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INTRODUCTION 

1. Background 

With the onset of the XXIst century, the quantity and quality of water resources is declining 

significantly, especially in the “tropical world” (Tundisi, 2003). The biogeochemical 

functioning of reservoirs is strongly influenced by anthropological activities such as urban 

development, agricultural activity and waste water inputs (Kennedy et al, 2003). The 

sediments, organic matters and nutrients coming from watersheds are efficiently trapped in 

reservoirs, which can lead to eutrophication (Donohue & Molinos 2009), a loss of storage 

capacity (Vörösmarty et al, 2003; Syvitski et al, 2005; Dang et al, 2010), and have important 

consequences for water treatment and downstream ecosystems. The eutrophication has been 

a main issue in epicontinental waters, progressively extending to tropical water bodies 

(Alcocer & Bernal-Brooks, 2010). The eutrophication in tropical systems is reflected by algal 

growth, turbidity of water and oxygen depletion in the hypolimnion (Thomaz & Bini, 2003). 

The process of eutrophication in the tropics has many specific characteristics that have led to 

some key questions that are still unanswered: (1) Is the control of eutrophication more 

difficult in tropical areas? (Tundisi 2003) (2) How much do we need to reduce nutrient 

inputs to mitigate eutrophication?  

Our understanding about how subtropical and tropical systems will process high nutrient 

loads and high turbidity is restricted due to the lack of publications and the limitation of 

biogeochemical studies on these systems (Seitzinger et al, 2010). Besides that, the main 

issues of water pollution, siltation of river and reservoir systems, and lack of management of 

rivers and reservoirs in tropical zones are more severe and widespread in developing 

countries than in developed ones. This is due to poverty, rapid population growth, ineffective 

institutions and policies for water resources management, and lack of funds in developing 

nations. The need for water quality modelling has arisen essentially because of increased 

eutrophication of reservoirs throughout the world (Canfield & Hoyer, 1988). Many sources 

of limnological knowledge on temperate systems and biogeochemical models are better 

constrained, and have greater predictive ability in developed countries (Seitzinger et al, 

2010). As a result, the study of tropical reservoirs is a great interest for scientists today in 

order to improve the understanding of biogeochemical processes and enhance the water 

quality management in these systems (Dumont et al, 2005).  

It should be noted that the water quality management needs to expand in line with the 

economic development; otherwise the environmental issues may limit the economic growth. 

A specific example would be the building of a reservoir for drinking water supply and 
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irrigation. If this reservoir is not well protected from pollutions such as agricultural runoff or 

domestic wastewater, its water quality will deteriorate with time. Such water quality 

deterioration will in turn affect the economic activities such as irrigation and drinking water 

supply.  

In recent years, several studies have been carried out to tackle the problems of water quality 

deterioration in tropical reservoirs (e.g. Araujo et al, 2008; Kunz et al, 2011). Numerical 

modelling is a relevant tool to assess responses of complex systems, for its ability to integrate 

different factors and to best describe the complex relationships between waste load inputs, 

and resulting water quality in water columns. For this reason, many lake models have been 

developed during the past thirty years to evaluate the lake management strategies, improve 

the understanding of lake ecosystems, synthesize and communicate quantitative knowledge 

about important processes in reservoirs (Mieleitner & Reichert, 2006). The challenges of 

using mathematical models in developing countries are requirements for considerable 

investments in collecting reliable data, weakness of scientific capacity development and 

water quality management policies and strategies (Deksissa et al, 2004).  

Water  quality  management  has  become  an  increasingly  important  issue  in  developing 

countries and newly industrialized countries, including Mexico. According to various studies, 

the overall water quality of lakes and reservoirs in many regions of Mexico is degrading 

(Olvera -Viascán et al, 1998; Lind et al, 1992; Bravo - Inclan et al, 2008). Approximately 

593 wastewater treatment plants operate in Mexico, treating only 26% of the total wastewater 

flow produced nationwide (Conagua, 2007). The remaining 74% usually end up in aquatic 

ecosystems, causing eutrophication. Consequently, most of the Mexican reservoirs located 

within or close to urban areas are heavily polluted, with direct consequences for the aquatic 

ecosystems as well as potential risks to human health (Welch & Jacoby, 2004). This is 

generating great concern as the volume of wastewater produced is increasing because of 

further urbanization and economic growth. It is admitted by Mexican stakeholders that water 

pollution is one of the most serious challenges for sustainable water resource management, 

and it also represents one of the most important concerns for local populations (Berrera 

Camacho & Bravo Espinosa, 2009). 

In Mexico, few ecological and biological studies of inland waters have been published in the 

past. Alcocer & Bernal-Brooks (2010) recently provided an overview of the state of lakes 

and reservoirs in Mexico, particularly within the Trans –Mexican Volcanic Belt (TMVB), 

where our study site is located. The authors highlighted the lack of data on Mexican rivers 

and streams, indicating that few integrated studies focus on the linkages between sediments 
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and nutrient sources within upstream watersheds and the biogeochemical functioning of 

downstream reservoirs.  

The present study focuses on the Cointzio reservoir (state of Michoacán), which is used for 

drinking water supply to the city of Morelia, capital of the state, and for irrigation purposes. 

The Cointzio reservoir is a perfect example of a human-impacted system since its watershed 

is mainly composed of volcanic degraded soils and is subjected to high erosion processes and 

agricultural land loss (Duvert et al, 2010). Moreover, the reservoir receives high domestic 

loads since wastewaters are not treated in the municipalities located upstream. In order to 

protect the ecosystem and wildlife in the watershed of Cointzio, it would be important to 

rapidly adopt some mitigation strategies to treat wastewaters and reduce nutrients input to the 

waterbodies. This study focuses on the examination of the impact of fine sediment, nutrient 

and organic matter loads on the annual functioning of the very turbid tropical Cointzio 

reservoir.  

2. Objectives of this study 

The first objective of this study is to give an overview of the functioning of the turbid 

tropical Cointzio reservoir. Based on a one year-long intensive field survey, the main 

objectives are: (i) to identify and quantify the nitrogen (N) and phosphorus (P) inputs from 

the watershed to the reservoir, and (ii) to characterize the internal biogeochemical 

functioning of the reservoir (nutrient cycling, sediment, and chlorophyll a dynamics) in 

relation with the climatic conditions, hydrology, nutrients, sediment and organic loads from 

the watershed and the general functioning of the reservoir for water uses. This analyze will 

lead to the evaluation of the total suspended sediments (TSS), C, N and P accumulation rate 

in the reservoir. 

The secondary objective is to reproduce the main biogeochemical cycles in the reservoir and 

assess the trophic state of the reservoir by application of numerical models. The physical 

models were used to calibrate temperature profiles for the year 2009 and they were validated 

for the year 2008. The biogeochemical model was calibrated to reproduce the main patterns 

of DO, nutrients and chlorophyll a concentrations within the Cointzio reservoir for the target 

year 2009. 

The third objective is to examine the ability of the models to assess scenarios of nutrients and 

eutrophication reduction in the coming decades and complete the entire mass balance of 

nutrients and carbon in the reservoir. Various simulations were conducted (i) to define which 

factors controlled the water quality in the Cointzio reservoir and (ii) to assess the long term 

evolution of the water quality in the reservoir under the influence of water level regulation 
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and air temperature increase (iii) to establish a management strategy to mitigate the negative 

effects of air temperature increase and (iv) to calculate the main processes involved in 

nutrients release and carbon removal. Some solutions of rehabilitation are proposed to restore 

the quality of the water. This study points out the advantages and limitations of the models 

and will help stakeholders to adopt appropriate strategies for the management of very turbid 

tropical reservoirs. It does end with some perspectives that could be applied to other similar 

reservoirs of the region or in different tropical countries. 

3. Approach and outline 

This study was undertaken in the framework of the European Research project DESIRE 

(2007-2011) and the French ANR Research project STREAMS (2008-2010).  

Our approach included a critical analysis of data acquired during two and a half years (mid 

2007-2009) for physical data and one year (2009) for biogeochemical data to provide a 

database for further water quality modelling. The contents of the thesis are divided into five 

chapters. Chapters 4 and 5 include individual manuscripts that have been targeted for 

publications in Aquatic sciences (submitted) and Ecological modelling (under review).  

Chapter 1: Literature review 

The first chapter presents the global overview of water problems in tropical countries and the 

specific problematics in Mexico with a focus on the Trans - Mexican Volcanic Belt. 

Chapter 2: Study area and field data analysis 

This chapter presents the study area, the field monitoring strategy and the laboratory analysis 

that have been gathered into the hydrological and biogeochemical database used for the 

present work. The analysis of two and a half years of hydrodynamic data and one year of 

biogeochemical measurements data is also presented. 

Chapter 3: Numerical modelling of the Cointzio reservoir 

This chapter describes the models used to simulate the hydrodynamics and the 

biogeochemistry of the Cointzio reservoir. It presents the advantages and limitations of each 

model considered, and try to evaluate the appropriate balance between model complexity and 

data availability. These models were then used to perform comparison of simulations with 

historical data series.  

Chapter 4: Carbon, phosphorus, nitrogen and sediment retention in a small tropical reservoir 

The main objectives of this chapter are i) to identify and quantify the N and P inputs from the 

watershed to the reservoir, ii) to characterize the internal biogeochemical processes of the 

reservoir and relate them with the seasonality of the inputs, and iii) to evaluate the TSS, C, N 

and P annual accumulation rate in the reservoir and assess its trapping efficiency.  
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Chapter 5: Eutrophication of the turbid tropical Cointzio reservoir: Trends and projections 

by the end of the century  

The models presented in chapter 3 were used to calibrate and validate the hydrodynamics and 

the water quality in the reservoir of Cointzio for the years 2008 and 2009. The completed 

entire mass balance of nutrients and carbon in the reservoir was calculated by estimating the 

main processes involved in nutrients release and carbon removal from the model. The models 

allowed for investigating the long term evolution of the water quality in the reservoir under 

the influence of water level regulation and air temperature increase and assessing scenarios 

of nutrients (P and N) and eutrophication reduction in the coming decades. This exercise was 

conducted with targeted years in 2060 and 2090.  

Conclusions and perspectives: This section summarizes the main results obtained in this 

study and discusses some perspectives of research that could be addressed in the future for a 

better understanding of turbid tropical reservoirs. 
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Chapter 1. LITERATURE REVIEW  

This chapter presents the global overview of water problems in tropical countries and the 

main concerns of reservoirs in tropical areas. It highlights on the specific problematics in 

Mexico with a focus on the Trans - Mexican Volcanic Belt. 

A) Eutrophication of reservoirs in tropical areas  

1. Water problems in tropical countries 

Tropical countries are those that lie between the Tropic of Cancer and the Tropic of 

Capricorn corresponding with the parallels of latitude at 23° 26' 16" North and 23° 26' 16" 

South (Figure 1.1). There are more than 3.3 billion people living in the tropics, mostly in 

developing countries, whilst the world's population is about 7.2 billion people (Beattie P., 

2010). 

In the Western Hemisphere, tropical countries include Mexico, all of Central America, all of 

the Caribbean islands. Eastward, it includes most of African, India and all countries of 

Southeast Asia. Most of the other island nations of Oceania in the South Pacific are also part 

of tropical countries (synthesized from/ source: http://www.wisegeek.com/what-are-tropical-

countries.htm). Many countries of tropical belt are experiencing demographic and economic 

booms that will pursue during the century; they are also directly concerned by climatic 

changes that may have some higher consequences in tropical areas than elsewhere. 

 

http://fr.wikipedia.org/wiki/Peter_Beattie
http://www.wisegeek.com/what-are-tropical-countries.htm
http://www.wisegeek.com/what-are-tropical-countries.htm
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Figure 1.1 Tropical zone map 

The issues and problems that experience tropical zones comprise of water pollution, 

inadequate drinking-water supply and sanitation facilities, floods, siltation of waterbodies, 

and lack of managements of rivers and reservoirs. These problems are more serious and 

extensive in developing countries than in developed ones. The difficulties to address these 

water problems in developing nations include poverty, rapid population growth, ineffective 

policies for water resources management, and lack of funds. The issues that should be 

considered when evaluating water resources problems in developing nations are as follows: 

i) Water Pollution 

Water pollution in developing countries is mainly caused by animal and anthropological 

sewage, overuse of fertilizers, industrial chemicals, urban runoff, and a lack of water 

pollution control policies and their implementation. Access to adequate wastewater 

treatment facilities is generally very limited in these countries. 

ii) Inadequate drinking-water supply and sanitation facilities 

Nearly one billion of the world's population do not have an "adequate" water supply, and 

approximately two billion do not have "adequate" sanitation facilities. Most of these people 

live in developing nations. The lack of adequate water facilities is the cause of much disease 

and illness in these countries.  

iii) Floods 
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Floods convey some risks but also some benefits to people. Floods are responsible of about 

40 percent of all deaths caused by natural disasters, most of them being in developing 

nations. However, floods also bring environmental and social benefits, for example, floods 

carry sediments and nutrients downstream. This natural process is important for water 

ecology and for agricultural production. Therefore, programs for floods management should 

consider to balance their risky and beneficial aspects. 

iv) Siltation of rivers, reservoirs 

Soil erosion is a natural process that transports sediments and nutrients to rivers or reservoirs. 

Deforestation and other human activities (overpopulation, unsuitable land 

use and inappropriate land management practices, and inadequate environmental regulations) 

have caused a five-fold increase in the average levels of sediments in the world's rivers. This 

will undoubtedly have some impacts on natural ecosystems over decades with feedback on 

human activity itself. As example, an excess of sediments in rivers or reservoirs can damage 

aquatic ecosystems and fisheries, affecting people who depend on them (synthesized from/ 

source: http://www.waterencyclopedia.com/Da-En/Developing-Countries-Issues-in.html). 

v) Dams (reservoirs) 

Thousands of dams have been constructed in developing countries in order to reduce flood 

damages, to generate hydroelectricity, and to increase and stabilize water supplies. These 

dams have provided noteworthy benefits to people but have also caused significant dynamic 

modifications and social changes. 

Taking into account these five principal issues and in order to balance these negative and 

positive aspects on water resources, water planning programs and policies should be better 

integrated than during the past; for example, water projects must consider ecological and 

human factors along with hydrologic and engineering principles. This requires appropriate 

environmental regulations and assessment tools (synthesized from/ source: 

http://www.waterencyclopedia.com/Da-En/Developing-Countries-Issues-in.html). 

2. Why do we need to study reservoirs in tropical areas? 

Reservoirs are usually found in areas of water scarcity or water excess, or where there are 

agricultural, domestic, or industrial needs to regulate water supply. When water is scarce, 

reservoirs are mainly used to regulate the water supply for irrigation or domestic purposes. In 

low lying areas suffering heavy precipitation and storms, reservoirs are crucial to regulate 

floods and prevent downstream areas from being inundated. Besides that, other activities 

such as power generation, fish-farming, etc., are also responsed by building reservoirs. In the 

world, between 30 % and 40 % of 268 million ha of irrigation lands are reliant on water 

http://www.waterencyclopedia.com/Da-En/Developing-Countries-Issues-in.html
http://www.waterencyclopedia.com/knowledge/Hydrology.html
http://www.waterencyclopedia.com/Da-En/Developing-Countries-Issues-in.html


 

9 
 

supply of reservoirs. Although the developments of reservoirs are usually economically 

beneficial to communities, they can have negative impacts, such as encouraging 

accumulation of pollution, water-borne diseases spread, etc.,. The building of dams on rivers 

to create water storage reservoirs results in considerable modifications in nutrient dynamics, 

as well as plant and animal species composition (Bosch & Allan, 2008). This is due to 

changes in geomorphology, water depth, water residence time and resulting vertical 

stratification. Besides that, the creation of a reservoir submerges some downstream areas and 

often requires the resettlement of a large number of people. 

For all these reasons, a particular need for managers and policy-makers is to understand the 

physics, chemistry and biology of reservoirs. The objectives of monitoring and assessment 

strategies should be governed by specific water quality requirements. For example, the 

location and depth of water withdrawal within reservoirs may affect significantly the water 

quality and is thus essential to achieve optimum water quality for intended uses. In addition, 

it is necessary to determine and understand the relationships between reservoirs and their 

watersheds. The effects of inflows and outflows, retention time, and morphometry of 

reservoirs imply to get an integrated understanding of physical and biogeochemical cycles in 

these terrestrial ecosystems.  

Historically and on a worldwide basis, reservoirs of temperate latitudes have been taken as 

the main source of limnological knowledge. However, in the past 20 years, an increasing 

number of limnologists have paid attention on tropical reservoirs. Although some literatures 

on tropical lakes exist, it is diffuse and difficult to use (Lewis, 1987; Torres-Orozco et al, 

1996). Some features of tropical reservoirs are similar to those of temperate reservoirs in 

summer, but contrasts are greater during other periods of the year (Kalff & Watson, 1986; 

Lewis, 1996). Information on nutrient cycling from temperate reservoirs cannot be 

extrapolated to tropical reservoirs, due to the basic differences in the physical and biological 

dynamics of these two types of systems (Gardner et al, 1998). Accordingly, management of 

reservoirs for the protection of water quality, aquatic life and other uses in the tropics must 

be approached differently from that of temperate latitudes.  

In the world, there are more than half of all tropical lakes and reservoirs built on natural 

rivers. Therefore, degradation of water quality in rivers will have direct negative effects on 

the majority of reservoirs in the tropics. Also, regulation of rivers, which is one result of river 

impoundment, is a potential cause of damage to reservoirs (Lewis, 2000). A particular 

attention should be paid to tropical reservoirs built in poor developing countries. In these 

countries, the population can face a decline of the economic activities, a poor political 
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stability, and a rapid degradation of environment with some critical consequences on water 

resources quantity and quality (Ujang & Buckley, 2002). Sometimes, water pollution issues 

are not the main concern in these nations because other issues such as national security, food 

availability and epidemic control are more urgent.  

3. General sources of pollution  

The main components of the continental water cycle are rivers and reservoirs, and they need 

to be protected from all sources of pollution. This is because the survival of human depends 

on their sustainable usage. However, these rivers and reservoirs are threatening progressively 

from different pollutants such as high organic and nutritive pollutions and eutrophication 

(Chuco, 2003). Although the natural phenomena such as climate and geology can affect the 

water quality of rivers and reservoirs (Boorman, 2003), human activities are the major 

sources of pollution: urbanization, cattle farming, agriculture, forestry, etc. One can 

distinguish two main categories of water pollution sources: direct and indirect contaminant 

sources (point and non-point sources). Point source pollution is water pollution that comes 

from a single source, typically a pipe whilst non-point (diffuse) sources include 

polluted runoff from agricultural areas, fertilizer manufacturing process or stormwater runoff 

from deforestation, etc. Both of these two sources of pollution lead to two important water 

quality issues, namely eutrophication and high turbidity. While the impacts of point source 

pollution can be minimized by proper wastewater managements and land use activities, 

controlling the influences of non-point pollution sources to water quality deterioration is 

more difficult (Jiashal, 2013) and implies to get a good understanding of the relationship 

between watershed and its corresponding reservoirs. 

4. Main concerns of reservoirs in tropical areas 

4.1 Gas emissions in tropical reservoirs  

The conversion of terrestrial land to an aquatic area modifies significantly the carbon cycle 

and is a main issue in the production of greenhouse gas (GHG) (St Louis et al, 2000, 

Chanudet et al, 2011). Flood events and ensuing degradation of organic carbon initially exist 

in soils and plants jointly with the flux of carbon from upstream watersheds cause variations 

in carbon dioxide (CO2) and methane (CH4) emissions (Abril et al, 2006; St Louis et al, 

2000). GHGs are emitted to the atmosphere either at the surface of reservoirs (diffusion and 

ebullition), or from the downstream rivers (degasing and diffusion) (Guérin et al, 2006; 

Kemenes et al, 2007). Emissions were described in both boreal (Demarty et al, 2009; 

Teodoru et al, 2011) and tropical reservoirs (Guérin et al, 2008; Roland et al, 2010). These 

studies pointed out that processes leading to GHG productions and emissions in the tropics 

http://en.wikipedia.org/wiki/Surface_runoff
http://en.wikipedia.org/wiki/Agricultural
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are clearly higher than in the boreal regions (Barros et al, 2011). The comparison of 

emissions between tropical reservoirs and thermal alternatives shows that some reservoirs are 

expected to emit more GHGs than thermal power plants for similar power production (Dos 

Santos et al, 2006; Chanudet et al, 2011). The uncertainty and inconsistency in the collected 

data could be the main reasons on the issue of net GHG emissions by reservoirs. In tropical 

systems, this phenomenon is very important since the biomass is often abundant (FAO 2006). 

Additionally, the lack of biogeochemical data in developing regions makes it difficult to 

evaluate the ecological impacts of existing and planned reservoirs. 

4.2 Climate effects on behaviour of tropical reservoirs 

In order to assess the trophic state of reservoirs, we should consider the effect of climatic 

conditions. This is because the ratio of evaporation versus precipitation controls whether a 

reservoir will become more concentrated with time, and also become more saline and 

eutrophic. Not all tropical countries have the same climate, but the amplitude of seasonal 

variations in temperature and solar radiation is smaller in the tropics than in the temperate 

zones. Their climate is distinguished mainly by wet and dry seasons (source: 

http://www.wisegeek.com/what-are-tropical-countries.htm). In most of tropical lakes, 

temporal fluctuations in rainfall, runoff and/or vertical mixing imply some patterns in annual 

variations which are reflected on richness of phytoplankton (Wetzel, 2001). Moreover, the 

other processes such as sudden storms and periods of strong wind contribute to the mixing of 

the upper water layers increasing the phytoplankton diversity. These processes have been 

interpreted as intermediate perturbations (Padisak, 1994; Hambrigth & Zohary, 2000). The 

hydrodynamic condition of mixed layer in tropical reservoirs accelerates recycling of 

nutrients. In temperate reservoirs, the mixed layer is quite stable, nutrients lost from the 

epilimnion can almost not be used again by primary producers until the autumn mixing. 

Meanwhile in tropical reservoirs, a large quantity of nutrients lost from the mixed layer can 

recapture through the mixed layer thickness (Lewis 2000). Therefore, the potency for 

phytoplankton production on a given nutrient in tropical reservoirs is higher than in 

temperate reservoirs (Lewis 1974). This means that tropical reservoirs may be more reactive 

to eutrophication than temperate reservoirs (Lewis 2000). 

4.3 Siltation, erosion of tropical reservoirs and their consequences on turbidity 

In the context of climate and human-induced changes, soil erosion and sediment load are 

increasing worldwide (Syvitsky et al, 2005), with considerable implications for the 

management of water resources and the ecological health of aquatic ecosystems. De Boer et 

al, (2003) recently reminded that “[…] in many parts of the world, erosion rates and sediment 

http://www.wisegeek.com/what-are-tropical-countries.htm
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yields are not, or only poorly monitored. This problem is particularly evident in developing 

countries, where this information is most urgently required […]”.  

As highlighted by the review of Donohue & Molinos, (2009), the impact of increased 

sediment load on the ecology of lakes and reservoirs is principally driven by fine particles. 

The decreased transmission of light through the water column is generally recognized as the 

main physical effect of increased sediment load on aquatic ecosystems (Donohue & Molinos, 

2009). The absorption and scattering of light by suspended particles reduce the compensation 

depth, below which light intensity is insufficient to sustain photosynthesis, thus diminishing 

the volume of water supporting primary production (Whalen et al, 2006). Furthermore, fine 

particles also actively contribute to the bio-geochemical equilibrium by adsorbing, 

transporting and releasing some pollutants and nutrients, with major effects on global 

nutrient cycles (Regnier et al, 2013). Sediment load can also actively modify the 

hydrodynamics of reservoirs through the generation (or not) of various particle-laden density 

currents (Mulder & Alexander, 2001). In addition to on-site effects, fine sediments supply 

leads to severe off-site impacts: sediments can accumulate on river beds, increase flooding 

potential, and degrade aquatic ecosystems by increasing water turbidity and by mobilizing 

associated contaminants (Newcombe & McDonald, 1991). This can reduce the density, 

growth rates and production of lake phytoplankton considerably (Dokulil, 1994; Guenther & 

Bozelli, 2004). 

At large scales, human-induced soil erosion has resulted in an increase of 2.3 billion metric 

tons of sediments being transported by rivers globally every year (Syvitski et al, 2005) but 

only 1.4 billion metric tons of these sediments actually reaches coastal waters, owing to the 

retention of sediments in reservoirs, rivers and their floodplains (Walling et al, 2003; Syvitski 

et al, 2005). Although the delivery of sediments to reservoirs has diminished in some regions 

owing to the introduction of sediments control programs and the improvement of land 

management practices (Lal, 2001), excessive sediment loading remains one of the primary 

forms of anthropogenic disturbance of aquatic ecosystems in both tropical and temperate 

regions (USEPA, 2000). Globally, the retention of eroded sediments in reservoirs is a major 

environmental, social and economic concern. For instance, high sedimentation rate reduces 

hydropower efficiency and viability. It also increases costs of dam maintenance and water 

treatment and has important consequences for water supply, fisheries and tourism (Clarke et 

al, 1985; Robertson & Colletti, 1994; Pimentel et al, 1995).  

In summary, sediments delivery to water bodies needs to be controlled to prevent these 

problems. Firstly, the main sources of erosion need to be determined and the transit times of 
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sediments within rivers need to be evaluated to implement appropriate and effective erosion 

control measures. In tropical areas where hydrology is controlled mainly by a dry and a rainy 

season, characterization of seasonal cycles of sediment (and associated contaminant) input is 

essential to address an appropriate evaluation of physical and biogeochemical cycles taking 

place in waterbodies ecosystems. This is particularly true in the case study that will be 

presented in this thesis. 

4.4 Eutrophication caused by excess of nutrients 

In the last three decades there has been great concern about the increased eutrophication of 

aquatic systems worldwide from excess nitrogen (N) and phosphorus (P) loading (Lewis 

2000; Conley et al, 2009). Human activity is accelerating rapidly in tropical watersheds, 

where eutrophication is becoming the main water quality issue (Downing et al, 1999), with 

some consequences on the uses of reservoirs downstream (Salas & Martino 1991). The 

eutrophication in tropical areas is reflected by increase of algal growth, decrease of water 

transparency and appearance of a stable oxygen depletion in the hypolimnion (Thomaz & 

Bini, 2003). It is the result of nutrient enrichment in surface waters. Although it is a natural 

process, eutrophication can often be accelerated by human activities. Hence, it is sometimes 

called cultural eutrophication (Laws, 1993). This cultural eutrophication results from a direct 

discharge of organic wastes or nutrients into rivers and/or indirect nutrient loads via runoff 

from agricultural sites. The degree of eutrophication or nutrient enrichment has been 

classified according to the relative extent of nutrient enrichment (Laws, 1993): oligotrophic, 

mesotrophic and eutrophic. Oligotrophic systems are undernourished, i.e. biological 

production is limited by nutrient additions. At the opposite, eutrophic systems are over-

fertilized. The mesotrophic status of water lies somewhere in between the two.  

By adsorbing nutrients, sediments transported in suspension and deposited on the river bed 

participate actively to the eutrophication of waterbodies; phytoplankton and cyanobacteria 

can form blooms, causing the release of cyanotoxins. Most lakes, rivers and wetlands are 

suffering from the input of sediments and nutrients such as nitrogen and phosphorus. 

Nutrients enrichment in rivers or reservoirs promotes excessive algal blooms, which can 

result in large fluctuations of dissolved oxygen concentration. In some extreme cases, the 

rapid drop in oxygen concentration during the night due to algal respiration can kill fish 

(Chuco, 2003). For those reasons, external and internal nutrient loads are major concerns for 

water quality management in reservoirs. An excessive concentration of P is the most 

common cause of eutrophication in freshwater lakes, reservoirs, streams, and headwaters of 

estuarine systems.  
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4.5 Downstream deficit of sediments and nutrients   

Building of dams on rivers modifies natural sediment dynamics. Regardless of purposes of 

these constructions, all dams and their reservoirs trap sediments and lead to physical and 

ecological changes downstream of reservoirs, as well as in the reservoirs themselves 

(Kantoush et al, 2010). This is the main cause for the decline in sediment fluxes in 

downstream areas (Gupta et al, 2012). Besides modifying flow regimes and sediment load of 

dams, they can produce adjustments in alluvial channels (Kondolf, 1997).  

The impacts of sediments deficit downstream of dams are classified into three groups, 

causing morphological, hydrological, and ecological effects. Morphological effects on river 

channels consist of riverbed incision, riverbank instability, upstream erosion in tributaries, 

damage to embankments and levees (Kondolf, 1997; Batalla, 2003), and changes in channel 

width (Williams & Wolman, 1984; Wilcock et al, 1996). Hydrological effects caused by 

dams include changes in flood frequency and magnitude, reduction in overall flows, changes 

in seasonal flows, and alteration of time of releases (Petts, 1984; Ligon et al, 1995). In 

addition, by altering the downstream flow regime of rivers (Williams & Wolman, 1984), 

dams control many physical and ecological aspects of rivers forms and processes, including 

sediment transport and nutrient exchange, e.g., loss of aquatic and riparian habitants (Poff et 

al, 1997).  

Besides that, reservoirs are often sinks for P and N due to higher residence times and more 

increased sedimentation and burial rates than rivers (Sherman et al, 2001, Friedl & Wüest, 

2002, Bosch & Allan 2008). As a result, there is an increasing global shortage of P fertilizer 

reserves for agricultural purposes at downstream (Vaccari, 2009) and the accumulation of P 

in reservoirs leads to excessive algal production in systems (Schindler, 1977). 

In summary, reducing nutrients accumulation in reservoir sediments is important both in 

maintaining nutrients and sediments in downstream for agricultural production, and 

preventing eutrophication of water supplies (Burford et al, 2012). The above listed issues are 

of a great interest in tropical areas, where the climatic and anthropic conditions lead to rapid 

changes that clearly need complementary studies. 

B) Problematics in Mexico 

1. Limnology in Mexico 

Mexico’s geographic position overlaps tropical and subtropical areas between two oceans 

(Pacific and Atlantic), including mountainous topographies with a wide variety of climatic 

conditions. Mexico’s topography includes seven main mountain systems (SRH, 1976): Sierra 

Madre Oriental, Sierra Madre Occidental, Trans-Mexican Volcanic Belt, Sierra Madre de 



 

15 
 

Oaxaca, Sierra Madre del Sur, Sierra Madre de Chiapas, and the Baja California (Figure 1.2). 

Since the meteorological conditions of this global belt are semiarid, Lind et al, (1992) 

suggested that the behaviour of continental waterbodies may be different from equatorial and 

temperate systems. 

Approximately 45000 water reservoirs exist worldwide, most of them constructed for 

irrigation purposes (Cosgrove & Rijsberman, 2000). In Mexico, there are more than 4000 

lakes and reservoirs, 667 of them are classified as large dams (CNA, 2006). Mexico’s 52 

largest lakes and reservoirs hold 60% of the country’s total water storage capacity 

(CONAGUA, 2007). Epicontinental waters in Mexico provide multiple benefits to humans: 

drinking water, irrigation, power generation, recreation, tourism, navigation, fisheries, 

aquaculture, etc. (Alcocer & Bernal-Brooks, 2010).  

In Mexico, the spatial disparities in water resources interrelate with temporal and altitudinal 

variations. The hydrological balance of Mexico depends mainly on atmospheric 

precipitation; a substantial difference in comparison to northern countries where some water 

is stored in solid phases in mountains (snow and glaciers). For example, the contribution of 

rains to most Mexican rivers during the wet season occupies 90% of the total annual 

discharge, which extends 4–6 months from May to October. Short periods of rains associated 

with cold winds coming from the north Pacific and the Gulf of Mexico sometime happen 

during the time of low ambient temperature (December–January) (García, 1982, 1988; 

INEGI, 1995) but these rains generally have a strong erosive capacity and do not contribute 

positively to refill the underground aquifers. As a consequence, the densely populated region 

is particularly vulnerable to time-limited water supplies. A negative water budget 

predominates in more than half of Mexico's territory (52.7%). In contrast, a positive water 

balance is observed in the other 47.3% (Bassols, 1977). Both areas finally cope with 

problems associated with water availability: droughts in the former, floods in the latter 

(SEDESOL, 1993; INEGI, 1995).  
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Figure 1.2  Geography of Mexico with main mountainous features. Adapted from SRH, 1976 

A nationwide survey undertaken in Mexico revealed that 68% of surface waters were 

contaminated, and 18% were heavily contaminated (INEGI, 1996). There are about 80% of 

freshwater lies in impoundments below 500 masl, and only 5% above 2000 masl because of 

the differences in altitude. Conversely, 76% of the Mexican population reside in the 

highlands (e.g., the Mexican Plateau; INEGI, 1995), as well as two-thirds of the 

manufacturing industry and agricultural lands. Therefore, water quality problems can 

complicate the distribution of limited water resources in Central and Northern Mexico 

because of uneven distribution of precipitation and population (CNA, 2008). As we know, 

agricultural lands, aside from their huge water requirements, are also a large source of water 

pollutants, such as fertilizers and pesticides. Agricultural runoffs carry fertilizers that cause 

eutrophication; pesticides can be poisonous to humans as well as other organisms. As a 

result, most of the Mexican reservoirs located within or close to urban areas are heavily 

polluted, with direct consequences for the aquatic ecosystems as well as potential risks to the 

human health (Welch & Jacoby, 2004). This is generating great concern as the volume of 

wastewater produced is increasing because of further urbanization and economic growth. 

Moreover, the demands of multi-purpose reservoirs such as municipal drinking water, 

industrial water supply, irrigation, hydroelectric power generation, and recreation dictate 
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scientific communities to pay more attention to this kind of water bodies for a better 

understanding of ecosystem functioning and management (Thornton et al, 1990).  

Despite this observation, studies on Mexican freshwater are still very limited since most 

limnological research covers only general hydrobiological aspects. The lack of limnological 

studies is troublesome considering the large number of lakes and reservoirs existing in 

Mexico (Arredondo -Figueroa & Aguilar, 1987). 

2. Global situation in Trans-Mexican Volcanic Belt, central Mexico 

The Trans-Mexican Volcanic Belt (TMVB) is a 1000 km long Neogene continental arc 

describing a large variation in composition and volcanic style (Ferrari et al., 2012). It is a 

unique volcanic belt running from west to east in the central portion of Mexico (Figure 1.3). 

The TMVB covers an area of 91685 square kilometers. It is composed of more than 20 

volcanoes, some of which are among the highest peaks in Mexico, e.g. the Pico de Orizaba 

(5747 m) and the Popocatépetl (5452 m). Three main basins encompass the highlands of the 

TMVB: Lerma-Santiago river basin at the west, Valley of Mexico basin in the middle, and 

the eastern basin (Alcocer & Bernal-Brooks, 2010). 

 

 

Figure 1.3 Map of Trans-Mexican Volcanic Belt (Ferrari et al., 2012) 

Intense volcanic activities have allowed the formation of many fluvial deposits; the soils in 

this region have a strong propensity to retain water. The forests play an important role as a 

"rain trap"; they can contribute to refill the underground aquifers for water supply of adjacent 

towns (López-García et al, 1996). Almost half of the total Mexican population lives in the 

http://www.geociencias.unam.mx/geodinamica/research/research/mexico/tmvb/tmvb2.php#manea
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states of the TMVB, including Mexico City (Toledo et al, 1989), thus forests in this region 

have suffered the effects of urbanization (synthesized from /source 

http://worldwildlife.org/ecoregions/nt0310). Degradation of the natural resources is 

alarmingly aggravated in the catchments of the TMVB, which provide water for nearly one 

third of Mexico’s population. It was estimated that 60 percent of the TMVB presents 

problems due to soil erosion (SEMARNAT, 2002). This in turn leads the degradation of 

surface water bodies and the increase of water treatment costs (Vidal et al, 1985; Alcocer & 

Escobar, 1993). This situation is particularly severe in the volcanic region located around 

Morelia (capital of Michoacán state, ca. 700 000 inhabitants) (Duvert et al, 2010). 

The lakes and reservoirs present within the TMVB originate from the regional tectonism and 

volcanism, which is a representative feature of this area (Alcocer & Bernal-Brooks, 2010). 

Besides its tectonic and/or volcanic origin, the TMVB holds the ‘‘largest’’ Mexican lakes, 

together with a cluster of small water bodies. The large lakes produced by tectonic activity or 

lava flow, differ largely from small volcanic water bodies. The first ones are characterized by 

remarkable shallowness, turbid waters, and meso- to eutrophic conditions. Meanwhile, the 

latter ones are more likely ‘‘deep’’, transparent and oligotrophic, even if the turbidity is 

generally increasing in all systems. Turbidity in Mexican lakes relates to biogenic (e.g., 

phytoplankton) or inorganic sources (e.g., suspended clays in Lake Chapalaas described by 

Lind et al, 1992). In this climatic region, the water temperature generally ranges from 15 °C 

to 25 °C. There are two major lake types in Mexico: (i) warm monomictic in small deep 

lakes and (ii) warm polymictic in large shallow ones (Alcocer et al, 2000). The deeper water 

bodies (roughly more than 10 m depth) are generally thermally stratify between March and 

October or even longer. The hypolimnion of the warm monomictic lakes frequently becomes 

anoxic during the stratification period. The Cointzio reservoir is a typical example of this 

type of water body. It fulfils the definition of a warm monomictic tropical reservoir, which 

has a minimum temperature of 14°C with a period of stratification from February to October 

followed by a period of mixing during the rest of the year (Doan et al, 2012). 

An overview of the state of lakes and reservoirs in Mexico, particularly within the TMVB 

was provided and the lack of data on Mexico’s rivers and reservoirs was highlighted (Alcocer 

& Bernal-Brooks, 2010). Moreover the development of wastewater treatment infrastructure 

remains insufficient, both in large cities and in small rural settlements in Mexico. A recent 

study on the main reservoir of Valle de Bravo, which provides water supply to the Mexico 

City, recommended the implementation of monitoring networks of discharge and nutrients as 

well as the establishment of policy and mitigation strategies of point and non-point sources of 

http://worldwildlife.org/ecoregions/nt0310
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pollution (Ramírez-Zierold et al, 2010). Therefore, Mexican governments became 

particularly concerned with improving the environmental conditions of cities and proposed 

many measures dealing with water usage and managements that were based on European 

technological innovations. 

3. Erosion within the watershed   

Mexico is faced with a serious problem of soil erosion: 80% of the land is subject to erosion. 

The topographic characteristics and rain intensity of the country promote a high risk of 

erosion, especially on hillside land. Up to 61% of the area devoted to annual crops is located 

on slopes greater than 4% (source from http://www.desire-his.eu/es/descargas/doc_view/333-

highlight-conclusions-cointzio-study-site). The Michoacán state is located in the center west 

of the Mexican Republic, on the southern coast of the Pacific Ocean, between 17º54`34" and 

20º23`37" north latitude and 100º03`23" and 103º44`09" west longitude (source: 

http://www.sre.gob.mx/coordinacionpolitica/images/stories/documentos_gobiernos/pmichoin

g.pdf). It has one of the largest levels of soil erosion, with more than 2 million hectares 

affected, 70% of the surface area (source: http://en.ird.fr/layout/set/popup/the-media-

centre/scientific-newssheets/396-rehabilitation-of-eroded-land-in-mexico).  

 

Figure 1.4 a) Desertification in Mexico and b) Landscape of degraded soils in Mexico 

Aggressive climate, rugged topography and fragile soils in Mexico indicate that nature is an 

important element of erosion. However, the main cause is human activity due to overgrazing 

with overpopulation of animals. Since prices of agricultural products are low in Mexico (e.g. 

low corn prices), crop cultivation becomes a secondary source for farmers. As a result, many 

farmers have turned to livestock farming or abandoned their land in order to migrate to the 

cities or the United States for living. Thus, we can see the animals go nearly everywhere, 

http://www.desire-his.eu/es/descargas/doc_view/333-highlight-conclusions-cointzio-study-site
http://www.desire-his.eu/es/descargas/doc_view/333-highlight-conclusions-cointzio-study-site
http://www.sre.gob.mx/coordinacionpolitica/images/stories/documentos_gobiernos/pmichoing.pdf
http://www.sre.gob.mx/coordinacionpolitica/images/stories/documentos_gobiernos/pmichoing.pdf
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from the forest to the fields when they have been harvested. This is the major cause of land 

degradation in watersheds of Mexico.  

