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Abstract: Many people now consider social networking to be an indispensable tool. There are now
over 4.6 billion social media users, who leave a digital footprint through their online interactions.
These big data provide enormous research potential for identifying the social and cultural aspects of
the monitored topic. Moreover, the use of social media platforms has been found to have an impact
on eating habits. The analysis of these social networks is thus essential to understand the factors that
influence eating habits. To this aim, we identified the main topics associated with food bloggers on
Twitter using the Social Media Analysis based on the Hashtag Research Framework of 686,450 Tweets
captured from 171,243 unique users from 1 January 2017 to 30 May 2022. Based on the analysis of
communication on Twitter, the most communicated hashtags in the food blogger sphere were as
follows: #yummy, #healthy, #homemade, and #vegan. From the point of view of communities, three
major clusters were identified, including (1) healthy lifestyle, (2) home-made food, and (3) fast food,
and two minor clusters were identified, namely, (4) breakfast and brunch and (5) food traveling.

Keywords: food blogger; healthy food; home-made food; vegan food; Twitter; social network analysis

1. Introduction

Social media platforms represent impactful channels of communication in our strongly
digitized lives, and have been increasingly used by food marketers to facilitate participatory
interaction [1–3]. Using high levels of visual complexity, food marketing communication
on social media has the potential to create an overall positive audience [4,5]. In the list of
the 100 overall Instagram and Twitter hashtags for likes published in 2022 by All Hashtag,
#food and #vegan were included [6,7].

Considering that blogging on social media platforms is based on the shared experience
of users, blogs represent a type of knowledge approaching direct practice [8]. Blogs on
social media can be characterized as multimedia “guides to life” [9]. They present a
unique personal view of life, as well as huge amounts of searchable data that are global
and relatively resource-efficient [10]. The blogosphere, as communicative interactions
of various posts, comments, trackbacks and hyperlinks among blogs in a chosen genre,
is highly dynamic [11]. Moreover, due to the blogosphere’s decentralized character, it
is impossible to state the exact number of blogs [12]. Bloggers on Instagram or Twitter
typically focus on a single area, such as food, travel, beauty, politics, technology, and health,
and topics related to food and nutrition are becoming increasingly prominent [13–15].

Food represents a crucial underpinning of human society due to its socializing func-
tion [16,17]. Traditionally, communication about food occurred in a top-down process,
whereby renowned experts (by training and profession) instructed the general public on
how to cook [18]. Social media platforms have made it possible for everyone to share
information about their food-related interests with internauts who share their passion
(Diemer et al., 2014), which results in co-creation of their “digital foodscapes” [19]. Ac-
cording to previous research [20], the most common motivation for creating a food blog is
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the love of food and willingness to care for oneself and the public through food. In other
research [21], 75% of food bloggers reported creating content for their personal satisfac-
tion, followed by recognition from relatives (29%) and recognition from other bloggers
(27%). Social media posts about food reflect a complex cultural shift, and transform passive
media consumers into active co-creators of media production [22], as they go beyond
displaying and enacting food-centered stories [23]. As noted by previous authors [24],
these posts have an increasingly domestic orientation and the most-used word to depict
them is “day-to-day” cooking.

Current research has focused on a variety of dietary specificities of food blogs and
their impact on customer behavior, such as clean eating blogs [14,25], healthy eating
blogs [26–28], and vegan diet blogs [29,30]. The major impact of these social media influ-
encers lies within their ability to redefine what is considered to be current and updated [31].
It is essential to understand the dominant voices that sound across these digital food-
scapes, what kinds of discursive resources they use, and how they inhabit and nurture
their growth [32]. Twitter food blogs can be places to find recipes [33], information on
various types of diets [34], advice and influence about child feeding behavior [35], and
instructions for older people on how to stay well by publishing advice on nutrition [36],
among others. To summarize, social media platforms may influence consumer behavior
in numerous ways; therefore, it is critical for businesses involved in the food industry to
study the potential of the data they provide. These data could be used at multiple stages
of the business decision-making process to help understand which issues and trends are
evolving [37,38], and to identify opportunities and threats to derive knowledgeable impli-
cations, particularly those involving marketing, such as product development, innovation,
brand engagement, and competitive intelligence [39].

1.1. Food-Choice Methodology Related Consumer Research

To promote both human and planetary health, experts from several domains have
over the years produced conceptual models that address issues influencing food choice.
To better understand how various factors are involved in and interact with one another
during the decision-making process, a multidisciplinary approach is necessary [40].

