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Abstract

This paper presents a series of experiments where a
group of mobile robots gather 81 randomly distributed
objects and cluster them into one pile. Coordination of
the agents’ movements is achieved through stigmergy.
This principle, originally developed for the description
of termite building behaviour, allows indirect
communication between agents through sensing and
modification of the local environment which determines
the agents’ behaviour. The efficiency of the work was
measured for groups of one to five robots working
together. Group size is a critical factor. The mean time
to accomplish the task decreases for one, two, and three
robots respectively, then increases again for groups of
four and five agents, due to an exponential increase in
the number of interactions between robots which are
time consuming and may eventually result in the
destruction of existing clusters. We compare our results
with those reported by Deneubourg et al. (1990) where
similar clusters are observed in ant colonies, generated
by the probabilistic behaviour of workers.

1. Introduction

There is a class of natural systems in which large
numbers of simple agents collectively achieve
remarkable feats through exploiting a single principle.
They offer a spectacular existence proof of the
possibility of using many simple agents rather than one
or a few complex agents to perform complex tasks
quickly and reliably. It is therefore surprising that the
systematic exploitation of this principle has been
neglected within the field of robotics. The natural
systems we refer to are social insects - ants, termites,
wasps, and bees. The principle is that of stigmergy,
recognised and named by the French biologist P.P.
Grassé (1959) during his studies of nest building in
termites. Stigmergy is derived from the roots 'stigma'

(goad) and 'ergon' (work), thus giving the sense of
'incitement to work by the products of work'. It is
essentially the production of a certain behaviour in
agents as a consequence of the effects produced in the
local environment by previous behaviour.

When they start to build a nest, termites modify
their local environment by making little mud balls and
placing them on the substrate; each mud ball is
impregnated with a minute quantity of a particular
pheromone. Termites deposit their mud balls
probabilistically, initially at random. However, the
probability of depositing a mud ball at a given location
increases with the sensed presence of other mud balls
and the sensed concentration of pheromone. The first
few random placements increase the other termites'
probability of putting their loads at the same place. By
this blind and random game little columns are formed;
the pheromone drifting across from neighbouring
columns causes the tops of the columns to be built with
a bias towards the neighbouring columns, and eventually
the tops meet to form arches, the basic building units.
Finally, as the influence of other stigmergic processes
comes into play (e.g. processes involving water vapour
and carbon dioxide concentrations, and modulated by
the presence of the queen), the whole complex and
highly differentiated nest structure is produced, with the
royal cell, brood nurseries, food stores, air circulation,
communication and foraging tunnels, and other areas all
contained within one of the largest non-excavated
structures built by any creature except man.

The use of stigmergy is not confined to
building structures. It also occurs in cooperative
foraging strategies such as trail recruitment in ants,
where the interactions between foragers are mediated by
pheromones put on the ground in quantities determined
by the local conditions of the environment. For example,
trail recruiting ant species are able to select and
preferentially exploit the richest food source in the
neighbourhood (Pasteels et al. 1987; Beckers et al.
1989) or the shortest path between the nest and a food



source (Beckers et al. 1992). This strategy takes
advantage of the characteristics of the trail-laying and
trail-following mechanisms of the ants in combination
with their essentially probabilistic behaviour: the
probability that an ant follows a trail is a non-linear
function of the trail's pheromone concentration, and the
probability that an ant lays a pheromone spot depends
on the characteristics of the recently-encountered food
source and the environment. When a trail between a
single food source and the nest is first established, its
pheromone concentration is low, and a high proportion
of ants lose the path before reaching the food or the nest.
As more and more journeys are made along the trail, the
pheromone concentration increases progressively and so
does the accuracy of trail following; finally the majority
of the foragers will successfully use that trail. Where
there are multiple food sources, or multiple trails of
different lengths to the same food source, the non-linear
dependence of the probability of successful trail-
following on pheromone concentration sharply favours
the rate of increase in strength of trails which are already
strong, or short, or lead to rich food sources; as a strong
trail recruits and retains ants, it reduces the number of
ants available to strengthen other trails; evaporation and
breakdown of the pheromone continually reduce the
strength of all trails; the net result is that a single trail
becomes dominant, and it is usually the 'best' choice
from the point of view of length and richness of food
source. The important factor is that very small
fluctuations in the pheromone concentrations of
different trails, occurring at the beginning of the
recruitment, are amplified and determine the eventual
outcome of the collective decision making process
(Beckers et al. 1989; Deneubourg and Goss, 1989).