The watersheds of Morelia, the capital of Michoacán, are emblematic of the situation. It is 

surrounded by chains of volcanoes up to 3,500 m in height, with steep slopes accelerating the 

runoff and the hydraulic erosion. The watersheds are located in the hydrological region of 

Lerma-Chapala, within the central Trans-Mexican Volcanic Belt, in the state of Michoacán. 

The Cointzio watershed is located at the south western part of the Cuitzeo lake watershed of 

4000 km2 (Figure 1.5). The catchment is representative of the region since it experiences all 

the problems such as soil erosion, deforestation, grazing, etc., which also affect water 

quantity and quality. 

 

Figure 1.5 The Cointzio and Cuitzeo watersheds in Michoácan 

 (Source: http://www.desire-his.eu/es/descargas/doc_view/333-highlight-conclusions-

cointzio-study-site) 

4. Water scarcity and water pollution 

Mexican water resources are commonly considered poor in quality and sparse in quantity, 

particularly in Michoacán state (Vidal et al, 1985). Over the past years, the explosive human 

population growth affected many lakes and reservoirs in the region which have suffered the 

consequences of the eutrophication process. In the Mexican territory, which represents 0.39% 

of earth's land area, water is scarce. It is only equivalent to 0.1% of the world's freshwater 

reserves, reflecting its low rain input (0.00003% of the world's input) (García-Calderón & De 

la Lanza, 2002). Therein, the Michoacán state has been facing a decrease of about 70% in its 
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surface water resources over the last century (Morales, 2007). This evolution correlates with 

the high migration rate in Michoacán (63% of total population), which contributed to the 

impact of land-use changes on water resources (Lopez Granados et al, 2006). Obviously, as 

the urban area is expanded, demand and competition for urban and industrial water need to 

be intensified.  

The poor water quality of Morelia city was stemmed from high sediment load and high 

organic material content of the Chiquito and the Rio Grande de Morelia rivers, and 

contaminants in the infrastructures themselves. Among them, the Rio Grande is Morelia’s 

most problematic river where some sections are so full of sediments that its natural course 

has changed in places. As a result, problems of salinity and deteriorating water quality in the 

region became worse as farmers irrigated fields with water contaminated from urban 

wastewater. This affected not only agricultural productivity but also farmers’ health (e.g. 

gastrointestinal illness, skin diseases and fungal infections). Therefore, it becomes necessary 

to treat water and construct new piped supply networks. A recent study given by various 

local institutions stressed that water contamination, solid residuals management and 

drinkable water supply are three main priorities of environmental issues in the Michoacán 

settlements (Ortiz Ávila, 2009). According to the government, most of the surface waters in 

Mexico range from polluted to excessively polluted, and only a few places remain non- or 

slightly polluted. Even if we could instantaneously prevent any further contamination, it 

would take at least 10 years and perhaps more than 30 years (and enormous operating costs) 

to recover the ‘‘original’’ conditions (Alcocer & Bernal-Brooks, 2010). In addition, the waste 

of water resources through leakage and inefficient usage, and lack of wastewater treatment 

plants leading to water problems becoming more and more serious. It has been estimated that 

the amount of water lost in Mexico City’s supply system is sufficient to meet the needs of a 

city the size of Rome (Falkenmark & Lindh, 1993).  

In summary, water is limited both in quantity and quality in Mexico. As available fresh water 

is limited (only 1% of the  total  water  reserve),  its  good  quality  must  be  maintained  and  

polluted  water  must  be restored. The problem of water scarcity can be addressed by 

efficient water use, whereas the problem of water pollution requires the implementation of an 

appropriate water quality regulation (Al-Kharabsheh & Táany, 2003). In order to protect all 

water bodies from all sources of pollution, Mexico therefore needs to have appropriate 

environmental regulations and assessment tools.   
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5. The case of the Cointzio reservoir 

The Cointzio reservoir (state of Michoacán), located in the southern part of the Mexican 

Central Plateau on the TMVB, is used for domestic water supply to the city of Morelia, 

situated 13 km downstream, and for irrigation purposes. Besides that, it is also used to 

control flood for Morelia (Figure 1.6). The Cointzio dam controls the flow of the Rio Grande 

de Morelia River and irrigates more than 20000 hectares of farmland. Water demand of the 

city has been growing over the last decades because of increasing individual water 

consumption coupled with a severe urban growth: Morelia experienced an augmentation of 

its population of 600% during the period 1975–2000 (López-Granados et al, 2001) and 

counts now over 700000 inhabitants (INEGI, 2006). 

 

 

Figure 1.6 Cointzio dam with the reservoir in dry season 

Conclusions of chapter 1 

The general issues of tropical countries (e.g. poverty, rapid population growth, ineffective 

policies for water resources management, and lack of funds), the limitation of knowledge 

about tropical waterbodies, and the significant increase in the eutrophication of tropical 

reservoirs during recent decades required information and studies on the processes taking 

place in tropical reservoirs, particularly in Mexico where our study site is located.  

The overall water quality of reservoirs in many regions of Mexico is deteriorating. The 

Cointzio reservoir, located in the Trans-Mexican Volcanic Belt, is no exception. Alcocer & 

Bernal-Brooks, (2010) recently provided an overview of the state of reservoirs in Mexico and 
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highlighted the lack of data on Mexican rivers, indicating that few knowledge about the 

linkages between sediments and nutrients sources within upstream watersheds and the 

biogeochemical functioning of downstream reservoirs. The implementation of monitoring 

networks of discharge and nutrients as well as the establishment of policy and mitigation 

strategies of pollution sources are important actions that need to be undertaken to solve water 

quality problems in tropical systems, including Mexico.  In the case of the Cointzio reservoir, 

this issue is critical since part of the water stored is used for drinking water supply. This 

turbid tropical reservoir has been studied from 2007 to 2009 to better understand its 

hydrodynamics and its biogeochemical functioning and try to define some common 

behaviors of various turbid tropical reservoirs.   
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Chapter 2. STUDY AREA AND FIELD DATA ANALYSIS 

Chapter 2 describes the study area, the field monitoring strategy and the laboratory analysis 

that have been realized to generate the hydrological and biogeochemical database. The 

results of two and a half years of hydrodynamic data and one year of biogeochemical 

measurements data are also presented. 

1. Study area 

The Cointzio reservoir itself (19.622°N, -101.256°W) is located in the southern part of the 

Mexican Central Plateau on the TMVB, at an altitude of 1990 metre above sea level (masl) 

(Figure 2.1). The region, which is located in the state of Michoácan, is subjected to high soil 

erosion of clay particles. It has a temperate sub-humid climate with a mean annual rainfall 

nearby the reservoir of 810 mm, mainly concentrated during the wet season from June to 

October. The dry season occurs the rest of the year (period 1956-2001; Gratiot et al, 2010). 

The rainfall is characterized by a high sub-daily variability, with localized convective storms 

generally promoting intense precipitation over a few km2 in the late afternoon through early 

night (Duvert et al, 2010). The amplitude of seasonal variations in water temperature in the 

region varies from about 14°C to 23°C (Figure 2.2). Figure 2.3a shows the time series of 

precipitation from the year 1955 to 2005 at Undameo (the inlet of the Cointzio reservoir) and 

in the Cointzio reservoir. The water inflow at Undameo during this period are also presented 

in Figure 2.3b. The trend of the inflow increased a bit in the last years as a potential response 

of run-off to land use change over the decades in the region (Gratiot et al., 2010). 

Precipitations showed in Figure 2.3a, do not exhibit any statistical trends. 
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Figure 2.1 Map of the Cointzio watershed, within the state of Michoácan, and location of 
sampling sites in the watershed, geographical position in UTM 

 

Figure 2.2 Seasonal variation in regional precipitation and water temperature patterns (from 

http://es.climate-data.org/location/3382/) 
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Figure 2.3 Time series of (a) precipitation at Undameo & in the Cointzio reservoir and b) the 

water inflow at Undameo from the year 1955 to 2005 

An aerial photography of the Cointzio reservoir is shown in Figure 2.4. It was built in 1940 

to supply water for domestic purpose (15-20 % of the need of the city of Morelia, 700 000 

inhabitants, i.e. 0.67 m3 s-1 all year long) and for downstream irrigation during the dry 

season, from January to June with the maximum discharge up to 8 m3 s-1. Besides that, it is 

also used as flood control for Morelia. The outflow of the dam is located at about 20 m depth 

from the surface. The morphometry of the reservoir is described by the rating curve between 

the volume and the depth in the reservoir (Figure 2.5). The water depth in the reservoir varies 

from year to year (Figure 2.6). The Cointzio reservoir drains a volcanic watershed, where 

domestic waters are rejected without any treatment. It has a storage capacity of 66 Mm3 and a 

surface area of 6 km2 for a maximum depth of 29 m. As the reservoir is filled and emptied 

each year, the residence time of the water within the reservoir is about one year (Némery et 

al, submitted). Increasing siltation of this reservoir is a major concern as it supplies a 

significant part of the distributed water in Morelia city. 
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Figure 2.4 Aerial photograph of the Cointzio reservoir which supplies water to Morelia city 
(Adapted from http://paralelo19n.blogspot.fr/2011/03/toluca-guadalajara.html) 

 

 

 

Figure 2.5 Rating curves between the volume and the depth in the Cointzio reservoir (years 

1940, 1985, 2005) 

http://paralelo19n.blogspot.fr/2011/03/toluca-guadalajara.html
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Figure 2.6 Time series of the water depths in the Cointzio reservoir (from 1990 to 2009) 

Figure 2.7 shows the watershed of Cointzio, its subdivision into 17 sub watersheds and its 

hydrological network. This watershed includes small cities such as Lagunillas (5136 people) 

and Acuitzio del Canje (9366 people) (Mendoza & Lopez-Granados, 2007). These sub 

watersheds contain hills, high valleys and plains developed over volcanic materials aged 

from Miocene to recent time. The topography shows a ridged area with slopes between 0 to 

70 %. 

 

 

Figure 2.7 Cointzio sub watershed and its hydrological network (STREAMS 2008, P. Bonté) 
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The Cointzio catchment covers an area of 630 km2 with altitudes ranging from 3440 masl at 

the summit to 1990 masl at the outlet. This watershed consists of a combination of cropland 

(40%), forests (37%) and grassland (23%) (Duvert et al, 2010). In 2005, the mean population 

density was 68 inh. km-2 for a total of 43 000 inhabitants (López-Granados et al, 2013). The 

watershed of Cointzio behaves similarly to a small plain surrounded by mountains. It has a 

semi-humid climate with a rainy season from June to October. There are three types of soils 

and land uses distributed among the different landscapes: Luvisols are in the plains of 

irrigated and highly mechanized agriculture, Acrisols are distributed for survival agriculture 

on the hills and Andosols are mainly covered by forests over ±2300 m. These types of soils 

are known to be poorly resistant to water erosion when they suffer land use changes 

(Poulenard et al, 2001; Bravo-Espinosa et al, 2009). The outflow of the basin is controlled by 

a dam, built 74 years ago. One of the consequences of erosion is siltation of the reservoir. 

Besides that, the contaminants are adsorbed on suspended particles and eventually settle as 

sediments leading to further water quality deterioration (synthesized from/source 

http://www.desire-his.eu/es/descargas/doc_view/333-highlight-conclusions-cointzio-study-

site). As there is no waste water treatment plants in the upstream villages the water inflow 

contains high levels of nutrients which lead to high levels of organic and nutritive pollution 

downstream (Némery et al, submitted).  

Land use has changed over the period 1975-2003 in the watershed with an increase in 

deforestation especially on steep slopes but also with some reforestation and progression of 

scrublands in some areas (López-Granados et al, 2013) (Figure 2.8). These changes are 

nearly equilibrated. The catchment bedrock consists of igneous rocks generated by 

Quaternary volcanic activities. According to the World Reference Base for soil resources 

(FAO, 2006), the main soils within the catchment (Acrisols, Andisols, and Luvisols) are 

highly degraded in some parts of the watershed where important processes of erosion occur 

during the wet season (Duvert et al, 2010). As a result, the reservoir presents a high turbidity 

level all year long and has partially lost its storage capacity because of siltation (Susperregui 

et al, 2009).  

http://www.desire-his.eu/es/descargas/doc_view/333-highlight-conclusions-cointzio-study-site
http://www.desire-his.eu/es/descargas/doc_view/333-highlight-conclusions-cointzio-study-site
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Figure 2.8 Maps of land cover and land use change processes by period in the Cointzio 

watershed (Mendoza et al, 2013) 

The main permanent watercourse is the Rio Grande de Morelia River whose source lies about 

25 km upstream of the Cointzio reservoir (Figure 2.9). The dam is located at the outlet of the 

catchment, 13 km upstream of Morelia city. Water and sediment inflows come almost 

exclusively from the Rio Grande de Morelia River, whereas the outflow is done through 

gates opening at a dam. The water inflow (floods) mainly occurs during five months of the 

rainy season (May-September), representing 77% of the water input and 98% of the sediment 

load (Duvert et al, 2011). The water outflow is concentrated mainly during the end of the dry 

season, when the agricultural water demand is high and also all throughout the year for 

drinkable water production. 
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Figure 2.9 Cointzio reservoir catchment topography. The black line represents the Rio 

Grande de Morelia River (Susperregui, 2008) 

 

2. Field monitoring strategy  

2.1 Survey in the watershed 

2.1.1 Watershed area 

To localize the origin of nutritive pollution upstream of the reservoir, eight sampling sites 

were identified in the watershed according to land use, population density and location in the 

river network (Figure 2.1). Their characteristics are described in Table 1 of chapter 4. Water 

samples were taken on a monthly basis in 2009. Discharge (Q), pH and dissolved oxygen 

(DO) were measured at the same time. The site n°8 in Figure 2.1, located in the Santiago 

Undameo township, corresponds to the outlet of the Cointzio watershed and to the inlet of the 

Cointzio reservoir. At this site, a gauging station was built in 1940 by the Comisión Nacional 

Del Agua (CONAGUA) (Gratiot et al, 2010). Water discharge was monitored by the 

commission at a subdaily frequency (2 to 3 times) from 1940 to 2005. From 2007 to 2010, as 

part of our investigations, some automatic instruments were installed to measure water and 

sediment discharge every 10 minutes. This in order to quantify rigorously the reservoir water 

and total suspended sediments (TSS) inputs (Duvert et al, 2011).  
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2.1.2 Inlet and outlet data 

In order to establish biogeochemical mass balances of carbon (C), nitrogen (N), phosphorus 

(P) and TSS, daily samples were taken at the reservoir inlet (i.e. Undameo gauging station, 

sampling site 8) and outlet during 2009 (Figure 2.1). Given the low population density 

around the reservoir banks and the absence of other rivers, the Rio Grande de Morelia River 

was considered to be the predominant source of C, N, P and TSS. This was confirmed by two 

preliminary field surveys realized in December 2005 and May 2006 (Susperregui et al, 

2009). 

For all sites, a similar methodology was considered. Sampling was conducted in the middle 

of the river using a bucket and samples were stored at 4°C. Weekly composites were 

obtained by a discharge-averaged mix of daily samples at each site for further analysis. At 

the reservoir inlet, ten minutes time step of discharges were measured using a continuous 

water level record and a rating curve (Duvert et al, 2011). The river water temperature has 

been measured or estimated from correlations with air temperature. At the outlet daily 

discharges and additional daily TSS data were obtained from the CONAGUA for the period 

2007-2009. Annual fluxes entering and exiting the reservoir were calculated as the product of 

water discharge and sample concentration over time. 

2.2 Sampling within the Cointzio reservoir 

2.2.1 Physical data 

At the beginning of the project, two extensive campaigns of measurements were conducted in 

December 2005 and May 2006 at high and low water levels, respectively in order to check 

whether lateral effects were playing a role in the hydrodynamics. Temperature, DO, turbidity, 

and conductivity were measured along thirty three vertical profiles, distributed along the 

longitudinal axis and along five cross sections. The results of these two campaigns did not 

reveal significant lateral heterogeneities (data not shown here) and it was decided to focus the 

monitoring effort on the temporal variations along the longitudinal axis. The spatial 

distribution of profiles is presented in Figure 2.10.  
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Figure 2.10 Map of the Cointzio reservoir, and localization of measurement points in the 

reservoir. 16 vertical profiles were realized along the longitudinal axis (dashed line) 

From September 2007 to January 2010, field measurements were carried out at a fortnightly 

to monthly basis. The measurements were systematically done from the dam to the Rio 

Grande de Morelia River with a small boat, propelled by an electrical engine. The mean 

duration of a survey was of about 6 hours, beginning in the morning (at about 9:00 AM) and 

lasting until mid afternoon (at about 15:00 PM). A multiparameter Hydrolab MS5 probe 

(Hach Company, Loveland, CO, USA) was used to determine the vertical profiles of 

temperature, turbidity, conductivity and DO, at 16 field stations regularly distributed along 

the longitudinal axis (Figure 2.10). The probe included: (i) an optical self-cleaning sensor for 

turbidity measurement (accuracy = 0.1 nephelometric turbidity units (NTU); (ii) a pressure 

sensor to determine depth (accuracy = 0.05 m); (iii) a 30-ohm thermistor to measure 

temperature (accuracy = 0.1°C). At each sampling station, the probe was immersed manually 

and plunged at a mean rate of 0.3 m s-1. With a measurement frequency of 1 Hz, 

hydrodynamic parameters were acquired two to three times per vertical meter. At each 

station, Secchi depth was measured to evaluate the attenuation of light by turbidity using a 
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Secchi disk. Thirty two longitudinal profiles were acquired from 2007 to 2009 are available 

online1. In total, about ten thousands individual measurements done with the multiparameter 

probe. 

To assess the intraday fluctuations, a thermal chain composed of 12 sensors with wide 

interval of one meter between each from water surface to 8 m depth, and with 5 m wide 

interval below, was anchored at the deepest point P27 of the reservoir (diamond symbol on 

Figure 2.10). It measured the temperature with Vemco minilog sensors (accuracy=0.2°C) 

every 10 minutes. After a complete year of monitoring, it has been decided to reduce the 

temporal frequency of measurements to 30 minutes in October 2008. This in order to prevent 

the loss of data (limited storage capacity of sensor) without affecting notably our estimation 

of the intraday fluctuations. The thermal chain disappeared the 15th April 2009 due to human 

disturbance and the only surface sensor was found again the 5th of May. After this date, the 

thermal chain was reinstalled with other Vemco sensors available at our laboratory. Their 

number and specificities were not optimal (with only five sensors that did saturate at 

temperature above 20.6°C). When necessary, the temporal series were interpolated with the 

Hydrolab datasets measured every two to three weeks. When the water surface temperature 

was not properly recorded in the reservoir from mid-June to September due to saturated 

sensor (see appendix 3), the reservoir surface temperature was estimated from a linear 

regression to the air temperature time series (Tsurf = 0.52*Tair+9.8, r2=0.84). 

The monitoring of the hydrodynamics was completed with the measurements of the main 

meteorological forcings. A Davis anemometer was mounted at the Cointzio dam station to 

monitor the wind speed and direction every 10 minutes (Figure 2.10). The instrument was 

located at about 20 meters above the water surface at the roof of a dam monitoring building. 

The wind direction and velocity are potentially affected by local venturi effects of the valley. 

In this work, wind series were thus examined qualitatively rather than quantitatively. 

Minimal and maximal daily air temperatures were collected manually by technical agents. 

The solar radiations were obtained from the official meteorological station of Morelia city, 

located at 10 km downstream. A time series of measurements of rainfall, evaporation above 

the reservoir was collected and analyzed statistically. Raw data were provided by the 

Comisión Nacional del Agua. The daily database covers the period between 1941 and 1985.  

                                                 
1 www.lthe.fr/PagePerso/gratiot/Cointzio_serie.htm 

http://www.lthe.fr/PagePerso/gratiot/Cointzio_serie.htm
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2.2.2 Biogeochemical data 

To assess the spatial and temporal dynamics of biogeochemical parameters within the 

reservoir, the biogeochemical survey was focused on a shorter temporal window from the 

beginning of 2009 to the beginning of 2010. The water samples were taken at the deepest 

point of the reservoir (P27) and at a middle position between the river input and the dam (P6) 

(Figure 2.10). At these two locations, additional vertical water samples were retrieved from 

different depths (0, 1, 2, 5, 10, 15, 20 m) and from near the bottom. A 2L Niskin bottle was 

used for TSS, chlorophyll a, zooplankton, Dissolved Organic Carbon (DOC), Particular 

Organic Carbon (POC), pH, and nutrients (TP, TN, PO4
3-, NH4

+, and NO3
-) analysis.  

2.3 Samples of sediments 

Samples of bottom sediments were also taken using a Van Veen grab sampler at two periods, 

during the dry season (19th May 2009) and at the end of the wet season (13th October 2009). 

Six points (P27, P13, P11, P6, 47 and P3) were chosen along the longitudinal profile to 

assess the C, P, and N stocks in deposited sediments. We assume that sampling is 

representative of the top 2 cm corresponding to sediment surface layer.  

2.4 Analytical methods of waters and sediments 

After sampling, water samples were stored in polypropylene flasks at 4 °C before analysis. 

TSS was weighed on GF/F Whatman filters after drying at 105 °C. Chlorophyll a was 

analyzed after filtering on GF/C Whatman filter using methanol extraction according to 

Holm-Hansen and Rieman (1978). POC analyses were performed after filtering on GF/F 

Whatman filter (ignited at 500 °C). Filters were treated with HCl (2 N) to remove carbonates 

and dried at 60 °C for one night (Etcheber et al, 2007). POC was then determined on dry 

filters by combustion in a LECO CS 125 analyzer at EPOC laboratory (France) (Etcheber et 

al, 2007). DOC was analyzed on filtered water using a TOC-V Shimadzu analyzer (Sugimura 

and Suzuki 1998). Analytical accuracy of carbon analysis was higher than 5 % (Coynel et al, 

2005). Nutrients (PO4
3-, NH4

+, and NO3
-) were analyzed with Hach DR/2010 

spectrophotometric equipment. Accuracy with standardized methods was evaluated at 10 %. 

Data on (TSS; g L–1) were obtained using an automatic water sampler (ISCO 3700) triggered 

by water-level variations. During floods, water samples were collected after each 5-cm water-

level variation. TSS (generally ≥ 2 g L–1) was estimated at the laboratory after drying the 

entire sample for 24 h at 60 oC. Total particulate P (TPP) content was determined using a 

high temperature/HCl extraction technique (Aspila et al, 1976; Némery & Garnier, 2007) 

before phosphate measurement by colorimetric method (Murphy and Riley, 1962). To 

estimate particulate inorganic P (PIP), the analysis was similar to that for TPP, except that 
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the high temperature organic P mineralization was omitted. Particulate organic P (POP) was 

determined by calculating the difference between TPP and PIP (Svendsen et al., 1993). Bulk 

carbon (C) and nitrogen (N) content were measured by CHN analysis using a CN-analyzer 

FlashEA 1112 (Thermo Fisher Sci., MA, USA). Carbonates was analyzed at the INRA soil 

analysis laboratory in Arras (France) using classical calcimetric method (Robertson et al, 

1999) according to the normative procedure NF ISO 10693. 

3. Hydrodynamic and Biogeochemical functioning from field data 

3.1 Hydrodynamic functioning 

3.1.1 Inlet and outlet of the reservoir  

The inflow data were measured by a continuous water level record and a rating curve and the 

data were obtained from the CONAGUA. The inflow data were high during the wet season 

and they were low in the rest of the year. As a result, the Cointzio dam was built in 1940 to 

retain water during high flow period in order to provide water for domestic purpose all year 

long and to deliver water for irrigation in dry season (Figure 2.11).  

 

 

Figure 2.11 Seasonal time-series of inflow & outflow 

 
The river water temperature was measured with a Vemco minilog TR8k sensor (+0.2°C), it 

had some periods of missing data in 2009 due to malfunctioning (Figure 2.12).   
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Figure 2.12 Measured river water temperature 

 

The missing river water temperature was estimated from correlations with air temperature 

(Figure 2.13). During the high flow period (May-September), it was measured with a Vemco 

minilog TR8k sensor (+0.2°C). The data were collected every week to limit the risk of 

unrecorded periods. When malfunctioning occurred, a linear regression was fitted to air 

temperature (Triver=0.45*Tair+11, r2=0.79) to replace missing data. During the low flow 

period, the river water depth never exceeded a few centimeters at the outlet of the Cointzio 

watershed. This led to a good heat exchange between air and water, as revealed by short 

period of monitoring of air and water temperature. Based on this specific surveys, the river 

water temperature was deduced from the adjustment of a linear regression with the air 

temperature (Triver=0.28*Tair+13, r2=0.82). 

 

 

Figure 2.13 Measured and interpolated river water temperature 
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3.1.2 Hydrodynamics of the water column 

First of all, the time series of the vertical temperature profiles at the deepest point P27 of the 

Cointzio reservoir with the same data in 2009 are shown in Figure 2.14. The point P27 

corresponds to the most complete set of data of the reservoir. The panel 2.14a is defined with 

the vertical axis oriented upward, the origin is at the bottom, and the elevation is defined by 

meter above sea level. In contrast, in order to be suitable with the structure of the model used 

in this study, the axis of the panel 2.14b is oriented downward, and the origin is at the water 

surface. The profiles show an important water level fluctuation of the reservoir with a 

minimum water depth in June (18.9 m), and a maximum in January (24.3 m). The water level 

of the reservoir decreases from January to June, and then increases from June to December. 

The temperature values are presented by colorbar. The reservoir was stratified during eight 

months, from February to October; it was mixed by the end of October and destratified from 

November until January. Temperature is homogeneous during November, December, and 

January due to night time cooling (Figure 2.14).  

z

 

Figure 2.14 Vertical profiles of temperature at P27 in 2009 

In the panel 2.14a, the vertical axis has its origin at the bottom and is oriented upward; the 

grey mask reduces down when the water depth decreases and reversely. The panel 2.14b 

represents the same data series with another referential. The horizontal axis represents the 

months of the year 2009. 

Figure 2.15 presents the multi-year evolution of the hydrometeorological parameters and the 

main biogeochemical characteristics of the reservoir. In the light of these time series and of 

their correlated seasonal evolution, one can distinguish three contrasted periods, namely the 

“dry season-mixing period”, the “dry season-stratified period” and the “rainy stratified 

period” (respectively the cyan, the white and the grey backgrounds in Figure 2.15). The two 

and a half years of survey underline the same behavior from year to year. The analysis of 
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hydrological data in the Cointzio reservoir was done jointly with Valentin Wendling during 

his master’s thesis (2011).  

 

Figure 2.15 Hydro-meteorological response of the Cointzio reservoir 

(September 2007 to January 2010) 

The background colors represents dry season-mixing (cyan), dry season-stratified (white), 
rainy stratified period (grey). 

a) Rio Grande de Morelia River inflow (blue) and dam outflow (black), b) Rio Grande de 
Morelia River suspended solid load, c) Secchi depth (mean and standard deviation) from all 

the measurement stations, d) TSS (mg L-1) was estimated from a linear regression to the 
fortnightly measurements of turbidity (NTU) (see detail in appendix), e) Dissolved oxygen as 
a function of depth and time, interpolated from fortnightly measurements, f) Temperature as 

a function of depth and time, measured at 10 (or 30) minutes from the thermal chain, g) 
Minimal (blue) and maximal daily air temperature (red) measured at the dam, h) Wind speed 

measured at the dam. The horizontal axis represents the months of the years. 
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(i) The dry season-mixing period (cyan background in Figure 2.15) extends from the end 

of October to January. It is characterized by a vertical homogeneous distribution of turbidity 

(Figure 2.15d), DO (Figure 2.15e) and temperature (Figure 2.15f), which highlights the 

existence of an efficient physical mixing of the water column. During this period, the water 

column is cooling, from ~19°C to ~14°C. For operational purposes, it is interesting to note 

that the mixing is nicely correlated with a drop in the minimum air temperature below a pivot 

temperature of 10°C (Figure 2.15f). This pivot temperature can be considered as a broad 

indicator of the transition between periods. This drop in air temperature remains quite stable 

with a daily minimum value of around 5°C and a maximum value of about 15°C (Figure 

2.15g). This drop of air temperature leads to an efficient vertical homogenisation of TSS, DO 

and water temperature (Figure 2.15d, e and f). The night mixing stops during January and the 

water column is stratifying until the next fall. The reservoir of Cointzio experiences a single 

full mixing per year and can thus be classified as a warm monomictic lake, like the majority 

of Mexican hollow lakes (Alcocer and Bernal-Brooks, 2010).  

(ii) The dry season-stratified period (white background in Figure 2.15) extends from 

January to May. During this period, air daily minimum temperature and solar radiations (not 

presented) increase (Figure 2.15g). The waterbody is warming up: the water temperature 

rises from ~15°C to ~21°C at the surface and from ~15°C to ~17°C near the bottom. A 

thermal stratification builds up, but we can already mention that the temperature gradient 

remains almost constant over the vertical, and no sharp thermocline is observed (Figure 

2.15f). As soon as the stratification develops, the suspended particles are no longer re-

homogenized by night-cooling, and sedimentation occurs. Consequently, the Secchi depth 

increases from ~0.15 m to ~0.25 m (Figure 2.15c) and the TSS of the water column decreases 

from ~ 40 mg L-1 to ~ 10-20 mg L-1 (Figure 2.15d). Despite this settling, the presence of very 

fine particles, colloids and dissolved material maintains a very high level of turbidity in the 

reservoir of Cointzio (Figure 2.15d). Stratification also affects considerably the 

biogeochemistry of the reservoir. Near the bottom, one can observe a progressive decrease in 

DO concentration from about 6 mg L-1 in January to anoxic conditions in June. Near the 

surface, DO remains nearly constant (~6 mg L-1, Figure 2.15e). During this dry season 

period, a large amount of water is extracted from the reservoir for irrigation purposes. The 

water budget presented in Figure 2.15a shows that the patterns of riverine input into the 

reservoir were strongly influenced by the climatic regime of the region. From November to 

May during the dry season, the inflow was very low, it is almost negligible (0.2 to 1.2 m3 s-1) 

whereas the outflow was maximum due to irrigation demand, reaching its maximum (up to 7 
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m3 s-1). At the same period, the reservoir only provided water for the domestic water plant 

(base flow of 0,672 ± 0,088 m3 s-1 all along the year; data CONAGUA). As a consequence, 

the water level decreases of about 10 m at a mean decreasing rate of about 8 cm per day. One 

can noticed that water consumption for irrigation was more distributed in 2008 (January to 

April) than in 2009 (March and April).  

(iii) The rainy stratified period (grey background in Figure 2.15) starts with the first flood 

events, in early June. It lasts more than four months and ends in the mid October. The 

beginning of the rainy season leads to a five folds increase of the baseflow (from ~0.4 m3 s-1 

to ~2 m3 s-1). The maximum water discharge was ~18 m3 s-1 in 2008 (2008/08/07) and was 

~22 m3 s-1 in 2009 (2009/09/08). Sediment load magnifies the trends observed on water 

discharge time series. Hence, sediment discharge increases over four folds during the wet 

season (Figure 2.15b). As shown on Figures 2.15c and d, the input of sediments in the 

reservoir is accompanied with an almost simultaneous increase of the turbidity. Secchi depth 

decreases from ~ 0.25 m to ~ 0.15 m. Near the bottom, the input of sediments is even higher, 

as highlighted by the TSS time series presented in Figure 2.15d. TSS increases by a seven 

folds factor, from 5 mg L-1 to 37 mg L-1, at 5m depth; and by a ten folds factor, from 13 mg 

L-1 to 140 mg L-1, at 15m depth. This bottom turbidity increase is a direct signature of the 

successive sediment-driven density currents, which propagate near the bottom after flood 

events. A nice illustration of these bottom density currents is presented in Figure 2.16a. This 

situation was observed on 13 September 2007, two days after a major flood event. This flood 

lasted two weeks, from 9 September 2007 to 23 September 2007. It brought about 10.5 Mm3 

of water and 8400 tons of sediments into the reservoir. Similar situations were observed very 

frequently during the three rainy stratified period of 2007, 2008 and 2009 (see the complete 

database in appendix).  

The sediment-driven density currents have a clear impact on the annual evolution of the 

water column temperature profile. As shown in Figure 2.15f, the daily mean water 

temperature stabilises at about 22°C in the 10 m thick surface layer as a result of the 

relatively stable air temperature (Figure 2.15g, daily minimum of ~14°C and maximum of 

~22°C). Near the bottom, water temperature warms significantly from ~16.5°C to ~19°C 

during the rainy season. This heating is not due to a heat flux from the surface but 

corresponds to the progressive injection of hotter water by the density currents. As observed 

in Figure 2.15e and Figure 2.16b, the successive density currents do not affect significantly 

the vertical gradient of oxygen. It means that the oxygen consumption rate is significantly 

higher than the oxygen flux advected by the density currents.  
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Figure 2.16 Longitudinal evolution of TSS (a), DO (b) and temperature (c) from the Rio 

Grande mouth (left side) to the dam (right side) on September, 13th 2007.Vertical dotted lines 

represent the location of individual hydrolab measurements. 

Based on the analysis of the field measurements, some preliminary conclusions can be 

addressed concerning the functioning of the wind-swept tropical turbid reservoir of Cointzio. 

During the mixing period (from October to January), the strong turbidity (Secchi depth < 0.3 

m) does not affect the hydrodynamics and the reservoir is well mixed as any monomictic 

system is. During the stratified period (from February to September), the functioning differs 

from the one of typical hollow waterbodies as follows: The majority of the incoming river 

water is plunging in such a way that the reservoir is filled up from the bottom. The successive 

sediment-driven currents are even sufficiently developed to advect a significant quantity of 

heat at the bottom of the reservoir. 

It is worth noting that the vertical gradients of TSS and oxygen concentration exhibit a 

maximum stratification at 10 m depth during the rainy season. Below this water depth, 

suspended solid increases greatly (~ 40 mg L-1 above and ~ 140 mg L-1 below) and oxygen 

concentration drops drastically (~6 mg L-1 above and ~0 mg L-1 below). This drop is not 

observed in the temperature profiles, which points out that the thermal stratification does not 
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act as a physical barrier to the vertical gradients. This level seems to be representative of the 

upper limit of the hyperpycnal density currents.  

3.2 Biogeochemical functioning 

3.2.1 Input and output of the reservoir  

The analytical results for the samples taken from the inlet of the Cointzio reservoir indicate 

that the water is of poor quality in the Rio Grande de Morelia River with a degradation that 

mainly originated from point sources (see discussion in chapter 4, Table 2). The water taken 

from this river gives high values especially for total P (0.38 ± 0.23 mg L-1), P-PO4
3- (0.11 ± 

0.07 mg L-1), NH4
+ (0.15 ± 0.10 mg L-1) and TSS (2220 ± 1559 mg L-1), which indicates an 

important input of nutrients to the reservoir.  

Figure 2.17 shows temporal variations in TSS, P, N, C and chlorophyll a at the inlet and 

outlet of the Cointzio reservoir. The input P, N and C concentrations were strongly 

influenced by discharge especially the particulate concentrations inputs linked to TSS 

dynamics (POC and TP). On average, input concentrations of all substances were higher than 

their output concentrations (Figure 2.17), indicating that there are some dispersal and 

dilution, and the internal biological processes taking place in the reservoir partially transform 

the inputs. For instance, maximum TSS was observed during the wet season with peaks > 10 

000 mg L-1. Output TSS concentrations never exceeded 600 mg L-1 (Figure 2.17 a, b). Less 

total phosphorus (TP) and orthophosphate (PO4
3-) exit through the outflow than enters 

through the inflow. The reservoir could retain phosphorus (i.e. P sediment) (Figure 2.17 c, d). 

The concentrations of total nitrogen (TN) and nitrate (NO3
-) through the outflow are less than 

from the inflow (Figure 2.17 e, f). The inputs of POC and DOC are higher than their outputs. 

More chlorophyll a enters through the inflow than exits through the outflow; this means that 

concentrations in the river are higher than in the reservoir. This could be due to the 

deposition at the bottom of the reservoir or consumption by zooplankton (Figure 2.17 m, n). 

This data set will be used for the calculation of inputs and outputs loads in chapter 4. 
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Figure 2.17 Seasonal variations in TSS (a, b), TP, PO4
3- (c, d), TN, NO3

- (e, f), NH4
+ (g, h), 

POC (i, j), DOC (k, l) and chlorophyll a (m, n) at the inlet and outlet of the Cointzio reservoir 
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3.2.2 Reservoir internal functioning 

The Figures 2.18 to 2.25 present the 

spatio-temporal variations of 

biogeochemical parameters in the 

Cointzio reservoir.  

During the high flow periods (June to 

October), suspended solid increased 

because a large quantity of sediments 

eroded in the watershed were 

transported to the reservoir. Sediment 

concentration was high enough to 

generate the hyperpycnal flow at the 

bottom of the reservoir. The bottom 

turbidity increase is a direct signature 

of the successive sediment-driven 

density currents, which propagate near 

the bottom after flood events (Figure 

2.18 and Figure 2.16a). 

From May to the end of October, DO 

decreased below 1.0 mg L-1 at the 

bottom and extended to the whole 

hypolimnion (Figure 2.19). This 

depletion of oxygen could be the result 

of nitrification and of the benthic 

mineralization leading to anoxic 

conditions at the bottom reservoir. Two 

main sources of bottom organic matters 

are:  

 

 

(i) The production of phytoplankton 

and its sedimentation, which are dominant during the first period of the year, 

Figure 2.18 Seasonal variations in TSS 

 

 

       Figure 2.19 Seasonal variations in DO 

 

        Figure 2.20 Seasonal variations in pH 
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(ii) The input of organic matters with the arrival of hyperpycnal sediment flows, which 

prevail from June to October (Doan et 

al, 2012).  

At the surface, DO remained high (>6.0 

mg L-1) because of oxygen production 

by photosynthesis and an efficient air - 

water exchange.  

Stratification also affected pH in the 

reservoir (Figure 2.20). The epilimnion 

water layer towards to alkaline 

conditions, with a maximum pH value 

of 9.0 from February to July as a result 

of the photosynthetic activity at the surface. The pH at the bottom towards to neutrality over 

time as a result of hypolimnetic anoxia. At the end of August, the pH was at its lowest level 

with a value of 6.5. During destratification, the pH got back to neutral conditions in the water 

column (Doan et al, 2012).  

 The results of PO4
3- profile in Figure 

2.21 show clearly the significant 

upward flux of PO4
3- in September - 

October released by mineralization 

from sediments thus increasing 

concentrations in the water column. 

From January to July, PO4
3- 

concentrations were not only low in 

the epilimnion, where they were 

consumed by primary production of 

algae but also below in the 

metalimnion. Late destratification in 

the end of October led to a sharp decrease in PO4
3- in the hypolimnion due to an increase of 

the reservoir volume. 

 

    Figure 2.21 Vertical profile of PO4
3- 

Figure 2.22 Vertical profile of NH4
+ 
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As a result, the NH4
+ concentrations in the hypolimnion increased (> 0.6 mg N L-1) (Doan et 

al, 2012). In general, NH4
+ 

concentration in reservoirs may be 

influenced by atmospheric and riverine 

inputs, biological uptake, 

mineralization and nitrification (Dodds, 

1993). In the Cointzio reservoir, the 

NH4
+ concentrations were low in the 

epilimnion. The benthic mineralization 

prevailed from May over the course of stratification and the progressive DO depletion in the 

hypolimnion leading to release of NH4
+ from sediments (Figure 2.22). These increasing 

trends coincided well with the anoxia period identified from May to October, but also with 

the incoming TSS peaks from the watershed. The benthic mineralization increases during this 

period resulted from the 

accumulation of organic matters 

from inputs and from dead algae 

sink.  

Secchi depth presented a very 

good spatial homogeneity that is 

pointed out by the good fit 

between measurements at P6 and 

P27 (Figure 2.23). Maximum 

value was between 20 and 31 cm 

from January to May. With the 

beginning of the wet season (end of May) and the higher incoming TSS loads, Secchi depth 

decreased to reach a minimum of 11 cm in September and a mean of 15 cm ± 2 cm from June 

to December. 