From a psychology perspective, most daily decisions are made without much thought
or effort and are based on our experiences, feelings, and intuition [41]. However, most
consumer science practices today require people to think consciously about their actions and
behaviors, which could render the collected data less valid and reliable [42,43]. Methods
based on direct questions can lead to biased, socially desirable, and over-rationalized
responses, even if unintentional [44], and yet questionnaire surveys are still a frequently
used tool in food choice research [45].

Each research method has its strengths and limitations. The greatest limitations of
questionnaire surveys are the low response rate (sample size) and their time-consuming
nature [46]. For example, previous studies implementing the Food Choice Question-
naire reported samples ranging from 121 to 5752 respondents (for example: n = 121 [47],
n = 273 [48], n = 525 [49], and n = 5752 [50]). That said, questionnaire surveys allow personal
data about respondents to be obtained, and thus to assess differences between individual
segments in terms of socio-demographic characteristics.

In the context of social network analysis, questionnaire surveys have both advantages
and disadvantages. Existing research in the food domain has reported samples of more
than 100,000 social media platform users (for example, n = 427,936 [51], 313,883 [52], and
168,134 [53]). Yet, there is an absence of socio-demographic data. Based on previous
research, the comparison of results from individual-based research approaches could be
the optimal way to understand the individual determinants of food choice behavior.

1.2. Research Opportunities and Importance of Social Network Analysis

At present, there are over 4.6 billion social network users [54], and this is expected to
increase to 5.85 billion social network users by 2027. If we compare these data with the
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predicted global population in 2027, approximately 70% of the population will use social
networks (in 2022, this was 57%) [55].

Social network users are no longer just passive recipients of messages, but also creators
of active and passive digital footprints through activities on social networks. An active
digital footprint is primarily about creating content that communicates values, experiences,
attitudes, and opinions [56–59]. This opens up the possibility of using this digital footprint
for scientific and research purposes by analyzing communication on social networks. The
importance and topicality of social network analysis has been demonstrated in research on
a variety of topics, such as tobacco [60], sustainable tourism [61], organic wine [62], and
smart home adoption [63].

Analysis of communication on social networks in the field of food is very important,
mainly because these platforms affect consumers’ everyday lives in many ways, including
dietary decisions and food preferences [51,64]. Understanding the factors that influence
food choices is essential to the successful translation of dietary objectives into consumer
behavior, business marketing, and health policy [53,65]. So-called “digitized food” has
occupied all social media platforms, and plays a main role in facilitating the construction of
contemporary digital communities and food-based marketing [32]. Positioned within the
context of recent debates in the field of food marketing communication [66,67], the present
study mapped part of the digital foodscape through identification of a distinct grouping of
online food voices on Twitter. Our findings shed light on Twitter food communities and
their shared values, including trending issues, which could be useful for food businesses in
the development of their social media marketing activities.

1.3. Social Media Analysis Based on Hashtag Research (SMAHR) Framework

The uniqueness of the SMAHR framework stems primarily from the fact that this
framework is focused on the social media analysis while employing social network analysis
methods, such as Frequency, Eigenvector centrality, Community analysis and modular-
ity [68]. With these specifics, the SMAHR is a competitive framework that may be utilized as
an alternative framework in the field of social media analysis, most of which are primarily
focused on semantic and sentiment analysis [69].

Hashtag analysis provides additional information on another method of social media
analysis with a focus on Image or text analysis.

(a) Image analysis is a method, where we classify individual objects in the image using
machine learning models. This method is more suitable for “image-oriented social
media” such as Instagram [70].

(b) Text analysis is focused on the text part of message. Frameworks focusing on social
media analysis applying natural language processing may fail to detect specific types
of information since the report from which the hashtags are removed may be devoid
of information. Furthermore, sarcasm is frequently utilized in the text, which the
Natura Language algorithm finds difficult to recognize [71].

Based on the aforementioned aspects, the SMAHR framework provides a tool for
research triangulation, which has already been proven in previous work [65,65,72,73].

1.4. Research Gap

Our findings illustrate that social media data analysis can provide highly useful
insights into a breadth of related views, and also support those obtained using tradi-
tional methods.