The stigmergic principle also appears to
organise corpse-gathering behaviour in ant colonies.
Observations show that these insects tend to put the
corpses of dead nestmates together in cemeteries which
occur in certain places far from the nest and which grow
in size with time. If a large number of ant corpses are
scattered outside a nest, the ants from the nest will pick
them up, carry them about for a while, and drop them;
within a short time it will be seen that the corpses are
being put into small clusters, and as time goes on the
number of clusters will decrease and their size will grow
until eventually all the corpses will be in one or two
large clusters. The emergence of these clusters has been
studied by Deneubourg et al. (1990), who showed that a
simple mechanism involving the modulation of the
probability of dropping corpses as a function of the local
density of corpses was sufficient to generate the
observed sequence of the clustering of corpses.

These examples from social insects show how
global problems can be solved by exploiting the
interactions between workers, and between workers and

the environment. These processes give rise to self-
organized structures which are not represented explicitly
in each or any agent, but which guide and influence the
actions of individual agents. The work described in this
paper explores the possibility of extending these
principles to robotics.

How would it be best to put stigmergy to work
in robots? The traditional computational paradigm of
robotics typically involves sensing the environment,
then detecting features, then constructing or modifying a
world model, then reasoning about the task and the
world model in order to find some sequence of actions
which might lead to success, then executing that action
sequence one step at a time while updating the world
model and replanning if necessary at any stage. Doing
any of these is intractable in at least some domains;
doing all of them in an unstructured dynamic
environment fast enough to survive in that environment
has turned out to be a practical impossibility regardless
of the hardware resources available. Behaviour-based
architectures, inspired by biology and epitomised by
Brooks' subsumption architecture, have changed all that
(Brooks 1986). A behaviour-based robot essentially
consists of a small number of simple modules, each of
which is capable on its own of sensing some limited
aspect of the environment, and of controlling part or all
of the robot's effector system to achieve some limited
task; these modules are embedded in a simple
architecture which uses low bandwidth communication
between the modules to select which module or modules
actually has access to the effectors at any time. The
overall simplicity means that such systems have
excellent real time performance even with modest
resources. The subsumption architecture uses a hard-
wired priority scheme for the selection process; the
highest priority behaviour active at any time gains
control of the output of the whole robot. By a careful
choice of modules, and ingenious exploitation of the
interactions between behaviours, environment, and
tasks, Brooks and others have shown that robots can be
constructed which can carry out sophisticated and
complex tasks reliably in unstructured dynamic
environments (Flynn & Brooks 1989; Connell 1990).

The fit between stigmergy and behaviour-based
robotics is excellent. It is the essence of stigmergy that
the consequences of behaviour affect subsequent
behaviour. Behaviour-based systems deal directly in
behaviour. Conventional robots are too slow to cope
with an environment containing other moving robots,
and too expensive for anyone to be able to experiment
with large numbers of them; behaviour-based robots
cope well with unstructured dynamic environments and
are cheap. We might expect the biological principle of
stigmergy to fit better with the biologically inspired
architectures of behaviour-based robots than with the



alien computational paradigm of conventional robotics.
Finally, in 'synthesising phenomena normally associated
with natural living systems' and getting them to do
something useful in the real world, combining stigmergy
with behaviour-based robotics might help to make
artificial life look a little less remote than is sometimes
the case.

Behaviour-based robotics has given new force
to the branch of AI concerned with situated agents and
embedded systems. As well as effective slogans ('the
world is its own best model' - Flynn & Brooks 1989)
and important new ideas ('emergent functionality' -
Steels 1991) the field has generated a deep conviction
that systems for the real world must be developed in the
real world, because the complexity of interactions
available for exploitation in the real world cannot be
matched by any practical simulation environment. It is
for this reason that we have chosen to implement
stigmergic mechanisms directly on behaviour-based
robots rather than undertaking any preliminary
simulation studies; we do however recognise that
simulation may be a valid and useful method for
investigating stigmergic phenomena in general.