The overall distribution of chlorophyll a was well correlated with Secchi depth because of 

the direct influence of higher TSS values on 

light penetration. The chlorophyll a was high 

in the top 10 m from January to July, with an 

average concentration of 30 ± 19 μg L-1. From 

January to April, the maximum chlorophyll a 

 Figure 2.24 Seasonal variations in chlorophyll a 

 

Figure 2.25 Seasonal variations in zooplankton 

 

    Figure 2.23 Seasonal variations in Secchi depth 
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increased up to 70 μg L-1 due to higher light penetration and nutrient availability (Figure 

2.24). After reaching the first maximum peak in March, the chlorophyll a was reduced 

drastically by grazing of zooplankton, especially at the beginning of June and then recovered 

during the following months (Figure 2.25). During the wet season, the successive flood 

events supplied a large quantity of TSS which reduced Secchi depth to less than 0.2 m. This 

hindered photosynthesis and chlorophyll a dropped below 10 μg L-1. 

Conclusions of chapter 2 

The turbid tropical Cointzio reservoir, located in the Trans - Mexican Volcanic Belt, has been 

built since 1940 for the drinking water supply of the city of Morelia, and for downstream 

irrigation. In order to identify the origin of nutritive pollutions upstream of the Cointzio 

reservoir, eight water samples sites in the watershed were taken to measure discharge (Q), 

DO, and nutrients monthly during 2009. Moreover, daily samples were taken at the reservoir 

inlet and outlet to measure concentrations of C, N, P and TSS during 2009. In addition, at the 

reservoir inlet, discharges were measured at the time step of ten minutes (Duvert et al, 2011). 

These measurements were used to identify the boundary conditions of the reservoir. Two and 

a half years of measurements data (temperature, turbidity, conductivity and DO) from 2007 

to 2009 were carried out at a fortnightly to monthly basis at 16 field stations regularly 

distributed along the longitudinal axis; and the water samples were taken at the deepest point 

of the reservoir and at the middle of the reservoir to measure biogeochemical parameters 

(TSS, chlorophyll a, DOC, POC, pH, and nutrients (TP, PO4
3-, NH4

+, and NO3
-) during the 

intensively monitoring year 2009. This strategy of monitoring of the reservoir and its 

watershed was designed in order to evaluate the status of dynamics and water quality of the 

reservoir.  

Based on the thermal classification proposed by previous studies (Hutchinson, 1975), the 

Cointzio reservoir can be classified as a warm - monomictic lake, like the majority of 

Mexican hollow lakes. The stratification takes place eight months from February to 

September and with complete mixing from October to January due to night time cooling. 

Photosynthetic activity of the phytoplankton was responsible for the basic pH values in the 

epilimnion during the productive period (January to May). With the first floods at the 

beginning of the rainy season, the turbidity of the water column increased at the same time as 

the phytoplankton dropped rapidly. During the second part of the year, the reservoir became 

anoxic in the hypolimnion as a result of the intense benthic respiration and decomposition 

processes leading to nutrients release. The analyses of two and a half years of hydrodynamic 

and one year of biogeochemical measurements data are presented to provide (i) a first 
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assessment of the dynamics of the reservoirs and (ii) some input data for further water quality 

modelling.  
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Chapter 3. NUMERICAL MODELLING OF THE COINTZIO 

RESERVOIR 

This chapter describes the models used to simulate the hydrodynamics and the 

biogeochemistry of the Cointzio reservoir. The advantages and limitations of the models are 

also discussed. The model definition, model equations, all processes and modelling approach 

are presented in detail in this chapter. Some of the results of modelling simulations are 

showed in chapter 4 and most of them are developed in chapter 5.  

1. Introduction 

Numerical modelling is a relevant tool to assess response of complex systems, integrating 

different factors. Moreover, the application of mathematical modelling is necessary in order 

to design management strategy, test functional hypotheses and simulate future states for a 

system in response to environmental alteration. Many biogeochemical lake models have been 

developed during the last thirty years to evaluate the lake ecosystems, propose management 

strategies, improve the understanding of lake ecosystems, synthesize and communicate 

quantitative knowledge about important processes in reservoirs. Lake models can be used to 

test and improve our understanding of lake ecosystems functioning by comparing model 

results with measured data (Mieleitner & Reichert, 2006). Many models are assuming a one-

dimensional vertical approach. They are able to describe vertical variations of physical and 

chemical parameters (Goudsmit et al, 2002). 

An overview of several models of different levels of complexity is given by Jøgensen & 

Bendoricchio, (2001). In the hydrologic community, there have been some interesting 

discussions regarding the best way to use numerical models. According to Grayson & 

Bloschl, (2000), a balance between model complexity and data availability must be found to 

optimize the model performance. A model requiring many input parameters (at high spatial 

and temporal frequencies) may suffer from a lack of data acquisition. In such situation, the 

uncertainty resulting from the calibration of unmeasured parameters may be larger than the 

decrease in model structure uncertainty.  

It may be questioned to what extent a one-dimensional model adequately represents a natural 

system such as a lake or a reservoir. The response is not unique and clearly depends on 

timescales and whether the study is conducted for research or operational purposes. The 

application of 2D or 3D models is usually limited by the capacity of operators to measure a 

full set of variables at an adequate resolution, both in time and space. The assumption of the 

one dimensionality is justified for lakes of small or medium size as horizontal variations of 

temperature and concentrations of substances are not significant in most cases. This is 
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because vertical transport in density stratified lakes is about 103-105 times smaller than the 

horizontal one (Imboden & Wüest, 1995). Furthermore, gradients in the horizontal direction 

are generally small when compared to the vertical gradients that exist, and are rapidly 

annihilated by gravitational adjustments. Based on these considerations, we decided to use 

one-dimensional models for our simulation. This choice was also sustained by two extensive 

3D campaigns of measurements of temperature, turbidity and dissolved oxygen conducted in 

December 2005 and May 2006. During these surveys, thirty three vertical profiles, 

distributed regularly on the water surface, were acquired (Figure 2.10 in chapter 2). The field 

results of these two measurements did not reveal significant lateral heterogeneities. It has 

been thus decided to focus the long term monitoring effort on the temporal variations along 

the longitudinal axis. Along that line horizontal gradients are negligible, at the exception of 

short term periods of 3-5 days corresponding to flood related hyperpycnal flows (Susperregui 

et al, 2009). Besides that, the vertical profiles of water quality variables realized fortnightly 

at two distinct locations of the reservoir (points P27 and P6 see Figure 2.10 in chapter 2) 

confirmed that longitudinal gradients are negligible for long term applications. On the other 

hand, we did not have enough data to simulate a multi-dimensional model integrating all 

parameters. Indeed, given the difficulty of setting realistic initial conditions for all water 

quality variables in a multi-dimensional model and also the difficulty of knowing all of the 

input fluxes in the spatial scale of the model, a multi-dimensional approach would have a 

highly uncertain outcome in the case of the Cointzio reservoir.  

2. The physical models applied 

The physical modelling approach aims at identifying the physical factors that drive the 

hydrodynamics of the Cointzio reservoir in order to constitute a good basis for an ecological 

model to survey water quality. It was applied to predict the seasonal development of 

temperature stratification and destratification in the Cointzio reservoir during the years 2008 

and 2009.  

2.1 Aquasim model 

2.1.1 Overview 

Aquasim is a vertical 1D model used to reproduce physical and biogeochemical processes in 

natural and technical aquatic systems (Reichert, 1998). It is flexible due to an open structure 

that allows modifications and integration of new processes. Aquasim is organized into two 

parts, the first deals with the modelling of the thermal structure of the reservoir; the second is 

related to biogeochemical modelling that allows inclusion of phytoplankton, nutrients, 

organic matter and dissolved oxygen dynamics. It uses the DASSL (Differential Algebraic 
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System Solver) algorithm (Petzold, 1983); in which the time step and the integration order 

are constantly adapted following the evaluation of convergence criteria. The physical 

Aquasim model is based on turbulence closure schemes where the rates for vertical transport 

are related to the turbulent kinetic energy (k). 

The Aquasim model performs the four tasks of simulation, identifiability analysis, parameter 

estimation and uncertainty analysis. Due to the similarity of the mathematical techniques 

involved, identifiability and uncertainty analyses are combined to yield sensitivity analysis 

(Reichert, 1998). The first task of Aquasim is to allow the user to perform model simulations. 

By comparing calculated results with field measurements, such simulations reveal whether 

certain model assumptions are compatible with measured data. The Aquasim’s second task is 

to perform sensitivity analysis with respect to a set of selected variables. This feature allows 

the user to calculate linear sensitivity functions of arbitrary variables with respect to each of 

the parameters included in the analysis. The third important task of Aquasim is to perform 

parameter estimations automatically for a given model structure using measured data. This is 

not only important for obtaining neutral estimates of parameters, but is also a main 

prerequisite for efficiently comparing different models (Reichert, 1998). 

2.1.2 Data inputs and model outputs 

Figure 3.1 gives an overview of the main model processes. The simulation is driven by 

meteorological data, inflow and outflow data and heat flux. Output was compared with the 

field data collected at a mid-lake station P27 since they represent the most complete set of 

data for the reservoir. The output data include the vertical temperature profiles of the 

reservoir in relation with depth and time.  
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Figure 3.1 Schematic overview of the Cointzio reservoir simulation model 

 

Vertical exchanges create the thermal structures of the reservoir as most of the heat transfer 

takes place at the reservoir surface, and then progressively affects all the layers downwards. 

The model discussed here takes into account the main mixing processes: The advection 

related to throughflow, the eddy diffusion induced by wind and internal seiches, the mixing 

due to surface waves and free convection. The simulation is driven by data of cloud cover, 

wind speed, vapor pressure, radiation, and water and air temperature. Our modelling 

approach required the following input data. 

Meteorological data 

The meteorological data were acquired from the report of Synoptics Raw Data provided by 

the Centre of Météo Morelia, Mexico. The air temperature, shortwave radiation and relative 

humidity were measured every 10 minutes; atmospheric pressure was measured every hour. 

The measurement of wind speed was recorded every 10 minutes with the maximum velocity 

of 8 m s-1. The cloud cover was estimated from shortwave radiation data during the day, and 

it was interpolated for the night. The light absorption coefficient was calculated from secchi 

depth that was measured every month at P27.  

Inflow and outflow data 

In the case of the Cointzio reservoir, the water input in the model was placed at the level of 

the hypolimnion layer. This is because the inflow, which comes almost exclusively from the 

Rio Grande de Morelia River, is driven by sediment load and sink to generate a hyperpycnal 

flow. The outflow occurs through the gates located at about 20 m depth of the reservoir. In 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&sqi=2&ved=0CDUQFjAC&url=http%3A%2F%2Fmexique.meteosun.com%2Fmeteo%2Fprevisions-ville%2FMX%2Fmorelia-MXMN0059&ei=tcJhUMyVPOjB0QXfrIHYAg&usg=AFQjCNGmG3aIDbWHvxULzm7-u1gq5zJjVQ&sig2=Sv0GTYO3Qx43LPLkhGD0iQ
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addition, the temperature for the inflow is required while that of the outflow is not necessary 

for the simulation. Inflow temperature was measured for several months or when the data 

was not available, it was deduced from the adjustment of a linear regression with the air 

temperature (see Fig. 2.11).  

Heat flux 

The net heat flux between water and atmosphere at the surface is expressed as indicated 

below. The notations, units and parameter values of heat flux are summarized in Table 3.1. 

Table 3.1 Notations and units for meteorological data 

Parameters Definition Units or assigned values 

Bowen 

C 

ea 

es 

B 

p1, p2 

ra 

rs 

T 

air 

surf 

u10 

z 

Z 

γ 

λ 

ρ 

б 

Q 

Cp 

Tz 

Ao 

Secchi 

Bowen ratio, corrected for altitude 

Cloud cover 

Vapor pressure 

Saturated vapor pressure at lake surface temperature 

buoyancy flux 

Sensitivity parameters for HL and HE 

Reflection of infrared radiation at lake surface 

Reflection of solar radiation at lake surface 

Temperature  

Absolute air temperature 

Absolute temperature of lake surface  

Wind speed 10 m above lake surface 

Vertical coordinate 

Water surface  

Coefficient for seiche energy decay 

Light absorption coefficient 

Water density 

Stefan-Boltzmann constant 

Lake outflow 

Specific heat of water  

Mean inflow temperature 

Lake surface area 

Secchi depth 

0.52 mbar K-1 

[0 ÷1] 

mbar 

mbar 

W kg-1 

estimate parameters 

0.03 

0.08 

°C  

°K 

°K 

m s-1 

m 

m 

6.2*10-11 kg-1/2 m-1 

m-1 

kg m-3 

5.67*10-8 W m-2 K-4 

m3 s-1 

4200 J kg-1 K-1 

°C 

m2 

m 
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The net heat flux into a reservoir can be expressed as follows: 

(3.1) 

Where the six terms on the right-hand side of the equation (3.1) represent the heat fluxes 

associated with the processes of absorption of direct and diffuse global radiation (shortwave) 

from sun and atmosphere (HS), the absorption of infra-red radiation (long-wave) from 

atmosphere (HL), the emission of infra-red radiation (long-wave) from lake surface (HB), the 

exchange of latent heat between lake surface and atmosphere due to evaporation (HE), the 

convective exchange of sensible heat between lake surface and atmosphere (HC) and through 

flow (HF) (Livingstone D. M., et al, 1989). The influence of other heat exchange processes, 

such as the reflection of infra-red radiation by mountains surrounding the lake or the heat 

exchange between water body and sediments, has been assumed to be negligible and will not 

be considered further in this work. The radiative absorption terms (HS and HL) are always 

positive and the radiative emission term (HB) is always negative, whereas the terms 

representing non-radiative heat exchange (HE, HC, HF) can take either positive or negative 

values. 

Short wave absorption HS 

Short wave radiation originates from the sun. Some of the solar radiation is reflected at the 

water surface and the remainder penetrates into the lake. Most of the radiation that penetrates 

is absorbed in the water column and converted to heat. According to Henderson–Sellers 

1986, forty percent of the solar radiation is absorbed at the lake surface; the rest penetrates 

into the epilimnion with an attenuation light absorption coefficient . The absorption 

coefficient  is estimated using the Beer - Lambert law. 

     (3.2) 

Where Hso is the measured solar radiation above the water surface that is obtained by 

meteorological data every 10 minutes, rs and  are the reflection and extinction coefficient of 

the lake water. The latter can be approximated by . 

Long-wave absorption HL 

The long-wave absorption term HL is the most difficult of the six terms to assess and is also 

the most prone to computational error. The atmosphere is treated as an infrared radiator with 

an emission coefficient EL (Anderson, 1954).  

   (3.3) 

) )1/7  (3.4) 
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HL was found to vary between 320 W m-2 (February) and 417 W m-2 (March) and has an 

annual mean of 367 W m-2 (Figure 3.2). 

Long-wave emission HB 

Long-wave radiation is emitted from the surface of a lake according to the Stefan-Boltzmann 

law for a "grey body" with an emission coefficient of 0.97 (Sweers, 1976). 

HB= -0.97*б*       (3.5) 

HB is not only the most accurately determinable term of Hnet, but also the term with the 

greatest absolute magnitude. HB varies between -378 W m-2 in December and -413 W m-2 in 

October and has an annual mean of -397 W m-2 (Figure 3.2). 

Evaporation and condensation HE 

Evaporation is the conversion of liquid water to water vapor; condensation is the conversion 

of water vapor to liquid water. Both of these reactions are accompanied by a flux of heat. 

Evaporation from the lake surface extracts heat from the lake and results in cooling of the 

water surface. Condensation extracts heat from the atmosphere and adds it to the water 

surface, resulting in heating at the water surface. Thus, evaporation cools the lake surface, 

and condensation heats the lake surface. Evaporation and condensation are also accompanied 

by a flux of water; thus they affect the total water budget of the lake. 

The heat loss of a lake occurring as the result of evaporation at the lake surface is described 

by the following empirical formula. 

(3.6) 

Where es is saturated vapor pressure at lake surface temperature 

es= fw*10*(0.7859+0.03477*(T*Z+273))/(1+0.00412*(T*Z+273)) 

 fw= 0.61*(1+1e-006*patm*(4.5+6*1e-005*(T*Z+273)^2)): Transfer function 

 ea = Rh*ew/100: Vapor pressure 

 Rh is measured relative humidity 

ew=fw*10*(0.7859+0.03477*(T*Z+273))/(1+0.00412*(T*Z+273)) 

p2 is sensitivity parameter for longwave absorption 

HE lies between -4 W m-2 in November and -90 W m-2 in February and has an annual mean 

of -47 W m-2 (Figure 3.2). 

Convection HC 

The ratio of HC to HE is proportional to the ratio of ( ) to (es - ea). The constant 

of proportionality is called the Bowen coefficient (Bowen, 1926). Hence, from the equation 

(3.6): 
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   (3.7) 

HC varies from -24 W m-2 in December to 15 W m-2 in April and has an annual mean of -5 W 

m-2 (Figure 3.2). 

Throughflow HF 

It is assumed here that the influence of groundwater on the heat balance is negligible. It is 

also assumed that the temperature of the outflow is identical to that of the reservoir (T), HF is 

computed as follows: 

    (3.8) 

HF, which varies between 0 W m-2 and 16 W m-2 and has an annual mean of 2 W m-2, is small 

in magnitude compared to the other terms and can be neglected in most cases (Figure 3.2). 
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Figure 3.2 Heat flux terms of the reservoir in 2009, calculated according to eqn. (3.1) 

The contributions of the various heat exchange processes to the heat balance are illustrated in 

Figure 3.2. Their magnitudes differ greatly. The two processes involving the absorption and 

emission of long wave radiation by the lake play the greatest role in determining the heat 

balance. The mean value of HL is 367 W m-2 and that of HB is -397 W m-2. 

Turbulent diffusivity in Aquasim model 

Two equations are used in Aquasim model giving the vertical diffusivity coefficient Kz in 

lakes or reservoirs.   

(i) The turbulent diffusion coefficient Kz=max(cmu*(tke)2/eps/Pr, Kz_min) from turbulent 

kinetic energy (tke) in Aquasim model is the first option to be used for simulating. 
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Where cmu =0.09: Coeffiecient of turbument model 

tke: Turbulent kinetic energy  

eps: dissipation 

Pr: Prantl number 

Kz_min= 0.05 m2/d 

(ii) The second formula of vertical turbulent diffusion coefficient Kz_N2 is a function of 

Brunt Vaisala frequency N2; If N2>0 then min (Kz_max,a_Kz/(N2)b_Kz) else Kz_max endif; 

Where  Kz_max=10m2/day 

N2 : Brunt Vaisala frequency 

a_Kz, b_Kz are calibration parameters for diffusivity 

Density of water 

There are two main factors that make lake water more or less dense than about 999.843 

kg/m3. The first is water temperature and the other is sediments. This is important for the 

case of the Cointzio reservoir due to high input of suspend sediments from the watershed. 

 ρ = 999.843+0.001*(65.4891*T-8.56272*T2+0.059385*T3) + 0.63*TSS 

Where ρ is water density, T is temperature, and TSS is concentration of suspended sediments 

2.1.3 Sensitivity analysis 

The most useful sensivity function which is distinguished by Aquasim is the absolute –

relative sensivity function,  (SensAR) 

Where y is a variable calculated by Aquasim and p is a model parameter represented by a 

constant variable or by a real list variable. This function measures the absolute change in y 

for a 100% change in p. 

 

Figure 3.3 Sensivity function of some parameters in Aquasim model 

In this model, the sensitivity has been tested for seven model parameters with the sensitivity 

analysis tool of AQUASIM (Reichert 1994). The Figure 3.3 shows the dependence of the 
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sensitivity function (SensAR) of a calculated temperature with respect to the model 

parameters (a, b, c1, c2, c3, p1, p2, cmu). 

It becomes evident from the Figure 3.3 that the parameters (a, b, c1, c2, cmu) are insensitive 

with calculated temperatures since . The sensitivity of calculated temperature with 

respect to p1 has its maximum at a depth of zero and decreases exponentially. The 

dependence of temperature on the parameters such as p2 leads to a shape of the changes in 

temperature, with negative signs. The positive signs indicate that the calculated temperatures 

increase with increasing values of model parameters. The negative signs indicate that the 

calculated temperatures decrease with increasing values of model parameters. This leads to a 

correlation between the estimates of these parameters.  

2.1.4 Model calibration 

For the prediction of the stratification and destratification of the Cointzio reservoir during the 

year 2009, the simulation should start in January. A vertical resolution of 1 m and a time step 

of 30 minutes were chosen to simulate the thermal structure in the Cointzio reservoir. The 

maximum water depth of the reservoir in 2009 was fixed at 26 m. The data set collected at 

the deepest point P27 was used to calibrate the model. All simulations were implemented 

within the lake module of the software Aquasim 2.1 (Reichert 1994, 1998). 

Initial conditions 

Initial values for all solved variables need to be set before any computation. They included 

data for the first day of the simulation.  

Boundary conditions 

The predictive ability of one – dimensional lake water temperature models is highly 

dependent on the treatment of boundary conditions (i.e., the heat exchange between water 

and the atmosphere) and the determination of mixing dynamics in the epilimnion and the 

hypolimnion (Fang & Stefan, 1996). Therefore, boundary conditions are important in 

determining the mathematical solutions for many physical problems. 

In this study, at the surface the net heat flux Hnet can be used as a boundary condition 

(Neumann type) for the temperature equation. Long-wave absorption HL and emission HB, 

evaporation He, convection HC, and through flow HF are assumed to operate only at the 

surface layer. Furthermore, about 40% of the incoming shortwave radiation is kept in the 

upper few centimeters of the water column. The remaining fraction decays through the water 

column following the standard Beer–Lambert law (Octavio et al., 1977). The factor 86400 
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converts the time units of “s” used for the formulation of heat flux to the time units of “d” 

used for the simulation. These equations are described below: 

 for the top layer   (3.9) 

 below             (3.10) 

2.1.5 Technical results: Limitation of the physical Aquasim model to reproduce the 

hydrodynamics in the Cointzio reservoir 

After calibration of the physical Aquasim model with the data set of 2009, it is possible to 

simulate the temperature profile in the Cointzio reservoir. In the figures below, we compare 

the model results with the measured temperature profiles for the same year.  

 

Figure 3.4 Measured and simulated temperature profile during the year 2009 

 

 

Figure 3.5 Simulated temperature profile after changing the input conditions 

Figure 3.4b shows the simulated temperature results of the reservoir in 2009. They are in the 

range of the values of the measured temperature (from 14 oC to 23 oC). However, the vertical 

mixing does not fit with the measurements; simulated temperature profiles are almost 
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homogeneous, which clearly overestimates the vertical mixing. This is probably due to very 

high water turbidity as well as high winds from the Cointzio reservoir. The input of turbulent 

kinetic energy is indeed proportional to third power of wind speed and it is difficult to create 

a stratification since sunlight does not penetrate in depth because of the very high turbidity 

(Wendling, 2011). In order to verify these assumptions, we tried changing the conditions of 

turbidity and wind speed, for instance we increase secchi depth 5-fold, and decrease wind 

speed 2-fold. As a result of this new simulation using Aquasim, the model could now 

reproduce some stratified conditions as shown in Figure 3.5. Although in this virtual case 

stratification was obtained, the simulated temperature profile was not meaningful since the 

input conditions were not realistic. 

Below, the results of turbulent diffusivity from turbulent kinetic energy submodel in 

Aquasim model at some different depths during the calibration year 2009 are presented in 

Figure 3.6. The values of turbulent diffusivity are quite strange, most of them got zero all 

year long, except at the end of the year. 

 

Figure 3.6 Turbulent diffusivity at some different depths during the year 2009 
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2.1.6 Conclusions and discussion 

The turbulent kinetic energy submodel in Aquasim cannot deal properly with the case study 

of the Cointzio reservoir which is subjected to very high water turbidity and high wind. 

These physical features actually induce water mixing all year around.  

With the current version of the Aquasim model, only one velocity direction is considered 

(except if we artificially change directions by adding negative signs); therefore wind speeds 

can accumulate to unreasonable high values. Under these circumstances, the wind stress 

which is always in the same direction could explain why turbulent kinetic energy simulated 

in Aquasim overestimates mixing even though the model is able to create stratification in the 

Cointzio reservoir if we reduce wind by two and increase secchi depth to at least 1.0 m - 1.5 

m. As the physical section of Aquasim model revealed to be inappropriate, we applied a k-ε 

model to predict the seasonal development of temperature stratification and turbulent 

diffusivity for the wind swept turbid Cointzio reservoir. Actually, the mixing model 

implemented in Aquasim is a modified version of the k-epsilon model. 

2.2 k- ε model 

2.2.1 Overview 

The k-ε model by Goudsmit et al, 2002, which is based on the buoyancy–extended k-ε model 

(Rodi, 1984), describes the vertical density structure and mixing in the water column. It was 

applied for the simulation of physical lake processes. The basic idea behind the k-ε approach, 

the most popular two-equation turbulence model, is the combination of the budget of 

turbulent kinetic energy (k), representing the source of turbulent mixing, with the budget of 

the dissipation rate (ε). Turbulent mixing is driven by the energy introduced into the system 

by surface shear stress from wind forcing, and by buoyancy due to heat loss to the 

atmosphere or heat input to the monimolimnion2 (Schmid et al, 2003). Turbulence dissipation 

is the rate at which turbulence kinetic energy is converted into thermal internal energy.  

Apart from the classical k sources, shear and buoyancy, Goudsmit et al, (2002) introduced an 

additional term to account for boundary mixing from internal seiches (Wüest & Lorke, 

2003). The vertical diffusivities are then calculated from k, ε and stratification (N2) (see 

detail in section 2.2.2). The resulting time series of vertical turbulent diffusivity were then 

used as the input data for the Aquasim biogeochemical model. 

In the present version, there are four different types of forcing files that can be used in the k-ε 

model. They are (i) wind speed, water surface temperature and solar radiation; (ii) wind 

                                                 
2 Monimolimnion is the lower, dense stratum of a meromictic lake that does not mix with the waters above 
 

http://www.cfd-online.com/Wiki/Turbulence_kinetic_energy
http://en.wiktionary.org/wiki/stratum
http://en.wiktionary.org/wiki/meromictic_lake
http://en.wiktionary.org/wiki/mix
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speed, air temperature, solar radiation and vapor pressure; (iii) wind speed, air temperature, 

solar radiation, vapor pressure and cloud coverage; (iv) wind speed, water surface 

temperature, heat flux and solar radiation. Based on our field measurements, the second 

option was applied for this simulation. As a result, the model inputs of water inflow (Qin), 

outflow (Qout), temperature of inflow, light absorption, wind data, solar radiation, and water 

surface temperature were considered in this study. After simulation, the physical k-ε model 

gave the results of vertical mixing that was calculated as turbulent diffusivities (m2 s-1). The 

resulting turbulent diffusivities profiles were then used as input for the biogeochemical 

Aquasim model in order to simulate DO, chlorophyll a and nutrients. 

2.2.2 Model equations (Goudsmit et al, 2002) 

The k-ε one dimensional model equations are based on the assumption that horizontal 

gradients are negligible, which is usually fulfilled for small or medium-sized basins. The 

basic set of equations in the one dimensional vertical k-ε model is described below and a list 

of model constant values used in the equations is given in Table 3.2. 

List of equations in the one dimensional vertical k-ε model 

   (3.11) 

     (3.12) 

     (3.13) 

    (3.14) 

 (3.15) 

The shear stress production P (W kg-1) and the buoyancy production B (W kg-1) are given by 

       (3.16) 

       (3.17) 

Where N is the Brunt Väisälä frequency defined by  

        (3.18) 

The turbulent viscosity and diffusivity can be calculated using the relation of Kolmogorov 

and Prandtl 



 

65 
 

                (3.19) 

                 (3.20) 

The turbulent diffusivities for turbulent kinetic energy (k), and for dissipation rate (ε) are 

                 (3.21) 

                 (3.22) 

The production of TKE due to internal seiche  (W kg-1) was expressed by Schmid et 

al, (2003). 

            (3.23) 

The energy balance for the internal seiche motion was described based on the ideas of Gloor 

et al, (2000). 

                (3.24) 

PW (W) is the production of seiche energy by wind forcing  

            (3.25) 

LS (W) is the loss of internal seiche energy by friction 

               (3.26) 

Where: 

z is the positive upwards axis, T (°C) is the temperature, u and v (m s-1) are the mean 

horizontal velocity components with respect to x and y direction, k (J kg-1) is the TKE per 

unit mass, and ε is the TKE dissipation rate (W kg-1). 

ρo (kg m-3) and cp (J kg-1 K-1) represent the reference density and the specific heat of lake 

water respectively. 

A (m2) is the surface area of the lake at depth z, Hsol (W m-2) is the shortwave solar radiation 

penetrating the water, Hgeo (W m-2) is the geothermal heat flux, and f (s-1) is the Coriolis 

parameter. 

ν and νt are the molecular and turbulent viscosity, ν’ and ν’t are the molecular and turbulent 

diffusivity of temperature, and νε and νk (m2 s-1) are the turbulent diffusivities of energy 

dissipation and TKE, respectively. 
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AB (m2) is the area of the lake bottom boundary, CD
 is the bottom friction coefficient (0.002), 

 (kg m-3) is the density of air, u10 and v10 (m s-1) are the East and North component of 

wind speed measured at 10 m height above the water surface. 

The wind drag coefficient C10 depends not only on the wind speed U10 (measured at 

standard 10-m height above surface), but also on the presence and on the state of the surface 

waves. The constant of proportionality α is a model parameter which gives the fraction of the 

total wind energy introduced at the lake surface which is transferred to the seiche motion. In 

general, these two model parameters are subject to model calibration. 

Table 3.2 List of constant values used in the k-ε Lake model 

Model 

constants   
 

(B<0) 

 

(B>0)     
v’( m2 s-1) v ( m2 s-1) 

 Hgeo  
(W m-2) 

Values 1.44 1.92 -0.4 1.0 1.3 1.0 0.09 0.072 1.5*10-7 1.5*10-6  0.1  

 

2.2.3 Model calibration and validation 

Calibration and validation are required for both the physical and biogeochemical parts of the 

model. Once calibration is achieved, validation is always required to get a picture of the 

model reliability (Jørgensen et al, 1995). In practice, validation is achieved when predictions 

from a model that has been calibrated and verified with one data set, give a good 

approximation of the behavior of a second data set (Beck, 1987). This means that a calibrated 

model must be compared to data not used in the calibration to determine whether the model 

is applicable to cases outside the calibration data set. Once complete, validation indicates that 

the model can be used as a tool to make prospects about the system for which it was 

calibrated. 

We chose to calibrate the model using the data collected in 2009 at station P27, where the 

reservoir was deepest, because it corresponds to the most complete set of data. The model 

was validated using the set of data gathered at the same point for the year 2008. In the 

validation year 2008, the turbidity was lower and the water level was higher than that of the 

calibration year 2009. All other processes evaluated simultaneously at the same time step of 

30 minutes and the same vertical resolution of 1 m in this study.  

In most cases, the parameters p1, p2, α, C10, and/or qNN were used for parameter 

estimations (Goudsmit et al, 2002), where p1 and p2 are scaling the heat fluxes, qNN 

determines the vertical distribution of the seiche energy dissipation. However, in our case the 

water surface temperature was used as the boundary condition for temperature at the water 

atmosphere interface so it does not make any sense to do a parameter estimation for p1 and 
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p2. The other three parameters would be possible but qNN did not vary a lot so the default 

value was used as qNN=0.75. This led to two model specific parameters that needed to be 

fitted to reproduce the monthly measured temperature profiles for the calibration year 2009 

and these were validated for the year 2008; they are the scaling factor for the wind energy 

transfer to the internal seiches (α), and the coefficient defining wind drag (C10). The wind 

drag coefficient C10 depends not only on the wind speed u10, but also on the presence and 

on the state of the surface waves. The typical values of C10 range from 0.0011 to 0.0021 

(Wüest & Lorke, 2003). The constant of proportionality α is a model parameter which gives 

the fraction of the total wind energy introduced at the lake surface which is transferred to the 

seiche motion. These were then used to do model calibration and validation for the Cointzio 

reservoir.  

Simulation for the calibration year 2009 with the real flow data Qin # Qout. 

The k-ε model was calibrated on the basis of data collected with the inflow and the outflow 

data of 2009. In principle we could include reservoir level fluctuations in the k-ε model, but 

this variable can not be implemented in Aquasim model. In Aquasim, the software 

automatically generates additional inflow when the outflow is larger than the inflow, and vice 

versa. Therefore, we have to use an average lake level.  

Simulation for the calibration year 2009 with the assumption Qin = Qout. 

In order to perform a simulation using the k-ε model, it was assumed that the outflow data of 

the Cointzio reservoir is equal to the inflow data in 2009. The lake surface elevation is 

assumed to be constant in the model by closing the water balance with the surface outflow. 

Simulation for the validation year 2008 in case of Qin = Qout. 

The model was validated using the set of data at the same point P27 of the year 2008 but the 

estimated parameters used were taken from calibration of the year 2009. 

The variation of measured and simulated temperature with time and the difference between 

observed and simulated results for the years 2009 and 2008 are presented in Figure 3 of the 

paper Ecological Modelling (see chapter 5). 

2.2.4 Conclusions and discussion 

The physical approach was deployed to simulate the thermal structure of a reservoir in order 

to build a basis for the biogeochemical model to survey water quality in the Cointzio 

reservoir. The physical Aquasim model described here was based on the solution of 

advective – diffusive transport equation by finite differences. A thirty minutes time step and 

one-meter space step were used to quantify the large scale vertical exchanges in the reservoir 

and were well suited to study the seasonal behavior of the reservoir using a reasonable 
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amount of computing time. However unfortunately, the physical part of the Aquasim model 

cannot deal with the case of the Cointzio reservoir which suffers from very high water 

turbidity and high wind. This caused mixing all year long. The reason could be that the wind 

stress is always considered to be in the same direction by Aquasim; therefore wind speeds 

can result in buildup of unrealistically strong currents.  

The k-ε model accurately reproduced mixing and stratification in the Cointzio reservoir (see 

the results in Figure 3 of chapter 5). The parameters of k-ε model were well estimated with 

the most numerous data to ensure a precise calibration in 2009. The validation of the model 

was then successfully applied to the year 2008, which ensures a reasonable predictability 

making this numerical model useful in water management. Water temperatures closely 

followed the measured profiles, which was of particular interest in order to simulate water 

quality. The time series of turbulent diffusivities obtained from the k-ε model were added as 

a function of depth and time for the biogeochemical Aquasim model. The results from 

physical k-ε model, after coupling with the biogeochemical model, will be useful to assess 

the impact on water quality and to perform projection scenarios. However, there are some 

restrictions. 

The first restriction is no feedback between biogeochemistry and stratification/mixing since 

we first simulate the mixing and then the biogeochemistry. We cannot simulate any potential 

influences that biogeochemistry could have on mixing, for example, the change in 

stratification because of increased or decreased light absorption due to phytoplankton. The 

second restriction is that the influence of particles on density can not be included. Finally, the 

last limitation comes from the fact that in principle we could include lake level fluctuations 

in the k-ε model, but then it can not define later in the Aquasim model; therefore, we have to 

use an average lake level.  

3. Biogeochemical model (Aquasim) 

3.1 Overview 

A biogeochemical advection-diffusion-reaction model (Omlin et al, 2001a, 2001b) based on 

the Aquasim software (Reichert, 1994) was adapted to simulate the biogeochemical cycling 

in the reservoir. The lake compartment of Aquasim can be used to describe the stratification 

of the water column, vertical mixing and advection of substances dissolved or suspended in 

the water column, sedimentation, and resuspension of particles, exchange of dissolved 

substances between water column, and pore water of the top sediment layer, advective and 

diffusive exchange between an arbitrary number of sediment layers, and transformation 

processes in the water column as well as in the sediment layers (Reichert, 1994). 
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Aquasim, was first developed to model mesotrophic lake Zürich, and was then applied to 

oligotrophic Ohrid lake (Matzinger et al, 2007) and to various lake types (Mieleitner and 

Reichert, 2006), also in a tropical region (tropical Itezhi –Tezhi reservoir, Kunz et al, 2011). 

In this study, the Aquasim biogeochemical model was calibrated to measured DO, 

chlorophyll a, and nutrients. The water balance, solar radiation, water surface temperature, 

mixing, as well as the initial conditions were directly adapted from the k-ε model. Vertical 

grids of 1 m and input data with the time step of 30 minutes were used in the model. The 

time step of output data was adjusted by the software depending on stability criteria for the 

solution of the differential equation system. 

3.2 State variables 

The Aquasim biogeochemical model describes the dissolved species: Phosphate, ammonium, 

nitrate and oxygen; and the particulate species: Zooplankton, algae, inert and degradable 

organic particles. 

The biological part of the model is represented by algae and zooplankton. Biodegradable and 

inert organic matters include organic particles resulting from inputs, from death of algae and 

zooplankton and also from zooplankton excretion as fecal pellets. The phosphorus contents 

of algae, and organic matter are separate state variables because the variable stoichiometry of 

primary production leads to a variable phosphorus content of these particles. On the other 

hand, zooplankton is described with a constant phosphorus content according to the Redfield 

stoichiometric ratio (Redfield et al, 1966). In addition, the phosphorus content resulting from 

phosphate adsorption by sinking particles is considered as a state variable. According to the 

explanation of this process given by Hupfer et al, 1995, this state variable is denoted 

inorganic phosphorus. Phosphate, ammonium and nitrate are the most relevant nutrients and 

together with dissolved oxygen represent the dissolved state variables of the model. 

Table 3.3 State variables in the Cointzio reservoir adopted from Omlin et al, (2001a) 

State variables Unit Description (concentration of…) 

Dissolved species 

S_HPO4  gP m-3  Phosphate-P 

S_NH4  gN m-3  Ammonium-N 

S_NO3  gN m-3 Nitrate-N 

S_O2 gO m-3 Dissolved oxygen 

Particulate species 

X_ALG gDM m-3  Algal biomass (excluding algal P) 
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X_P_ALG gP m-3 Organic phosphorus in algae  

X_ZOO gDM m-3 Zooplankton biomass 

X_S gDM m-3  Biodegradable dead organic material 

X_I gDM m-3  Inert dead organic material (OM) 

X_P_S gP m-3 Organic P in biodegradable dead OM 

X_P_I_S gP m-3 Organic P in inert dead organic material  

X_P_I gP m-3 Phosphates adsorbed to X_S 

 

3.3 Mass balance equations  

The reservoir equations solved by Aquasim consist of a combination of a conventional 

advection –diffusion equation for the water column (Ulrich et al, 1995) with a sediment 

model describing an arbitrary number of sediment layers, and with a k-ε model turbulence 

model (Rodi, 1984; Burchard and Baumert, 1995) that has been extended by a simple model 

of energy storage in seiche motion in the lake basin. The user can specify the coefficient of 

vertical turbulent diffusion as a given function of time and space, but it is also possible to use 

a parameterization depending on the stability of the water column and on turbulent kinetic 

energy and dissipation. In this subsection, the full set of equations is described (Finger et al, 

2007). 

For each dissolved state variable, the model numerically solves the equation: 

    (3.27) 

For particulate state variables, a sedimentation term is added to the equation, which accounts 

for vertical transport due to sedimentation and for the loss of the particles to the sediment. 

  (3.28) 

Where C is the concentration of the substance, A (m2) is the lake area as a function of depth, 

KZ (m2/s) is the vertical diffusivity, Q (m3/s) is the vertical water flow due to the deep water 

intrusions,  is a term including all sources and sinks of the substance, t is the time (s) and z 

(m) is the vertical dimension positive upwards. 

 (m/s) is the (positive downwards) sedimentation velocity, and the two parts of the last 

term are the settling of particles and the removal of particles from the water column when 

they reach the sediment surface. 
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3.4 Model processes 

The biogeochemical model comprises subroutines for phytoplankton production and loss, 

nutrient cycling and dissolved oxygen dynamics. Algae biomass is represented in the model 

as the concentration of chlorophyll a. At each time step and in each model layer, the set of 

equations that describe these processes are solved. Figure 3.5 shows the interrelationships 

between the main ecological state variables in the model. 