1.5. Research Question and Aim of the Study

Based on the preceding literature, we asked the following research question: “What do
food influencers say, when they tweet about food?”. The aim of the study was to identify
the main topic associated with food bloggers on Twitter using the Social Media Analysis
Based on Hashtag Research (SMAHR) Framework.
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The paper is structured as follows: the Introduction of this paper offers a brief theoret-
ical background about food marketing communication on social media, an overview of our
research approach and research opportunities, and the importance of social media analysis.
In the Materials and Methods, we describe the process of SMAHR. The Results and Dis-
cussion report the most communicated hashtags used by food bloggers on Twitter. Our
community analysis presents further insights into the communication on social networks
by identifying communities and their size, which also reveals the most interesting issues
in Twitter food debates. We also identified the most communicated individual diet on the
Twitter social media network. In the Conclusion, we clarify that food marketers could use
Twitter effectively for their marketing activities, especially in connection with identified
communities and trending topics.

2. Materials and Methods

The SMAHR Framework, initially developed for hashtag analysis, was used to analyze
the data [68]. On Twitter, the hashtag refers to the part of the Tweet depicted by the
hash “#” symbol. Hashtags have two basic functions on social media: first, as a filter to
show messages according to a selected topic [74], and second, as a way to place values,
experiences, attitudes, and opinions at the center of the message [56–59]. In the case of a
food blogger, the hashtag #veganfood can be used to highlight the vegan food value of the
message, which may not be apparent from the text and photography.

The SMAHR Framework has been successfully used in studies on farmers’ mar-
kets [65], organic foods [52], corporate social responsibility [73], sustainability [39], gam-
ification [75,76], and healthy food [51,53]; the SMAHR Framework-based data analysis
process consists of the five following steps (see Figure 1):
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(1) Data acquisition: The Twitter API [77] was used to extract messages (Tweets) from the
Twitter network. Tweets were collected in the time period between 30 May 2017 and
30 May 2022 (a 5-year period). In total, 686,450 Tweets with the hashtag #foodblogger
were captured from 171,243 unique users by the Python script [78] during that period.
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This dataset contained all messages sent to the Twitter social network that included
the hashtag #foodblogger during the monitored period.

(2) Content transformation: As our study was focused on hashtags, we excluded any
phrases that did not start with the hashtag symbol (“#”). This resulted in a dataset
consisting only of hashtags (i.e., words beginning with #). Subsequently, all upper-
case characters were changed to lowercase letters to eliminate any duplications (for
example, the program could interpret #Healthy, #healthy, and #HEALTHY to be three
different hashtags). Then, a last change was made to separate strings of associated
hashtags, such as “#healthy#organic,” which became “#healthy; #organic.” The data
were imported into Gephi 0.9.3, and a hashtag corpus based on the interdependence of
hashtags was developed (see Figure 2). Gephi is an open-source software for network
visualization and relationship between nodes (hashtags) exploration [79].
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(3) Hashtag reduction: Hashtag reduction was required in order to eliminate micro-
communities prior to undertaking the community and modularity study. An abun-
dance of hashtags, including local hashtags such as “#dallas” and “#dallasmicrocom-
munities,” creates much noise.

(4) Data mining: The hashtag network was described using the data mining methods
listed below:

(a) Frequency: A frequency is a number representing the frequency of hashtags in
a network.

(b) Eigenvector centrality: This metric reflects the impact of hashtags in a network
and is an extension of degree centrality. Eigenvector centrality is calculated
based on the premise that links to hashtags with high degree centrality values
have a larger impact than links with similar or lower degree centrality values.
A hashtag with a high eigenvector centrality value is connected to a large
number of hashtags with a high degree centrality value. The eigenvector
centrality was determined as follows:
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xv =
1
λ ∑

t∈M(v)
xt =

1
λ ∑

t∈G
av,txt (1)

where M(v) denotes a set of adjacent nodes and λ is the largest eigenvalue.
Eigenvector x can be expressed by Equation (2), as follows:

Ax = λx (2)

(c) Community analysis and modularity value: The most convoluted networks
feature hashtags that are more closely related to one another than to the rest of
the network. Communities are groups of such hashtags [80]. Modularity is an
index that measures the cohesiveness of communities inside a network [81].
The goal of this analysis is to find hashtag groups that are more strongly linked
than other hashtag communities. High modularity networks demonstrate
significant relationships between hashtags within the community, but fewer
links between hashtags in different communities [82]. Based on one modularity
detection study [83], the community analysis then determines the number of
various communities in the network, as follows (see Equation (3)):

∆Q =

[
∑in +2ki,in

2m
−
(

∑tot +ki
2m

)2
]
−
[

∑in
2m
−
(

∑tot
2m

)2
]

(3)

where ∑in is the total number of weighted links inside the community, ∑tot is
the sum of weighted links incident to hashtags in the community, ki is the sum
of weighted links incident to hashtag i, ki,in is the sum of weighted links going
from I to hashtags in the community, while m represents the normalization
factor as the sum of weighted links for the entire graph.