2. Materials and Methods

We decided to develop a system using multiple robots to
gather together a dispersed set of objects into a single
cluster, much like the corpse-gathering behaviour of
ants. As a first step towards achieving this task using
stigmergy, a robot was designed which could move
small numbers of objects and which was more likely to
leave them in locations where other objects had
previously been left. This was accomplished by
effectively sensing a very local density via a simple
threshold mechanism. The plan was to evaluate the
performance of the robots with this mechanism and to
develop the mechanism and the behaviours as necessary
until the task could be performed reliably.

The battery-powered robots (Figure 1) are built
on a 21x17cm platform. A 12v motor powered wheel is
positioned at the mid-point of each long side, with a
castor wheel at the mid-point of one of the shorter sides;
this allows the robot to move forwards or backwards in a
straight or curved trajectory, and to turn on the spot.
Each robot carries a 17cm wide aluminium forward-
facing C-shaped gripper with which it can push objects.
The objects used are circular pucks, 4cm in diameter
and 2.5cm in height. The robots are run in a square
arena 250x250cm; before the start of each run, 81 pucks
are placed on a regular 25cm grid in the arena (Figure
2).

The robots are equipped with two IR sensors
for obstacle avoidance, and a microswitch which is
activated by the gripper when a certain number of pucks

are pushed. For the experiments reported here, this
number is set to three. The robots have only three
behaviours, and only one is active at any time. When no
sensor is activated, a robot executes the default
behaviour of moving in a straight line until an obstacle
is detected or until the microswitch is activated (pucks
are not detected as obstacles). On detecting an obstacle,
the robot executes the obstacle avoidance behaviour of
turning on the spot away from the obstacle and through
a random angle; the default behaviour then takes over
again, and the robot moves in a straight line in the new
direction. If the robot is pushing pucks when it
encounters the obstacle, the pucks will be retained by
the gripper throughout the turn. When the gripper
pushes three or more pucks, the microswitch is
activated; this triggers the puck-dropping behaviour,
which consists of backing up by reversing both motors
for 1 second (releasing the pucks from the gripper), and
then executing a turn through a random angle, after
which the robot returns to its default behaviour and
moves forwards in a straight line. The obstacle
avoidance behaviour has priority over the puck-
dropping behaviour.

The robots operate completely autonomously
and independently; all sensory, motor, and control
circuitry is on board, and there is no explicit
communication (IR or radio link) with other robots or
with the experimenters. The robots only react to the
local configuration of the environment.

At the start of each experiment, the robots are
placed in the centre of the arena, each pointing in a
different direction. Every 10 minutes of runtime, the
robots are stopped manually, the sizes and positions of
clusters of pucks are recorded, and the robots are
restarted. A cluster is defined as a group of pucks
separated by no more than one puck diameter. The
experiment continues until all 81 pucks are in a single

Figure 1: Robot equipped with a gripper for object
Gathering. Experiments were carried out with from
1 to 5 robots of the same type,



cluster. Experiments reported here have used one to five
robots working simultaneously.

3. Results and analysis

From a qualitative point of view, experiments have three
more or less distinct phases, regardless of the number of
robots. At the start, the arena contains only single pucks
(Figure 2a). In the first phase, a robot typically moves
forwards scooping pucks into the gripper one at a time;
when three have been gathered, the robot drops them,
leaving them as a cluster of three, and moves off in
another direction. Within a short time, most pucks are in
small clusters which cannot be pushed (Figure 2b). In
the second phase, the robot removes one or two pucks
from clusters by striking the clusters at an angle with the
gripper; the pucks removed in this way are added to
other clusters when the robot collides with them. Some
clusters grow rapidly in this phase. After a time, there
will be a small number of relatively large clusters
(Figure 2c). The third and most protracted phase

consists of the occasional removal of a puck or two from
one of the large clusters, and the addition of these pucks
to one of the clusters, often to the one they were taken
from in the first place. To our initial surprise, the
process eventually results in the formation of a single
cluster (Figure 2d).