Lake water quality models often describe the processes occurring in the sediments in less 

detail than the ones occurring in the water column. Usually, only the mineralization process 

is considered in the sediments (Omlin et al, 2001a) as is the case for the present model. 

 

 

Figure 3.7 Relationship between the main state variables in Aquasim, shown in boxes, and 

the biogeochemical processes represented in the model. Note that physical processes of 

inflow, outflow and settling are not included (adapted from Hamilton & Schladow, 1997) 
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Table 3.4 Process rates (in order of appearance) 

State variable Unit Description 

growth_ALG gDM/m3/d Growth of algae 

resp_ALG gDM/m3/d Respiration of algae 

death_ALG gDM/m3/d Death of algae 

growth_ZOO gDM/m3/d Growth of zooplankton 

resp_ZOO gDM/m3/d Respiration of zooplankton 

death_ZOO gDM/m3/d Death of zooplankton 

P_uptake gP/m3/d 
Adsorption of orthophosphates to 

organic particles 

nitrification gN/m3/d Nitrification 

mineral_aero gDM/m3/d 
Aerobic mineralization in water 

column 

mineral_anox gDM/m3/d 
Anoxic mineralization in water 

column (denitrification) 

mineral_anaero gDM/m3/d 
Anaerobic mineralization in water 

column 

mineral_aero_sed gDM/m3/d 
Aerobic mineralization at sediment 

surface 

mineral_anox_sed gDM/m3/d 

Anoxic mineralization at sediment 

surface 

(denitrification) 

mineral_anaero_sed gDM/m3/d 
Anaerobic mineralization at sediment 

surface 

miner_bg gDM/m3/d 
Background mineralization (oxidation 

of reduce substances) 

 

3.5 Modelling approach 

A two steps procedure was chosen for the evaluation of the water quality model. Vertical 

mixing was calculated as turbulent diffusivities Kz (m2 s-1) based on the physical k-ε model. 

The resulting Kz profiles were then used as input for the Aquasim biogeochemical model in 

order to simulate biogeochemical cycling in the reservoir.  
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To model reservoir internal biogeochemical cycles, we modified the existing biogeochemical 

model established by Omlin et al, (2001a) and Mieleitner & Reichert, (2008). Our study 

(hereafter called ‘‘COINTZIO’’) was run using a one-dimensional reaction-advection-

diffusion model, implemented in the software package Aquasim (Reichert 1994). The 

changes from the model by Omlin et al, (2001a) are summarized below. 

+ The description of algae was simplified. To obtain a model with the highest degree of 

aggregation for this first transferability study, P. rubescens and other algae were combined 

into a single group (chlorophyll a). In the study by Omlin, P. rubescens was modelled as a 

separate algal group because this species is of specific interest to the water supply authority 

of Zürich and so P. rubescens was not necessary for describing the biogeochemical cycles in 

this study. Moreover, this species only can grow when there is enough light in the 

metalimnion of the lake in summer (Mieleitner & Reichert, 2006). This is not the case for the 

turbid Cointzio reservoir that contains six main species of Cyanophyta, Chrysophyta, 

Euglenophyta, Pyrrophyta, Bacilliariophyta, and Chlorophyta. 

+ In the model of Omlin et al, 2001a, only growth of algae on nitrate as the nitrogen source 

was considered, because in Lake Zürich growth on ammonium is not relevant. In the 

Cointzio reservoir, the ammonium concentrations are much higher than those in Lake Zürich. 

Therefore, growth of algae on ammonium was added. An additional parameter is required for 

describing preference of growth on ammonium over growth on nitrate. The parameterization 

of this extended process description was taken from Reichert et al, 2001. 

+ Ryding & Rast (1989) stated: “It is generally believed that nitrogen is the primary nutrient 

which limits the maximum algal biomass levels in tropical/subtropical systems”. Moreover, it 

is notable that the majority of the tropical studies in Mexican lakes and reservoirs were 

determined to be nitrogen limited (Bravo-Inclán et al, 2010). One of the reasons is that the 

nutrient inputs of treated or untreated waste water discharges and agricultural losses to the 

lake are sources of soluble phosphate. As a result, Nitrogen (N) fixation is likely to become 

important under N limiting conditions. Therefore, in this study, we adopted the process 

described by (Kiirkki et al, 2001) that simulates atmospheric N2 fixation by allowing 

phytoplankton growth independent of a N input (Kunz et al, 2011). 

+ To consider mineralization in the absence of dissolved oxygen and nitrate, anaerobic 

mineralization processes in water column and at sediment surface were introduced. These 

processes are of quantitative importance for the modelled compounds only in the eutrophic 

lake with very small oxygen concentration in the deep water (Omlin et al, 2001a; Kunz et al, 

2011). And also according to RES1 (Kunz et al, 2011), an additional process for the 
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oxidation of reduced substance by consuming DO (hereafter referred to as ‘‘background 

mineralization’’) need to be accounted.  

+ Following the approach by Matzinger et al, (2007b), we excluded an explicit sediment 

compartment as described by Omlin et al, 2001a, but limited mineralization processes to the 

sediment-water interface (process mineral_sed) was replaced.  

+ To make the sediment composition more realistic, an additional state variable X_I was 

introduced to describe inorganic particles constituting the bulk of the sediment. We applied 

constant ratios for organic matter becoming inert. As this new compound does not interact 

with the other substances, omission of the accumulation process does not cause a problem for 

the model concept. The main effect is the reduction of the concentrations of organic material 

in the sediment (Mieleitner & Reichert, 2006). 

Table 3 gives an overview of the biogeochemical processes mentioned above used in the 

model. The top cell indicates the respective process rate. The contribution of a process to the 

transformation rate of state variables is calculated by multiplying the rate with the 

corresponding stoichiometric coefficient. Formulas for stoichiometric and process rate 

variables are indicated in the suitable “equations”. Finally constant variables are given at the 

end of each table. The explanation of the processes was presented in details in Omlin et al, 

2001a. 

Table 3.5 Biogeochemical processes 

a. Growth processes (assimilation): Chlorophyll a and Zooplankton 

Algae (chlorophyll a):  

In the reservoir of Cointzio, as mentioned before, growths of algae on nitrate 

(growth_ALG_NO3), ammonia (growth_ALG_NH4) and nitrogen (growth_ALG_N2) were 

considered in this study. Light and nutrient limitations are described with Monod-type rate 

reduction factors. 

growth_ALG_NO3=k_gro_ALG*monod_I*min(monod_NO3_ALG,monod_HPO4_ALG)*X_ALG 

Bio-geochemical conversion processes 

State variables  Stoichiometric 

coefficients  

Description 

X_ALG 1 Algal growth 

X_P_ALG b_P Algal uptake of orthophosphate  

S_O2 1.24 According to the Redfield ratio  

S_NO3 -a_N Reduction of nitrate in water 

S_HPO4 -b_P Reduction of orthophosphate in water 
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Equations 

k_gro_ALG 

=k_gro_ALG_20*exp(beta_ALG*(T-20))  

Temperature dependence of bacterial activity (d-1 ) 

monod_NO3_ALG = 

S_NO3/(K_NO3_ALG+S_NO3) 

Effect of dissolved nitrate concentrations on growth 

rate (-) 

monod_HPO4_ALG = 

S_HPO4/(K_HPO4_ALG+S_HPO4) 

Effect of dissolved orthophosphate concentrations on 

growth rate (-) 

monod_I = Iz/(K_I_ALG+Iz) Effect of light intensity (I) on growth rate (-) 

I z= I × exp (-k_extinct × z) In-situ light intensity (Wm-2)  

I= (1-rs)*phi_s  

phi_s Shortwave radiation (Wm-2) from measurement 

k_extinct = lamda +k_2 × w_ALG × 

X_ORG_withoutzoo  

Light attenuation coefficient (m-1)  

X_ORG_withoutzoo = X_ALG+X_S+X_I Organic particles without living zooplankton (gDMm-3) 

b_P = (b_P_min+b_P_max)/2+(b_P_max-

b_P_min)/2 ×  

tanh((S_HPO4-S_HPO4_crit)/DeltaS_HPO4) 

P incorporation as a function of phosphate 

concentration gP(gDM)-1 

Constant variables Unit  Value Description 

k_gro_ALG_20 d-1 1.2 Maximum specific growth rate at 

20 °C; fitted parameter  

β_ALG °C-1  0.046 Coefficient for temperature 

dependency  

K_I_ALG  Wm-2  34.3 Light intensity at half saturation 

rate (Monod) 

K_HPO4_ALG gPm-3  0.0007 Concentration of orthophosphate at 

half saturation rate (Monod) 

rs - 0.08 Reflection coefficient of shortwave 

radiance, as in k-ε model by 

Goudsmit et al, 2002 

b_P_min  

b_P_max gP(gDM)-1 

0.0014 

0.0087 

Minimum and maximum P content 

of newly produced algae 

 

lamda m-1  Light extinction (1.84/secchi^0.61)  

k_2  g m2(WM)-1  0.026 Coefficient for light extinction with 

particles 

w_ALG  gWM(gDM)-1  5 Factor for converting dry mass to 

wet mass (Jѳrgensen et al, 1991) 

S_HPO4_crit gPm-3  0.004 Orthophosphate concentration at 

which algal growth switches to 
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reduced P content 

DeltaS_HPO4 gPm-3  0.0013 Parameter for switching to 

production with reduced P content 

 

 

growth_ALG_NH4=k_gro_ALG*monod_I*min(monod_NH4_ALG,monod_HPO4_ALG)*X_ALG 

Bio-geochemical conversion processes 

State variables  Stoichiometric coefficients  Description 

X_ALG 1 Algal growth 

X_P_ALG b_P Algal uptake of orthophosphate 

(stoichiometry is dependent on S_HPO4) 

S_O2 1.24 According to the Redfield ratio  

S_NH4 -a_N Reduction of ammonium in water 

S_HPO4 -b_P Reduction of orthophosphate in water 

Equations 

k_gro_ALG=k_gro_ALG_20*exp(beta_ALG

*(T-20))  

Temperature dependence of bacterial activity (d-1) 

monod_I = Iz/(K_I_ALG+Iz) Effect of light intensity (I) on growth rate (-) 

monod_HPO4_ALG= 

S_HPO4/(K_HPO4_ALG+S_HPO4) 

Effect of dissolved orthophosphate concentrations on 

growth rate (-) 

monod_NH4_ALG= 

S_NH4/(K_NH4_ALG+S_NH4) 

Effect of dissolved ammonium concentrations on growth 

rate (-) 

I z= I × exp (-k_extinct × z) In-situ light intensity (Wm-2)  

I= (1-rs)*phi_s  

phi_s Shortwave radiation (Wm-2) from measurement 

k_extinct=lamda+k_2× w_ALG× 

X_ORG_withoutzoo  

Light attenuation coefficient (m-1)  

X_ORG_withoutzoo = X_ALG+X_S+X_I Organic particles without living zooplankton (gDMm-3) 

b_P = (b_P_min+b_P_max)/2+(b_P_max-

b_P_min)/2 × tanh((S_HPO4-

S_HPO4_crit)/DeltaS_HPO4) 

P incorporation as a function of phosphate concentration 

(gP(gDM)-1) 

Constant variables Unit  Value Description 

k_gro_ALG_20 d-1 1.2 Maximum specific growth rate at 

20°C; fitted parameter 

β_ALG °C-1  0.046 Coefficient for temperature 

dependency  

K_I_ALG  Wm-2  34.3 Light intensity at half saturation rate 

(Monod) 

K_HPO4_ALG gPm-3  0.0007 Concentration of orthophosphate at 
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half saturation rate (Monod) 

rs - 0.08 Reflection coefficient of shortwave 

radiance, as in k-ε model by Goudsmit 

et al, 2002. 

b_P_min  

b_P_max 
gP(gDM)-1  

0.0014 

0.0087 

Minimum and maximum P content of 

newly produced algae 

lamda m-1  Light extinction in the absence of 

particles 

k_2  gm2(WM)-1  0.026 Coefficient for light extinction with 

particles 

w_ALG  gWM(gDM)-1  5 Factor for converting dry mass to wet 

mass 

S_HPO4_crit gPm-3  0.004 Orthophosphate concentration at which 

algal growth switches to reduced P 

content 

DeltaS_HPO4 gPm-3  0.0013 Parameter for switching to production 

with reduced P content 

 

growth_ALG_N2=k_gro_ALG_N2*monod_I*min(monod_N2_ALG,monod_HPO4_ALG)*X_ALG 

Bio-geochemical conversion processes 

State variables  Stoichiometric coefficients  Description 

X_ALG 1 Algal growth 

X_P_ALG b_P Algal uptake of orthophosphate 

(stoichiometry is dependent on S_HPO4) 

S_O2 1.24 According to the Redfield ratio  

S_HPO4 -b_P Reduction of orthophosphate in water 

Equations 

k_gro_ALG_N2=k_gro_ALG_N2_20*exp(be

ta_ALG*(T-20))  

Temperature dependence of bacterial activity (d-1) 

monod_I = Iz/(K_I_ALG+Iz) Effect of light intensity (I) on growth rate (-) 

monod_HPO4_ALG= 

S_HPO4/(K_HPO4_ALG+S_HPO4) 

Effect of dissolved orthophosphate concentrations on 

growth rate (-) 

monod_N2_ALG= 

(S_NH4+S_NO3)/(K_NH4_ALG+S_NO3+S

_NH4) 

Effect of dissolved ammonium concentrations on growth 

rate (-) 

I z= I × exp (-k_extinct × z) In-situ light intensity (Wm-2)  

I= (1-rs)*phi_s  

phi_s Shortwave radiation (Wm-2) from measurement 
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k_extinct=lamda+k_2× w_ALG× 

X_ORG_withoutzoo  

Light attenuation coefficient (m-1)  

X_ORG_withoutzoo = X_ALG+X_S+X_I Organic particles without living zooplankton (gDMm-3) 

b_P = (b_P_min+b_P_max)/2+(b_P_max-

b_P_min)/2 × tanh((S_HPO4-

S_HPO4_crit)/DeltaS_HPO4) 

P incorporation as a function of phosphate concentration 

(gP(gDM)-1) 

Constant variables Unit  Value Description 

k_gro_ALG_N2_20 d-1 0.85 Maximum specific growth rate at 20 

°C; fitted parameter 

β_ALG °C-1  0.046 Coefficient for temperature 

dependency  

K_I_ALG  Wm-2  34.3 Light intensity at half saturation rate 

(Monod) 

K_HPO4_ALG gPm-3  0.0007 Concentration of orthophosphate at 

half saturation rate (Monod) 

rs - 0.08 Reflection coefficient of shortwave 

radiance, as in k-ε model by Goudsmit 

et al, 2002 

b_P_min  

b_P_max 
gP(gDM)-1  

0.0014 

0.0087 

Minimum and maximum P content of 

newly produced algae 

lamda m-1  Light extinction in the absence of 

particles 

k_2  gm2(WM)-1  0.026 Coefficient for light extinction with 

particles 

w_ALG  gWM(gDM)-1  5 Factor for converting dry mass to wet 

mass 

S_HPO4_crit gPm-3  0.004 Orthophosphate concentration at which 

algal growth switches to reduced P 

content 

DeltaS_HPO4 gPm-3  0.0013 Parameter for switching to production 

with reduced P content 

Zooplankton  

The simplest possible zooplankton model is used which includes all organisms in one class 

that feeds on algae.  

growth_ZOO= k_gro_ZOO × X_ALG × X_ZOO × LimitAlgP 

Bio-geochemical conversion processes 

State variables  Stoichiometric coefficients  Description 

X_ZOO 1 Zooplankton growth 
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X_ALG -1 / Y_ZOO Zooplankton feeding on algae  

X_P_ALG -a_P_ALG / Y_ZOO P transfer from phytoplankton to 

zooplankton 

X_S c_e × (1-Y_ZOO) / Y_ZOO Increase of dead organic material due to 

fecal pellets 

X_P_S 0 Fecal contains no P 

S_O2 -0.93 × (1-c_e) × (1 - Y_ZOO)  

/ Y_ZOO 

Oxidation of food not excreted and not 

used for zoo plankton biomass; factor 

according to Redfield ratio  

S_NH4 (1- c_e × (1-Y_ZOO))/Y_ZOO-

1)*a_N 

 

S_HPO4 a_P_ALG / Y_ZOO-a_P_red P release due to inefficient zooplankton 

feeding 

Equations 

k_gro_ZOO = k_gro_ZOO_20 × exp (β_ZOO 

× (T-20)) 

Temperature dependence of growth (d-1) 

LimitAlgP = min(1, a_P_ALG / a_P_red) The greater the algal P content, the greater the growth; P 

content of zooplankton is according to Redfield ratio (-) 

a_P_ALG = X_P_ALG / X_ALG Average algal P content (gP(gDM)-1) 

Y_ZOO = Y_ZOO_max × min(1, a_P_ALG / 

a_P_red) 

Yield for zooplankton growth; the smaller the algal P 

content, the more algae must be eaten for zooplankton 

growth (-) 

Constant variables Unit  Value Description 

k_gro_ZOO_20 gDM-1m3d-1 

 

0.001 Max. specific growth rate of 

zooplankton at 20°C ; fitted 

parameter 

β_ZOO  °C-1  0.08 Coefficient for temperature 

dependency  

c_e   0.7 Fraction of food not used for zoopl. 

biomass that is excreted as fecal 

pellets 

a_P_red gP(gDM)-1  0.0087 P content of organic material 

according to Redfield ratio 

Y_ZOO_max  0.5 Maximum yield for zooplankton 

growth 

 

b. Respiration processes: Chlorophyll a and Zooplankton 

Algae (chlorophyll a) 
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The stoichiometry of algae, and zooplankton respiration are described in the tables below. 

The two processes are similar with the minor difference, that phosphate release by respiring 

algae depends on its current phosphorus content, a_P_ALG, whereas phosphate release by 

respiring zooplankton is constant (a_P_red) because of the constant elemental composition of 

zooplankton. 

resp_ALG=k_resp_ALG*monod_O2_resp*X_ALG 

Bio-geochemical conversion processes 

State variables  Stoichiometric 

coefficients  

Description 

X_ALG -1 “Feeding” of algae on their biomass 

X_P_ALG -a_P_ALG P release to water column 

S_O2 -0.94 DO consumption; according to Redfield ratio 

S_HPO4 a_P_ALG P release to water column 

S_NH4 a_N N release to water column 

Equations 

k_resp_ALG = k_resp_ALG_20 × exp (β_ALG 

× (T-20)) 

Temperature dependence of respiration (d-1) 

monod_O2_resp = S_O2/(K_O2_resp+S_O2)  Effect of dissolved oxygen on respiration (-) 

a_P_ALG = X_P_ALG / X_ALG Average algal P content (gP(gDM)-1) 

Constant variables Unit  Value Description 

k_resp_ALG_20 d-1 0.05 Maximum specific respiration rate 

at 20°C 

β_ALG °C-1  0.046 Coefficient for temperature 

dependency  

K_O2_resp g-DOm-3 0.5 DO concentration at half saturation 

rate (Monod) 

 

Zooplankton 

resp_ZOO=k_resp_ZOO*monod_O2_resp*X_ZOO 

Bio-geochemical conversion processes 

State variables  Stoichiometric coefficients  Description 

X_ZOO -1 ”Feeding” on own biomass 

S_O2 -0.94 DO consumption; according to Redfield 

ratio 

S_HPO4 a_P_red P release to water column 

S_NH4 a_N N release to water column 

Equations 

k_resp_ZOO = k_resp_ZOO_20 × exp Temperature dependence of respiration (d -1) 
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(β_ZOO × (T-20)) 

monod_O2_resp = 

S_O2/(K_O2_resp+S_O2)  

Effect of dissolved oxygen on respiration (-) 

Constant variables Unit  Value Description 

k_resp_ZOO_20  d-1 0.003 Maximum specific respiration rate at 20 °C 

β_ZOO °C-1  0.08 Coefficient for temperature dependency  

K_O2_resp gDOm-3 0.5 DO concentration at half saturation rate 

(Monod) 
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c. Death processes (mortality & excretion): Chlorophyll a and Zooplankton 

Algae (chlorophyll a) 

Death processes transform algae and zooplankton into degradable and inert organic material.  

death_ALG=k_death_ALG*X_ALG 

Bio-geochemical conversion processes 

State variables  Stoichiometric coefficients  Description 

X_ALG -1 Algae death 

X_P_ALG -a_P_ALG P transfer to dead organic matter 

X_S 1-f_p Increase in dead organic matter 

X_P_S (1-f_p )*a_P_ALG P transfer to dead organic matter 

X_I_S f_p Increase in inert organic matter 

X_P_I_S f_p *a_P_ALG P transfer to inert organic matter 

Equations 

k_death_ALG = k_death_ALG_20 × 

exp (β_ALG × (T-20)) 

Temperature dependence of respiration (d-1) 

a_P_ALG = X_P_ALG / X_ALG Average algal P content (gPg(DM)-1) 

Constant variables Unit  Value Description 

k_death_ALG_20 d-1 0.03 Maximum specific death rate at 20°C, fitted 

parameter 

β_ALG °C-1  0.046 Coefficient for temperature dependency  

f_p  0.1 Fraction of organisms that becomes inert 

during death 

 

Zooplankton 

death_ZOO=k_death_ZOO*X_ZOO 

Bio-geochemical conversion processes 

State variables  Stoichiometric 

coefficients  

Description 

X_ZOO -1 Algae death 

X_S 1-f_p Increase in dead organic matter 

X_P_S (1-f_p )*a_P_red P transfer to dead organic matter 

X_I_S f_p Increase in inert organic matter 

X_P_I_S f_p *a_P_red P transfer to inert organic matter 

Equations 

k_death_ZOO = k_death_ZOO_20 × exp (β_ZOO 

× (T-20)) 

Temperature dependence of respiration (d-1) 

Constant variables Unit  Value Description 

k_death_ZOO_20 d-1 0.1 Maximum specific death rate at 
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20°C, fitted parameter 

β_ZOO °C-1  0.08 Coefficient for temperature 

dependency  

f_p  0.1 Fraction of organisms that 

becomes inert during death 

a_P_red  0.0087 Phosphorus content of organic 

material according to Redfield 

 

d. Mineralization processes 

Mineralization processes account for bacterially mediated oxidation of degradable organic 

matter. The aerobic mineralization using dissolved oxygen, the anoxic mineralization using 

nitrate as the oxidant (denitrification) and the anaerobic mineralization (summarizing other 

electron acceptors than oxygen and nitrate) are used in the model. These two first processes 

are known to be very important for the lakes. The first process leads to a significant reduction 

of oxygen concentrations in the deep hypolimnion, the second leads to a large nitrogen 

elimination in the lake (Mengis et al, 1997). The third process is relevant in highly eutrophic 

lakes with very small oxygen concentration in the deep water like the Cointzio reservoir.  

Aerobic mineralization of organic material in open water (Aero_miner): 

The process rate of aerobic mineralization has a Monod-type limitation factor with respect to 

oxygen. 

mineral_aero = k_miner_aero × monod_O2_miner × X_S 

Bio-geochemical conversion processes 

State variables  Stoichiometric coefficients  Description 

X_S -1 Mineralization of organic matter 

X_P_S -a_P_S Release to water column of incorporated P 

X_P_I_S -a_PI_S Release to water column of adsorbed P 

S_O2 -0.94 Consumption of DO; according to Redfield 

ratio 

S_NH4 a_N N release by mineralization 

S_HPO4 a_P_S + a_PI_S P release to water column 

Equations 

k_miner_aero =  

k_miner_aero_20 × exp (β_BAC × (T - 

20)) 

Temperature dependence of bacterial activity (d-1) 

monod_O2_miner = S_O2 / 

(K_O2_miner + S_O2)  

Effect of dissolved oxygen (-) 

a_P_S = X_P_S / X _S Average P-content in organic matter (gP(gDM)-1) 
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a_PI_S = X_PI_S / X_S Average P adsorbed to organic matter (gP(gDM)-1) 

Constant variables Unit  Value Description 

k_miner_aero_20 d-1  0.1 Aerobic specific mineralization rate at 20°C 

in open water for eutrophic lake, fitted 

parameter 

β_BAC °C-1  0.046 Temperature dependence coefficient for 

bacteria 

K_O2_miner  g DOm-3  0.05 Half saturation rate for mineralization with 

respect to oxy 

 

Anoxic mineralization of organic material in open water = denitrification (Anox_miner) 

The rate of anoxic mineralization has an inhibition factor with respect to oxygen and a 

limitation factor with respect to nitrate. 

mineral_anox = k_miner_anox × monod_NO3_miner × (1-monod_O2_miner) × X_S 

Bio-geochemical conversion processes 

State variables  Stoichiometric coefficients  Description 

X_S -1 Mineralization of organic matter 

X_P_S -a_P_S Release to water column of incorporated P 

X_P_I_S -a_PI_S Release to water column of adsorbed P 

S_NO3 -0.33 Consumption of NO3 

S_NH4 a_N N release by mineralization 

S_HPO4 a_P_S + a_PI_S P release to water column 

Equations 

k_miner_anox =  

k_miner_anox_20 × exp (β_BAC × (T - 20)) 

Temperature dependence of bacterial activity (d-1) 

monod_O2_miner = S_O2 / (K_O2_miner + 

S_O2)  

Effect of dissolved oxygen (-) 

monod_NO3_miner = S_NO3/(K_NO3_miner 

+ S_NO3)  

Effect of NO3 (-) 

a_P_S = X_P_S / X _S Average P-content in organic matter (gP(gDM)-1) 

a_PI_S = X_PI_S / X_S Average P adsorbed to organic matter (gP(gDM)-1) 

Constant variables Unit  Value Description 

k_miner_anox_20  d-1  0.01 Anoxia specific mineralization rate at 

20°C in open water; fitted parameter 

β_BAC °C-1  0.046 Temperature dependence coefficient 

for bacteria 

K_O2_miner  gDOm-3  2 Half saturation rate 

K_NO3_miner gNm-3  0.1 Half saturation rate (Mieleitner and 
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Reichert, 2006) 

 

Anaerobic mineralization of organic material in open water (Anaero_miner) 

In highly eutrophic lakes with very small oxygen concentration in the deep water, anaerobic 

mineralization process can become relevant. 

mineral_anaero = k_miner_anaero × (1-monod_NO3_miner) × (1-monod_O2_miner) × X_S 

Bio-geochemical conversion processes 

State variables  Stoichiometric 

coefficients  

Description 

X_S -1 Mineralization of organic matter 

X_P_S -a_P_S Release to water column of incorporated P 

X_P_I_S -a_PI_S Release to water column of adsorbed P 

S_NH4 a_N N release by mineralization 

S_HPO4 a_P_S + a_PI_S P release to water column 

Equations 

k_miner_anaero = k_miner_anaero_20 × exp 

(β_BAC × (T - 20)) 

Temperature dependence of bacterial activity (d-1) 

monod_O2_miner = S_O2 / (K_O2_miner + 

S_O2)  

Effect of dissolved oxygen (-) 

monod_NO3_miner = S_NO3/(K_NO3_miner + 

S_NO3)  

Effect of NO3 (-) 

a_P_S = X_P_S / X _S Average P-content in organic matter (g-P g-DM -1 ) 

a_PI_S = X_PI_S / X_S Average P adsorbed to organic matter (g-P g-DM -1 ) 

Constant variables Unit  Value Description 

k_miner_anaero_20 d-1  0.001 Anaerobic specific mineralization 

rate at 20 °C in open water; fitted 

parameter 

β_BAC °C-1  0.046 Temperature dependence 

coefficient for bacteria 

K_O2_miner  gDOm-3  2 Half saturation rate 

K_NO3_miner gNm-3  0.1 Half saturation rate  

 

Aerobic mineralization of organic material at sediment surface (mineral_aero_sed) 

mineral_aero_sed = v_sed_ORG × abs(AreaGradient/Area) × X_S × a_miner_sed × monod_O2_miner 

Bio-geochemical conversion processes 

State variables  Stoichiometric coefficients  Description 

S_O2 -0.94  Consumption of DO during 

mineralization 
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S_HPO4 a_P_S + a_PI_S Production of bioavailable P during 

mineralization 

S_NH4 a_N Production of N during mineralization 

Equations 

monod_O2_miner = S_O2 / (K_O2_miner + 

S_O2)  

Effect of dissolved oxygen (-) 

a_P_S = X_P_S / X _S Average P-content in organic matter (g-P g-DM -1 ) 

a_PI_S = X_PI_S / X_S Average P adsorbed to organic matter (g-P g-DM -1 ) 

Constant variables Unit  Value Description 

abs(AreaGradient/Area) m-1   Sediment area per lake volume 

v_sed_ORG md-1 0.5 Settling velocity of OM (Matzinger et al, 

2007b) 

K_O2_miner  gDOm-3  2 Half saturation rate 

a_miner_sed  0.62  Fraction of sedimented org. material, 

which is mineralized at sediment surface 

(1-a_miner_sed, enters sediment 

permanently). 

 

Anoxic mineralization of organic material at sediment surface (mineral_anox_sed) 

mineral_anox_sed=v_sed_ORG×abs(AreaGradient/Area)×X_S×a_miner_sed×(1-monod_O2_miner) 

×monod_NO3_miner) 

Bio-geochemical conversion processes 

State variables  Stoichiometric coefficients  Description 

S_HPO4 a_P_S + a_PI_S Production of bioavailable P during 

mineralization 

S_NO3 -0.33 Consumption of N during 

mineralization 

S_NH4 a_N Production of N during 

mineralization 

Equations 

monod_O2_miner = S_O2 / 

(K_O2_miner + S_O2)  

Effect of dissolved oxygen (-) 

monod_NO3_miner = S_NO3 / 

(K_NO3_miner + S_NO3)  

Effect of NO3 (-) 

a_P_S = X_P_S / X _S Average P-content in organic matter (g-P g-DM -1 ) 

a_PI_S = X_PI_S / X_S Average P adsorbed to organic matter (g-P g-DM -1 ) 

Constant variables Unit  Value Description 

abs(AreaGradient/Area) m-1   Sediment area per lake volume 

v_sed_ORG md-1 0.5 Settling velocity of organic material  
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K_O2_miner  gDOm-3  0.05 Half saturation rate 

K_NO3_miner  gNm-3  0.1 Half saturation rate 

a_miner_sed  0.62  Fraction of sedimented org. material, which is 

mineralized at sediment surface (1-

a_miner_sed, enters sediment permanently). 

 

Anaerobic mineralization of organic material at sediment surface (mineral_anaero_sed) 

mineral_anaero_sed = v_sed_ORG×abs(AreaGradient/Area)×X_S×a_miner_sed×(1-monod_O2_miner) 

×(1-monod_NO3_miner) 

Bio-geochemical conversion processes 

State variables  Stoichiometric coefficients  Description 

S_HPO4 a_P_S + a_PI_S Production of bioavailable P during 

mineralization 

S_NH4 a_N Production of N during mineralization 

Equations 

a_P_S = X_P_S / X _S Average P-content in organic matter (g-P g-DM -1 ) 

a_PI_S = X_PI_S / X_S Average P adsorbed to organic matter (g-P g-DM -1 ) 

monod_O2_miner = S_O2 / 

(K_O2_miner + S_O2)  

Effect of dissolved oxygen (-) 

monod_NO3_miner = S_NO3 / 

(K_NO3_miner + S_NO3)  

Effect of NO3 (-) 

Constant variables Unit  Value Description 

abs(AreaGradient/Area) m-1   Sediment area per lake volume 

v_sed_ORG md-1 0.5 Settling velocity of organic material  

K_O2_miner  gDOm-3  0.05 Half saturation rate 

K_NO3_miner  gNm-3  0.1 Half saturation rate 

a_miner_sed  0.62  Fraction of sedimented org. material, which 

is mineralized at sediment surface (1-

a_miner_sed, enters sediment permanently). 

 

Background mineralization (mineral_bg) 

After having optimized mineralization rates of organic matters for PO4
3-, NH4

+, and NO3
- 

release, these processes did not fully account for the observed depletion. This mismatch 

could not be resolved by increasing the respective mineralization rates because the aerobic 

mineralization rate in COINTZIO (0.1 d-1), which is an order of magnitude higher than the 

mineralization rate of OM by Omlin et al, (2001a), but compare well simulated 

mineralization rate of OM in eutrophic Itezhi –Tezhi reservoir (Kunz et al, 2011). Therefore, 

we assumed that the observed DO demand originates from the oxidation of reduced 
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substances (i.e., CH4 and reduces metals). These substances most likely results from 

mineralization of older deposits of OM (Kunz et al, 2011). As a result, in COINTZIO, the 

process “Background mineralization” for the oxidation of reduced substances by consuming 

DO was added. 

mineral_bg = k_miner_bg × monod_O2_bg  

Bio-geochemical conversion processes 

State variables  Stoichiometric coefficients  Description 

S_O2 -1 Consumption of DO  

Equations 

monod_O2_bg = S_O2 / (K_O2_bg + 

S_O2)  
Effect of dissolved oxygen (-) 

Constant variables Unit  Value Description 

k_miner_bg d-1  0.1 
Background mineralization rate, fitted 

parameter 

K_O2_bg  gDOm-3  0.25 Half saturation rate, fitted parameter 

 

e. Nitrification 

Nitrification influences the dissolved inorganic nitrogen fraction, which includes ammonium 

and nitrate as state variables. Nitrification is the biological oxidation of ammonia with 

oxygen into nitrite followed by the oxidation of these nitrites into nitrates.  

nitrification = k_nitri_wat × min(monod_O2_nitri, monod_NH4_nitri) 

Biogeochemical conversion processes 

State variables  Stoichiometric 

coefficients  

Description 

S_O2 -4.55 Consumption of DO  

S_NO3 1 Production of NO3 

S_NH4 -1 Consumption of NH4 

Equations 

k_nitri_wat = k_nitri_wat_20 × exp (β_BAC × (T 

- 20)) 

Temperature dependence of bacterial activity (d-1) 

monod_O2_nitri = S_O2 / (K_O2_nitri + S_O2)  Effect of dissolved oxygen (-) 

monod_NH4_nitri = S_NH4 / (K_NH4_nitri + 

S_NH4)  

Effect of NH4(-) 

Constant variables Unit  Value Description 

k_nitri_wat_20 gN-1m3d-1 

 

0.05 Nitrification rate at 20 degrees; 

fitted parameter 

β_BAC °C-1  0.046 Temperature dependence 

http://en.wikipedia.org/wiki/Redox
http://en.wikipedia.org/wiki/Ammonia
http://en.wikipedia.org/wiki/Oxygen
http://en.wikipedia.org/wiki/Nitrite
http://en.wikipedia.org/wiki/Nitrite
http://en.wikipedia.org/wiki/Nitrate
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coefficient for bacteria 

K_O2_nitri gDOm-3  2 Half saturation rate 

K_NH4_nitri g Nm-3  2 Half saturation rate 

 

f. Uptake and release of phosphate (nutrient release) 

In many lakes, it can be observed that phosphate concentrations are very low during the 

summer not only within the photic zone, where it is consumed by growing algae, but also 

below. This can be explained with a phosphate adsorption process on sinking particles.  

P_uptake = abs(AreaGradient/Area) × k_upt × (a_P_max-a_PI_S) × monod_O2_ads × S_HPO4 ×X_S 

Bio-geochemical conversion processes 

State variables  Stoichiometric coefficients  Description 

X_PI_S 1 Adsorption of P to organic matter 

S_HPO4 -1 Reduction in phosphates  

Equations 

a_PI_S = X_PI_S / X_S Mass of adsorbed phosphate per mass of X_S (gP(gDM)-1 ) 

monod_O2_ads = 

S_O2/(K_O2_ads+S_O2)  

Effect of dissolved oxygen on adsorption (-) 

Constant variables Unit  Value Description 

abs(AreaGradient/Area) m-1   Sediment area per lake volume 

k_upt gDM-1m4d-1  1200 Phosphate uptake rate constant 

a_P_max gP(gDM)-1  0.007 

 

Maximum mass fraction of phosphate 

adsorbed to organic matter (Mieleitner et al, 

2006)  

K_O2_ads gDOm-3 0.5 DO concentration at half saturation rate (Kunz 

et al, 2011) 
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h. Heat exchange by surface temperatures as boundary condition 

T_relax = (T-surf-T)*20 

Bio-geochemical conversion processes 

State variables  Stoichiometric coefficients  Description 

T 1 Adaptation of T to measured surface temperature to 

mimic heat budget 

Constant variables Unit  Value Description 

k_relax d-1  20 Rate of temperature adaptation 

T_meas °C   Measured or interpolated surface temperatures 

 

Table 3.6 Synthesis table of parameters in the Aquasim biogeochemical model 

 

Parameters from 

literature 
Description Parameters fitted Description 

K_HPO4_ALG 

Concentration of 

orthophosphate at half 

saturation rate (Monod) 

k_gro_ALG_20 
Maximum specific 

growth rate at 20 °C  

S_HPO4_crit 

Orthophosphate concentration 

at which algal growth 

switches to reduced P content 

k_gro_ALG_N2_20 
Maximum specific 

growth rate at 20 °C 

DeltaS_HPO4 

Parameter for switching to 

production with reduced P 

content 

k_gro_ZOO_20 
Max. specific growth rate 

of zooplankton at 20°C  

β_ZOO 
Coefficient for temperature 

dependency 
k_death_ALG_20 

Maximum specific death 

rate at 20°C 

K_O2_resp 
DO concentration at half 

saturation rate 
k_death_ZOO_20 

Maximum specific death 

rate at 20°C 

k_resp_ZOO_20 
Maximum specific respiration 

rate at 20 °C 
k_nitri_wat_20 

Nitrification rate at 20 

degrees 

k_resp_ALG_20 
Maximum specific respiration 

rate at 20°C 
K_O2_bg Half saturation rate 

K_O2_ads 
DO concentration at half 

saturation rate  
k_miner_bg 

Background 

mineralization rate 

a_P_max 

Maximum mass fraction of 

phosphate adsorbed to organic 

matter  

k_miner_anaero_20 

Anaerobic specific 

mineralization rate at 20 

°C in open water 

K_NH4_nitri Half saturation rate k_miner_anox_20 Anoxia specific 
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mineralization rate at 

20°C in open water 

K_O2_nitri Half saturation rate k_miner_aero_20 

Aerobic specific 

mineralization rate at 

20°C in open water  

β_BAC Temperature dependence   

K_O2_miner Half saturation rate   

K_NO3_miner Half saturation rate   

 

Rivers inputs and reservoir outputs 

Rio Grande de Morelia River is the main source of the Cointzio reservoir. The outflow is 

discharged through the gates. Patterns of riverine inputs were strongly influenced by the 

climatic regime of the region. During the wet season water discharges were very low while 

reservoir outputs were maximum with the irrigation demand. In the dry season, riverine 

inputs were maximum and allowed the annual filling of the reservoir. In mean the 

concentrations of all substances (TP, TN, PO4
3-, NO3

-, NH4
+, and chlorophyll a) were higher 

in the inputs than in the outputs (see detail in chapter 4). 

Other fluxes 

O2 - gas exchange at the lake surface 

Dissolved oxygen exchange is considered as a boundary condition at the lake surface with a 

flux proportional to the difference of the current oxygen concentration and saturation. The 

gas exchange velocity, vO2atm is approximated to be constant. The oxygen concentration is 

evaluated as the sum of the following oxygen sources and sinks: Surface transfer, inflows 

and outflows, phytoplankton photosynthesis and respiration, biogeochemical and sediment 

oxygen demand, and nitrification. Surface transfer acts as a source of oxygen when surface 

water concentrations are below saturation and as a sink when they exceed saturation. The 

saturation concentration of dissolved oxygen is determined from the equation given by Bauer 

et al, (1979). 

S_O2_sat = (14.652-0.41022T+0.007910T2-7.7774*10-5 T3) (BP/29.92)  

Where T: Water temperature (°C) 

BP: Barometric pressure (in.Hg) 

Light absorption 

Light intensity is assumed to decrease with water depth. The light extinction coefficient, 

k_extinct (L−1), is assumed to depend linearly on the concentration of suspended particles. 
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k_extinct = k_1+k_2 × w_ALG × X_ORG_withoutzoo  

Where k_1 (L-1) is light extinction in the absence of particles which was estimated from 

secchi depth. 

 k_2 (M-1L-2) is coefficient for light extinction with particles, k_2=0.026 (Omlin et al, 

2001a). 