(5) Knowledge representation: The use of visualization tools to represent the outcomes
of data mining is known as knowledge representation. Knowledge is represented
through the synthesis of individual values and outputs from the data assessment process.

3. Results and Discussion

First, the frequency of individual hashtags in connection to Food Bloggers was ana-
lyzed (see Table 1).

Table 1. Hashtags tweeted in connection with the hashtag #foodblogger on Twitter.

No. Hashtag Frequency Eigenvector
Centrality No. Hashtag Frequency Eigenvector

Centrality

1 #foodblogger 686,450 1 16 #homemade 69,514 0.981272
2 #foodie 319,361 0.999088 17 #tasty 68,151 0.985122
3 #food 291,155 0.999291 18 #foodgasm 67,723 0.984966
4 #foodporn 202,342 0.996423 19 #recipes 62,243 0.96859
5 #foodphotography 157,368 0.994621 20 #dinner 59,555 0.989529
6 #yummy 142,153 0.991842 21 #love 46,012 0.982301
7 #delicious 129,975 0.991128 22 #foodpics 44,557 0.983585
8 #foodstagram 128,112 0.991433 23 #instagood 43,199 0.983739
9 #foodlover 123,272 0.992486 24 #healthy 35,465 0.972448
10 #instafood 101,580 0.990388 25 #vegan 35,122 0.981412
11 #healthyfood 81,997 0.983406 26 #blogger 33,071 0.987989
12 #foodies 81,501 0.992421 27 #chef 32,989 0.981213
13 #recipe 79,525 0.976214 28 #lunch 32,267 0.985012
14 #foodblog 78,431 0.991668 29 #eat 32,153 0.974965
15 #cooking 72,079 0.986917 30 #foods 31,029 0.975571

As shown in Table 1, the hashtags can be divided into two categories:
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(1) Hashtags that are broad categorizations of a topic, such as #food or #blogger

As shown in Table 1, many hashtags used in the area of “food bloggers” on Twitter
are essentially synonyms. In second and third place were the hashtags #foodie and #food.
These hashtags characterize the content of the message—food—as do the hashtags in fifth
place (#foodphotography) and in twelfth place (#foodie). These hashtags are expected in
the field of food, as is the hashtag #foodporn [84]. In recent years, #foodporn has become
a trend in which social media users photograph their meals before or after consumption
and upload them on the social networks [85]. The aim of these hashtags is to receive public
recognition in the form of likes, comments, and shares [86,87]. The hashtag #foodstagram
in ninth place identifies a profile that specializes in food and from which one can expect
more food news. This has the same meaning as the tenth-ranked hashtag, #instafood, the
fourteenth-ranked hashtag, #foodblog, and the twenty-sixth-ranked hashtag, #blogger.

(2) Hashtags identifying the characteristics of a given Tweet

In sixth and seventh place were the hashtags #yummy and #delicious. These hashtags
express the positive assessment of food in terms of taste [53]. In eleventh place was
the hashtag #healthyfood, which describes the characteristics of food [51,53], as does
the hashtag #healthy, which placed twenty-fourth and has the same meaning. This was
followed by the hashtag #homemade in sixteenth place, which expresses the characteristic
of home-made production, and, in nineteenth place, the hashtag #recipes, which indicates
that the Tweet contains a recipe for the food presented in a post. In terms of the three basic
meals of the day (breakfast, lunch, and dinner), food bloggers most often referred to dinner
(see Table 2).

Table 2. Meals of the day tweeted in connection with the hashtag #foodblogger on Twitter.