If the experiment is allowed to run on, a puck
or two will occasionally be removed from this single
cluster, but they are inevitably returned to it as there is
no other structure within the arena which can trigger the
puck-dropping behaviour. As the number of robots
increases, the number of pucks likely to be in transit
from the cluster back to the cluster tends to increase, and
the stable state is a dynamic equilibrium. Because the
robots have no means of detecting that the task has been
completed, they carry on working just the same
(interestingly enough, so do ants.)

Figures 3 and 4 show the results, in terms of
number of clusters and maximum cluster size
respectively, from five representative experiments run
under identical circumstances and using one, two, three,

Figure 2. The initial setup (a) and time evolution of a typical experiment involving a group of three robots. Phase
1 (b), occurring after approximately 10 min, is characterised by a large number of small clusters containing from
1 to 10 pucks. In Phase 2 (c), some clusters grow rapidly and the environment becomes more heterogeneous.
Finally, Phase 3 (d) is characterised by the competition between a small number (2 – 3) of large clusters and
evolves towards the clustering of all objects in one pile.



four and five robots. Phase 1 is clearly seen in all five
experiments in the steep fall in the number of clusters by
the time the first observations were taken after 10
minutes. Phase 2 is where cluster size and number of
clusters are both most variable, because the largest
cluster is still relatively small and vulnerable to being
broken up, and there are still plenty of clusters of one
and two pucks which can rapidly be added to any of the
existing clusters. Phase 3 can be seen in the steady and
surprisingly regular rise in the size of the largest cluster,
which is always the 'same' cluster once its size rises
above about 25.

Phases 2 and 3 require some explanation. The
puck-dropping behaviour cannot differentiate between a
local concentration of three pucks, and one of more than
three pucks. What process is organising the net transfer
of pucks from smaller to larger clusters when the robots
are unable to discriminate between them with their
sensors? And what role is played by stigmergy? The
answer is surprisingly subtle.

Because the robots turn through random angles
whenever they meet a wall, meet another robot, or drop

pucks, they may be regarded as following a succession
of random straight-line paths through the environment.
For a given cluster in a given location, a straight-line
path may or may not lead to a collision. The outcome of
any collision in terms of whether any pucks are added to
or taken away from the cluster depends of the number of
pucks carried by the robot at the time of the collision,
and on the relationship between the course of the robot
and the point of contact with the cluster. It is only
possible to remove pucks if the collision is almost
tangential to the cluster; a more 'frontal' collision will
trigger the puck-dropping behaviour.

The probability that a random path produces a
frontal or tangential collision with a cluster is a function
of the size, shape and position of the cluster. The
stigmergic coupling operates as follows: if a robot adds
pucks to a cluster, or removes pucks from it, the
consequent change in size and shape alters the
probability that a subsequent random path taken by that
(or any other) robot will strike the cluster frontally or
tangentially, thereby affecting the probability of adding
or removing further pucks in the future.

We can now consider the dynamics of this
process in a little more detail. Assume for convenience
that all clusters are roughly circular, and that the spatial
distribution of random paths in the arena is
approximately uniform. Consider the five possible
combinations of situation (number of pucks being
carried by a robot on a random path) and outcomes
affecting a given cluster (number of pucks added to or
removed from the cluster; there is no need to consider
outcomes that leave the cluster unchanged):

Situation A: the robot is not carrying a puck
Outcome (i):  1 puck removed from the cluster

(ii):  2 pucks removed from the cluster
Situation B: the robot is carrying 1 puck
Outcome (i):  1 puck added to the cluster