X_ORG_withoutzoo is the sum of all particulate state variables except zooplankton. 

w_ALG is a factor for converting dry mass to wet mass; w_ALG=5 (Jѳrgensen et al, 1991). 

With these light extinction coefficients, the decrease of light intensity is: I(z) =I*exp(-

k_extinct*z); I denotes the light intensity at the water surface. 

Vertical mixing 

The diffusion coefficient profiles Kz was gained from the calibration of k-ε model (Goudsmit 

et al, 2002) with the time step of every 30 minutes. 

3.6 Model calibration 

We chose to calibrate the model using the data collected at deepest point P27 on the target 

year 2009. All the processes are advanced in parallel at the same time step of 30 minutes and 

the same vertical resolution of 1 m. The time series of Kz(z) estimated with 30 minutes 

resolution from the physical k-ε model were then used as input data for the Aquasim 

biogeochemical model. 

Our model calibration was carried out using a heuristic method. Aquasim model performs 

parameter estimations automatically. The set of calibrated parameters was then carefully 

compared with values reported in the literature to prevent unrealistic estimates. The half 

saturation rate for algae growth with respect to phosphate (K_HPO4_ALG) was calibrated to 

PO4
3-; nitrification rate (k_nitri_wat_20) was fitted to NH4

+ and NO3
-; aerobic 

(k_miner_aero_20), anoxia (k_miner_anox_20), anaerobic (k_miner_anaero_20) specific 

mineralization rate at 20°C, and background mineralization rate (k_miner_bg) were fitted to 

DO. Maximal growth rate of algae (k_gro_ALG_20, k_gro_ALG_N2_20), and maximal 

growth rate of zooplankton (k_gro_ZOO_20) were fitted to observed XALG. These were then 

used to do modelling scenarios for the Cointzio reservoir.  

Simulation for the calibration year 2009 with the assumption Qin = Qout. 

In order to perform a simulation using Aquasim model, it was assumed that the outflow data 

of the Cointzio reservoir is equal to the inflow data in 2009. This is because the main 

limitation of Aquasim is that it automatically generates additional inflow when the outflow is 

larger than the inflow, and vice versa. Globally, the average water depth over years (dry or 

wet years) did not vary a lot (see the time series of volume with depth in Figure 2.6). 
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Therefore, the assumption of constant water level in Aquasim could be acceptable for the 

case of Cointzio reservoir. The measured and simulated results of the main variables in the 

Cointzio reservoir for the target year 2009 are presented in Figure 4 of the paper Ecological 

Modelling (see chapter 5). 

Conclusions of chapter 3 

The modelling simulations were performed in the Cointzio reservoir using two independent 

models: i) The physical lake k-ε model developed by Goudsmit et al, 2002 was used to 

determine vertical diffusion coefficient. It was calibrated using temperature measurements in 

2009 and validated from the data in 2008 and ii) The Aquasim biogeochemical advection-

diffusion-reaction model (Reichert, 1994) was used to simulate the biogeochemical cycling 

in the reservoir. The time series of diffusion coefficients obtained from the physical k-ε 

model were added as a function of depth and time for the biogeochemical Aquasim model. 

All the detailed results are developed in chapter 5.  
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CHAPTER 4. CARBON, PHOSPHORUS, NITROGEN AND SEDIMENT 

RETENTION IN A SMALL TROPICAL RESERVOIR 

 

This section is copied from the paper that was submitted to Aquatic Sciences. Results of the 

field survey were first used to discuss the origin of pollution within the watershed and to 

estimate the internal biogeochemical functioning of the reservoir and discuss its retention 

capacity.  
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Abstract:  
As a result of rapid urbanization and absence of efficient water management policies, tropical 

reservoirs in developing countries are increasingly facing water quality degradation. The 

small tropical reservoir of Cointzio, located in the Trans Mexican Volcanic Belt, behaves as a 

warm monomictic water body (surface area = 6 km2 and water residence time < one year). 

The Cointzio reservoir is strategic for the drinking water supply of the city of Morelia and for 

downstream irrigation during the dry season (6 months of the year). It is threatened by 

sediment accumulation and nutrients originating from untreated waters in the upstream 

watershed. Intensive field measurements were carried out in 2009 (sampling in the watershed, 

deposited sediment and water vertical profiles in the reservoir, reservoir input and output) for 

the estimation of total suspended sediment (TSS), carbon (C), nitrogen (N) and phosphorus 

(P) loads and accumulation in the reservoir. We found that point sources represent the 

majority of P and N inputs to the reservoir. The trophic state is clearly eutrophic with high 

chlorophyll a peaks (up to 70 µg L-1) and a long period of anoxia (from May to October). 

Internal biogeochemical processes in the reservoir were strongly influenced by the incoming 

floods. Most of the TSS, C, N and P were conveyed to the reservoir between June and 

October during the wet season. The TSS yield from the watershed was estimated at 35 ± 19 t 

km2 y-1 of which more than 90 % was trapped in the reservoir (sediment accumulation rate = 

7 800 ± 3 300 g m-2 y-1). Incoming loads of P and N were reduced by 30 % and 46 % 

respectively through the transfer into the reservoir. Carbon accumulation rate was 83 ± 35 g 

C m-2 y-1 with a large proportion of allochthonous C (75 %) brought in during floods. This 

study reveals the effect of climatic seasonality on the processes occurring in tropical 

reservoirs, and points out the need to reduce nutrient input to preserve water resources in 

tropical areas. 

Keywords: tropical reservoir; TSS, C, N, P retention; eutrophication; Mexico 

mailto:Julien.nemery@grenoble-inp.fr
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Introduction 

 

The biogeochemical functioning of reservoirs is strongly influenced by the human activities 

that occur upstream (Kennedy et al. 2003). Large amounts of sediments, organic matter and 

nutrients are efficiently trapped in reservoirs, which can in turn lead to eutrophication 

(Garnier et al. 1999; Donohue and Molinos 2009) and to a loss of the storage capacity 

(Maneux et al. 2001; Vörösmarty et al. 2003; Rãdoane and Rãdoane 2005; Dang et al. 2010). 

On a global scale, reservoirs have been identified as the most significant sink of suspended 

sediment (TSS), carbon (C), nitrogen (N), phosphorus (P) in inland waters, reducing nutrient 

fluxes from upland to downstream ecosystems and coastal regions (Cole et al. 2007; Frield 

and Wüest 2002; Bosh and Allan 2008; Seitzinger et al. 2010). However, these studies 

showed large disparities between regions of the world and sizes of reservoirs. Although most 

studies have focused on large reservoirs, small reservoirs are also of great interest on a global 

scale (Syvitski et al. 2005). Based on the global database of inland waters developed by 

Lehner and Döll (2004), the total surface area of reservoirs was estimated at 2.5 x 105 km2 

(Harrison et al. 2009). The area of small reservoirs (< 50 km2) accounted for 40% of this total 

area. The authors showed the importance of small reservoirs that could retain, for instance, up 

to 45% of the total N retention by all reservoirs on a global scale. Furthermore, the number of 

reservoirs in tropical areas is increasingly important due to the numerous impoundment 

projects that are currently being carried out in developing countries (Tranvik et al, 2009). 

Tropical regions are characterized by contrasted wet and dry seasons, with important 

consequences on the hydrological processes taking place in small reservoirs. These systems 

develop a high vulnerability to eutrophication, especially during the extended dry and warm 

season when nutrients accumulate, increasing algal blooms (Burford et al. 2012). 

Furthermore, the warmer temperatures characterizing tropical regions may lead to substantial 

greenhouse gas emissions (CO2 and CH4) through intense mineralization of the carbon 

present in reservoirs (Guérin et al. 2008, Chanudet et al. 2012). However, the literature on 

tropical reservoirs remains limited (Kunz et al. 2011). There is therefore a clear need to 

provide further knowledge on the biogeochemical processes in small tropical reservoirs 

influenced by the strong seasonality of incoming water, TSS and nutrient fluxes. 

 

In tropical areas, water quality management has become an increasingly important issue in 

developing countries such as Mexico. The release of untreated wastewater into aquatic 

ecosystems is a common practice in many tropical countries. This is of great concern as the 
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volume of wastewater produced is increasing together with rapid urbanization and economic 

growth (Le et al. 2014).  

According to various studies in Mexico, most of the Mexican lakes and reservoirs continue to 

deteriorate, with ecological consequences for the aquatic ecosystems such as eutrophication 

(Bravo-Inclán et al. 2011). It is admitted by Mexican stakeholders that water pollution is one 

of the most serious challenges for sustainable water resources management, and it also 

represents one of the most important concerns for local populations (Berrera Camacho and 

Bravo Espinosa 2009). In Mexico the development of wastewater treatment infrastructure 

remains insufficient, both in large cities and in smaller rural settlements (Ramírez-Zierold et 

al. 2010). Alcocer and Bernal-Brooks (2010) recently provided an overview of the state of 

lakes and reservoirs in Mexico, particularly within the Trans-Mexican Volcanic Belt 

(TMVB), where our study site is located. The authors highlighted the lack of data on 

Mexican rivers, indicating that the knowledge about the linkages between sediment and 

nutrient sources within upstream watersheds and the biogeochemical functioning of 

downstream reservoirs is limited in Mexico. Hence, the implementation of monitoring 

networks of discharge and nutrients, as well as the establishment of policy and mitigation 

strategies of point and non-point sources of pollution are necessary to solve water quality 

problems in the country. 

The present study focuses on the small tropical reservoir of Cointzio (state of Michoacán), 

which is used for supplying drinking water to the city of Morelia and for irrigation purposes. 

This reservoir is threatened by sediment accumulation and eutrophication that may increase 

the water treatment costs and decrease the sustainability of the regional water resources. On 

the regional scale, the quality and quantity of water flowing out of the Cointzio reservoir also 

affects the downstream Cuitzeo endorheic laguna, which is the second largest Mexican lake 

and is of great hydrological and ecological interest (Alcocer and Bernal Brooks 2010). The 

main objectives of the present work are i) to identify and quantify the N and P inputs from the 

watershed to the reservoir, ii) to characterize the internal biogeochemical processes of the 

reservoir and relate them with the seasonality of the inputs, and iii) to evaluate the TSS, C, N 

and P annual accumulation rate in the reservoir and assess its trapping efficiency.  

 

Material and methods 

 

Study area 
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The Cointzio reservoir (19.622°N, -101.256°W) is located in the southern part of the 

Mexican Central Plateau on the Trans-Mexican Volcanic Belt (TMVB), at an altitude of 1990 

masl (Figure 1). The region has a sub-humid climate with mean annual rainfall of 810 mm 

and air temperature fluctuation between 18 and 35 °C according to data taken at Morelia 

meteorological station (data from Servicio Nacional de Meteorología de México). Rainfall is 

concentrated during the wet season from June to October while the period between 

November and May is dry (period 1956-2001; Gratiot et al. 2010). The Cointzio reservoir 

was built in 1940. Its storage capacity is 66 Mm3 (more recent bathymetry in 2005; 

Susperregui 2008) with a maximal surface area of 6 km2 for a maximum depth of 29 m. The 

Cointzio reservoir is an essential component of the drinking water supply (20 % i.e. 21 106 

m3, Ooapas 2007) for the city of Morelia (700 000 inhabitants) and it is also used for 

agricultural irrigation during the dry season. 

The Cointzio watershed drains an area of 630 km2 with elevations between 1990 and 3440 

masl. The only perennial river is the Rio Grande de Morelia. At the outlet of the reservoir this 

river continues its course downstream to the Cuitzeo endorheic laguna (375 km2) (Allende et 

al. 2009). The Cointzio watershed is mainly forested (30 %) and cultivated (43 %) (López-

Granados et al. 2013). The mean population density is 68 inh. km2 for a total of 43 000 

inhabitants (López-Granados et al. 2013). Soils are mostly volcanic (Andosols, Acrisols) and 

highly degraded in some parts of the watershed where important processes of erosion take 

place during the wet season (Duvert et al. 2010).  

 

Figure 1 

 

Survey in the watershed 

 

To localize the origin of nutritive pollution upstream of the reservoir, eight sampling sites 

were selected in the watershed according to their land use, population density and location in 

the river network (Figure 1; Table 1). Sites 2 and 4 located downstream of the biggest 

villages were typical of domestic point sources, whereas sites 3 and 5 were characteristic of 

diffuse sources in low population density areas and mixed forest/agriculture land uses. Site 1 

was intermediate. Site 6 was representative of degraded agricultural lands affected by severe 

erosion. Site 7 is located in the downstream part of the watershed, along the main course of 

the Rio Grande de Morelia. In 2009 monthly water samples were taken using a 2-L 

polypropylene recipient just below the surface in the middle reach of the river. Discharge 
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(salt dilution gauging method) and dissolved oxygen (DO) were measured at the same time 

using a multi-parameter Hydrolab MS5 probe. Water samples were kept refrigerated at 4 °C 

during transportation to the laboratory. 

 

Reservoir inflow and outflow 

 

Given the low population density around the reservoir banks and the absence of other rivers, 

we considered the Rio Grande de Morelia River to be the predominant source of C, N, P and 

TSS. Sampling site 8 is located at the outlet of the Cointzio watershed, downstream from the 

Santiago Undameo township (Figure 1). Monitoring at the gauging station of Undameo 

started in 1940 by the Comisión Nacional Del Agua (CONAGUA). At that time a Parshall 

flume was built to provide a control of the hydraulic section. A stage-discharge rating curve 

was also established and regularly adjusted. Since 2007 water levels have been measured at a 

5-min time-step with a Thalimede OTT water level gauge and water discharge time series 

have then been determined via the CONAGUA rating curve (Duvert et al. 2011). The 

Undameo gauging station physically separates the outlet of the Cointzio watershed from the 

inlet of the Cointzio reservoir. In order to calculate (C, N, P, TSS) annual loads, surface 

sampling was conducted using a bucket in the middle of the river (4 m width) and samples 

were stored at 4 °C. The sampling frequency was daily for TSS measurements (since 2007) 

and weekly for C, N and P measurements (in 2009). 

At the outlet of the reservoir, daily discharges were measured by CONAGUA immediately 

downstream of the reservoir in the water uptake pipe, and additionally in the irrigation canal 

downstream of the spillway during the dry period. A meteorological station on the roof of the 

building of the dam allowed the measurement of evaporation and precipitation. For this study 

discharge, evaporation and precipitation data corresponding to the period 2007-2009 were 

collected at CONAGUA. Daily TSS data were additionally obtained from the CONAGUA 

for the period 2007-2008. In 2009 our sampling frequency was daily for TSS measurements 

and weekly for C, N and P measurements. All water samples were taken using a bucket from 

the water uptake pipe and in the irrigation canal and stored at 4°C. 

 

Sampling within the reservoir  

 

To assess the spatial and temporal dynamics of biogeochemical parameters within the 

reservoir, the vertical distributions of temperature (°C), DO (mg L-1), turbidity (NTU) were 
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measured using a multi-parameter Hydrolab MS5 probe. NTU measurements correlated well 

with TSS values (R2 = 0.97 data not shown). Surveys were conducted in 2009 at a fortnightly 

to monthly frequency, at 15 longitudinal points along the reservoir (Figure 1). At each 

station, Secchi depth was measured using a Secchi disk. The deepest point P27 and the 

middle point P6 were additionally sampled along the vertical axis, at different depths (surface 

= 0.1, 1, 2, 5, 10, 15, 20 m and bottom = 0.3 m from the bottom) using a 2-L Niskin bottle. 

Each water sample was collected in a 2-L polypropylene recipient for TSS, C, N, P 

measurements and chlorophyll a analysis. Samples were kept at 4 °C in an icebox during 

transportation to the laboratory. Samples of bottom sediments were taken using a Van Veen 

grab sampler at two periods, i.e. during the dry season (19th May 2009) and at the end of the 

wet season (13th October 2009). Six points (P27, P13, P11, P6, P47 and P3) were chosen 

along the longitudinal profile to assess the C, N, P contents in deposited sediments. We 

assumed that sampling was representative of the first 2 cm corresponding to the sediment 

surface layer. Sediments were oven-dried at 60°C for 24 hours in the laboratory.  

 

Analysis of water and sediment 

 

After sampling, water was filtered within 3-6 hours in the laboratory through GF/F membrane 

filters (Whatman 0.7 µm porosity) and frozen before dissolved nutrient analysis. Unfiltered 

water samples were also frozen for further total nutrient analysis. Total suspended solid 

(TSS) was weighed on GF/F filters (dried 2h at 105°C) and expressed per volume unit 

filtered. Reproducibility for replicate was better than 3%. Chlorophyll a was analyzed after 

filtering on GF/C Whatman membrane filters using methanol extraction according to Holm-

Hansen and Rieman (1978). Reproducibility for replicate was better than 3 %. Particulate 

organic carbon (POC) analyses were performed after filtering on GF/F Whatman membrane 

filters (ignited at 500°C). Filtrates were kept for dissolved organic carbon (DOC) analysis. 

Filters were treated with HCl (2N) to remove carbonates and dried at 60°C for one night 

(Etcheber et al., 2007). POC was then determined on dry filters by combustion in a LECO CS 

125 analyzer (Etcheber et al., 2007). POC concentration (mg L-1) was then obtained 

multiplying POC (mg g-1) and TSS (mg L-1). DOC was analyzed on filtered water using an 

OC-V Shimadzu analyzer (Sugimura and Suzuki 1998). Analytical accuracy and 

reproducibility of carbon analysis was better than 5 % (Coynel et al. 2005). P-tot and N-tot 

were analyzed on infiltrated water samples using a persulfate digestion process and standard 

colorimetric method (American Public Health Association; APHA, 1995). Dissolved 
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nutrients (PO4
3-, NH4

+, and NO3-) were analyzed on filtrated water samples using standard 

colorimetric method (APHA, 1995). Reproducibility for replicate measurements was better 

than 5 % for all total and dissolved nutrient analysis.  

 

The total particulate P (TPP) content of sediment was determined using a high 

temperature/HCl extraction technique (Aspila et al. 1976; Némery and Garnier 2007) before 

phosphate measurement by colorimetric method (Murphy and Riley 1962). To estimate 

particulate inorganic P (PIP), the analysis was similar to that for TPP, except that the high 

temperature organic P mineralization was omitted. Particulate organic P (POP) was 

determined by calculating the difference between TPP and PIP (Svendsen et al. 1993). Total 

carbon (TC) and total nitrogen (TN) content was measured by CHN analysis using a CN-

analyzer FlashEA 1112 (Thermo Fisher Sci., MA, USA). Based on the catchment geology 

mainly composed of volcanic and acid soils, inorganic C (IC) in sediment was expected to be 

low (Covaleda et al. 2011). To confirm this hypothesis, carbonates were analyzed using the 

calcimetric method (Robertson et al, 1999) and all values were < 0.01 % C (CaCO3) (data not 

shown). Hence measured TC was hereafter considered organic carbon (OC). Reproducibility 

for replicate measurement was better than 5 % for OC, TN, TPP and PIP. 

 

Accumulation rates in reservoir 

 

The sediment deposition rate was estimated in previous studies by using three sediment cores 

sampled in 2006 at P27, P11 and P47 (Susperregui 2008; Mendoza et al. 2013). Stratigraphy 

and chronology using radioisotopic datation (210Pb) allowed reconstitution of the historical 

sediment deposition until 1974. Annual cycles of deposition were evidenced using RX 

intensity and particle sizing, and they fitted well with the seasonality of inflow discharge at 

Undameo (Susperregui 2008). During the wet season (June to October), a large quantity of 

sediment is transported towards the bottom of the reservoir by hyperpycnal flows after flood 

events. During the dry season, settling occurs on the whole water column. The comparison 

between cores showed homogeneous deposition within the reservoir (Susperregui 2008). This 

result was also consistent with the low variability of particle size distribution (D50 < 10 µm) 

for bottom sediments (Susperregui et al, 2009). The annual deposition rate was estimated at 

2.5 ± 0.5 cm y-1 and the mean bulk density of sediment was 550 kg m-3, leading to an annual 

sedimentation rate of 1.4 ± 0.6 g cm-2 y-1 (Susperregui 2008). A reasonable surface of 

deposition of 2 km2 was then considered for the sediment accumulation (Sedacc) calculation:  
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Sedacc= sedimentation rate × surface × K    [Eq. 1] 

 

With Sedacc in t y-1, sedimentation rate = 1.4 ± 0.6 g cm-2 y-1, surface = 2 km2 and K is the unit 

conversion factor  

 

Mean contents of C, N and P determined in deposited sediment during dry and wet periods 

were then assumed to be representative of the settling particles. The significance of 

differences between the two seasons was tested using statistical U-test (Mann-Whitney U-test 

using XLSTAT software). Annual C accumulation (Cacc), N accumulation (Nacc) and P 

accumulation (Pacc) were calculated by multiplying Sedacc with mean OC, TN and TPP 

content (Table 6). Uncertainties of these estimations were evaluated based on the uncertainty 

of annual sediment accumulation rate. 

 

Load calculations and uncertainties 

 

Input and output TSS loads were calculated as the product of instantaneous TSS 

concentrations with the instantaneous discharge (for the output we considered that the daily 

discharge provided by CONAGUA was on average the same as instantaneous discharge). The 

TSS load (HL in t d-1) is calculated as follows: 

 
HL = Qi × Ci × 3600 × 24 / 1000   [Eq. 2] 

Where Qi is the instantaneous discharge (m3 s-1), Ci is the instantaneous TSS concentration 
(kg m-3) 
 
The load (L in t) is the sum of daily loads during the time duration considered:  
 

     
duration

HLL      [Eq. 3] 

 
In the Undameo monitoring station, Duvert et al. (2010) assessed the uncertainty of TSS load 

at ± 20 % according to the daily sampling strategy carried out in 2009. This uncertainty was 

assumed to be the same in 2007 and 2008 both at the Undameo station and at the reservoir 

outlet.  
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The instantaneous P-tot, N-tot and carbon loads resulted from the product of instantaneous 

concentrations in the water and the discharge measured at the same time. From the weekly 

sampling database, the P-tot, N-tot and carbon loads (L) expressed in t y-1 were calculated 

according to the load estimating procedure previously described by Verhoff et al. (1980) and 

recommended by Walling and Webb (1985):  
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                                    [Eq. 4] 

Where K is a conversion factor for the time duration and unit conversion Ci is the 

instantaneous concentration in the water (g m-3), Qi is the instantaneous discharge (m3 s-1) and 

Qm is the mean annual discharge for 2009 (m3s-1). The P-tot, N-tot and carbon loads were 

presented with 95% confidence intervals (CI) calculated as described by Hope et al. (1997) 

and recommended when [Eq. 3] was used (Dawson et al. 2011; Némery et al. 2013). The total 

carbon (TOC) load was calculated as the sum of POC and DOC loads and uncertainty of 

TOC load was the square root of the sum of the square of uncertainties of POC and DOC 

loads described above.  

 

Results 

 

Hydrology 

 

Patterns of riverine input into the reservoir were strongly influenced by the climatic regime of 

the region. Two periods could be distinguished based on the 2007-2009 observations. From 

November to May during the dry season, water input was very low (minimum Q was between 

0.18-0.31 m3 s-1) while the reservoir output was maximum due to the irrigation demand 

(maximum Q was 7-8 m3 s-1 Figure 2a and 2b). From June to October during the wet season, 

riverine input was maximum (Q was 8-18 m3 s-1) and allowed the annual filling of the 

reservoir (Figure 2c). During the same period, the reservoir only provided water for the 

drinking water production (Q = 0.67 ± 0.09 m3 s-1 all along the year). Water input from the 

watershed decreased from 49 x 106 m3 in 2007 to 42 x 106 m3 in 2009 mainly due to the 

decrease in precipitation (from 750 mm in 2007 to 690 mm in 2009). Reservoir output 

decreased from 60 x 106 to 43 x 106 m3, indicating a progressive deficit of water year to year. 

Mean annual volume of the reservoir then decreased from 53.8 in 2007 to 40 Mm3 in 2009. 

Between 2007 and 2009, evaporation (11-15.5 % of mean reservoir volume) was twice as 
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much higher than precipitation (6 % of mean reservoir volume) (Table 1). Therefore the 

residence time of water in Cointzio was estimated at 1.03-0.81 y in 2007 to 0.90-0.83 y in 

2009 (Table 1). Hydrological conditions in the period 2007-2009 (precipitation and Qmax 

between 750-690 mm y-1 and 8-18 m3 s-1 respectively, Table 1 and Figure 2a) were in the low 

range of the long-term time-series (1956-2001, 650-1200 mm y-1, Qmax 10-40 m3 s-1) as 

shown in Gratiot et al. (2010). Years 2007, 2008 and 2009 were therefore typical of dry 

years. In 2009, the reservoir of Cointzio was characterized by a low water level (minimum of 

21 m) as compared to 2007 and 2008 and to the water level fluctuations from 1991 to 2005 

(Figure 2c). 

 

Table 1 

 

Pollution levels within the watershed 

 

Maximum P-tot, PO4
3-, NH4

+ concentrations were observed downstream of highly populated 

villages (Table 2). The highest mean P-PO4
3- (2.2 ± 1.6 mg L-1), N-NH4

+ (5.9 ± 3.8 mg L-1) 

and N-NO3
- (2.6 ± 1.2 mg L-1) concentrations were observed at site 2 where we also 

measured the lowest DO (2.3 ± 1.2 mg L-1). Site 4 presented the highest mean P-tot 

concentration (4.4 ± 5.4 mg L-1) and also important concentrations of P-PO4
3- (0.37 ± 0.23 

mg L-1) and N-NH4
+ (1.23 ± 1.07 mg L-1), which suggest pollution by domestic sewage. N-

NO3
- concentrations remained quite low (< 3 mg L-1) at all sites. Site 5 presented the best 

water quality with very low concentrations of P-PO4
3- (0.05 ± 0.03 mg L-1), N-NH4

+ (0.06 ± 

0.11 mg L-1) and N-NO3
- (0.78 ± 0.41 mg L-1) indicating a low contribution of diffuse 

sources. Sites 7 and 8 were quite similar in terms of nutrient concentrations. Mean 

concentrations at site 8 remained high especially for P-tot (0.38 ± 0.23 mg L-1), P-PO4
3- (0.11 

± 0.07 mg L-1) and N-NH4
+ (0.15 ± 0.10 mg L-1), which indicated an important input of 

nutrients to the reservoir.  

 

Table 2 

 

Figure 2 

 

River input and reservoir output 
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TSS input was nearly equivalent for the three years (≈ 22 200 ± 4 400 t, Table 1). Maximum 

TSS concentration was observed during the wet season with peaks > 10 000 mg L-1 (Figure 

2a, Table 3). Consequently TSS input showed a strong seasonality. TSS input during the wet 

season (June to October) represented more than 95 % of annual TSS input for the three years 

(shown only for 2009, Figure 3a). TSS output was found to be comparable for the three years 

and one order of magnitude smaller than TSS input (1 800 – 2 500 ± 400 – 500 t, Table 1). 

Moreover, TSS output concentrations never exceeded 600 mg L-1 (Figure 2b; Table 4), which 

implies a high TSS retention in the reservoir. TSS output accounted for 10 % only of the TSS 

input. In 2009 mean input concentrations of P-tot (0.38 ± 0.23 mg L-1), N-tot (2.1 ± 1.0 mg L-

1) and TOC (POC + DOC = 32.6 ± 26.5 mg L-1) were one and a half times higher than their 

output concentrations (Tables 3 and 4). The input concentrations of P-tot, N-tot and TOC 

increased with the rising of the discharge and TSS concentration during the wet season (Table 

3). For instance, maximum P-tot (0.94 mg L-1) and N-tot (5.9 mg L-1) were measured on the 

24th June 2009 (Table 3) during the second most significant peak of TSS (Figure 2a). TOC 

was maximum (173.5 mg L-1) during the extreme peak of TSS on the 2nd June 2009 (Figure 

2a, Table 3). Therefore P-tot, N-tot and TOC inputs to the reservoir showed a strong 

seasonality concomitantly with floods and TSS inputs (Figure 3). 

 

Figure 3 

 

The input of P-tot was 20 ± 4 t y-1 (P-PO4
3-

 accounted for 26 %, Table 5). The input of P-tot 

during the wet season (June to October) represented 84 % of the annual P-tot input and 

showed the same seasonal trend as the TSS input (Figure 3b). The input of P-tot was reduced 

by 30 % during the transfer through the reservoir (the output of P-tot was 12 ± 3 t y-1 with the 

same proportion of P-PO4
3-, i.e 25 %). The input of N-tot was 98 ± 17 t y-1 (61 % as N-NO3

- 

and 5.5 % as N-NH4
+) and was reduced by 46 % in comparison to the output (53 ± 15 t y-1 

73.6 % as N-NO3
- and 10 % N-NH4

+) (Table 5). The input of NO3
- was much more reduced 

(about 30 %) than the input of NH4
+, which remained equivalent (very close values with 

uncertainties overlapping) (Table 5). TOC was reduced by 30 % between the input (1617 ± 

340 t y-1, 25 % as POC) and the output (1115 ± 167 t y-1, 5 % as POC). For TOC, the 

difference between the input and output is mainly due to POC, which indicates an effective 

retention in the reservoir. As for P-tot, most of the N-tot (81 %) and TOC inputs (80 %) were 

concentrated on the wet season (Figure 3b and 3c).  
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Overall, the reservoir received most of the TSS, P-tot, N-tot and TOC inputs during 5 months 

from June to October. The rest of the year, inputs were very low. With the occurrence of high 

discharges and high TSS concentrations, September was the most exceptional period in terms 

of input (about 50 % of TSS, 30 % of P-tot and N-tot and 40 % of TOC annual inputs). 

 

Table 3 

 

Table 4 

 

Table 5 

 

Internal reservoir behavior 

 

The tidal range was up to 7 m in 2009 between the maximum water level in January and the 

minimum in June (Figure 4, Figure 5) as a result of the output for irrigation during the dry 

season (Figure 2b). Temperature and DO exhibited a longitudinal homogeneity in the 

reservoir, as shown on the cross profiles presented for four dates in Figure 4. P27 was 

hereafter considered to be representative of the entire reservoir. The spatiotemporal dynamics 

of temperature, chlorophyll a, TSS and DO at P27 are presented in Figure 5. Temperature 

fluctuated between 14 and 22 °C. The reservoir behaved as a warm monomictic system with 

a progressive thermic stratification building up from April to October (Figure 5a). This was 

followed by a complete vertical mixing of the water column in early November. During the 

stratified period DO decreased drastically, from 4 mg L-1 to ~ 0 mg L-1 in the hypolimnion 

(Figure 5b) indicating an intensive benthic mineralization activity. The influence of 

hyperpycnal flows was observed between July and October when floods occurred in the 

watershed and filled the reservoir with very turbid water (Figure 5c). The signature of the 

high TSS inputs from the watershed was even more evident on the 24th September 2009 

(Figure 4c). These latter led to an increase in TSS from 50 mg L-1 to 250 mg L-1 in the 

hypolimnion layer of the reservoir (Figure 5c). Consequently to the input of TSS, Secchi 

depth dropped from 31 cm in February to a minimum of 11 cm in September (Figure 6a). 

 

Chlorophyll a was highly concentrated in the shallow layer of the reservoir (0-5 m) during 

the dry season (January-June) (Figure 5d). Lower values of chlorophyll a were found during 

the second period of the year (July-December), with a homogeneous distribution across the 
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vertical column. In the epilimnion, chlorophyll a was high from January to June (mean values 

of 30 ± 19 µg L-1 and maximum 70 µg L-1 observed in March, Figure 5d). Concentrations 

then drastically dropped to 4 µg L-1 from July until December, probably due to the decrease 

of Secchi depth at the same time (Figure 6a and 6b) that induced a reduction in light 

penetration.  

The temporal variability of POC in TSS showed the same trend as for Chlorophyll a (Figure 

6c). There was a good agreement in POC values in TSS between P6 and P27 (Figure 6c). 

POC followed the chlorophyll a dynamics with maximum values of 300-400 mg g-1 at the 

surface from January to June (mean 200 ± 100 mg g-1, Figure 6c). The maximum POC 

content in TSS was close to the Redfield-typical algal organic matter of ~400 mg C g-1, 

which indicated that during the dry season most of the POC was autochthonous in the 

epilimnion. With the arrival of the first flood waves in June, POC decreased simultaneously 

with the decrease in chlorophyll a to a minimum value of 10 mg g-1 in December (mean 29 ± 

18 mg g-1 between July and December). Therefore, during the wet season POC was likely 

dominated by poor-allochthonous POC from the watershed rather than algae-autochthonous 

POC. POC in the hypolimnion was on average 100 ± 25 mg g-1 from January to June, 

indicating that dead algal sedimentation occurred. However POC was two times lower than 

the POC at the surface during the same period (200 ± 100 mg C g-1 respectively; Figure 6c), 

suggesting a possible mixing with settled sediment poorer in C originating from the 

watershed. Then, POC was almost ten times lower (12 ± 3 mg g-1) from July to December. 

This result again highlights the dilution effect with the arrival of floods within the reservoir.  

 

Figure 4 

 

Figure 5 

 

Figure 6 

 

PO4
3-, NO3

-, NH4
+ concentrations were similar at P6 and P27 and showed comparable 

seasonal trends (Figure 7). Concentrations were slightly higher in the hypolimnion than in the 

epilimnion, but remained in the same order of magnitude. P-PO4
3- concentration was low 

during the dry period (0.05 ± 0.05 mg L-1 on average from January to May) (Figure 7a). N-

NH4
+ decreased rapidly from January to March and remained very low until May (0.04 ± 

0.02 mg L-1 at minimum in May) (Figure 7c). The decrease in NH4
+ and the low 
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concentration of PO4
3- were likely due to algal uptake during the dry period when maximum 

chlorophyll a was observed (Figure 5d). 

Before the arrival of flood waves, PO4
3- and NH4

+ had already started to increase from May 

over the course of stratification. This is consistent with a release from potential benthic 

mineralization activity that induced an important O2 consumption, as observed in the 

hypolimnion from May to October (Figure 5c). Increase in PO4
3- and NH4

+ then intensified 

with incoming floods from the watershed and nutrient inputs during the wet season (Figure 

3). Overall, PO4
3- and NH4

+ increased more than 10-fold from May and remained high until 

the destratification in late October where a sharp decrease in PO4
3- and NH4

+ was observed 

(Figures 7a and 7c). This decrease can be explained by the complete mixing of the water 

column, but also by the increase in the volume of the reservoir leading to a dilution effect 

(Figure 2c). NO3
- increased slightly throughout the year (Figure 7b) probably due to 

nitrification and also inputs from floods during the wet season. Indeed, NO3
- load was 

important from June to October (Figure 3). NO3
- did not seem to accumulate that much and 

this may reflect the progressive elimination of NO3
- by denitrification processes during the 

anoxic period (May to October). 

 

C, N and P content in sediment 

 

The OC, TN and TPP content of sediment showed minor variability along the longitudinal 

transect from the dam to the Rio Grande de Morelia River mouth (for all parameters, 

individual values were globally in the range of the standard deviation of the mean, Table 6). 

This result is coherent with the homogeneous sediment deposition within the reservoir. 

Sediments collected during the wet season had significantly lower mean content of TPP 

compared to sediments collected during the dry season (0.21 ± 0.03 against 0.12 ± 0.02 mg P 

g-1, p-value < 0.001). This was explained by a decrease in POP (0.17 ± 0.03 against 0.07 ± 

0.01 mg P g-1) rather than PIP as the latter remained in the same order of magnitude (0.04 ± 

0.01 against 0.05 ± 0.01 mg P g-1). This result may indicate a mineralization of POP between 

both seasons but negligible PIP desorption. OC (11.1 ± 1.4 mg C g-1) and TN (1.0 ± 0.1 mg 

N g-1) in the dry season were similar to their concentrations in the wet season (10.2 ± 0.1 mg 

C g-1 and 0.09 ± 0.1 mg N g-1 respectively for OC and TN, p-value > 0.05) (Table 6). 

Resulting C:N ratio was 11 ± 1 at both dates. The low mean C:N ratio in deposited sediment 

(11 ± 1) indicates that deposited sediment contained a significant proportion of 

autochthonous C (Park et al. 2009). However, the low OC content in sediment was 
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comparable to the value of POC in TSS from the watershed during the wet season (11.4 ± 4.4 

mg g-1 from June to October, data not shown but POC content on TSS can be calculated from 

Table 3). TN content in sediments remained very low (~ 1 mg g-1). These low OC and TN 

content outline the probable dominance of allochthonous inputs in the OC and TN 

accumulation.  

 

Figure 7 

 

Table 6 

 

Discussion 

 

Nutrient sources within the watershed and reservoir trophic state 

 

Field observations indicated that point sources from domestic wastewater clearly dominated 

in the Cointzio watershed. Nutrient emission mainly originated from the most populated 

villages located upstream. This conclusion is coherent with two studies published on the 

Cointzio reservoir (López-López and Dávalos-Lind 1998; Ramírez-Olvera and López-López 

2004). Both studies identified wastewater discharge to be the major input of nutrients in this 

reservoir. It is also known that there are no wastewater treatment plants in the villages located 

upstream (Avila Garcia 2006). 

Our results showed that P and N concentrations were low in agricultural sub-watersheds 

(sites 3 and 5, Table 2). Nitrate concentrations remained low within the whole watershed 

(mean NO3
- of 1.5 ± 0.7 mg N-NO3

- L-1) with regards to, for instance, the European standard 

of water quality (Water Framework Directive, 2000/60/EC; Bouraoui and Grizzetti, 2014). 

These results are in good agreement with the study of Bravo-Espinosa et al. (2009) conducted 

in the eastern part of the Cointzio watershed (site 6 Huertitas sub-basin, Table 2). These 

authors estimated very low nitrate loss in runoff waters under cultivated soils in the range of 

0.1 – 0.6 mg N-NO3
- L-1. Diffuse sources from agricultural soils are also usually linked to 

erosion processes that constitute a global concern (Quinton et al. 2010). A recent study using 

fingerprinting methods showed the prevailing contribution of degraded soils to the sediment 

load at the outlet of the Cointzio watershed (Evrard et al. 2013). Those soils (mainly Acrisols 

and Andosols) were very poor in C, N and P content (Bravo-Espinosa et al. 2009), indicating 
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once more the low contribution from diffuse sources in this study. Other sources such as N 

and P atmospheric deposition can also be neglected given the low contribution of 

precipitation to the mean annual volume of the reservoir (6%, Table 1). Rough estimation 

from a neighboring study in Valle de Bravo in central Mexico (16 kg P km-2 y-1 and 550 kg N 

km-2 y-1, Ramírez-Zierold et al. 2010) confirms that N and P depositions were negligible in 

the case of the Cointzio reservoir (0.06 t P y-1 and 2 t N y-1 i.e. 0.3 % and 2 % of P-tot and N-

tot inputs respectively, calculation was done with mean annual area of reservoir of 3.6 km2). 

To support the assumption of the predominance of point sources, we calculated the 

theoretical domestic load based on the physiological per capita production of P (1-1.5 g P 

day−1, Billen et al. 2007). Given the total population of the watershed (43 000 inhabitants), 

direct point sources would represent an annual load of 15.5 to 23.5 t P. This is the same order 

of magnitude as the value at the outlet of the watershed (site 8), i.e. 20 ± 4 t P (Table 5). P 

domestic inputs from direct wastewater release would then explain the P-tot load reaching the 

reservoir. 