Meals of the Day Frequency

Breakfast 24,231
Brunch 7327
Lunch 32,267
Dinner 59,555
Snack 8008

The hashtag #vegan placed twenty-fifth, and refers to a vegan diet. In general, a diet is
a certain food selection chosen by an individual or group. This can either be a selection of
foods that they want to eat, or that they do not want to eat. Dietary choices are frequently
influenced by a range of variables, such as ethical and religious views, environmental
perspectives, animal welfare, therapeutic needs, and weight control. The following three
basic diets were found among the top 1000 hashtags: #vegan, #vegetarian, and #glutenfree
(see Table 3).

Table 3. Type of diet published in connection with the hashtag #foodblogger on Twitter.

Type of Diet Frequency

Vegan diet 32,153
Vegetarian diet 12,363

Organic food diet 10,117
Gluten-free diet 7483
Weight loss diet 3261
Clean eating diet 2907

Low-carb diet 1235
Dairy-free diet 1757
Sugar-free diet 670

Food choices have a direct impact on our physical and mental health through con-
sumption, as well as an indirect impact on how we view ourselves and how others view
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us in terms of nutritional trends, our relationship with the environment, and animal wel-
fare [88–92]. Influencer marketing is a very important part of shaping the image of the
world, and young people in particular, who spend an average of 3.2 h/day on social
networks [93], are greatly influenced by this communication.

It is possible to identify positive communication in the area of food using an analysis
of communication on Twitter, because the most communicated characteristics are yummy,
healthy, home-made, and vegan.

Our results confirmed that the vegan market, which encompasses not only food but
also cosmetics, apparel, and entertainment, is one of the largest consumption trends and
is gradually increasing [94]. Veganism is an ever more popular lifestyle philosophy that
aspires to abolish all types of animal exploitation and cruelty for food, clothing, and any
other purpose [95].

When looking at meat, we identified the following types of meat according to their
labeling in Tweets. Poultry was mentioned the most often (16,165 posts), followed by
seafood (6333 posts) and beef (4657 posts). For more information, see Table 4.

Table 4. Meat categories tweeted in connection with the hashtag #foodblogger on Twitter.

Meat Category Frequency

Poultry * 16,165
Beef 4657

Seafood 6333
Pork 2828

Mutton and Goat 1051
* Poultry: Duck, goose, turkey, and chicken.

3.1. Community Analysis

Community analysis provides a different method for analyzing communication on
social networks. The following five communities were extrapolated from the community
analysis: home-made food, healthy lifestyle, fast food, breakfast and brunch, and food
traveling (Table 5).

Table 5. Communities detected in connection with the hashtag #foodblogger on Twitter.

No.
Community *

Name of
Community Key Hashtags Size of

Community

1 Healthy lifestyle
Healthylifestyle, vegan,

healthyeating, vegetarian,
glutenfree, organic, diet

35.92%

2 Home-made food Tasty, healthy, homemade, dinner,
homemadefood, homecooking 32.95%

3 Fast food
Pizza, pasta, burger, delivery,

yummy pizzatime,
cheatdate, delicious

18.94%

4 Breakfast and brunch
Cake, sweet, chocolate, coffee,

baking, cook, desserts,
brunch, breakfast

7.56%

5 Food traveling Travel, travelblogger, travelgram,
foodtravel, traveler, travelfoodblog 4.64%

* The community numbers are associated with those shown in Figure 2.

The largest community was the “healthy lifestyle” community, which contained hash-
tags that were associated with areas such as healthy lifestyle, vegan, healthy eating, vege-
tarian, gluten free, organic, and diet. This community is focused on a healthy lifestyle that
users associate with a vegan, vegetarian, and gluten-free diet, which has been supported
by prior research into the perception of healthy and organic food [51–53].
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The second largest community was “home-made food”. This community contained
hashtags that were focused on healthy, home-made food and cooking. This community also
included the hashtag #dinner, which indicates that home-made food was mostly served
as dinner. Home-made food is food prepared at home and is associated with healthy
characteristics [51].

The third community was “fast food”. This community included the hashtags #pizza,
#pasta, #burger, #delivery, #yummy, #pizzatime, #cheatdate, and #delicious. In this fast
food area, food bloggers presented food as “yummy”. This community comprised 18.94%
of all communication, and was partially connected with the food traveling community (see
Figure 2). The use of this community in the field of healthy food lifestyle can be explained
by the fact that healthy food bloggers sometimes show that they eat unhealthy food; this
allows them to show their human side, remind others that a diet is a personal journey, and
that so-called “cheat days” are sometimes necessary [96]. This behavior can bring many
positive reactions [96].