(ii): 1 puck removed from the cluster
Situation C: the robot is carrying 2 pucks

Outcome (i): 2 pucks added to the cluster

In order to remove a single puck, a robot needs
to strike a cluster almost tangentially, describing a chord
only a small distance inside the circumference; to
remove two pucks, it must describe a chord an
additional distance inside the circumference. The
probability that a random path will produce one of these
outcomes will be simply proportional to the relevant
distances. Since these distances will both reduce slightly
with increasing cluster size, the probabilities of the
associated outcomes will also reduce slightly with
cluster size. In order to add a single puck, a robot
carrying one puck must strike the cluster so that its
original course describes a chord further in from the



circumference than the distance for removing one puck;
the probability of this outcome is proportional to the
radius of the cluster minus the distance allowing the
removal of one puck. This probability is therefore much
greater than the probability of removing one puck, and
increases with cluster size slightly faster than the radius
increases. (The radius will of course increase as the
square root of the number of pucks in the cluster.) A
robot carrying two pucks will add them to a cluster
wherever it strikes the cluster, and so the probability of
this outcome is proportional to the radius of the cluster
and  increases as the square root of the number of pucks
in the cluster.

We can now summarise the expected effects of
each situation on a cluster as a function of the size of the
cluster. Situation A can only remove pucks from the
cluster, and the probability of doing so decreases with
increasing cluster size. Situation B will tend to add
pucks to the cluster because the probability of  B(i) is
greater than that of B(ii), and the probability of doing so
increases with increasing cluster size. Situation C can
only add pucks to the cluster, and the probability of
doing so again increases with increasing cluster size.
Whatever the situation, it will therefore always be the
case that larger clusters will be more likely to gain pucks
and less likely to lose pucks than smaller clusters.
Stigmergy is therefore active in controlling both the rate
of gaining and of losing pucks; either outcome (gaining
or losing) alters the size of a cluster and therefore
increases the probability of a robot producing the same
outcome in that location in the future. Since the total
number of pucks in the environment is constant, the
inevitable result will be the eventual formation of a
single cluster containing all the pucks.

The stigmergic principle allows a single agent
to interact with the effects of its own previous actions;
this is how a single robot achieves the task. From the
standpoint of conventional robotics, it is in many ways
remarkable that adding one, two, three or four more
identical agents still allows the task to be completed,
especially since the agents cannot communicate with
one another, have no information about position, and
there is no explicit specification of where the single
large cluster is to be built. It is even more remarkable
that the time to completion of the task decreases
progressively with the addition of one and two agents
(Fig. 8). This may be understood as follows: for most of
the time, the robots operate in parallel unaffected by
direct interactions with the others, but their behaviour is
influenced by the previous behaviour of the others via
stigmergy, mediated through the configuration of pucks
and clusters. When they do meet, they will lose some
'working' time in avoiding each other, but since they
arrive on random courses and leave on random courses,
the basis of the stigmergic action will not be disturbed;

if they meet when carrying pucks, the interaction may
result in pucks being abandoned or transferred; again,
they will lose some working time but the stigmergic
process will not be affected. Finally, due to the priority
of the obstacle avoidance behaviour, two robots meeting
near a cluster may destroy it while turning away from
each other. If the frequency of interaction of n robots is
sufficiently low, the task might be expected to be
completed almost n times faster than with a single robot;
on the other hand, if it is sufficiently high, clusters might
be destroyed so often that the task duration is extended,
possibly indefinitely. The results accord with this
analysis. Figure 5 shows the mean time to completion
for three replications of each condition. We felt that a
strict interpretation of 'completion' was appropriate
because the curves in Figure 4 all approach the state of
completion reasonably smoothly, even though the stable
end state is a dynamic equilibrium. The gains from
parallel working appear to be maximised by three



robots.
In order to evaluate the hypothesis that robot-

robot interactions might be responsible for this
degradation of performance, further experiments were
carried out. Pucks were distributed in five equal clusters
in the arena, and the interactions between robots were
counted for a twenty minute period for each number of
robots. The results are plotted in Figure 6, and show a
positively accelerated increase with number of robots. A
typical interaction between two robots lasts 4 seconds,
so 100 interactions consume over 13 robot-minutes;
since the difference in number of interactions between
three and four robots is just over 100, the potential gain
in total working time supplied by the fourth robot of 20
robot-minutes would be reduced to under 7 robot
minutes by the increase in interactions.