To qualify the trophic state of the Cointzio reservoir, we applied the P trophic model for 

warm-water tropical lakes and reservoirs first proposed by Salas and Martino (1991). This 

approach allows estimating trophic state of reservoirs from annual P load and the water 

residence time in the reservoir. It was applied to the Cointzio reservoir and led to an annual P 

load of 0.5 ± 0.1 g m-3 y-1 (ratio between input P-tot load of 20 ± 4 t P and mean annual 

volume of reservoir 40 Mm3 in 2009). Given the residence time of about one year (Table 1), 

the Cointzio reservoir was classified as eutrophic. According to the maximum chlorophyll a 

concentration (up to 70 µg L-1, Figure 6b) and the maximum POC content in suspended 

sediment, (300-400 mg C g-1) the Cointzio reservoir appeared to be a highly productive 

system. The measurements of POC and chlorophyll a allowed calculating the C:chl a ratio for 

the reservoir (51 ± SD = 19; R = 0.78). This ratio is the slope of the linear regression between 

POC concentrations and chlorophyll a (Garnier et al. 1989). Based on the algal growth rate 

(0.26 d-1) measured in the Cointzio reservoir by López López & Dávalos-Lind (1998), mean 

chlorophyll a (30 ± 19 µg L-1) converted in C from this C:chl a ratio and the layer 0-5 m (17 

Mm3) from January to July, algal C uptake would be estimated at 1400 ± 450 t C y-1. The 

annual primary production rate would then be 390 ± 130 g C m-2 y-1 which once again 

categorizes the Cointzio reservoir as eutrophic given the classification of the lake trophic 

state (eutrophic > 365 g C m-2 y-1; Wetzel 2001).  
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The Cointzio reservoir seemed to follow the same general trend as the one observed in 

neighboring eutrophic lakes and reservoirs located in the TMVB region, such as the Chapala 

lake (de Anda et al. 2001), the Lago de Guadalupe (Sepulveda-Jauregui et al. 2013) and many 

others (Bravo-Inclán et al. 2010). For instance, a recent study on the main reservoir of Valle 

de Bravo, which provides water to Mexico City, showed that N and P loads in the Valle de 

Bravo reservoir have increased two to three-fold between 1992 and 2005 (Ramírez-Zierold et 

al. 2010). The Valle de Bravo reservoir is eutrophic due to the local township sewage and 

agriculture diffuse sources from the watershed. Close to the Cointzio reservoir, the Pátzcuaro 

lake has been facing severe eutrophication problems for at least 20 years (Chacón Torres 

1993; Rosas et al. 1993). Mijangos Caro et al. (2008) estimated the contribution of point and 

diffuse sources from 13 surrounding sub-watersheds (total surface of 933 km2). They 

concluded that urban nutrient loads were of high concern in lake neighbouring towns, 

whereas diffuse sources predominated in eroded and agricultural catchments. The 

oligotrophic lake Zirahuen located in the same region has been spared from eutrophication so 

far, but the study of Chacón-Torres and Rosas Monge (2008) alerted on the urgency to collect 

and treat the incoming wastewater to preserve this ecosystem. 

According to the above-cited studies related to the TMVB region, and due to the evident link 

between nutrient loads and eutrophication of reservoirs in tropical area, there is a crucial need 

to implement best management practices (BMPs) in upstream watersheds. Classical 

recommendations, as made by Ramírez-Zierold et al. (2010), are to reduce P and N inputs 

from wastewater (treating sewage) and also from agricultural diffuse sources (regulation of 

fertilizers uses and input from livestock). In the case of the Cointzio watershed, the main 

priority issue would be the drastic control of nutrient point sources from domestic effluents 

(collection and treatment) which would benefit the water quality of the Cointzio reservoir, as 

recently shown by the study of Doan et al. (2013, comm pers). This mitigation would also 

have positive effects on the downstream Cuitzeo laguna, which has been suffering from 

hypereutrophication and fish-Fauna ecological impacts for many years, particularly when it 

dried up during severe droughts in the early 1990s (Soto-Galera et al. 1999). 

This regional context in Mexico can be generalized to many other developing countries in the 

inter-tropical area. Such countries are facing increasing population and lack of wastewater 

treatment, and the implementations of BMPs listed above were largely recommended in 

numerous studies worldwide (Brazil, India, Sri Lanka, China and others; Reddy 2005). 

 

Effect of floods on the reservoir functioning 
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In the Cointzio reservoir, a large proportion (> 80 %) of the TSS, P-tot, N-tot and TOC 

annual inputs occurred during the wet season (June to October). The seasonality of the inputs 

had a strong effect on the internal functioning of the reservoir. The most important feature 

was the very high TSS input during the wet season that induced a rapid decrease of light 

penetration due to high turbidity. The range of Secchi depth in the Cointzio reservoir (0.11 to 

0.30 m) was among the lowest of the tropical lakes and reservoirs of the region. For instance 

this value is 13 to 19 m in the clear lake Zirahuen (Martinez-Almeida and Tavera 2005) and 

3.2 to 5.8 m in the eutrophic reservoir of Valle de Bravo (Merino-Ibarra et al. 2008). 

Consequently to this decrease in Secchi depth, a rapid drop of Chlorophyll a was observed. In 

the comparable eutrophic reservoir of Valle de Bravo, chlorophyll a remained high during all 

the stratified period (Merino-Iberra et al. 2008). Moreover, in eutrophic systems the decrease 

in Secchi depth is generally correlated with an increase in chlorophyll a (Wollenweider 

1968). This is not the case in the Cointzio reservoir where floods have a strong effect on the 

seasonality of primary production. 

Increase in nutrients in the reservoir was also largely driven by the large inputs of nutrients 

during floods. These inputs quickly and strongly enriched the reservoir to a high 

concentration level of PO4
3- and NH4

+, both in epilimnion and hypolimnion. During 

stratification in tropical systems, a depletion of nutrient in the epilimnion due to algal uptake 

is generally observed, together with enrichment in the hypolimnion due to benthic 

mineralization and benthic desorption under anoxic conditions (Kunz et al. 2011; Merino-

Iberra et al. 2008, Burford et al. 2012). In most of the warm monomictic Mexican lakes and 

reservoirs listed by Alcocer and Bernal-Brooks (2010), the hypolimnion becomes anoxic 

during the stratification period, which then leads to PIP release from sediments and an 

increase in PO4
3- in the hypolimnion. The long and intense anoxia was observed in the 

Cointzio reservoir, but there was little evidence of PIP desorption since PIP in deposited 

sediment did not vary between dry and wet season. This behavior can be the consequence of 

the Acrisol-origin of sediments brought during the floods (Evrard et al. 2013). These soils 

typically have an important P adsorption capacity caused by the presence of iron and 

aluminium (Parfitt and Clayden 1991). In lakes and reservoirs with high iron and aluminium 

concentrations, hypolimnic anoxia does not necessary lead to P release (Gächter and Müller 

2003). In the Cointzio reservoir, aluminium and iron concentrations were high and regularly 

above the standard for drinking water production (unpublished data from Oaapas). Floods 

would then have a major effect on PO4
3- concentration, whereas desorption of PIP from 
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sediments appeared to be a negligible process. The effect of floods on the increase of 

hypolimnic concentrations was also highlighted in the Itezhi-Tezhi reservoir in Zambia 

(Kunz et al. 2011), but in this study nutrient concentrations remained stratified in the water 

column while in our study the increase was not only observed in the hypolimnion but also in 

the epilimnion. This could be the consequence of a wind-swept effect that may have driven 

nutrient movement from hypolimnion to epilimnion through boundary mixing caused by 

internal waves (Merino-Iberra et al. 2008). This effect is likely to take place in the Cointzio 

reservoir given the high diurnal variability of wind (Susperregui 2008). 

Regarding the high interannual variability of precipitation and discharge in the Cointzio 

watershed, the effect of floods was probably much more pronounced in wet years (Gratiot et 

al. 2010). This effect of floods is more important in tropical areas where the seasonality is 

highly marked (Burford et al. 2012; Syviski et al. 2014). 

 

Sediment trapping efficiency  

 

Table 7 

 

The reservoir of Cointzio acted as a sink of TSS. The large difference between inputs and 

outputs was explained by a large amount of sediment accumulation (28 000 ± 12 000 t y-1 

Table 7). Given the range of uncertainties, both estimations from input-output difference and 

Sedacc were in the same order of magnitude (Figure 8a). This result leads to the assumption 

that external TSS input was dominant in the Cointzio reservoir in comparison to internal 

input such as dead algae sedimentation. With the level of accuracy of our calculations, 

sediment retention would be > 90 % of the incoming TSS. According to the classification 

proposed by Vörösmarty et al. (2003), the trapping efficiency of the Cointzio reservoir was 

within the highest range of anthropogenic sediment dam-retention (80-100 %). The sediment 

accumulation rate deduced from our study was 7 800 ± 3 300 g m-2 y-1 (Table 7). This value 

is very similar to that estimated on the global scale for small reservoirs (7 700 g m-2 y-1) when 

large reservoirs presented slightly higher sediment accumulation rates (Syvitsky et al. 2005, 

Table 7). Compared to other tropical reservoirs listed in Table 7, sediment accumulation rates 

were higher in the Cointzio reservoir to those of the Itezhi-Tezhi reservoir (900 g m-2 y-1, 

Kunz et al. 2011, Table 7) or the Pampulha reservoir in Brazil (320 g m-2 y-1, Torres et al. 

2007). Large differences in the trapping efficiency among reservoirs can be explained by the 

morphology of the reservoir (depth and surface area) and its water residence time (Cunha et 
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al. 2014). For instance, lower depths with high water residence times can favor the trapping 

efficiency. The geological context of the upstream watershed is also of importance, since the 

more upstream soil erosion there is, the higher the downstream TSS load is. Syvitsky et al. 

(2005) stated that whole areas of Central and North Mexico were affected by high sediment 

accumulation rates, which can be related to the high erosion rates prevalent in those regions 

(Descroix et al. 2008). The example of the lower sediment accumulation rate for the 

Pampulha reservoir can be explained by low water residence (0.2 y) and also a low specific 

TSS load (20 t km-2 y-1). In the case of Cointzio, even with a low residence time (< 1 y) and 

large depth, the reservoir presented a very efficient retention. This is likely to be a 

consequence of the high seasonality of the TSS input, which caused very dense hyperpycnal 

flows and led to rapid trapping of the sediment.  

Sediment trapping is a key issue for the management of the Cointzio reservoir since it has 

already lost 25 % (i.e. 22 Mm3) of its initial storage capacity on its construction in 1940 

(initial capacity was 88 Mm3, Susperregui, 2008). Based on the sediment accumulation rate 

determined in this study, the reservoir may lose an additional 1 Mm3 in the next 20 years (i.e. 

1.5 % of its current capacity). This estimate appears low compared to the trapping of 22 Mm3 

since 1940. The three years studied presented similar TSS load and were characteristic of dry 

years. From our results we can estimate the specific TSS yield from the watershed to amount 

to 35 ± 19 t km-2 y-1. The historical database of discharge and TSS at the watershed outlet 

(1973-1985, Oaapas, data not shown) allowed calculation of TSS loads of up to 150 000 t y-1 

i.e. 240 t km-2 y-1 for some wet years (1976 and 1981 for instance, Susperregui 2008). This 

indicates a considerable interannual variability of the TSS input to the reservoir, which is 

driven by the hydrological conditions. This was also evidenced by Susperregui (2008) using 

sediment core data. Another factor possibly involved in the TSS input reduction is the land 

use changes that occurred in the Cointzio watershed over the last decades. López-Granados et 

al. (2013) identified significant land use changes between 1986-1996 in benefit to reforested 

areas and shrubland progression. Moreover, alternative agronomic practices such as the 

plantation of agave forestry and native species are being implemented locally in the Cointzio 

watershed to prevent severe soil erosion (Schwilch et al. 2012), which might have long-term 

positive effects on the TSS input to the reservoir. Modifying the morphology or the hydraulic 

processes occurring within reservoirs to reduce their sediment accumulation rates appears 

unachievable. The most promising way of mitigating the decrease in reservoir storage 

capacity would therefore be the reduction of incoming TSS inputs through limitation of 

upstream erosion. 
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Organic carbon origin and C, N, P trapping efficiency 

 

The Cointzio reservoir reduced significantly the incoming TOC load (40 %), which modified 

somehow its internal biogeochemical functioning. The accumulation of C (Cacc) was 

estimated at 298 ± 128 t C y-1 (Table 7 and Figure 8b) and is likely composed of a fraction of 

the allochthonous C mainly brought in during the wet season and a fraction of new 

autochthonous C produced by algae during the dry season. The respective contribution of 

allochthonous C and autochthonous C has to be quantified to analyse the factors responsible 

for the high anoxia due to mineralization in the Cointzio reservoir. The signature of 

autochthonous C is assumed to be the mean POC in surface TSS during the production period 

in the dry season (200 ± 100 mg C g-1). The signature of allochthonous C can be deduced 

from the mean POC content of bottom settled sediment that has been reduced 10-fold with 

the arrival of floods and hyperpycnal flow in July (decrease from 100 ± 90 mg C g-1 in the 

dry season to 12 ± 3 mg C g-1 in the wet season). The value of POC in bottom settled 

sediment during the wet season was very close to the mean OC content in deposited sediment 

(10.6 ± 1.1 mg C g-1). We can then evaluate that, from July to December, OC in bottom 

settled sediment was nearly 100% of allochthonous origin. During the wet season a large 

amount of incoming sediment and allochthonous C did not completely settle and was 

resettled between November and January with the total mixing of the reservoir as evidenced 

with homogeneous distribution of TSS at this period. To estimate the contribution of 

autochthonous C (%Cauto) in the C bottom settled sediment during the dry season, a simple 

mixing model comparable to the one presented in Kunz et al. (2011) was applied. Here we 

considered the allochthonous C signature (Callo) to be 12 ± 3 mg C g-1 and the autochthonous 

signature (Cauto) to be 200 ± 100 mg C g-1 in the following equation:  

 

C bottom settled sediment = (1 - %Cauto) × Callo + %Cauto × Cauto   [Eq. 5] 

 

Calculated %Cauto was 47 ± 23 %. Hence, the C bottom settled sediment was of about 50 % 

autochthonous origin during the dry season (half year) and of 100 % allochthonous origin 

during the rest of the year. Considering a continuous TSS and C deposition during the year, 

the allochthonous C contribution would then represent 74 ± 12% of the Cacc (i.e. 220 ± 36 t C 

y-1). This proportion of allochthonous C was also found in the Itezhi Tehzi reservoir (84% of 

Cacc, Kunz et al. 2011), which received a major portion of allochthonous C during the flood 
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events. These authors also demonstrated a significant impact of allochthonous inputs in the 

deoxygenation of the hypolimnion. The rate of hypolimnic mineralization was maximal just 

after the deposition of allochthonous inputs. In the case of Cointzio we can also assume that 

the intense anoxia affecting the reservoir is due to the mineralization of allochthonous C 

inputs during the wet season. Based on our calculation, allochthonous Cacc would then 

account for 55 % of incoming POC (Figure 8b), indicating potential additional C removal by 

mineralization. Our field data did not allow quantifying C removal by mineralization. 

However, it is largely known that the aerobic and anaerobic mineralization in tropical 

reservoirs can saturate the water column in CO2 and CH4 likely to be degassed into the 

atmosphere (Guérin et al. 2006). The long and intense period of anoxia observed in the 

Cointzio reservoir was clearly an indicator of high aerobic mineralization and also favorable 

to methanization. Additional loss through CO2 and CH4 emission would most likely occur in 

the Cointzio reservoir. The methanization process has been largely demonstrated in tropical 

reservoirs and is of general concern for global warming on the global scale (Reigner et al. 

2013). Further study is underway to assess these processes in the Cointzio reservoir using a 

modeling approach (Doan et al. 2014 comm.pers).  

 

Our estimation of the Cacc rate was 83 ± 35 g C m-2 y-1 (Table 7) and appeared higher 

compared to the value estimated at the Itezhi-Tezhi reservoir for instance (62 g C m-2 y-1, 

Kunz et al. 2011 Table 7). This can be explained by the higher sediment accumulation rate in 

the Cointzio reservoir and important POC inputs during the wet season. Other contrasted 

behavior was observed in the Pampulha reservoir in Brazil, which exported C rather than 

accumulated it (Torres et al. 2007, Table 7). Even if there was no estimation of contribution 

of autochthonous and allochthonous C in the study, the high productivity of this reservoir was 

identified as the main factor explaining the C exportation. C accumulation can therefore be 

highly variable among reservoirs and linked to the allochthonous C inputs and sediment 

trapping efficiency (Tranvik et al. 2009). 

 

The difference between N-tot input and N-tot output indicated that N input was reduced by 

46 % in the Cointzio reservoir. 60 % of this reduction can be explained by the Nacc which was 

estimated at 26 ± 11 t N y-1
 (Table 7, Figure 8c). N accumulation rate (7.2 ± 3.1 g N m-2 y-1) 

was in the same order of magnitude as the N accumulation rate estimated at the global scale 

(11 ± g N m-2 y-1, Beusen et al. 2005, Table 7) and in the range of other reservoirs listed in 

Table 7. N accumulation can be highly variable among reservoirs because of the difference in 



 

117 
 

TSS trapping efficiency or water residence time, as highlighted previously for sediment 

accumulation (Cunha et al. 2014). Moreover, the estimation of total N removal in reservoirs 

is much more complex since the cycling of N is dynamic and involves not only accumulation 

but also numerous biological processes (i.e. denitrification, N fixation, nitrification, Wetzel 

2001). Denitrification processes are particularly responsible for N removal, with the 

production of N2 that is known to be an important process explaining the mass balance of 

nitrogen in aquatic tropical ecosystems (Lewis 2002). In the Cointzio reservoir, the reduction 

of 30 % that was observed between NO3
-
 input and output suggest possible denitrification 

(Figure 8c). In the eutrophic reservoir of Valle de Bravo, for instance, N removal by 

denitrification was equivalent to N accumulation (Ramírez-Zierold et al. 2010). The long and 

intense anoxia in Cointzio was likely to favor denitrification. N removal by denitrification 

would then be of importance to close the N mass balance in the Cointzio reservoir. This 

assumption is consistent with the NiRReLa global model results of Harrison et al. (2009) who 

identified this central region of Mexico as having a high N removal rate potential. Further 

studies are needed to confirm our hypothesis. In addition, N fixation may also be an 

important process since N-fixing Cyanobacteria (Oscillatoria lacustris) were identified as the 

dominant group during the dry season in the Cointzio reservoir (Ramírez-Olvera et al. 2004). 

 

The Cointzio reservoir acted as a sink of P with an estimation of 30 % reduction of incoming 

P-tot. Pacc was estimated at 5 ± 2 t P y-1 and, given the calculated uncertainties, this result 

allowed explaining a large proportion (>70 %) of the incoming P-tot reduction (Table 7, 

Figure 8d). Phosphorus is known to have a strong affinity with sediment (Némery and 

Garnier 2007). Therefore P trapping is commonly correlated with TSS retention and P is 

largely retained through sedimentation (Bensen et al. 2005). In the case of the Cointzio 

reservoir, despite TSS retention > 90 %, the proportion of P retained remained moderate. P 

retention in reservoirs is also influenced by their water residence time (Kõiv et al. 2011). The 

longer the residence time, the higher the internal P recycling is, which in turn leads to an 

increase in P retention. The large eutrophic tropical reservoir of Castanhão in Brazil has a 

residence time of about 10 y, and P retention was estimated at 98 % (Molisani et al. 2013). 

Therefore the low water residence time in the Cointzio reservoir may explain the moderate P 

trapping efficiency. However, the water residence time is not the only explicative factor to 

explain P trapping efficiency. For instance, Torres et al. (2007) calculated P retention to be 

81 % in the Pampulha reservoir, which has a very low water residence time of 0.2 y and 

shallow waters. The latter feature can also favor the P trapping efficiency (Kõiv et al. 2011). 
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The Pacc rate for the Cointzio reservoir (1.4 ± 0.5 g P m-2 y-1, Table 7) was close to the one of 

the Pampulha reservoir (1.2 g P m-2 y-1) and also to the one of the Itezhi-Tezhi reservoir (0.8 

g P m-2 y-1). The latter has similar water residence time (0.7 y) and 60 % P trapping 

efficiency (Kunz et al. 2011, Table 7). Pacc was three-fold lower than the P accumulation in 

the neighboring Valle de Bravo reservoir (5.5 g P m-2 y-1), which has a water residence time 

of 1.58 y and retained 85 % of P input (Ramírez-Zierold et al. 2010, Table 7). The difference 

can be explained by the P input to the Valle Bravo reservoir (121 t P y-1), which was 10-fold 

higher than the P input to the Cointzio reservoir (20 t P y-1) with a similar upstream 

watershed area. Apart from the morphologically induced characteristics of reservoirs 

discussed above, the P retention also depends on the watershed P inputs. Based on the 

analysis of 54 lakes and reservoirs in different climate regions around the world, Kõiv et al. 

(2011) found a strong correlation between the specific external P load and the reservoir P 

retention in P per m2. The comparison between several reservoirs showed that, regardless of 

the wide variety of reservoirs, the level of P input is the main cause of high P retention. This 

is consistent with the 6-year study in the Wivenhoe reservoir (Australia) carried out by 

Burford et al. (2012), which concluded that the variability of annual P retention was largely 

driven by the level of P input during each year. 

From the above discussion, the comparison of P trapping efficiency and P accumulation rate 

in tropical reservoirs is highly complicated because it depends on many factors such as water 

residence time, depth, TSS trapping and external P load.  

 

Figure 8:  

 

Conclusions 

 

Our results illustrate the strong influence of watershed-emitted untreated point sources on the 

biogeochemistry of a small tropical reservoir. High nutrient inputs to the Cointzio reservoir 

were an essential driver of its eutrophication, as evidenced by the high chlorophyll a 

concentrations, high primary production and the long and intense hypolimnic anoxia 

observed. Eutrophication represents an issue of concern for most of the lakes and reservoirs 

in Central Mexico, and point source reduction should be the highest water management 

priority in Mexico in the upcoming years. 

Our results indicate a pronounced seasonality in the upstream inputs to the reservoir. 

Alternating dry and wet seasons strongly influenced the functioning of the reservoir (high 
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turbidity, predominance of allochthonous carbon). Even with low water residence time, 

sediment trapping was very efficient and threatened the sustainability of its storage capacity. 

The reservoir was also a trap for incoming nutrients and carbon responsible for its eutrophic 

state. The accumulation of nutrients remained moderate relative to other eutrophic tropical 

reservoirs, which can be explained by different factors such as the residence time, importance 

of nutrient yields and internal biogeochemical transformations (mineralization, 

denitrification).  

This study has important implications for reservoir managers when designing mitigation 

strategies to preserve siltation or to prevent eutrophication.  
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Figures caption: 
 
Figure 1: Map of the Cointzio watershed and reservoir: location of sampling sites 
(geographical position in UTM). 
Figure 2: Seasonal time-series of a) water discharge (m3 s-1) and TSS inflow (mg L-1), b) 
water discharge and TSS outflow (mg L-1), and c) the volume of the Cointzio reservoir for 
2007, 2008 and 2009 (Mm3, incomplete year in 2007, mean, minimum and maximum 
volumes are given for the period 1991-2005; data CONAGUA). 
 
Figure 3: Seasonal variation of TSS, P-tot (including P-PO4

3-), N-tot (including N-NO3
-, N-

NH4
+), POC and DOC inputs to the reservoir of Cointzio (t day-1) 

 
Figure 4: Horizontal transects of temperature, DO and TSS at four dates covering the entire 
2009 year. Dotted lines indicate date of vertical profiles. 
 
Figure 5: Seasonal variation of a) temperature b) TSS c) DO and d) Chlorophyll a at the 
deepest point P27 in 2009. 
 
Figure 6: Comparison of the seasonal variations in a) Secchi depth, b) chlorophyll a (surface 
and bottom), and c) POC in suspended sediment (surface and bottom) in the water column at 
the two sampling points P6 and P27. 
Figure 7: Comparison of the seasonal variations in a) P-PO4

3-, b) N-NO3
-, and c) N-NH4

+ in 
the water column at the two sampling points P6 and P27 (surface and bottom) in the Cointzio 
reservoir. 
Figure 8: TSS, C, N, P inputs, outputs and accumulation in the Cointzio reservoir (loads are 
given in t y-1 with uncertainties) 
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Figure 1: Map of the Cointzio watershed and reservoir: location of sampling sites 

(geographical position in UTM) 
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Figure 2: Seasonal time-series of a) water discharge (m3 s-1) and TSS inflow (mg L-1), b) 

water discharge and TSS outflow (mg L-1), and c) the volume of the Cointzio reservoir for 

2007, 2008 and 2009  
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Figure 3:  Seasonal variation of TSS, P-tot (including P-PO4
3-), N-tot (including N-NO3

-, N-

NH4
+), POC and DOC inputs to the reservoir of Cointzio (t day-1) 
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Figure 4: Horizontal transects of temperature, DO and TSS at four dates covering the entire 

2009 year. Dotted lines indicate date of vertical profiles 
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Figure 5: Seasonal variation of a) temperature b) TSS c) DO and d) Chlorophyll a at the 

deepest point P27 in 2009 
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c)
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Figure 6: Comparison of the seasonal variations in a) Secchi depth, b) chlorophyll a (surface 

and bottom), and c) POC in suspended sediment (surface and bottom) in the water column at 

the two sampling points P6 and P27 
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Figure 7: Comparison of the seasonal variations in a) P-PO4
3-, b) N-NO3

-, and c) N-NH4
+ in 

the water column at the two sampling points P6 and P27 (surface and bottom) in the Cointzio 

reservoir. 
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Figure 8: TSS, C, N, P inputs, outputs and accumulation in the Cointzio reservoir (loads are 

given in t y-1 with uncertainties) 
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Table 1: Water and TSS input and output for 2007, 2008 and 2009 

 
 2007 2008 2009 
 input output input output input output 
Water discharge (106 m3) 49 60 44 53 42 43 
TSS (103 tons) 22.4 ± 4.5 2.5 ± 0.5 22.2 ± 4.4 1.8 ± 0.4 22.2 ± 4.4 2.4 ± 0.5 
Rainfall (mm) 
Rainfalla (106 m3) 

750 
3.3 

 710 
2.8 

 690 
2.5 

 

Evaporation (mm) 
Evaporationa (106 m3) 

 1300-1500 
6.1 

 1465 
5.8 

 1450 
6.2 

Mean annual volume (106 m3) 53.8 46 40 
Residence timeb (y) 1.02-0.81 0.98-0.78 0.90-0.83 
acalculation based on mean annual surface of reservoir 
bcalculation based on mean annual volume of reservoir and on total input or output 
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Table 2:  Mean annual discharge (Q), DO and nutrient concentrations in the Cointzio 

watershed in 2009 (in bold min DO and maximum discharge and nutrient concentrations, in 

parenthesis standard deviation) 

 
Site Description Q DO P-tot P-PO4 N-NH4 N-NO3 

  L s-1 mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 
1 El Carmen Downstream of small 

village with pasture 
22 

(34) 
6.2 

(1.05) 
0.48 
NA 

0.19 
(0.24) 

0.98 
(2.36) 

1.93 
(1.44) 

2 Lagunillas Downstream of village of 
5100 Inh. 

194 
(439) 

2.3 

(1.2) 
3.6 

(2.3) 
2.2 

(1.6) 
5.9 

(3.8) 
2.6 

(1.2) 
3 Villa 
Madero 

Upstream basin 
Low population density 

23 
(19) 

6.3 
(0.6) 

0.3 
NA 

0.11 
(0.05) 

0.05 
(0.04) 

0.92 
(0.54) 

4 Acuaducto Downstream of village 
of  9400 inh. 

235 
(210) 

5.3 
(0.8) 

4.4 

(5.4) 
0.37 

(0.23) 
1.23 

(1.07) 
1.93 

(0.86) 
5 Cortina Forests/agricultural 

Low population density 
45 

(33) 
6.7 

(0.6) 
NA 
NA 

0.05 
(0.03) 

0.06 
(0.11) 

0.78 
(0.41) 

6 Huertitas Degraded 
lands/agricultural 

7 
(13) 

6.1 
(1.3) 

0.6 
NA 

0.11 
(0.12) 

0.17 
(0.27) 

0.94 
(0.50) 

7 SAC Main channel downstream 
(San Antonio Coapa) 

534 
(434) 

6.3 
(4) 

0.37 
(0.14) 

0.13 
(0.05) 

0.36 
(0.41) 

1.96 
(1.00) 

8 Santiago 
Undameo 

Outlet of the watershed 
(see also table 3) 

1323 

(1241) 
7.3 

(3.4) 
0.38 

(0.23) 
0.11 

(0.07) 
0.15 

(0.10) 
1.32 

(0.41) 
NA : missing data 
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Table 3: Seasonal variations and annual mean of discharge (Q), TSS and water quality 

parameters at Undameo sampling site 8 (in bold maximum values) 

date Q TSS Chl a P-tot P-PO4 N-tot N-NO3 N-NH4 DOC POC

Inlet m
3
 s

-1
mg L

-1 µg L-1 mgP L-1 mgP L-1 mgN L-1 mgN L-1 mgN L-1 mgC L-1 mgC L-1

28/01/09 0,6 87 24 0,28 0,03 2,3 1,3 0,17 22 4,9

10/02/09 0,8 90 6 0,23 0,04 1,5 1,4 0,09 28 3,4

17/02/09 1,0 53 9 0,18 0,02 1,5 1,4 0,14 26 1,2

24/02/09 1,0 83 10 0,14 0,02 1,8 1,6 0,11 22 1,5

04/03/09 0,7 163 9 0,22 0,02 3,3 0,6 0,12 17 6,3

11/03/09 0,8 168 17 0,25 0,01 1,3 1,0 0,19 26 6,0

18/03/09 0,7 132 9 0,19 0,02 1,1 0,9 0,15 25 4,4

25/03/09 0,6 100 8 0,21 0,09 1,9 1,6 0,21 19 4,5

01/04/09 0,5 72 13 0,18 0,05 1,5 0,9 0,22 28 4,5

07/04/09 0,2 52 6 0,22 0,03 1,1 0,8 0,21 26 4,0

15/04/09 0,2 13 6 0,17 0,06 1,9 1,6 0,30 18 2,7

22/04/09 0,2 11 5 0,19 0,03 1,7 1,3 0,43 23 1,3

29/04/09 0,4 12 3 0,14 0,02 1,5 1,1 0,33 26 1,2

06/05/09 0,2 8 3 0,22 0,08 2,1 0,9 0,36 26 1,3

13/05/09 0,3 25 5 0,42 0,09 1,0 0,5 0,30 25 2,0

20/05/09 0,9 120 15 0,77 0,12 1,5 1,3 0,16 23 6,1

26/05/09 0,7 68 9 0,36 0,06 1,7 1,6 0,08 36 2,2

02/06/09 0,6 10671 6 0,42 0,10 1,5 1,3 0,16 15 158,5

10/06/09 0,3 28 4 0,59 0,31 1,9 1,6 0,29 27 1,2

18/06/09 0,7 80 10 0,43 0,14 1,3 0,3 0,30 18 2,0

24/06/09 1,3 2900 14 0,96 0,14 5,9 1,0 0,30 14 39,6

01/07/09 1,4 408 17 0,61 0,14 2,2 1,1 0,30 11 5,9

08/07/09 1,4 364 19 0,81 0,05 2,7 0,8 0,06 49 5,7

15/07/09 3,2 229 9 0,31 0,28 2,7 0,6 0,11 15 4,3

23/07/09 1,6 407 12 0,67 0,09 4,2 1,4 0,10 71 6,8

30/07/09 1,4 394 14 0,54 0,12 3,7 1,4 0,06 15 5,6

05/08/09 1,9 465 26 0,94 0,26 5,0 2,0 0,15 11 6,1

12/08/09 1,9 216 9 0,56 0,07 2,5 1,2 0,05 16 3,8

18/08/09 2,1 950 17 0,51 0,06 1,4 1,2 0,10 24 12,2

26/08/09 2,4 652 28 0,69 0,16 2,0 1,9 0,07 15 7,8

02/09/09 2,1 253 19 0,39 0,12 1,8 1,7 0,08 18 4,5

09/09/09 6,5 1112 28 0,74 0,08 2,5 1,3 0,19 35 19,6

16/09/09 7,6 438 31 0,76 0,12 3,3 2,4 0,09 53 21,5

23/09/09 3,5 438 12 0,53 0,18 2,2 1,3 0,11 34 7,0

30/09/09 3,7 202 7 0,30 0,17 1,5 1,4 0,08 45 5,4

07/10/09 2,0 194 8 0,43 0,10 1,9 1,7 0,07 35 4,2

14/10/09 2,6 91 7 0,29 0,18 1,7 1,6 0,07 32 2,1

21/10/09 1,8 58 5 0,20 0,12 1,9 1,4 0,07 43 1,2

28/10/09 1,6 107 11 0,30 0,08 1,5 1,4 0,15 32 2,3

04/11/09 1,6 147 5 0,22 0,16 2,0 1,6 0,06 23 2,0

10/11/09 1,4 37 6 0,15 0,16 2,6 1,5 0,05 14 1,2

18/11/09 1,2 52 9 0,17 0,10 1,8 1,5 0,09 6 2,1

25/11/09 1,0 8 7 0,18 0,17 3,1 1,7 0,10 5 0,9

02/12/09 1,2 17 5 0,19 0,18 1,8 1,7 0,10 6 1,0

09/12/09 1,1 21 10 0,18 0,10 1,5 1,4 0,07 3 0,9

21/12/09 0,7 11 4 0,17 0,14 0,8 1,7 0,06 4 0,9

Mean 1,5 483 11 0,38 0,11 2,1 1,3 0,15 24 8,6

SD 1,5 1604 7 0,23 0,07 1,0 0,4 0,10 13 23,6  
NB : Italic for N-tot : N-tot = NO3

- + NH4
+ 
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Table 4: Seasonal variations and annual mean of discharge (Q), TSS and water quality 

parameters at the outlet of Cointzio reservoir (in bold maximum values) 

 
date Q TSS Chl a P-tot P-PO4 N-tot N-NO3 N-NH4 DOC POC

Outlet m
3
 s

-1
mg L

-1 µg L-1 mgP L-1 mgP L-1 mgN L-1 mgN L-1 mgN L-1 mgC L-1 mgC L-1

28/01/09 0,8 13 4 0,13 0,04 2,0 1,5 0,50 29 1,1

10/02/09 0,8 31 7 0,22 0,05 1,7 1,6 0,16 21 0,9

17/02/09 0,8 22 8 0,25 0,12 1,1 0,9 0,15 16 0,8

24/02/09 0,8 27 9 0,17 0,04 1,6 1,4 0,18 24 0,8

04/03/09 1,8 27 3 0,56 0,01 2,4 0,6 0,11 23 1,4

11/03/09 2,8 18 5 0,27 0,04 0,7 0,6 0,09 25 1,0

18/03/09 3,9 16 6 0,27 0,02 0,6 0,5 0,09 37 0,7

25/03/09 5,2 17 4 0,54 0,02 1,1 1,0 0,12 25 0,9

01/04/09 5,9 16 3 0,22 0,01 0,5 0,4 0,12 24 1,1

07/04/09 6,5 17 1 0,15 0,03 1,6 1,4 0,18 25 1,4

15/04/09 6,8 15 4 0,17 0,17 1,0 0,9 0,09 29 1,6

22/04/09 5,3 17 4 0,16 0,08 0,6 0,5 0,16 27 0,9

29/04/09 0,8 12 3 0,07 0,01 1,0 0,6 0,06 34 1,3

06/05/09 1,1 21 3 0,23 0,02 0,8 0,8 0,04 27 1,1

13/05/09 1,1 14 3 0,19 0,01 0,5 0,5 0,01 23 1,1

20/05/09 1,1 17 5 0,54 0,08 1,1 1,0 0,10 22 /

26/05/09 0,7 24 3 0,32 0,02 0,7 0,4 0,09 22 0,2

02/06/09 0,7 112 5 0,29 0,04 1,4 1,0 0,10 25 1,5

10/06/09 1,0 66 6 0,29 0,19 1,3 1,0 0,10 29 1,3

18/06/09 0,7 55 7 0,22 0,1 4,7 0,8 0,10 24 0,8

24/06/09 0,7 56 2 0,23 0,08 0,7 0,7 0,03 20 0,8

01/07/09 0,7 60 5 0,22 0,07 3,5 0,5 0,03 15 0,8

08/07/09 0,7 58 8 0,35 0,09 2,0 0,5 0,06 44 0,9

15/07/09 0,7 78 3 0,22 0,18 1,3 1,0 0,09 17 1,2

23/07/09 0,7 518 19 0,63 0,11 2,6 1,0 0,29 21 4,6

30/07/09 0,7 196 4 0,28 0,13 2,2 0,4 0,10 20 1,8

05/08/09 0,7 133 3 0,39 0,11 3,3 0,2 0,30 12 1,2

12/08/09 0,7 84 4 0,28 0,03 0,9 0,8 0,12 13 0,8

18/08/09 0,7 251 3 0,31 0,06 2,0 1,8 0,24 21 2,0

26/08/09 0,7 134 5 0,35 0,04 1,3 1,1 0,03 17 1,6

02/09/09 0,7 114 4 0,31 0,08 0,9 0,8 0,10 14 1,5

09/09/09 0,7 460 12 0,44 0,08 1,2 1,1 0,01 32 5,0

16/09/09 0,7 528 10 0,51 0,08 2,7 1,5 0,01 31 7,5

23/09/09 0,6 253 6 0,43 0,08 1,9 1,0 0,20 32 2,1

30/09/09 0,7 209 14 0,40 0,13 1,6 1,5 0,06 56 3,0

07/10/09 0,7 102 2 0,30 0,04 1,5 1,4 0,06 18 1,3

14/10/09 0,7 149 1 0,35 0,15 1,4 1,3 0,07 19 1,1

21/10/09 0,7 153 3 0,36 0,06 1,6 1,4 0,07 20 1,3

28/10/09 0,7 94 6 0,35 0,09 1,2 1,2 0,01 16 1,1

04/11/09 0,7 75 7 0,39 0,13 1,3 1,3 0,02 15 0,8

10/11/09 0,6 74 6 0,3 0,11 1,3 1,3 0,01 12 0,8

18/11/09 0,6 62 5 0,29 0,14 1,4 1,4 0,03 5 0,9

25/11/09 0,6 53 6 0,24 0,14 1,4 1,4 0,04 5 0,8

02/12/09 0,7 65 3 0,16 0,13 1,5 1,5 0,02 3 0,8

09/12/09 0,7 59 7 0,18 0,08 1,4 1,4 0,01 3 0,6

21/12/09 0,7 61 6 0,23 0,04 1,2 1,2 0,05 4 0,9

Mean 1,4 101 5 0,30 0,08 1,5 1,0 0,10 22 1,4

SD 1,7 124 3 0,12 0,05 0,8 0,4 0,09 10 1,3  
NB : Italic for N-tot : N-tot = NO3

- + NH4
+ 
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Table 5: Input and output C, N, P loads in the Cointzio reservoir for 2009 (loads are given in 

t y-1 with 95% confidence intervals) 
 
 Input (t y-1) Output (t y-1)  
P-tot 20 ± 4 12 ± 3  
P-PO4 5.2 ± 1.1 2.9 ± 1.1  

N-tot 
N-NO3 

98 ± 17 
61 ± 8 

53 ± 15 
39 ± 7 

 

N-NH4 5.1 ± 1.3 4.9 ± 1.4  

TOC 1617 ± 340 1115 ± 167  
DOC 1215 ± 275 1060 ± 166  

POC 402 ± 198 55 ± 18  
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Table 6: C, N, P content in deposited sediments  

 
 Dry season (19th May 2009) Wet season (13th October 2009) 

  
TPP 

 
PIP 

 
OC 

 
TN 

 
C:N 

 
TPP 

 
PIP 

 
OC 

 
TN 

 
C:N 

Site mg g-1  mg g-1  
P3 0.26 0,05 13,7 1,1 13 0.11 0,05 10,8 0,9 13 

P47 0.23 0,05 10,6 0,9 12 0.13 0,05 11,1 0,9 12 
P6 0.17 0,04 10,8 0,9 12 0.16 0,07 9,8 0,9 11 

P11 0.21 0,04 11,2 1,0 11 0.12 0,05 10,3 0,9 11 
P13 0.21 0,03 10,0 1,0 11 0.10 0,03 9,5 0,9 11 
P27 0.19 0,03 10,1 1,0 10 0.10 0,04 9,8 0,9 10 

Mean 

(±SD) 
0.21 

(0.03) 

0.04 

(0.01) 

11.1 

(1.4) 

1.0 

(0.1) 

11 

(1.0) 

0.12 

(0.02) 

0.05 

(0.01) 

10,2 

(0.06) 

0,9 

(0.01) 

11 

(0.8) 
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Table 7: Accumulation rate of C, N, P in the Cointzio reservoir compared with other tropical 

reservoirs 

 
Process Accumulation  Accumulation 

rate 
Source 

 t y-1 g m-2 y-1  
Sedacc 28 ± 12×103 7 800 ± 3300 

900 
320 

7 700 
 
 

10 000 

This study 
Itezhi-Tezhi large Reservoir in Zambezi River basin (Kunz, et al. 2011) 
Pampulha small Reservoir in Brazil (Torres et al. 2007) 
Global mean in small Reservoirs (< 50 km2 total area 98 000 km2 in Harrison et al. 
2009) estimated from 6 % retention of global sediment load (12 600 Mt y-1, Syvisky et 
al. 2005) 
Global mean in Reservoirs (total area 250 000 km2 in Harrison et al. 2009) estimated 
from 20 % retention of total sediment load (12 600 Mt y-1, Syvisky et al. 2005) 

Cacc 298 ± 128  83 ± 35 
62 
- 6 
450 

 

This study 
Itezhi-Tezhi large Reservoir in Zambezi River basin (Kunz, et al. 2011) 
Pampulha small Reservoir in Brazil (Torres et al. 2007) 
Global mean in Reservoirs estimated from global 0.18 Pg C y-1 and global reservoir 
area of 400 000 km2 (Cole et al. 2007) 

Nacc 26 ± 11 7.2 ± 3.1 
14 
4 

11 

This study 
Valle de Bravo small Reservoir in Mexico (Ramírez-Zierold et al. 2010) 
Itezhi-Tezhi large Reservoir in Zambezi River basin (Kunz, et al. 2011) 
Global mean (estimation in Kunz et al. 2011 from Beusen et al. 2005 database) 

Pacc 5 ± 2 1.4 ± 0.5 
5.5 
0.8 
1.2 
3.3 

This study 
Valle de Bravo small Reservoir in Mexico (Ramírez-Zierold et al. 2010) 
Itezhi-Tezhi large Reservoir in Zambezi River basin (Kunz et al. 2011) 
Pampulha small Reservoir in Brazil (Torres et al. 2007) 
Global mean (estimation in Kunz et al. 2011 from Beusen et al. 2005 database) 

NB: mean reservoir area in 2009 of 3.6 km2 considered for the calculation of accumulation rate 
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Conclusions of chapter 4 

The effects of clay particles from the watershed and the strong influence of watershed-

emitted untreated point sources contribute to the high growth of algae, leading to 

eutrophication of the reservoir and long and intense hypolimnic anoxia. As a result, the water 

quality decreases with time. Eutrophication represents an issue of concern for most of the 

lakes and reservoirs in Central Mexico including the Cointzio reservoir. The high 

accumulation rate of nutrients and carbon was showed in the Cointzio reservoir and this 

reservoir acts as a “sink” for TSS, nutrients and carbon as well. In order to protect the 

ecosystem and wildlife in the watershed of Cointzio, it would be important to rapidly adopt 

some mitigation strategies to treat wastewaters and reduce point source of nutrient loads and 

keep it at a low level as suggested by our modelling results presented in chapter 5. 
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CHAPTER 5. EUTROPHICATION OF THE TURBID TROPICAL 

COINTZIO RESERVOIR: TRENDS AND PROJECTIONS BY THE END 

OF THE CENTURY 

This chapter shows the modelling results of the hydrodynamics and the biogeochemistry in 

the Cointzio reservoir for the calibration year 2009 and the validation year 2008. The entire 

mass balance of nutrients and carbon in the reservoir calculated from field data and 

modelling approach were then estimated. The scenarios of evolution of the water quality in 

the reservoir under the influence of water level regulation, air temperature rising and 

nutrients reduction in the coming decades are presented and discussed.  

