sensitive LBO with ϕt/ϕq = 500.
* BPSO Q: QLR Sensitive BPSO with ϕt/ϕq = 50.
* BPSO T: Latency Sensitive BPSO with ϕt/ϕq = 500.

For comparison, two other strategies, i.e., Rand and
Naive, are implemented. These two strategies have been
investigated in recent publications [27, 29]. Rand refers to
F.Rand.Assign in [27]. It randomly selects one fog node from
among the available candidates. Naive always selects the
fog node with the highest available data rate, which is close
to AVE+Naive in [29]. In our experiments, we assume that
the QLR level is randomly chosen.

7.2 Evaluation Results

7.2.1 Service latency vs QLR

As shown in Figure 6a, the average service latency and QLR
levels among 6 different strategies are compared. The results
of Naive is used as the baseline. Overall speaking, the lower
the percentage is, the better the performance is. Here, service
latency and quality are used to measure the performance.

According to the results, LBO T leads to the shortest
service latency, while BPSO Q gains the highest quality. In
the period I, compared with Naive which always chooses
the fog node with the highest data transmission rate, LBO T
shortens the overall service latency by up to 19%. How-
ever, the BPSO T does not have a good performance for
shortening service latency due to the inherent flaws (easy to
fall into local optimum) of PSO. From the service quality
aspect, LBO Q and BPSO Q decrease the QLR by up to
42% and 56%, respectively. Notably, the BPSO Q achieves
a more balanced optimization (service latency increased by
45%) compared with LBO Q (service latency increased by
54%). It can also be observed that when the density of
mobile fog nodes is lower, these strategies perform better. In
the case of Rand, the impact is less obvious, because Rand
does not consider the vehicle density impact on networking
performance.

We also compare the distribution of service latency in
Figure 6b. In the case of BPSO T and LBO T, most tasks
are completed between 200 ms and 400 ms. Especially in
the case of LBO T, 55% of tasks are completed within 200
ms when the density of mobile fog node is high, which

outperforms the result of Naive and rand. Speaking of
BPSO Q and LBO Q, these strategies have a longer service
latency compared with Naive. This is because they improve
the service quality by sacrificing service latency. Overall, if
the application has a strict requirement of service latency,
LBO T performs better since all tasks complete within 400
ms when it is applied.

7.2.2 Memory Capacity vs. Performance

For the two tasks we have tested, memory usage becomes
a performance bottleneck. We have noticed that CPU/GPU
requirements can be satisfied as long as the memory require-
ments are met. Therefore, the performance is evaluated with
varying memory sizes. As shown in Table 4, the memory
size of a mobile fog node is set to 1.1 GB by default, and
that of a zone head is set to be 2.1 GB.

Both BPSO and LBO with ϕt/ϕq = 150 (see Figure
5) are chosen as examples to evaluate the service latency
and QLR with different memory capacities settings. The
memory size of each mobile fog node is tuned from 0.5
GB to 1.5 GB. As shown in Figure 7, when the memory
capacity of BPSO increases, the service latency, and QLR do
not show significant change. When the memory capacity of
LBO increases, the service latency decrease. In details, the
service latency decreases by around 12%.

Figure 8 illustrates the memory overflow issues. Overall
speaking, these strategies perform better in Period II when
less mobile fog nodes are available. The quality of sensitive
DTA algorithms (i.e., BPSO Q and LBO Q) have higher
memory overflow compared with the latency sensitive ones
(i.e., BPSO T and LBO T).

In summary, DTA based strategies shorten the average
service latency by up to 27% and QLR by up to 56% com-
paring with Rand and Naive. Furthermore, the density of
traffic has the negative impact on the service performance.

8 CONCLUSION

In this paper, we highlighted Folo, a dynamic task alloca-
tion solution for VFC. It is designed to minimize average
service latency while reducing the overall quality loss. We
considered the constraints on service latency, quality loss,
and fog node capacity and formulated the task allocation
process as a bi-objective optimization problem, where a
trade-off is maintained between the service latency and
quality loss. As it is proved to be an NP-hard problem, we
proposed an event-triggered dynamic task allocation frame-
work based on LBO and BPSO to solve the optimization
problem. To be specific, using LBO, the problem first should
be linearized, while BPSO solves the nonlinear discontinuity
model directly. We evaluate our solution with simulation,
which is configured based on real-world application profiles
and mobility data set. Compared with previous works, the
task allocation provided by Folo can be adjusted to service
latency sensitive and quality sensitive separately according
to actual requirements. Specifically, our solution reduces
service latency by up to 27% and increases QLR by up to
56%.
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capacity planning for edge computing,” in 2017 IEEE
International Conference on Communications (ICC), May
2017, pp. 1–6.