Figure 7 shows the average effort required for
completion in robot-minutes. The interest here is to look
for signs of synergy, which would be indicated by a
decrease in the total effort accompanying an increase in
the number of robots. This appears to occur with three
robots in relation to one and two, but because of the
small difference and the small number of samples,
further replications will be required to resolve this. It
would not be surprising if synergy occurred; we have
noticed that the spatial distributions look noisier with
more robots, and a certain amount of noise may break
up smaller clusters faster than large clusters (which are
more robust) which could well speed the task.  In the
rapid loss of efficiency following the addition of a
fourth and fifth robot it becomes obvious that there must
be an optimal group size above which the gain of adding
a supplementary robot is more than offset by the loss of
time due to the increased number of interactions.

Our target was to get the robots to do
something useful. Whilst it would certainly be useful to
put a team of cleaning robots into a dirty environment

on evening and to come back next morning to find all
the dirt in a single pile, it would be even more useful to
find the dirt in a pile in a designated place. We reasoned
that the rapid positive feedback from a 'seed cluster'
might induce the formation of the final pile in that
location. However, in order to prevent the seed cluster
being broken up by accident in the early stages, we used
a large saucer instead of a cluster of pucks (anything low
enough not to trigger obstacle avoidance would have
done). Three robots formed the final cluster round the
saucer in 126 minutes - slightly longer than the average
finishing time without a seed cluster, but proof that the
robots could be induced to form a single cluster in a
designated place.

We then wondered what would happen if we
provided two seed clusters of different sizes, and so a
competition between a large plate and the saucer was
organised, again with three robots. The results
emphasised the importance of developing real-world
systems in the real world. When the experiment was
stopped after 300 minutes, the plate was on top of a
cluster containing most of the pucks, and the saucer was
being moved gradually towards the plate. Neither of
these would have happened during a simulation; either
might be exploitable by a subsequent development of
the system to achieve some relevant task in the real
world.

4. Discussion

In this instance, stigmergy has been shown to be able to
control and coordinate a number of robots so that a
potentially useful task can be performed. It is worth
noting that it seems to be a robust technique, able to
cope with occasional robot failure (a stopped robot
simply becomes a static obstacle; other robots avoid it
and any pucks it was carrying are soon scavenged).
Another less frequently considered advantage of
multiple robotics is that, if speed gains can be made by
adding additional robots without reconfiguring any of
the robots already working on the task, then the speed of
the task can be controlled by changing the number of
robots; with a single robot, the only way to speed up is
to make the robot work faster.

Some studies of multiple robots attempt to
achieve coordination by explicit and direct
communication between robots (Arkin 1993). It is
possible to view stigmergy as an indirect method of
communication - assuming that the object of direct
communication is to affect the behaviour of the other
robot, we could say that a robot which causes another to
produce a certain behaviour through stigmergy has had
an implicit communication with that robot through the
environment (Mataric 1993). But stigmergy is by no
means an inferior form of communication when the



object of the communication is to cause a particular
behaviour to be produced in a particular location.
Consider what a direct communication requires: the
sending robot must encode and transmit a message about
what is to be done, and where it is to be done (implying
a knowledge of location, unless this is coded by the site
of origin of the message); this message is local in time
and space, and so only those robots close enough and
not otherwise engaged will be free to receive the
message; they must then decode the message, and either
remember it for long enough to get to the place and
carry out the action, or remember it for even longer
while they carry out some other more important task. A
stigmergic communication requires no encoding or
decoding, no knowledge of place, no memory, and it is
not transient; all it requires is that a robot passes near
enough to the location where the communication was
placed to be affected by it. As we saw above, random
wandering is an effective way of achieving this, though
of course it may not be efficient. In fact, the
environment can be regarded as a sort of external
memory, accessible to all. Pursuing this analogy, the use
of volatile pheromones in the environment may
represent a type of short-term memory. Perhaps
stigmergy is best regarded as the general exploitation of
the environment as an external memory resource; it is
certainly possible to investigate computational schemes
which take this approach (Bull and Holland, 1994).
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