A) Scenarios and projections 

1. Effect of water level regulation 

A twenty-year historical time series of the water depth was extracted to identify typical dry 

and wet hydrological years for numerical simulations (Figure 2.6 in chapter 2). The state of 

reservoir filling on 01st January of a given year was considered to be a relevant indicator of 

the biogeochemical functioning of the reservoir. This because precipitation and water 

discharge are almost negligible from January to June (Gratiot et al, 2010; Carlón Allende, 

2009), which corresponds to the most critical period in terms of algal growth and chlorophyll 

a blooms. Three different hydrological years were used in the simulations: Target year 2009, 

a particularly dry year and a particularly wet year selected from the last 20 years timeseries. 

The observed water depth on 01st January 2009 was at 26m. The year 1990 was considered to 

represent a critically dry year with a depth of 21 m on 01st January and 1996 a particularly 

wet year with a depth of 29 m on 01st January. For comparison purposes, the inflows, the 

outflows and the water quality parameters in the two years (1990 and 1996) were assumed to 

be the same as the ones of the year 2009 during simulation exercises. 

2. Effect of air temperature increase 

Global warming is expected to affect lakes and reservoirs dynamics, especially in tropical 

regions (Inclan et al, 2010) where the mean annual evaporation is generally higher than the 

precipitation. In the region of Cointzio, climate change is expected to lead to an increase of 

the mean annual air temperature of 2.5°C and 4.4°C for the decades centered in the year 2060 

and 2090, respectively (Gratiot et al, 2010).  

Here we assume that the potential increase in air temperature is directly transferred to surface 

water. This assumption is confirmed by observations (Livingstore & Lotter 1998) and the 

coupling of global circulation models with hydrological models (Blenckner et al, 2002). To 
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assess the sole effect of air temperature, which is one consequence of global warming effect, 

it was further assumed that (i) nutrients input would be the same as the ones of 2009; (ii) 

nutrients input would be the same as 2009 and changes in other climate parameters, such as 

wind speed or humidity, are not considered in our analysis. Therefore, we run the model for 

dry year conditions with an air temperature increase of 2.5°C and 4.4°C corresponding to an 

increase in reservoir surface temperature by about 1.4°C and 2.4°C  as expected for 2060 and 

2090 respectively (see linear regression equation in appendix 3). 

3. Effect of nutrients reduction 

Eutrophication may cause severe water quality problems in the reservoir.  It  is  caused  by 

nutrients  loads  into  surface water bodies  and  can be minimized by reduction  of  incoming  

loads. The  field  data  of nutrients concentration observed downstream of highly populated 

areas indicate that point sources from domestic waste waters clearly dominated  in  the 

Cointzio watershed as opposed  to  input  from agricultural activities where nutrients 

concentrations were  found  low  (Némery  et  al,  submitted, presented in Chapter 4). Here,  

some  runs were  conducted  to  assess  by  how  much  the  nutrient  loads  would  have  to  

be  reduced  to maintain  sufficient  oxygen  content  and  low  chlorophyll  a  content  in  the  

reservoir. In this study, the scenarios of three different nutrients input reductions (50%, 90%, 

and 100%) were examined. 

4. Description of modelling scenarios 

The prospective scenarios for water quality assessment of the Cointzio reservoir are 

described in Table 5.1. These scenarios aim at (i) assessing the long term evolution of the 

water quality in the reservoir of Cointzio under the influence of water level regulation and 

global warming and (ii) establishing a management strategy to mitigate eutrophication. The 

different scenarios were compared with the run of the calibrated model for the year 2009, 

which will be referred to as the “Present” scenario.  

Table 5.1 Summary of scenarios for water quality assessment of the Cointzio reservoir 

Scenarios Description Parameters used 

Present Target year 2009 Water level H=26 m 

P1 Dry year 1990, nutrient inputs 2009 low water level H = 21 m 

P2 Wet year 1996, nutrient inputs 2009 high water level H= 29 m 

P3 
P1 with an increase in air temperature 

(Tair) of 2.5°C 
H=21 m and +2.5°C in Tair 

P4 P1 with an increase in Tair of 4.4°C H=21 m and +4.4°C in Tair 
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P5 
P1 with a long term reduction of 50% of 

nutrient inputs (N,P) 
H=21 m, & -50% (N,P) 

P6 
P1 with a long term reduction of 90% of 

(N,P) inputs 
H=21 m, & -90% (N,P) 

P7 
P1 with a long term reduction of 100% of 

(N,P) inputs 
H=21 m, & -100% (N,P) 

P8 
P4 with a long term reduction of 50% of 

(N,P) inputs 

H=21 m, +4.4°C in Tair & -

50% (N,P) 

P9 
P4 with a long term reduction of 90% of 

(N,P) inputs 

H=21 m, +4.4°C in Tair & -

90% (N,P) 

P10 
P4 with a long term reduction of 100% of 

(N,P) inputs 

H=21 m, +4.4°C in Tair & -

100% (N,P) 

 

B) Eutrophication of turbid tropical reservoirs: Modelling for the case of Cointzio, 

Mexico 

This part is copied from the paper that was submitted to Ecological Modelling for a Special 

Issue following the ISEM2013 conference on Ecological Modelling for Ecosystem 

Sustainability in the context of Global Change. During the conference, the study was 

presented as an oral presentation. 
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Abstract 

The overall water quality of reservoirs in many regions of Mexico continues to deteriorate. 

The Cointzio reservoir (capacity 66 Mm3), located in the Trans-Mexican Volcanic Belt, is no 

exception. The high content of very fine clay particles and the lack of water treatment plants 

lead to serious episodes of eutrophication, high level of turbidity and benthic anoxia. During 

the target year 2009, high phosphate concentrations (up to 0.5 mgP L-1), low Secchi depth 

(<0.3 m), and high phytoplankton blooms with chlorophyll a concentrations of up to 70 µg L-

1 near the surface were observed. Close to the bottom, anoxic conditions persisted in the 

hypolimnion during six months.  

The present paper aims at examining the ability of vertical one dimensional (1DV) numerical 

models to reproduce the main biogeochemical cycles and assess scenarios of nutrients (P and 

N) and eutrophication reduction in the coming decades. The numerical approach developed 

herein coupled a k-ε mixing model, with a biogeochemical model (Aquasim) for water 

quality. The k-ε model reproduced nicely the low to moderate temperature stratification 

which characterizes this turbid reservoir. The Aquasim model was able to reproduce the main 

patterns of dissolved oxygen (DO), nutrients and chlorophyll a during the year 2009. The 

different simulations pointed out the negative long-term impact of global warming. By the 

end of the century, an increase of air temperature as high as 4.4°C is expected. When coupled 

with a low water level, this could lead to critical conditions with a severe depletion of DO 

and important blooms of chlorophyll a (up to 94 µg L-1). Various simulations showed that a 

drastic reduction of nutrients input (by 90%) would be required to significantly reduce 

chlorophyll a concentrations. If such mitigation measures are adopted, the maximum peak of 

chlorophyll a would reduce significantly, from 94 μg L-1 to 40 μg L-1, and the average 

concentrations in the top 10 m would decrease to 9.5 μg L-1 after a ten-year period of efforts, 

with corresponding positive effect on oxygen concentrations.  

To our knowledge, this study provides the first numerical application of k-ε and Aquasim 

models to simulate high eutrophication levels in a very turbid tropical reservoir. It points out 

the advantages and limitations of 1DV models and will help stakeholders to adopt 

appropriate strategies for the management of very turbid tropical reservoirs. 

 

 

Keywords: Turbid and tropical reservoir, Mexico, eutrophication, biogeochemical modelling, 

global warming. 
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1. Introduction 

In the XXIst century, pressure on freshwater resources has been increasing considerably, 

especially in the “tropical world” (Tundisi, 2003). Most lakes, rivers and wetlands are 

suffering from the input of sediments and nutrients such as nitrogen (N) and phosphorus (P). 

As a result, the eutrophication of epicontinental waters is progressively extending to tropical 

water bodies (Alcocer et al, 2010). Besides that, most tropical lakes and reservoirs are 

situated in developing countries, where there is a chronic lack of financial resources for the 

establishment of long term and consistent monitoring programs (Von Sperling and Sousa, 

2007). As a consequence of limited data availability in tropical regions, the global 

biogeochemical models are better constrained in temperate regions, and have greater 

predictive power in economically developed regions (Seitzinger et al, 2010). 

Inappropriate disposal of domestic waste, untreated wastewater, and increase of nutrient 

loads from domestic origin are typical issues of newly industrialized countries. Primitive 

techniques of farm management, based on forest clearance and combustion of the remaining 

biomass also cause the influx of sediments and nutrients into natural freshwater tropical 

systems. As a result of increased nutrient availability, phytoplankton and cyanobacteria can 

form blooms, causing the release of cyanotoxins. Eutrophication in tropical areas is reflected 

by increase of algal growth, decrease of water transparency and appearance of a stable 

oxygen depletion in the hypolimnion (Thomaz & Bini, 2003). 

Water quality management has become an increasingly important issue in developing 

countries and newly industrialized countries, including Mexico. A possible approach to 

overcome this difficulty is numerical modelling (Chanudet et al, 2012). In the past few years, 

important advances in principles, concepts and approaches related to water quality 

management have been achieved. However, there is still a lack of universal methodology for 

reaching effective management (Gautam et al, 2003).  

In general, eutrophication is a kind of water pollution caused by excessive presence of 

nutrients. In order to prevent or minimize the eutrophication of the water in the reservoir, 

questions that most often arise with respect to eutrophic conditions include: (i) Can we 

control eutrophication by limiting key nutrients? (ii) What levels of water quality are 

acceptable to society? and (iii) Which nutrients limit the maximum algal growth level in the 

reservoir? (Correll 1998). 

In this study, these three questions served as a guideline to assess the biogeochemical cycles 

taking place in the reservoir of Cointzio. The biogeochemical functioning of the reservoir 

was simulated to define which factors controlled the water quality in the reservoir. After 
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calibration on the target year 2009 and validation with the data of 2008, various numerical 

simulations related to climate changes and mitigation strategies were conducted with the 

objective of assessing the trophic state of the reservoir in the future. The different scenarios 

are presented and discussed. Some solutions of rehabilitation are proposed to restore the 

quality of the water. In the discussion section, results are put in a regional context, with a 

specific focus on the duration of mitigation plans to get significant water quality 

improvement for similar reservoirs. The paper ends with some perspectives which could be 

applied to other similar reservoirs of the region. 

2. Study site  

The Cointzio reservoir (19.622°N, -101.256°W) is located on the Trans - Mexican Volcanic 

Belt, at an altitude of 1920 m above sea level. The reservoir drains a volcanic watershed of 

627 km2, where domestic waters are rejected without any treatment. It is an essential source 

for domestic water supply (20 %) of Morelia city (700 000 inhabitants) and for irrigation. 

Besides that, it is also used to control flood for Morelia (Figure 1). The reservoir has a 

maximum depth that does not exceed 29m. It has a surface area of 6 km2 and a maximum 

storage capacity of 66 Mm3. Because there are no waste water treatment plants in the 

upstream villages and because of high content of very fine clay particles, the water inflow 

contains high levels of nutrients and sediment (Némery et al, 2009). An extensive field 

survey has been conducted from 2007 to 2010 with a special focus on the year 2009. This 

survey revealed that turbidity in the reservoir is high (Secchi < 0.3 m) all year long and 

chlorophyll a concentrations reach values of up to 70 µg L-1 during blooms. Since its 

construction in 1940, the reservoir has lost 25 % of its storage capacity through siltation 

(Susperregui et al, 2009).    

The climate of the region is sub-humid, characterized by a rainy season from June to 

September and a dry season the rest of the year. The mean annual rainfall is 810 mm in 

Morelia, ranging from 400 to 1.100 mm/y (Carlón Allende and Mendoza, 2007; Gratiot et al, 

2010). The main river of the watershed is the Rio Grande de Morelia whose source lies about 

25 km upstream of the Cointzio reservoir. This is Morelia’s most problematic river in terms 

of silting (some sections were so full of sediment that its natural course changed in places). 

Water and sediment inflow come almost exclusively from this river, whereas outflow is done 

through gates opening at the dam. The inflow peaks during five months of the rainy season 

representing 77% of the water input and 98% of the sediment load (Duvert et al, 2011). The 

water outflow is concentrated mainly during the end of the dry season, when the agricultural 

water demand is high. The residence time of the water within the reservoir is about one year. 



 

155 
 

3. Data and modelling approach  

For understanding the biogeochemical cycles within the Cointzio reservoir, monitoring 

surveys of hydrodynamics and biogeochemistry have been conducted over three years, with a 

target year in 2009. At the beginning of the project, two extensive measurement campaigns 

were conducted in December 2005 and May 2006 to check whether lateral effects were 

playing a role in the hydrodynamics for contrasted conditions. 47 vertical profiles of 

temperature, turbidity and DO were measured along the longitudinal axis and along five 

cross sections (data not shown). These two campaigns did not reveal significant lateral 

heterogeneities and we decided to focus the long term monitoring effort on the temporal 

variations along the longitudinal axis. 

From September 2007 to January 2010, field measurements of temperature, turbidity and 

meteorological parameters were carried out at a fortnightly to monthly basis along the 

longitudinal axis of the reservoir (Figure 1). The measurements were systematically done 

from the dam to the Rio Grande river mouth with a boat. The mean duration of a survey was 

about 6 hours, beginning in the morning (at about 9:00 AM) and finishing at midafternoon 

(at about 15:00 PM). The biogeochemical survey was focused on a shorter temporal window 

from the beginning of 2009 to the beginning of 2010. A multiparameter Hydrolab MS5 probe 

(Hach Company, Loveland, CO, USA) was used to determine vertical profiles of 

temperature, turbidity, dissolved oxygen and chlorophyll a, at 15 locations, regularly 

distributed along the longitudinal axis of the reservoir (dashed line). At each station, Secchi 

depth was measured to evaluate the light attenuation using a Secchi disk. Furthermore, water 

samples were taken at the deepest point of the reservoir (P27) and at a middle position 

between the river input and the dam (P6). At these two locations, additional vertical water 

samples were retrieved from different depths (0, 1, 2, 5, 10, 15, 20 m) and from near the 

bottom. A 2L Niskin bottle was used for suspended sediment (SS), chlorophyll a (µg L-1) and 

nutrients (PO4
3-, NH4

+, NO3
-) analysis. After sampling, water samples were stored in 

polypropylene flasks at 4°C before analysis. SS was weighed on GF/F Whatman filters (dried 

at 105°C). Chlorophyll a was analyzed after filtering on GF/C Whatman filter using 

methanol extraction according to Holm-Hansen and Rieman (1978). Nutrients (PO4
3-, NH4

+, 

and NO3-) were analyzed with Hach DR/2010 spectrophotometric equipment. Accuracy with 

standardized methods was evaluated at 10%. A complete description and analysis on these 

field data are available in Doan et al, 2012 and Némery et al, submitted. In the following, we 

first present the relevant data and then the modelling approach. A detailed overview of the 

numerical model and the input data used in this study are given in the supplementary data. 
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3.1 Model input data 

Input requirements for modelling can be divided in four groups, namely (i) the 

morphological and descriptive data for the reservoir, (ii) meteorological and hydrological 

data (inflow and outflow), (iii) water quality parameters, and (iv) initial conditions for all the 

modelled variables. The morphological data consists of cross-sectional areas as a function of 

elevation of the reservoir. The input data required are wind speed, water surface temperature, 

shortwave radiation, and the light extinction coefficient which was estimated from Secchi 

depth. When the water surface temperature was not properly recorded in the reservoir from 

mid-June to September (sensor malfunction), the reservoir surface temperature was estimated 

from a linear regression to the air temperature time series (Tsurf=0.52*Tair+9.8, r2=0.84). For 

the water influx, discharge of the major river is required and its temperature has been 

measured or estimated from correlations with air temperature. During the high flow period 

(May-September), the river water temperature was measured with a Vemco minilog TR8k 

sensor (+0.2°C). The data were collected every week to limit the risk of unrecorded periods. 

When malfunctioning occurred, a linear regression was fitted to air temperature 

(Triver=0.45*Tair+11, r2=0.79) to replace missing data. During the low flow period, the river 

water depth never exceeded a few centimeters at the outlet of the Cointzio watershed. This 

led to a good heat exchange between air and water, as revealed by short period of monitoring 

of air and water temperature. Based on this specific surveys, the river water temperature was 

deduced from the adjustment of a linear regression with the air temperature 

(Triver=0.28*Tair+13, r2=0.82). Likewise, the outflow over the dam through the gates is 

required. The temperature of the outflow is equal to the simulated water temperature at the 

outlet depth. The characteristics of the water quality of the inflow were also measured. These 

include concentrations of DO, nutrients, chlorophyll a and particles (XSS or turbidity). 

Furthermore, phytoplankton biomass and chemical data (DO, and nutrients NO3
-, NH4

+, and 

PO4
3-) are also needed and have been measured in the water column of the reservoir. The 

quality parameters of the water outflow are model output variables. To initialize the model, 

initial values of all the model variables, including water quality must be provided.  

3.2 Model output 

Dissolved oxygen, nutrients, and chlorophyll a concentrations were considered to be the 

most relevant variables of water quality. The distribution of these variables over the vertical 

water column, and their temporal evolution were used for interpreting the model outputs. 
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3.3 Modelling approach 

All simulations were performed with a combination of two independent models: (1) A 

slightly adapted version of the buoyancy-extended k-ε model developed by Goudsmit et al, 

(2002) was used to predict the hydrodynamics and (2) A biogeochemical advection-

diffusion-reaction model (Omlin et al, 2001a, 2001b) based on the Aquasim software 

(Reichert, 1994) was adapted to simulate the biogeochemical cycling in the reservoir. 

3.3.1 Physical k-ε model 

Vertical turbulent diffusivity Kz(z) was estimated with 30 minutes resolution for the year 

2009 using the k-ε model. Two model specific parameters were fitted by the least squares 

method to reproduce the monthly measured temperature profiles for the calibration year 2009 

and they were validated for the year 2008. They are the scaling factor for the wind energy 

transfer to the internal seiches (α), and a coefficient defining wind drag (C10). The calibrated 

values of the parameters α and C10 were 0.0025 and 0.001 respectively. The resulting time 

series of Kz(z) were then used as the input data for the Aquasim biogeochemical model.  

3.3.2 Aquasim biogeochemical model 

To model reservoir-internal biogeochemical cycles, we adopted the existing model 

BELAMO (Omlin et al, 2001a, 2001b), which has been successfully applied to various lake 

and reservoir types (Mieleitner and Reichert, 2006), and the model RES1, a version of 

BELAMO which has been applied for a tropical reservoir (Kunz et al, 2011). The following 

main variables were considered: Temperature (T), dissolved phosphate (SHPO4
3- in gP m-3), 

nitrate (SNO3
- in gN m-3), ammonium (SNH4

+ in gN m-3), dissolved oxygen (SDO in gO m-3), 

chlorophyll a (XALG in g DM m-3), zooplankton (XZOO in gDM m-3), dead and inert organic 

matter (X in gDM m-3). In this study, all the units of chlorophyll a, zooplankton, and organic 

matter need to be converted from µg L-1 into gDM m-3. This was done by calculating a 

carbon/chlorophyll a ratio of 51 in the Cointzio reservoir (Garnier et al, 1989) and using a 

carbon/DM ratio of 0.42 (Rodriguez., 2002). The interactions between these variables are 

described by ten processes: (1) Growth of algae, (2) respiration of algae, (3) death of algae, 

(4) growth of zooplankton, (5) respiration of zooplankton, (6) death of zooplankton, (7) 

uptake and release of phosphate, (8) nitrification, (9) aerobic, anaerobic, anoxic 

mineralization (i.e.: denitrification) within the water column and the sediment surface, and 

(10) background mineralization (oxidation of reduced substances). The changes in our 

model, the complete model and the full mathematical descriptions of these interactions are 

described in the supplementary data. 
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Several biogeochemical parameters were not measured in the field. Our model calibration 

was carried out using a heuristic method. The set of calibrated parameters was then carefully 

compared with values reported in the literature to prevent unrealistic estimates. The half 

saturation rate for algae growth with respect to phosphate (K_HPO4_ALG) was calibrated to 

PO4
3-; nitrification rate (k_nitri_wat_20) was fitted to NH4

+ and NO3
-; aerobic 

(k_miner_aero_20), anoxia (k_miner_anox_20), anaerobic (k_miner_anaero_20) specific 

mineralization rate at 20°C, and background mineralization rate (k_miner_bg) were fitted to 

DO. Maximal growth rate of algae (k_gro_ALG_20, k_gro_ALG_N2_20), and maximal 

growth rate of zooplankton (k_gro_ZOO_20) were fitted to observed XALG. These are 

summarized in Table 1 and compared to recent studies of other lakes and reservoirs. Most of 

them are similar to other studies and within the range found in the literature.  

3.4 Modelling scenarios 

The prospective scenarios for water quality assessment of the Cointzio reservoir are 

described in Table 2. These scenarios aim at (i) assessing the long term evolution of the 

water quality in the reservoir of Cointzio under the influence of water level regulation and 

global warming and (ii) establishing a management strategy to mitigate the negative effects. 

The different scenarios were compared with the run of the calibrated model for the year 

2009, which will be referred to as the “Present” scenario. 

3.4.1. Effect of water level change 

A twenty-year historical time series of the water level was extracted to identify typical dry 

and wet hydrological years for simulation (Figure 2). The state of reservoir filling on 01st 

January was considered to be a relevant indicator of dry and wet years. Precipitation and 

water discharge are indeed almost negligible from January to June (Gratiot et al, 2010; 

Carlón Allende, 2009), which corresponds to the most critical period in terms of algal growth 

and chlorophyll a blooms (shown in the results section, Figure 4). 

Three different hydrological years were used in the simulations: Target year 2009, a dry year 

and a wet year selected from the last 20 years (Figure 2). The observed water level on 01st 

January 2009 was at 26m. The year 1990 was considered to represent a dry year with a 

minimum level of 21 m on 01st January and 1996 a wet year with a maximum level of 29 m 

on 01st January. For comparison purposes, the inflows, the outflows and the water quality 

parameters in the two years (1990 and 1996) were assumed to be the same as the ones of the 

year 2009 during simulation exercises. The main limitation of Aquasim is that it 

automatically generates additional inflow when the outflow is larger than the inflow, and 

vice versa. This limitation was counterbalanced by the robustness of the model and its 
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capacity to integrate a large quantity of variables that participate to the biogeochemical 

cycles. By means of this procedure, the effect of the changing volume of the reservoir from 

year to year on the mass balance can be taken into account. 

3.4.2. Effect of air temperature increase 

Global warming is expected to affect lakes and reservoirs dynamics, especially in tropical 

regions (Inclan et al, 2010) where the mean annual evaporation is generally higher than the 

precipitation. In the region of Cointzio, climate change is expected to lead to an increase of 

the mean annual air temperature of 2.5°C and 4.4°C for the decades centered in the year 2060 

and 2090, respectively (Gratiot et al, 2010).  

To assess the sole effect of air temperature, it was assumed that discharge and nutrients input 

would be the same as 2009. We decided to focus the projection analysis on the fewer 

optimist but realistic cases. Therefore, we run the model for dry year conditions with an air 

temperature increase of 2.5°C and 4.4°C corresponding to an increase in reservoir surface 

temperature by about 1.4°C and 2.4°C, as expected for 2060 and 2090 respectively. 

3.4.3. Reducing eutrophication in the Cointzio reservoir 

Eutrophication may cause severe water quality problems in the reservoir. It is caused by 

nutrients loads into surface water bodies and can be minimized by the mitigation measures 

(reduction of incoming loads). The field data of maximum Ptot, PO4
3-, and NH4

+ observed 

downstream of highly populated areas indicate that point sources from domestic waste waters 

clearly dominated in the Cointzio watershed as opposed to input from agricultural activities 

where P and N concentrations were found low (Némery et al, submitted). Here, some runs 

were conducted to assess by how much the nutrient loads would have to be reduced to 

maintain sufficient oxygen content and low chlorophyll a content in the reservoir. In this 

study, the scenarios of reducing 50%, 90% and 100% of nutrient inputs were examined. 

4. Results 

In the following sections we first present results of the hydrodynamic simulations, which 

serve as boundary conditions for the biogeochemical model. The “Present scenario” is then 

discussed in order to evaluate the quality of the model before introducing different scenarios. 

4.1 Physical k-ε model 

We chose to calibrate the model using the data from 2009 and to validate it using the data 

from 2008, collected at the deepest point of the reservoir (P27). In the validation year 2008 

turbidity was lower and the water level was higher than in the calibration year 2009. Figure 3 

presents the variation of measured and simulated temperature with time and the difference 

between observed and simulated results for the years 2009 and 2008.  
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4.1.1 Model calibration 

The top left panels of Figure 3 show the observed temperatures in 2009 with a minimum of 

14 °C in January, and a maximum of 23°C in June. The reservoir was stratified during 9 

months, from February to October and was vertically mixed, by cooling and wind effect, 

from the end of October until January. The model reproduces nicely the mixing and 

stratification periods. With a mean square error of 0.24°C between the simulated and 

measured temperatures, water temperatures closely followed the measured profiles, 

indicating that the downward mixing of heat, based on calculated diffusivities in the epi-, 

meta-, and hypolimnion from the k-ε model were adequately estimated. The maximum 

difference in temperature was from mid-June to September with a maximum residue of ±1°C 

which corresponds to the period where missing reservoir surface temperature data was 

interpolated from correlations with air temperature.  

4.1.2 Model validation 

Validation consists of testing the model under other meteorological and hydrological 

conditions. The right panels present observations and simulations of the temperature in 2008 

(Figure 3b, d, f). Despite the different hydrological conditions, the model agreed well the 

data with a mean square error between the simulated and measured temperatures of 0.52°C, 

and a maximum residue of ±1.5°C. 

4.2 Biogeochemical model 

4.2.1 Present scenario - Target year 2009  

The results of the water quality simulations for the target year 2009 are presented in Figure 4. 

These simulations were performed with the parameter values given in Table 1. The residues 

between measurement and simulation of the dissolved oxygen and chlorophyll a indicators 

are shown in Figure 5. The results of the model are in good agreement with DO 

measurements in 2009 (Figure 4a, b) with a mean square error 1.14 mg L-1. It correctly 

reproduced the temporal dynamics of the anoxia period and the magnitude of DO 

concentrations. Most of the residuals between the measured and simulated DO are smaller 

than ±1 mg L-1, except in April when the model slightly overestimated the oxygen 

consumption rate in the deep water (Figure 5a). From April to the end of October, DO 

decreased below 1.0 mg L-1 in the whole hypolimnion beneath 10 m depth. At the surface, 

DO remained high (>6.0 mg L-1) because of oxygen production by photosynthesis and air 

water exchange (Doan et al, 2012).   

Figure 4c, d presents vertical profiles of measured and simulated chlorophyll a for the 

calibration year 2009. The model predictions for chlorophyll a concentration are generally 
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satisfying. It correctly reproduced the time of the first chlorophyll a peak in March and its 

magnitude. However, the arrival of a second bloom in July was not simulated accurately by 

the model which anticipates the event and overestimates it slightly, as expressed by the large 

residue between observed and measured chlorophyll a (up to -25 μg L-1) in June (Figure 5). 

The chlorophyll a was highest in the top 10 m, with as average concentration of 18.9 μg L-1. 

Below 10 m depth, light availability strongly limits primary production. From January to 

April, chlorophyll a increased up to 70 μg L-1 due to higher light penetration and nutrient 

availability. During the wet season, the successive flood events supplied a large quantity of 

SS which reduced Secchi depth to less than 0.2 m. This hindered photosynthesis and 

chlorophyll a dropped below 10 μg L-1.  

Phosphate concentration was quite high all year long contributing to important algal 

production (Figure 4e, f). The PO4
3- concentration increases at the bottom of the reservoir 

because of the benthic mineralization in the sediment. The time-series showed a clear peak in 

September - October. 

An acceptable result of vertical profiles of measured and simulated NH4
+ in the target year 

2009 was described in Figure 4g, h. The Rio Grande river at the inlet of the reservoir 

exhibited average ammonium concentration of 0.3 mgN L-1, close to those observed in the 

reservoir from March to May. The benthic mineralization prevailed from May to October 

leading to release of NH4
+ from sediments. As a result, the NH4

+ concentrations of the 

hypolimnion increased (> 0.6 mgN L-1) (Doan et al, 2012). 

4.2.2 Application to past historical data 

P1 scenario – Low water level  

In the P1 scenario of the dry year, the chlorophyll a is higher and the anoxia period is a little 

more extended than for the reference year 2009. During the first period, the average 

chlorophyll a is higher (22.9 μg L-1) in the top 10 m, as compared to the year 2009 (18.9 μg 

L-1) and the highest peak of chlorophyll a at surface is 86 μg L-1 (Figure 6), compared to 70 

μg L-1 in the reference year. DO remains high (>6.0 mg L-1) at the surface while the anoxia 

period occurs at the bottom from April to the end of October. The oxycline depth is 8 m from 

the surface.  

P2 scenario – High water level  

The model predicts lower chlorophyll a concentrations for the wet year, with peak values of 

58 μg L-1 (Figure 7). DO decreased below 1.0 mg L-1 at the bottom and extended to the 

whole hypolimnion 10 m depth from the surface. Comparing the simulation results from 

these three different hydrological years (Figures 5-7), the dry year showed the highest peak 
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of chlorophyll a (86 μg L-1). Thus, this dry condition was chosen to estimate future scenarios 

(section 4.2.3). 

4.2.3 Scenarios under global warming conditions 

P3 scenario - Increased air temperature by 2.5°C in 2060 

The model results of DO and chlorophyll a are presented in Figure 8a, b. The increase of air 

temperature has a direct effect on the water surface and lead to higher reservoir temperatures. 

The warming of the water surface positively affects biological processes such as algal growth 

and decomposition of organic matter but reduces DO solubility in water. Therefore, the 

maximum peak of chlorophyll a increases up to 93 μg L-1 and the anoxic layer was thicker, 

with complete anoxia observed up to 7 m depth compared to 8m for the P1 scenario. 

P4 scenario - Increased air temperature by 4.4°C in 2090 

The P4 scenario, which simulates an air temperature increase of 4.4°C coupled with 

minimum water level corresponds to the most critical scenario. As a consequence, the 

intensity of chlorophyll a increases when compared with the target year 2009, as depicted in 

Figure 8c, d. The mean chlorophyll a concentration in the top 10 m was much higher (25 μg 

L-1) compared with 18.9 μg L-1 for 2009. The highest peak of chlorophyll a was 94 μg L-1 

and the duration of the anoxic period in the hypolimnion increases by about 20 days 

compared for P3 scenario.  

4.2.4 Scenarios of nutrients input reduction  

Scenarios with 50%, 90%, and 100% nutrient input reductions were simulated using as a 

starting point both the dry year scenario (P5, P6, and P7) and the future global warming 

scenario (P8, P9, and P10). The resulting effects on the thickness of the oxycline depth and 

on the chlorophyll a concentration are shown in Figure 9. 

Case P1  

The oxycline depth was less extended after reducing nutrients input. The anoxic thickness 

was significantly reduced after two years and remained constant with time. It was below 12 

m of depth compared to 8 m for the P1 scenario (Figure 9). 

As shown in P5 scenario, a 50% reduction of nutrients input resulted only in a slight decrease 

in the chlorophyll a concentration. In order to see a significant decrease, the nutrients input 

must be reduced by 90%. This effect occurs quickly within the first 2 years. After 10 years, 

the maximum peak of chlorophyll a concentration reduced from 86 μg L-1 to 41 μg L-1 and 

the average concentration in the top 10 m decreased until 7.6 μg L-1. If a reduction of 100% 

nutrients input could be achieved, it would further improve the water quality with lower 

concentration of chlorophyll a (Figure 9). 
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Case P4  

Concerning the global warming scenario with nutrients input reductions, the oxycline depth 

was significantly reduced. 

Similarly to the case P1, reduction of nutrients input did not have an immediate effect in the 

Cointzio reservoir. Only after several years, a restoration process of the water quality can 

take place steadily with time. The reduction of 50% of nutrients input only slightly reduced 

chlorophyll a; the maximum chlorophyll a is still high at 78.5 μg L-1 after ten years of 

simulation. After a ten-year reduction of 90% nutrients input, the maximum peak of 

chlorophyll a would be reduced to 40.5 μg L-1 and the average chlorophyll a concentration in 

the top 10 m reduced down to 9.5 μg L-1. The maximum peak could be decreased until 29 μg 

L-1 and the average reduced down to 7.3 μg L-1 after ten years of 100% reduction (Figure 9) 

because it still has nutrients released from sediments, as mediated by chemical, physical and 

biological processes.  

5. Discussion 

5.1 Biogeochemical analysis of the model for the Cointzio reservoir 

The model calculates the DO concentrations as a balance between source and sink terms due 

to surface aeration, depletion by sediment, consumption by respiration and nitrification, and 

production by photosynthesis. DO is therefore a key variable that integrates almost all the 

processes taken into account in the model. Based on the nutrients release and mineralization 

rates calculated from the model results, we can see that the anoxic, aerobic sediment 

mineralization and background mineralization are the dominant causes of oxygen depletion 

in the simulation leading to anoxic conditions at the reservoir bottom (see supplementary 

data). Two sources of bottom organic matter are: The production of phytoplankton and its 

sedimentation are dominant during the first period of the year (Figure 4d), the inputs of 

organic matters with the arrival of hyperpycnal sediment flows prevail from June to October 

(Doan et al, 2012). The benthic mineralization then leads to the release of nutrients such as 

phosphorus and ammonia (Figure 4f, h) which contributes to increase the eutrophic state of 

the reservoir. 

After reaching the first maximum peak in March, the chlorophyll a was reduced drastically 

by grazing of zooplankton and then recovered during the following months. The discrepancy 

between measurements and model may be mitigated if more experimental data points were 

available to calibrate the ecological model component. As can be seen in Figure 4d, the time 

series of simulated chlorophyll a was very dynamic with significant changes within a few 

days. However, based on monthly or every three weeks sampling of chlorophyll a, it was 
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difficult to calibrate the phytoplankton model, as sampling just a few days earlier or later 

could have given different results. Besides that, no input data of zooplankton was available 

for the model. Moreover, according to Frisk et al, 1999 and our scenarios, the water level is 

one of the factors in regulating the trophic status of reservoirs. However, we were not able to 

test this due to the limitation of the Aquasim model of not allowing reservoir level variations. 

Besides that, the light extinction coefficient influences the time at which the chlorophyll a 

peak concentration occurs and its intensity (Martins et al, 2008). In general, the errors in 

differences between model scenarios are smaller than the errors in the individual scenarios, 

because biases tend to be removed by taking the difference between two simulations. In 

summary, the model was considered to provide satisfying estimates of the chlorophyll a 

dynamics for reservoir management issues.  

The results of PO4
3- profiles in Figure 4f show clearly the significant upward flux of PO4

3- 

released by mineralization from the sediments thus increasing concentrations in the water 

column. From January to July, PO4
3- concentrations were not only low in the epilimnion, 

where they were consumed by primary production of algae, but also below in the 

metalimnion. This is an indication of the significance of PO4
3- uptake by sinking particles. 

Simulated PO4
3- profiles represent all these effects and agree well with measurements of the 

year 2009. The deviations between calculation and measurements in the few months of the 

wet season indicated an underestimation of mixing in the deep hypolimnion.  

In general, NH4
+ in reservoirs may be influenced by atmospheric and riverine inputs, 

biological uptake, mineralization and nitrification (Dodds 1993). Ammonium concentrations 

were low in the epilimnion because of uptake by algae. However, the hypolimnetic 

concentrations of NH4
+ increased over the course of the stratified period because of 

mineralization (Figure 4h). These increases coincided with the onset of anoxia in the 

hypolimnion, but also with a pronounced increase in discharge, and its accompanying 

suspended sediment load. 

5.2 Effect of hydrology and global warming on trophic status 

Eutrophication remains a major problem in dry hydrological conditions (Frisk et al, 1999). 

As shown by our models, the dry year was characterized by high algal blooms (86 μg L-1) 

that threatened drinking water production. On the basis of the scenarios with application of 

different hydrological conditions, it can be concluded that the water level is one of the factors 

regulating the trophic state of the Cointzio reservoir.  

From the results of scenarios with global warming effects, chlorophyll a in the Cointzio 

reservoir has been shown to be sensitive to changes in reservoir stratification caused by 
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global warming. Thus, two scenarios with air temperature increased by 2.5°C and 4.4°C were 

simulated for the next decades. In the Cointzio reservoir, an air temperature increase of 4.4°C 

coupled with minimum water level corresponds to the most critical situation (P4 scenario). 