The fourth community was focused on “breakfast & brunch”, and contained the hash-
tags #cake, #sweet, #chocolate, #coffee, #baking, #cook, #desserts, #brunch, and #breakfast.
This community was connected with the “fast food” community.

The last, fifth community was the “food traveling” community, which concerns the
communication of food consumed while traveling by food bloggers. This community
includes the hashtags #travel, #travelblogger, #travelgram, #foodtravel, #traveler, and
#travelfoodblog.

The low polarity of individual clusters was identified based on a visual analysis,
which was supported by the modularity value of 0.122. Individual communities were not
polarized among themselves, as is the case, for example, with communication on political
topics [97].

Practical implication
The practical implications can be divided into three following areas:

(1) Consumer behavior

Community analysis allowed us to detect clusters of potential customers, the most
associated hashtags offer primary orientation in their buying choices. The largest identified
community was “healthy lifestyle”, associated with the hashtags vegan, healthy eating,
vegetarian, gluten free, organic, and diet. This presents a signal for food businesses with
regard to the food purchases of customers willing to adopt a healthy diet.

(2) Business Marketing

The most tweeted meal of the day is dinner. Since the basic characteristic of food
bloggers is home preparation, it can be assumed that the most frequently prepared meal at
home is dinner (or that the greatest interest in home-prepared food is dinner). This can be
used by marketing communication of the offered product as usable (suitable) for dinner,
similarly to vegan diets (increase the offer of vegan products or for products that meet the
characteristics but are not presented as such, and present them as vegan).

(3) Healthy Policy

The most consumed meat is poultry. Either a campaign can be implemented to
draw attention to the fact that poultry meat is full of antibiotics (but that would probably
require a deeper insight into the issue) or a campaign could be implemented to support the
consumption of fish, since research has shown that they are not given the attention that is
warranted from a health perspective.

3.2. Limitations

Social media analysis has strong research potential because of the expanding social
media usage trends; however, several study limitations deserve attention. The first re-
search limitation is related to the use of the SMARH framework [68], which only focuses
on hashtags.
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The second research limitation is usage of only one social network—Twitter. Every
social network has its audience. Unfortunately, as a result of the Cambridge Analytica data
scandal in 2018, Meta stopped the API for Facebook and Instagram [98].

The third limitation is the lack of resolution of geolocation, in that we employed an
analysis of global communication without information about locality.

The fourth limitation is the 5-year time series and the period of the COVID-19 pan-
demic. The COVID-19 pandemic has affected people’s behavior in many ways. One of
which is certainly the food behavior of some users. Currently (2022), it is not possible to
determine whether we are in a post-COVID-19 pandemic period, or whether we are still in
the midst of the COVID-19 pandemic. Future studies based on this limitation are created in
the following chapter.

3.3. Future Research

Following our analysis of global communication results, further research should
aim to identify regional specifics that are associated with these global communication
results. Another potential research direction is the analysis of communication on other
social networks, such as Instagram, TikTok, and LinkedIn, in case of API opening for free
download of data.

Following the COVID-19 pandemic, it would be appropriate to conduct research into
behavioral changes related to the pandemic with the endowment of hindsight (3–5 years).

4. Conclusions

Our analysis of communication on the social network Twitter in the domain of food
bloggers revealed that this area was mostly associated with the topics of “healthy food”
and “healthy lifestyle”, followed by the topic of “home-made food”. The largest identified
community was “healthy lifestyle”, associated with the hashtags vegan, healthy eating,
vegetarian, gluten free, organic, and diet. This presents a signal for food businesses with
regard to the food purchases of customers willing to adopt a healthy diet. Hashtags
that were most communicated in connection with food bloggers were #yummy, #healthy,
#homemade, and #vegan (synonyms are omitted here), which support research focused on
healthy food in the area of increasing interest in homemade and vegan products, which is
an important finding in the area of marketing communication of products to customers.
Moreover, three major communities were identified (healthy-lifestyle, home-made food,
and fast food), and two minor communities were identified (breakfast and brunch and
food traveling). When focusing on the selection of individual diets, the vegan diet was
the most communicated diet in connection with food bloggers, followed by the vegetarian
diet and gluten-free diet. In terms of meat choice, poultry was the most popular. This
finding again supports the growth of support for vegan products, which can be used both
in strategic marketing in the area of communication and in strategic management in the
area of product portfolio differentiation.
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