[35] N. Karmarkar, A New Polynomial-Time Algorithm for
Linear Programming, 1984.

[36] J. Kennedy, “Particle Swarm Optimization,” in
Encyclopedia of Machine Learning. Springer, Boston,
MA, 2011, pp. 760–766.

[37] A. Salman, I. Ahmad, and S. Al-Madani, “Particle
swarm optimization for task assignment problem,”
Microprocessors and Microsystems, vol. 26, no. 8, pp.
363–371, Nov. 2002.

[38] J. Tao, Q. Sun, P. Tan, Z. Chen, and Y. He,
“Active disturbance rejection control (ADRC)-based
autonomous homing control of powered parafoils,”
Nonlinear Dynamics, vol. 86, no. 3, pp. 1461–1476, Nov.
2016.

[39] S. Biswas, S. Kundu, and S. Das, “Inducing Niching
Behavior in Differential Evolution Through Local In-
formation Sharing,” IEEE Transactions on Evolutionary
Computation, vol. 19, no. 2, pp. 246–263, Apr. 2015.

[40] X. Wang, H. Zhang, S. Fan, and H. Gu, “Coverage
control of sensor networks in IoT based on RPSO,”
IEEE Internet of Things Journal, pp. 1–1, 2018.

[41] L. Tong, X. Li, J. Hu, and L. Ren, “A PSO Optimization
Scale-Transformation Stochastic-Resonance Algorithm
With Stability Mutation Operator,” IEEE Access, vol. 6,
pp. 1167–1176, 2018.
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APPENDIX A

NP-HARD PROOF

A special case, where ϕt = 0, ϕq = 1, is considered, which
means that the goal is to minimize the sum of QLR levels.
Here q̄k is defined as the quality gain in the result of task
k. It represents the opposite of QLR. Therefore, the goal of
minimizing the sum of QLR levels can be transformed into
maximizing the sum of quality gains. For the sake of sim-
plicity, Constraint (10b) is removed. In addition, Constraint
(10c) is relaxed by assuming that the resource requirement
of task k is exactly equal to its quality gain q̄k. Additionally,
we assume one client vehicle generate only one task and
one fog node in each service area. We define x̄k to indicate
whether the task k is assigned to the fog node, and S to
represent the resource capacity of the fog node. Therefore,
we get a simplified optimization problem:

ξ2 : max
∑

i∈I

q̄kx̄k (17)

s.t.
∑

k∈K

q̄kx̄k ≤ S (17a)

x̄k ∈ {0, 1} (17b)

Problem ξ2 is a classic Subset Sum Problem that has been
proven to be an NP-complete problem [48]. Hence, the
Problem ξ1 is an NP-hard problem is proved.

APPENDIX B

LINEARIZION PROOF

By listing all the possible products in Table 5, we prove that
the Constraints (11b) and (11c) are equal to the constraint
yjk = xjkqk.

TABLE 5: All possible values of yjk

xjk qk xjkqk Constraints Implication

0 0 ≤ qk ≤ 5 0

yjk ≤ 0

yjk = 0
yjk ≤ qk

yjk ≥ qk − 5
yjk ≥ 0

1 0 ≤ qk ≤ 5 qk

yjk ≤ 5

yjk = qk
yjk ≤ qk
yjk ≥ qk
yjk ≥ 0

Fog Node

Client Vehicle

(a) Concentric Circles Roads (b) Throughput

Fig. 9: Network performance of LTE vs. DSRC

APPENDIX C

ACCESS TECHNOLOGIES PERFORMANCE

The scenarios of real-time video streaming are simulated
using VeinsLTE [13]. VeinsLTE is an extension of Veins [49],
which is an open source Inter-vehicle communication (IVC)
simulator. VeinsLTE connects a microscope road traffic sim-
ulator SUMO [50] with a network simulation engine called
OMNET++ through Traffic Control Interface (TraCI). With
VeinsLTE, vehicles in the simulation can either exchange
data with each other via DSRC, or connect to base stations
over LTE.

In SUMO, 6 near round concentric roads are built. Each
road consists of two lanes, and the distance between the
neighboring roads is set to be 100 meters. As shown in
Figure 9a, one fog node is placed in the center of the
concentric roads, and a video streaming module is added
to the application layer of a client vehicle in VeinsLTE.
The client vehicle moving at speed of 20m/s continuously
sends video data to the center fog node. By placing the
client vehicle on different roads, the throughput of video
streaming with varying communication distance could be
measured.

From Figure 9b, the data rate in the case of LTE remains
stable when the communication distance is within 300 me-
ters. The data rate decreases with the distance when the
distance exceeds 300 meters. Unlike LTE, the transmission
range of DSRC is shorter than 300 meters, as single-hop
DSRC provides stable performance.