The increase in air temperature was directly transferred to the surface of the Cointzio 

reservoir. Higher temperatures will affect biological processes such as increase algal growth 

and reduce DO concentration in water. The vertical mixing pattern changes significantly with 

the effect of global warming. With an atmospheric warming of air temperature, temperature 

gradients increase with time. Following our model results, the scenario with low water level 

gives bad water quality in the Cointzio reservoir. Meanwhile, the scenario with global 

warming effect in the future will lead to worst water quality in the reservoir. 

5.3 Evaluation of the restoration process of the water quality in the reservoir 

Normally, reducing nutrient inputs helps to improve the water quality but there are some 

exceptions. For example, this did not seem to have an immediate significant effect on the 

phytoplankton development in the Villerest eutrophic reservoir (Poulin et al, 2004). This also 

appears to be the case for the Cointzio reservoir. Only after reducing of the nutrients input for 

several years, a restoration process of the water quality in the Cointzio occurs with time. Two 

years is the minimum time to have a marked reduction of chlorophyll a in the reservoir. It 

just reduces very lightly after 5 years (Figure 9). This means that 5 years would be the time 

needed to flush out a maximum amount of nutrients from the system Cointzio. The P release 

from the model in the global warming scenario for the last year of the simulation, when the 

reservoir has reached a steady-state, is shown in Table 3. The estimation of P released by all 

mineralization processes is 1.105 t P y-1. The anaerobic and anoxic mineralization processes 

in open water are negligible. Thus, the benthic mineralization of organic matter is the most 

important process explaining P released from sediments. As shown by the P8 scenario, the 

release of P only reduces slightly after a 50% reduction in nutrients input with the value of 

0.867 t P y-1 compared to 1.105 t P y-1 for the P4 scenario. The P release has a significant 

decrease when the nutrients input is reduced by 90%. The trend is similar to that seen for 

chlorophyll a (Figure 9). Moreover, P release does not decrease linearly with the reduction in 

nutrients input, because a large proportion of nutrient is already trapped in clay particles. 

Moreover, it is not surprising that we need a really large decrease of nutrients input to reduce 

algal biomass in the Cointzio.  

Arruda et al, 1983 estimated that the quantity of organic carbon adsorbed to sediments was 

over 30 times greater than that available from the phytoplankton in a clay-rich North 

American reservoir with concentrations of suspended sediments close to 100 mg L-1. 
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Similarly, in the Cointzio reservoir, there is a lot of clay particles (Acrisols, Luvisols and 

Andosols) from the watershed discharge into the reservoir so that many nutrients are 

mineralized directly from these particles. Moreover, the algae production is most probably 

not limited by nutrients supply, but also by light. Finally, waste water treatment plants should 

be installed in the villages located upstream of the reservoir to reduce nutrient inputs. 

Fortunately, most of nutrients pollution levels within the watershed come from domestic 

sources so it would be feasible to treat this kind of waste water. Special attention should be 

paid to phosphorus and ammonium removal. While various systems, such as Valle de Bravo 

(Olvera Viascán et al, 1998) have some comparable morphometric, hydro-meteorological and 

mineralogical properties, mitigation strategies would not be expected to have significant 

effects before a period of 5 to 10 years.  

6. Conclusions  

A physical mixing model using a k-ε scheme and a biogeochemical advection-diffusion-

reaction Aquasim model were implemented for the study of the very turbid tropical reservoir 

of Cointzio in Michoacán, Mexico. This is the first application of a biogeochemical 

modelling approach in the Trans-Mexican Volcanic Belt. The k-ε model accurately 

reproduced water temperature profiles and pointed out the low to moderate density 

stratification which characterizes this turbid environment. The Aquasim biogeochemical 

model was able to reproduce the main patterns of dissolved oxygen, nutrients and 

chlorophyll a concentrations within the Cointzio reservoir for the target year 2009. The set of 

parameters obtained after calibration was reasonable in comparison with the range of 

parameter values found in the literature. The present study has shown how a calibrated model 

can be used to help water resources management. The model allowed investigating the 

progress of restoration from several water quality indicators and in global warming context. 

Here, we focused on chlorophyll a and dissolved oxygen, which were the two main 

indicators concerned by reservoir water management. The following conclusions can be 

drawn: 

In order to assess the future evolution of the trophic state of tropical reservoirs, it is important 

to consider the climatic conditions (Bravo-Inclan et al, 2010). In this study, the scenarios 

were designed for predicting the long term effect of global warming, without neglecting the 

natural variation between dry and wet hydrological year at a decadal scale. The scenario that 

coupled a dry hydrological year with a 4.4°C increase of the air temperature revealed 

enhance significantly the eutrophication of the Cointzio reservoir with the maximum peak of 

chlorophyll a up to 94 μg L-1.  
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In terms of mitigation strategies, results of the study show that a short term response to risks 

of chlorophyll a blooms consists in maintaining a sufficiently high water level in the 

reservoir. A far more benefit strategy consists in reducing nutrients input into the reservoir. 

Generally, the strategies in nutrient inputs control are successful to improve the water quality 

in term of dissolved oxygen level and phytoplankton development in reservoirs. However, in 

the case of the Cointzio reservoir, we need a really large decrease of nutrients input to reduce 

algal biomass due to a lot of clay particles coming to the reservoir and the nutrients input is 

very high which are far from nutrient limitation. Moreover, the positive effect of reduction of 

nutrients input on the phytoplankton development is not immediate because time is needed to 

flush out the nutrients, mineralized directly from particles, accumulated in the suspension 

and benthic layers. As shown by our model, it was characterized by high algal blooms (78 μg 

L-1) that threatened drinking water production, even after the implementation of drastic 

programs of point source reduction up to 50% of the present loading. The reduction in 

nutrients input by 90% would improve the water quality in the reservoir, reducing the 

maximum peak of chlorophyll a from 94 μg L-1 to 40 μg L-1 and the average concentration in 

the top 10 m decreased until 9.5 μg L-1 after 5 years. The depth of anoxic conditions 

decreases from 7 m to 11 m. This scenario could be realistic if we compare it to other study 

with a point source reduction down to 85% (Garnier et al, 2005). Five years would be the 

time needed to flush out a maximum amount of nutrients from the system. 

The challenge for the Cointzio reservoir management is to reduce the nutrient load and keep 

it at a low level because the ongoing global warming is likely to deteriorate the water quality 

of the reservoir. From a managing point of view, if the direct sources of nutrients have been 

significantly reduced by the implantation of several water treatment plants in the surrounding 

watershed, it also would be necessary to worry the diffuse sources of nutrients in order to 

reach better water quality.  
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Figure legends: 

Figure 1. Map of the Cointzio reservoir, and localization of sampling sites. 16 vertical 

profiles were realized along the longitudinal axis (dashed line). 

Figure 2 Time series of the water levels in the Cointzio reservoir. 

Figure 3. Time evolution of the temperature in 2009 (left panels) and 2008 (right panels). 

The top map is obtained with the measured temperature, the middle one with the simulated 

one. The bottom one depicts the residues Tmea-Tsim. 

Figure 4. Vertical profiles of measured (left panels) and simulated (right panels) DO, 

chlorophyll a, PO4
3-, NH4

+ at P27 of the Cointzio reservoir in 2009. 

Figure 5. The residues between measurement and simulation of DO and chlorophyll a in 

2009. 

Figure 6. Simulation of DO and chlorophyll a under the dry year conditions (P1 scenario). 

Figure 7. Simulation of DO and chlorophyll a under the wet year conditions (P2 scenario). 

Figure 8. DO and chlorophyll a in increasing air temperature of 2.5°C and 4.4°C (P3 and P4 

scenarios). 

Figure 9. The results of DO and chlorophyll a for the case P1 (left panels) with three 

different reduction in nutrients input (P5, P6, and P7 scenarios) and the case P4 (right panels) 

for the scenarios P8, P9, and P10 during a ten-year period. The top figure is obtained with the 

oxycline position, the middle one with the maximum peak of chlorophyll a. The bottom one 

depicts the mean chlorophyll a in the top 10 m. 

Table legends: 

Table 1. Literature values and main parameters of the biogeochemical model compared to 

other published applications of the same model. See supplementary data for definitions of 

parameters. 

Table 2. Summary of scenarios for water and ecological quality assessment of the Cointzio 

reservoir. 

Table 3. P release in the global warming scenario for the last year of the simulation with the 

nutrient-reduction scenarios P8 and P9.  
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Figure 1: Map of the Cointzio reservoir, and localization of sampling sites. 16 vertical 

profiles were realized along the longitudinal axis (dashed line) 

 

 

Figure 2: Time series of the water depths in the Cointzio reservoir 
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Figure 3: Time evolution of the temperature in 2009 (left panels) and 2008 (right panels). 

The top map is obtained with the measured temperature, the middle one with the simulated 

one. The bottom one depicts the residues Tmea-Tsim 
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Figure 4: Vertical profiles of measured (left panels) and simulated (right panels) DO, 

chlorophyll a, PO4
3-, NH4

+ at P27 of the Cointzio reservoir in 2009 
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Figure 5: The residues between measurement and simulation of DO and chlorophyll a in 

2009 
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Figure 6: Simulation of DO and chlorophyll a under the dry year conditions (P1 scenario) 
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Figure 7: Simulation of DO and chlorophyll a under the wet year conditions (P2 scenario) 
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Figure 8: DO and chlorophyll a in increasing air temperature of 2.5°C and 4.4°C (P3 and 
P4 scenarios) 
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Figure 9: The results of DO and chlorophyll a for the case P1 
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Table 1: Literature values and main parameters of the biogeochemical model compared to other 

published applications of the same model. See supplementary data for definitions of parameters. 

 

Parameters Units 

Cointzio  

reservoir 

(This 

study) 

Lake 

Zürich 

(Omlin et 

al., 2001) 

Lakes 

Walensee/ 

Zürich/ 

Greifensee 

(Mieleitner 

& Reichert, 

2006) 

Itezhi –Tezhi 

reservoir 

(Kunz et al., 

2011) 

Lake 

Ohrid 

(Matzinger 

et al., 

2007b) 

 

Other 

literature 

values  

and  

ranges 

k_gro_ALG_20a 
k_gro_ALG_N2_20a 
k_gro_ZOO_20a 
k_death_ALG_20a 
k_death_ZOO_20a 
k_resp_ALG_20 
k_resp_ZOO_20 
k_nitri_wat_20a 
k_miner_aero_20a 
k_miner_anox_20a 
k_miner_anaero_20a 

k_miner_bga 

K_HPO4_ALG 
K_I_ALG   
S_HPO4_crit 
DeltaS_HPO4 
k_upt 

d-1 

d-1 

gDM-1m3d-1 
d-1 

d-1 

d-1 

d-1 

gN-1m3d-1 
d-1 

d-1 

d-1 

d-1 

gPm-3 
Wm-2 

gPm-3 

gPm-3 

m4gDM-1d-1 
 

1.2 
0.85 

0.001 
0.03 
0.1 

0.05 
0.003 
0.05 
0.1 

0.01 
0.001 

0.1 
0.0007 
34.32 
0.0042 
0.0013 
1200 

1.1 
- 

0.3 
0.03 

0.029 
0.05 

0.003 
0.1 
0.01 
0.01 

- 
- 

0.0019 
34.32 

0.0042 
0.0013 
1200 

1.6 
- 

0.4 
0.03 

0.01/0.035/0.11 
0.05 

0.003 
0.1 

0.005 
0.005 

0.0005 
- 

0.0005 
10b 

0.004 
0.0013 

30b 
 

1.1c 
0.25 
0.25c 
0.01d 
0.1d 
0.05c 

0.003c 
0.1 
0.1 

0.01 
0.001 

0.1 
0.002 
34.32 
0.004 
0.0013 
1200 

1.88 
- 

3.47 
0.03 

0.029 
0.05 

0.003 
- 

0.008 
- 
- 
- 

0.0019 
- 

0.004 
0.0013 
1200 

0.58-31 

 
0.15-0.252 

0.033 

0.003-0.1554 

0.05-0.155 

0.001-0.116 

0.03-0.257 

 

 

 

 

Cointzio reservoir: Turbid tropical eutrophic reservoir 

Lake Zürich: Mesotrophic temperate lake  

Lakes Walensee/ Zürich/ Greifensee: Temperate lakes (Walensee is oligotrophic, Greifensee is 

eutrophic) 

Itezhi –Tezhi reservoir : Tropical eutrophic reservoir 

a Parameters fitted during the calibration of the Cointzio reservoir 

b Large change in meaning due to modification of the formulations  

c Kunz et al., 2011 adapted from Omlin et al., 2001 

d Kunz et al., 2011 adapted from Mieleitner and Reichert., 2006 

1 Jørgensen (1979); 2Chen & Orlob (1975); 3Scavia et al., 1976 

4 Collins & Wlosinski (1983); 5O’Connor et al., (1981); 6Smith (1978); 7Bansal (1976) 
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Table 2: Summary of scenarios for water and ecological quality assessment of the Cointzio 

reservoir. 
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Table 3: P release in the global warming scenario for the last year of the simulation with the 

nutrient-reduction scenarios P8 and P9. 
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C) Biogeochemical mass balance in the turbid tropical reservoir of Cointzio, Mexico: Field 

data and modelling approach                                                                                                                                          

1. Introduction 

Biogeochemical budgets (C, N and P) are major concerns for management of highly eutrophic 

reservoirs (Hart et al, 2002), particularly in tropical systems. In the case of reservoirs with anoxic 

hypolimnia, internal nutrient loads from sediment release can become a significant term of 

nutrient budgets, as outlined previously by Nürnberg (1984) and Jensen et al, (1992). In the case 

of P, it is relatively well known that its release depends on P sedimentation and retention capacity 

of sediments (Gächter & Wehrli 1998, Prairie et al, 2001). However, the budgets for nitrogen in 

reservoirs should be different from those observed for phosphorus because of the numerous 

biological processes involved (e.g., denitrification, N2 fixation, nitrification) (Wetzel, 2001). 

Lewis (2002) suggested that N is largely denitrified, and poorly stored in sediments of tropical 

lakes. The goals of this section are (i) to identify and estimate the main processes involved in 

nutrients release and carbon removal and (ii) complete the annual mass balance in the reservoir 

using modelling results.   

2. Results 

2.1 Mineralization rates in the Cointzio reservoir 

Table 5.2 Mineralization rates in the water column and at the sediment surface for the target year 

2009 

Mineralization rates g O2 m-3 d 

Aerobic mineralization in water column 0.15 

Anoxic mineralization in water column 
(denitrification) 

8.34E-03 ~ 0 

Anaerobic mineralization in water column 
(mineralization in  the  absence  of  DO and  NO3

-) 
2.34E-04 ~ 0 

Aerobic mineralization at sediment surface 1.95 

Anoxic mineralization at sediment surface 
(denitrification) 

7.55 

Anaerobic mineralization at sediment surface  0.88 

 

The numerical simulations undertaken have shown that the mineralization rates at sediments are 

presumably much higher than the mineralization rates in the water column (Doan et al, 2014). In 

the reservoir of Cointzio, the benthic mineralization of organic matter is believed to be the 

predominant factor explaining nutrients released from sediments (Table 5.2).  
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2.2 Temporal variability of benthic mineralization processes 

Organic matter (OM) undergoes mineralization through settling in the water column and then the 

process of mineralization continues after it is deposited in sediments (Kunz et al, 2011). Since the 

Cointzio reservoir is heavily influenced by seasonal variation of OM inputs, the mineralization rates 

dominate during the anoxic period from May to October (nearly ~100 % of annual mineralization) 

(Figure 5.1). This is mainly due to accumulation of OM from inputs and from dead algae sink as 

discussed in the previous section (chapter 4). 

 

Figure 5.1 Temporal variability of a) benthic aerobic mineralization b) benthic anaerobic 

mineralization and c) benthic anoxic mineralization rates at the deepest point of the Cointzio 

reservoir in 2009 

2.3 Nutrients releases and N2 removal 

Dissolved inorganic nitrogen (DIN) and soluble reactive phosphorus (SRP) are usually released 

during mineralization, either directly by settling of material through the water column, or by 

diffusion from bed sediments (Kunz et al, 2011). The total release of DIN and SRP estimated 

from the model during the stratified period from mid-February to October are 20.1 t N y-1 and 2.2 

t P y-1 respectively. They are lower than the Redfield-derived estimates of 27.01 t N y-1 and 3.74 t 

P y-1 (Table 5.3). The Redfield calculation of N and P release was obtained by applying the ratio 

C:N = 5.68 and C:P = 41 (Redfield et al, 1966). The N2 removal was calculated from the anoxic 

benthic mineralization (denitrification) as 80.7 t N y-1 and was much higher than N release from 

sediments in the Cointzio reservoir (20.1 t N y-1).  
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Table 5.3 The model estimations of nutrient releases and N2 and carbon removal in the Cointzio reservoir for the target year 2009 

Nutrient releases N release (t N y-1) P release (t P y-1) 

C 

removal 

(t C y-1) 

Methods of calculation 
Modelling 
approach 

Redfield-derived 
estimation 

Modelling 
approach 

Redfield-
derived 

estimation 

Modelling 
approach 

Aerobic mineralization in 
water column 

0.08 0.28 0.25 0.32 12.95 

Aerobic mineralization in 
sediments 

3.49 4.09 0.42 0.57 23.26 

Anoxic mineralization in 
sediments 
(denitrification) 

15.50 

80,7 (N2) 
18.20 1.42 2.52 103.36 

Anaerobic mineralization 
in  sediments 

1.13 2.45 0.12 0.34 13.9 (CH4) 

Total mineralization 
processes 

20.1 

80.7 (N2) 
27.02 2.22 3.74 153.5 
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2.4 The mass balance of C, N, P in the Cointzio reservoir 

C, N, P fluxes and accumulation were obtained from field data in 2009 (see chapter 4) and 

nutrients release and C removal were estimated from the model to obtain the C, N, P mass 

balance (Figure 5.2). 

 

Figure 5.2 C, N, P mass balance in the Cointzio reservoir (fluxes are in t y-1) 

 

2.4.1 Carbon retention and removal  

Total organic carbon (TOC) input was 1617 ± 340 t C y-1 against a TOC output of 1115 ± 

167 t C y-1. The particulate organic carbon (POC) accumulation was estimated at 298 ± 128t 

C y-1 based on sediment deposition and organic carbon content of sediments within the 

reservoir (see detailed calculation in Tables 5 and 7 of chapter 4). The C removal by all 

mineralization processes calculated from the model is 153.5 t C y-1 (Table 5.3). As shown 

from the Figure 5.1, the anaerobic benthic mineralization (methanization) occurred during 

the anoxic period from May to October. The release of C as CH4 was estimated at 13.9 t C y-

1. This means that C removal would be 90% as CO2 and 10% as CH4 (Figure 5.2a). 

2.4.2 Nitrogen removal 

Total nitrogen (TN) input was 98 ±17.2 t N y-1 in opposition to 53 ± 15 t N y-1 in the output. 

N accumulation (Nacc) was estimated as 26 ± 11 t N y-1 (see chapter 4). N is either lost to 
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sediments by burial or to the atmosphere through denitrification. The N2 removal estimation 

from the anoxic benthic mineralization (denitrification) was 80.7 t N y-1 corresponding to 

22.4 g m-2 y-1 which was compared to 6 g m2 y-1 of the Itezhi-Tezhi Reservoir (Kunz et al, 

2011). The total release of DIN from the model during the stratified period of the reservoir 

was 20.1 t N y-1 (Table 4.3). 

The N mass balance in the Cointzio reservoir is: TNin + TNfix + TNrelease = TNout + TNacc + 

TNdenit 

Where  TNin = TN input, TNfix = TN fixation, TNrelease = TN release 

TNout = TN output, TNacc =TN accumulation and TNdenit =TN denitrification 

We have: 98 t N y-1 + TNfix? + 20,1 t N y-1 = 53 t N y-1 + 26 t N y-1 + 80,7 t N y-1  

Besides of N input from the Rio Grande de Morelia River led to an availability of N for 

phytoplankton growth in the Cointzio reservoir, there was an additional input of DIN (20.1 t 

N y-1) becoming available for phytoplankton growth via the mineralization of OM, N 

limiting conditions prevailed.  

The differences in the nitrogen budget in this case may be explained by the nitrogen fixing by 

cyanobacteria since cyanobacteria (Oscillatoria lacustris) were identified as the dominant 

species in the Cointzio reservoir (López-López & Dávalos-Lind, 1998). This confirms the N 

fixation would be important in the Cointzio reservoir which is similar with the study of 

Henry et al, (1999) for the Jurumirim tropical reservoir in Brazil. 

Consequently, N fixation could be considered as an important process in the tropical Cointzio 

reservoir, with fixed N that was estimated about 42 t N y-1 to close the N mass balance 

(Figure 5.2b). Based on the mass balance of N, this result further supports the interpretation 

that N fixation is a quantitatively important process in tropical reservoirs. Fixation of 

atmospheric N2 can account for 6–82% of the N input to eutrophic tropical systems 

(Howarth et al, 1988). 

2.4.3 Phosphorus retention 

Input of total phosphorus (TP) was 20 ± 4.4 t P y-1 against 12 ± 2.7 t P y-1 of TP output. 

Based on the mean total particulate phosphorus (TPP) in dry season, P accumulation (Pacc) 

was estimated at 5 ± 2 t P y-1. The estimation of SRP released by all mineralization processes 

from the model during the stratified period was 2.2 t P y-1 (Figure 5.2c). 

The P mass balance in the Cointzio reservoir: TPin + TPrelease = TPout + TPsed 

Where  TPin = TP input, TPrelease = TP release, TPout = TP output, and TPsed = TP 

sedimentation. 

Therefore, we have 
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20 ± 4 t P y-1+ 2.2 t P y-1 =  12 ± 3  t P y-1 + 5 ± 2  t P y-1 

3. Conclusions 

In summary, the values of the entire mass balance of nutrients and carbon estimated from field 

data calculation and modelling approach are at equilibrium. The analysis indicates that the 

benthic mineralizations are the dominant processes explaining the nutrients release. Especially 

the anoxic benthic mineralization (denitrification), with the production of N2 (81 t N y-1), 

should be an important process explaining the mass balance of nitrogen in the Cointzio 

reservoir that was identical with the study of Duff & Triska, (1990) for aquatic ecosystems. 

N fixation should be a quantitatively important process in tropical Cointzio reservoir that was 

concluded for eutrophic tropical systems (Howarth et al, 1988). 

This is the first implementation of a biogeochemical model applied to a highly productive 

reservoir in the TMVB in order to estimate the mass balance of nutrients and carbon. This 

study showed that the Cointzio reservoir is acting as a “sink” for nitrogen and phosphorus that 

have similar properties in shallow and eutrophic tropical reservoirs (Straskraba et al, 1995).  
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Conclusions of chapter 5 

The vertical one - dimensional (1DV) numerical models (Aquasim biogeochemical model 

coupled with k-ε mixing model) were applied to reproduce the main biogeochemical cycles in 

the Cointzio reservoir and to assess scenarios of nutrients (P and N) and eutrophication 

reduction in the coming decades. The k-ε model accurately reproduced water temperature 

profiles for the calibration year 2009 and the validation year 2008. The Aquasim  

biogeochemical  model  was  able  to reproduce  the main patterns of dissolved oxygen, 

nutrients and chlorophyll a concentrations within  the Cointzio  reservoir  for  the  target  year  

2009.  The different simulations pointed out the negative long - term effects of eutrophication 

under dry conditions and global warming. Large nutrient reduction is required to improve the 

trophic state of the Cointzio reservoir. If measures are not taken to mitigate eutrophication, 

extensive algal blooms such as the ones reported by the local newspapers in the spring 2014 

will occur more and more frequently, with some critical consequences for the lake 

ecosystem, its aquatic life and the water potabilization. 

In order to complete the mass balance of nutrients and carbon in the reservoir, the model was 

used to calculate the nutrients release and carbon removal. The entire mass balance of nutrients 

and carbon calculated from field data and estimated from modelling approach are at 

equilibrium in general. In-out and internal mass balances in this study showed that the 

Cointzio reservoir clearly acts as a “trap” for TSS, C, N and P.  
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CONCLUSIONS & PERSPECTIVES 

 
This study provides a critical analysis of the biogeochemical functioning of a turbid tropical 

reservoir located on the Trans - Mexican Volcanic Belt in Mexico. It is based on an original 

compilation of some historical sources (since 1940) and some field surveys conducted from 

2007 to 2010. Apart from the direct analysis of data series, the compilation was used for 

further water quality modelling.  

The principal objective of the present thesis focuses on pluri-annual estimation of the 

biogeochemical cycles in the Cointzio reservoir. The results of the hydrodynamic field 

measurements did not reveal significant lateral heterogeneities. Thus it was decided to focus 

the long term monitoring efforts on the temporal variations along the longitudinal axis. 

Besides that, the vertical profiles of water quality variables from the biogeochemical field 

measurements realized fortnightly at the deepest point and the middle of the reservoir 

confirmed that longitudinal gradients were negligible for long term applications. 

Considering, the difficulties to integrate all the parameters playing a role in the dynamic of 

the reservoir, and the ones corresponding to input and output fluxes, it was decided to 

develop a 1DV modelling approach.  

Within the watershed of the Cointzio reservoir, eight sampling sites were surveyed on a 

monthly basis in 2009 to identify the hot spots of pollution emission. The results of our study 

indicated that point sources from domestic wastewater clearly dominated the dynamics of the 

reservoir while diffuse sources were of secondary importance. Nutrient pollutions mainly 

originated from the most populated villages located upstream of the reservoir since 

wastewaters were not treated in these municipalities. The analytical results for the samples 

taken from the inlet of the Cointzio reservoir indicated that the water drained by the Rio 

Grande de Morelia River was of poor quality. The water taken from this river gave high 

values especially for total P (0.38 ± 0.23 mg L-1), P-PO4
3- (0.11 ± 0.07 mg L-1), NH4

+ (0.15 ± 

0.10 mg L-1) and TSS (2220 ± 1559 mg L-1), which indicated a significant input of nutrients 

to the reservoir. The watershed of Cointzio was principally subjected to the erosion of clay 

particles (Acrisols, Luvisols and Andosols) that discharged into the reservoir so that a large 

amount of phosphorus was adsorbed directly from these particles. These led to high levels of 

turbidity (Secchi depth < 30 cm), serious episodes of eutrophication (up to 70 µg chl. a L-1), 

and long hypolimnic anoxia (from May to October) in the water column. Eutrophication 

represents an issue of concern for most of the lakes and reservoirs in Central Mexico. In the 

case of the Cointzio reservoir, this issue is especially critical as an important part of the water 
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stored is used for drinking water supply. Point sources nutrient reduction should be a water 

management priority for the reservoir in the upcoming years.  

Based on intensive field measurements in 2009 within the reservoir, we did an integrated 

study in order to assess internal cycling and to establish biogeochemical (TSS, C, N, P) mass 

balance in the reservoir. In-out and internal mass balances showed that the Cointzio reservoir 

was an efficient trap for TSS, C, N and P. The large difference between TSS inputs and 

outputs was explained by a large amount of TSS deposition (89-92 %), as evidenced for the 

three years 2007, 2008, and 2009. The reservoir acted as a sink for TSS. Sediment trapping is 

a key issue for the management of the Cointzio reservoir since it has already lost 25 % of its 

initial storage capacity. Total organic carbon (TOC) input was 1617±340 t C y-1 against a 

TOC output of 1115±170 t C y-1. The particulate organic carbon (POC) accumulation was 

estimated at 298±130 t C y-1 based on sediment deposition and organic carbon content of 

sediments within the reservoir. According to the nutrients estimated in sediments (collected 

at during the wet season and the dry season), mineralization of OM revealed to be the most 

important process for explaining nutrients release from sediments. These results have been 

presented in chapter 4. 

To complete field data analyses we examined the ability of vertical one - dimensional (1DV) 

numerical models (Aquasim biogeochemical model coupled with k-ε mixing model) to 

reproduce the main biogeochemical cycles in the Cointzio reservoir and assess scenarios of 

nutrients (P and N) and eutrophication reduction in the coming decades. The model was used 

to identify and estimate the main processes involved in nutrients release and carbon removal. 

The entire mass balance of nutrients and carbon in the reservoir was also estimated. 

The k-ε model reproduced nicely the vertical mixing that takes place from the end of October 

until January and the stratified period that begins in February and lasts until October. With a 

mean square error of 0.24°C between the simulated and measured temperatures, water 

temperatures closely followed the measured profiles. After the calibration of the scaling 

factor for the wind energy transfer to the internal seiches (α), and the wind drag coefficient 

(C10), the vertical turbulent diffusivity Kz(z) was estimated with a time step of 30 minutes. 

The resulting time series of Kz(z) were then used as the input data for the Aquasim 

biogeochemical model. The Aquasim model was able to reproduce the main patterns of DO, 

nutrients and chlorophyll a concentrations within the Cointzio reservoir for the target year 

2009. The set of parameters obtained after calibration was reasonable in comparison with the 

range of parameter values found in the literature.  
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In Chapter 5 scenarios were designed for predicting the long term effect of global warming, 

without neglecting the natural variation of the hydrological cycle at a decadal scale (dry and 

wet years). The different simulations pointed out the negative long-term impact of air 

temperature rising. By the end of the century, an increase of air temperature as high as 4.4°C 

is expected from global warming in the region. The scenario that coupled a dry hydrological 

year with a 4.4°C increase of the air temperature led to an exacerbated eutrophication with 

peaks of chlorophyll a up to 94 μg L-1 and with a severe depletion of DO. In order to assess 

by how much the nutrient loads would have to be reduced to maintain oxic conditions and 

low contents of chlorophyll a, some scenarios of reduction of 50%, 90% and 100% in the 

nutrient inputs were examined. Tests with the three different nutrient input reductions were 

simulated for both the dry year scenario and the global warming scenario. Generally, the 

strategies in nutrient inputs control are successful to improve the water quality in term of DO 

level and phytoplankton development in reservoirs. In the case of the Cointzio reservoir, the 

results of numerical simulation showed that a large reduction of the nutrients input would be 

required to reduce significantly the quantity of algal biomass and the concentration of 

chlorophyll a. Moreover, the positive effect of reduction of the nutrients input on the 

phytoplankton development is not immediate and will be observed after a few years. This 

time is needed to flush out the nutrients, mineralized directly from particles, accumulated in 

the water column and the benthic layer of the reservoir. If such mitigation measures were 

adopted, the maximum peak of chlorophyll a would reduce significantly, from 94 μg L-1 to 

40 μg L-1, and the average concentrations in the top 10 m would decrease to 9.5 μg L-1 after a 

five-year period of efforts. The depth of the anoxic layer would have a large decrease, with a 

positive effect on the ecosystem. After the period of five years the model predicts a 

stabilization of the biogeochemical cycles. 

In order to confirm this result, the model was used to calculate the entire mass balance of 

nutrients and carbon in the reservoir and to estimate P release in the global warming scenarios. 

All the mineralization rates acting in the water column and in the sediment of the reservoir 

were estimated from the model. The model estimation of the entire mass balance of nutrients 

and carbon are at equilibrium. The analysis indicates that the nutrient release occurs during the 

anoxic period from May to October and is dominated by the benthic mineralization. The 

release of P only reduces slightly after a 50% reduction in nutrients input but it has a large 

decrease when the nutrients input is reduced by 90%. Therefore, a 90% decrease of nutrients 

input is needed to reduce chlorophyll a concentrations in the Cointzio reservoir. The challenge 

for the Cointzio reservoir management is to reduce the nutrient load to balance the negative 
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effects of ongoing global warming. Air temperature increase is likely to deteriorate the water 

quality of the reservoir. Waste water treatment plants should be installed in the villages located 

upstream of the reservoir to reduce nutrient inputs. Fortunately, most of nutrients pollution 

levels within the watershed come from domestic sources so it would be feasible to treat this 

kind of waste water. Special attention should be paid to phosphorus and ammonium removal.  

Based on our study of the turbid, hollow type, tropical reservoir of Cointzio, some guidelines 

can be addressed regarding the advantages and limitations of Aquasim model. First, Aquasim 

model has an open structure that can be modified to integrate new processes which are 

suitable for a specific case. The user of the Aquasim model is free in specifying any set of 

state variables and transformation processes to be active within the compartments. Moreover, 

the model is able to perform simulations, sensitivity analyses and parameter estimations 

using measured data. These features make the Aquasim model a very useful research tool. 

The Aquasim model is also divided into two different parts: Physical and biogeochemical 

parts that make easier to do modelling simulation. In addition, since 2011 the Aquasim model 

is free and open software which makes it is very relevant for developing countries. Besides 

that, Aquasim model has restrictions that we should consider. For instance, the Aquasim 

version considered in this work does not allow variable surface water levels. The software 

automatically generates additional inflow when the outflow is larger than the inflow, and vice 

versa. Therefore, we have to use an average lake level. In addition, with the current version 

of the Aquasim model, the wind stress is always considered to be in the same direction; 

therefore wind speeds can result in buildup of unrealistically strong currents leading to 

stronger vertical mixing. Furthermore, for reservoirs that are very turbid, the simulation of 

light attenuation may present some difficulties. In the case of the Cointzio reservoir, these 

physical features (high wind and extreme turbidity) are gathered all year long. Our study 

shows that the physical Aquasim module fails in reproducing vertical profiles of temperature 

and an excessive water mixing was simulated all year long. Therefore, the k-ε model was 

considered to predict the seasonal development of temperature stratification and turbulent 

diffusivity for the Cointzio reservoir. These above limitations were counter balanced by the 

robustness of the Aquasim model and its capacity to integrate a large quantity of variables 

that participate to the biogeochemical cycles. As a mixed strategy, the simulations of 

biogeochemical cycles in the Cointzio reservoir were performed by using two independent 

models: (i) the k-ε model for the physical modelling of the lake and (ii) the Aquasim model 

for the simulation of the biogeochemical cycles. In our study we considered a one vertical 

dimension (1DV) since the horizontal and longitudinal gradients are negligible for long term 
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applications in the Cointzio reservoir. In the case of another large reservoirs, two-

dimensional (2D) and three-dimensional (3D) models should probably be applied, e.g. 

Hydrodynamic and Water quality Model CE-QUAL-W2 (Portland State University, United 

States). 

At the end of this study, we identify three main perspectives of our work: 

1) First, the computation of internal processes indicated that the benthic mineralizations 

are the dominant processes explaining the nutrients release in the Cointzio reservoir. 

However, in this study, sediment compartment as described by Omlin et al, 2001a was 

replaced by sediment-water interface because of lacking data in sediment layers. 

Some further field investigations would be particularly useful to provide measure of 

biogeochemical fluxes at the interface between bottom sediments and the water 

column. Such information could be implemented in the model, as an explicit sediment 

compartment to add mineralization processes in sediment layers.  

2) Secondly, it would be interesting to apply a similar strategy of survey (monitoring and 

modelling) on other systems exhibiting comparable characteristics. This very turbid, 

“hollow type”, tropical reservoir has been surveyed extensively during about three 

years. These field measurements and the numerical simulations revealed that the 

reservoir of Cointzio remains poorly stratified all year long. This functioning is 

attributed to the coupled effects of high wind and extreme turbidity. It would be 

interesting to evaluate if this functioning is site specific, regional, or if it can attribute 

to many wind swept turbid reservoirs. 

3) A last perspective of this work concerns operational issues. In order to predict the 

further trends of water quality in the Cointzio reservoir under the development of 

socio-economic activities and climate changes, it is important to establish a master 

plan that will take into account human and climate related indicators in Michoacán, 

Mexico in the upcoming years or next decade. Among the variables that significantly 

affect the functioning of the reservoir of Cointzio are river temperature, waste water 

discharges and concentrations, outflows, air temperature, relative humidity, 

atmospheric pressure, etc. Some estimations of these variables could give realistic 

scenarios of simulations particularly useful to predict the future of the Cointzio 

reservoir. 

This study provides a good example of the behaviour of a small tropical reservoir under intense 

human pressure and it may help stakeholders to adopt appropriate strategies for the 

management of very turbid, “hollow type”, tropical reservoirs. The results of this study could 
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be applied to other turbid tropical reservoirs in the world including Vietnam. Indeed Vietnam, 

where I was born, is a Southeast Asian tropical country, which is located downstream of 

some major rivers, and thus has a vast river network. Although the quality of upstream river 

water is generally good, the downstream sections of major rivers reveal poor water quality, 

and most of the lakes and canals in urban areas have become sewage sinks. The main causes 

of water pollution in Vietnam are the weakness in wastewater management and the lack of 

civic awareness (source from http://www.studymode.com/essays/Juny-1288503.html). 

Therefore, water quality management has become an increasingly important and more 

difficult issue in tropical systems including Mexico or Vietnam.  
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APPENDIX 

Appendix 1.  Investigation results of priorities of municipalities in Michoacán, Mexico 

 
Accoring to the investigation results of municipalities priorities in Michoacán, Mexico, there 
was up to 80% of the Michoacán’s population wishing to prevent water pollution in the 
Cointzio reservoir. 
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Appendix 2. Instrumentations and strategy of monitoring data in the Cointzio reservoir 

 

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

218 
 

Appendix 3. Interpolated (pink colour) and measured (blue colour) surface temperature in 
2009 

 

 
 

The reservoir surface temperature was estimated from a linear regression to the air 

temperature time series by the equation: Tsurf = 0.52*Tair+9.8, r2=0.84. 

 
 
 
 



 

219 
 

Appendix 4. Linear regression between MES (mg L-1) and Turbidity (NTU) from 

measurements data in the Cointzio reservoir 
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Appendix 5. Regression equations between chlorophyll a (µg L-1) and chlorophyll a (volts) 
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Appendix 6. The ratio between C and chlorophyll a in the Cointzio reservoir 
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Appendix 7. The resulting time series of vertical turbulent diffusivity obtained from the 

physical k-epsilon model 
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ABSTRACT 

 
The overall water quality of lakes and reservoirs continues to deteriorate in many regions of 

Mexico. The Cointzio reservoir, located in the southern part of the Mexican Central Plateau 

on the Trans-Mexican Volcanic Belt (TMVB), is no exception. This turbid tropical reservoir 

behaves as a warm monomictic water body (area = 6 km2, capacity 66 Mm3, residence time ~ 1 

year). It is strategic for the drinking water supply of the city of Morelia, capital of the state of 

Michoacán, and for downstream irrigation during the dry season. The reservoir is threatened by 

sediments accumulation and nutrients originating from untreated waters in the upstream 

watershed. The high content of very fine clay particles and the lack of water treatment plants 

lead to serious episodes of eutrophication (up to 70 µg chl. a L-1), high levels of turbidity 

(Secchi depth < 30 cm) and seasonal periods of anoxia (from May to October). 

Based on intensive field measurements in 2009 (sampling in the watershed, deposited 

sediment, water vertical profiles, reservoir inflow and outflow) we presented an integrated 

study of the hydrodynamics and biogeochemical functioning of the Cointzio reservoir. Water 

column measurements of temperature, TSS, DO, chlorophyll a, carbon and nutrients 

undertaken during the year 2009 were used to assess internal cycling in the reservoir.  

To complete field data analyses we examined the ability of some vertical one dimensional 

(1DV) numerical models (Aquasim biogeochemical model coupled with k-ε mixing model) in 

order to (i) reproduce the main biogeochemical cycles in the Cointzio reservoir and (ii) assess 

scenarios of nutrients (P and N) and eutrophication reduction in the coming decades. The k-ε 

model reproduced nicely the low to moderate temperature stratification which characterizes 

this turbid reservoir. The Aquasim model was able to reproduce the main patterns of DO, 

nutrients and chlorophyll a during the year 2009. The different simulations pointed out the 

negative long-term impact of global warming. By the end of the century (2090), an increase 

of air temperature as high as 4.4°C was predicted from Global Circulation Models. When 

coupled with a dry hydrological year, this scenario could lead to critical conditions with a 

severe depletion of DO and important blooms of chlorophyll a (up to 94 µg L-1). Various 

simulations showed that a drastic reduction of nutrients input (by 90%) would be required to 

significantly reduce chlorophyll a concentrations. If such mitigation measures are adopted, 

the maximum peak of chlorophyll a would reduce significantly, from 94 μg L-1 to 40 μg L-

1after a five-year period of efforts.  

To our knowledge, this study provides the first numerical application of k-ε and Aquasim 

models to simulate high eutrophication levels in a very turbid tropical reservoir. 
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