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Food Income and the Evolution of 
Forager Mobility
Elizabeth Gallagher  1,2, Stephen Shennan3 & Mark G. Thomas  1,4

Forager mobility tends to be high, although ethnographic studies indicate ecological factors such as 
resource abundance and reliability, population density and effective temperature influence the cost-to-
benefit assessment of movement decisions. We investigate the evolution of mobility using an agent-
based and spatially explicit cultural evolutionary model that considers the feedback between foragers 
and their environment. We introduce Outcomes Clustering, an approach to categorizing simulated 
system states arising from complex stochastic processes shaped by multiple interacting parameters. We 
find that decreased mobility evolves under conditions of high resource replenishment and low resource 
depletion, with a concomitant trend of increased population density and, counter-intuitively, decreased 
food incomes. Conversely, increased mobility co-occurs with lower population densities and higher 
food incomes. We replicate the well-known relationships between mobility, population density, and 
resource quality, while predicting reduced food income, and consequently the reduction in health status 
observed in early sedentary populations without the need to invoke factors such as reduced diet quality 
or increased pathogen loads.

One of the obvious reasons foragers are mobile is their search for resources1, or better ones2, particularly in ecolo-
gies where resources can quickly become depleted or are slow to recover. However, in some ecologies (for example 
along coastlines) resources are more predictable and less easily depleted, or recover more quickly, and under these 
conditions foragers typically have reduced mobility3,4. Indeed, it can be seen that high mobility correlates with 
lower population density, lower food availability, less dependence on �sh or higher e�ective temperature3.

When population density is high, food density can be relatively low due to depletion, and thus the net return 
of moving to another low quality resource patch can be less than that of staying put5. Furthermore, movement 
to high population density adjacent patches may be hindered. �us, the Ideal Free Distribution (IFD) model 
predicts that on moving into a new environment individuals will select the highest quality resource patches, 
but as these �ll up and interference competition increases they will obtain equally good pay-o�s by moving to 
patches of a lower quality6,7. Marginal value theorem8 predicts that under these circumstances foragers should 
stay longer at patches, whereas when population densities are low relative to resources5 foragers are predicted 
to move frequently amongst patches. Similarly, when there is a strain on resource availability – perhaps because 
of high population density – foragers consider more patches in their decision of where to move, so the distance 
between patches is smaller and thus mobility again decreases9. Kelly3 suggests that since the presence of seden-
tary groups in a region removes possible resource areas from mobile groups, this might create a domino e�ect 
of switching to sedentism. �e presence of low mobility groups in a region may also lead to a split between two 
successful strategies, a sedentary one exploiting the good patches and a mobile one exploiting those areas where 
sedentism is unviable.

On the other hand, in addition to resource procurement, mobility may facilitate other �tness enhancements 
in low density populations, including access to unrelated mates, and the establishment of more extensive social 
networks10. �e latter can bu�er against resource availability �uctuations11, increase resource knowledge to allow 
subsistence �exibility12,13, and maintain or increase culturally inherited technological complexity13,14. However, 
there are considerable costs to movement, including energy expenditure, planning, predation and other risks, 
opportunity loss, and time4 – all of which are likely to favour reduced mobility.

While local and neighbouring regional population densities have been implicated in mobility decisions, such 
densities must themselves be shaped by the same resource depletion and replenishment rates that in�uence 
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mobility, but on a year-to-year rather than day-to-day time scale. �e most dramatic change in mobility seen in 
the archaeological record is that associated with the transition from hunting-gathering to food production. �is 
shi� is associated with sedentism, an increase in population density15, and a reduction in health status16. However, 
the latter is widely seen not as a direct consequence of sedentism itself, but rather as a consequence of reduced 
dietary breadth and nutrient balance, and increased pathogen loads through increased population density, urban-
ization, proximity to animals, poor sanitation and long-distance trade17–23. While the innovations leading to full 
dependence on domesticated plants and animals are likely to be complex – including property rights and stor-
age24–26 – any shi� towards food production will slow resource depletion and increase replenishment rates.

Models can help to sharpen intuitions, reveal unexpected behaviours and test hypotheses, and are especially 
valuable when trying to understand past events where real time experiments are not possible, as is o�en the 
case in archaeology. In this study we develop a spatially-explicit agent-based cultural evolutionary simulation 
model to examine the extent to which mobility, population density and food income/health (as measured by 
non-cumulative food resource procurement in a single time step) are shaped by resource depletion and replenish-
ment rates. Our model considers the feedback between people and their environment (as in27), and includes a cul-
turally inherited and mutable mobility strategy, population growth, food income changes, and resource depletion 
and replenishment processes. It also includes movement decisions in an environment where resource availability 
varies (as in2,27,28).

Model Overview
�e Model simulates families moving around a region comprising a 2 dimensional grid of equally sized hexagonal 
sites. �e model is iterative and each iteration is considered to represent one year. While we recognise that 
hunter-gatherer movements occur on an intra-annual basis, our model is intended to capture the overall mobility 
from year to year. Each site has a dynamic foraging quality, q

f
 representing the food resources available. Family 

units (or ‘agents’) forage at one site in each iteration (multiple agents can co-occupy a single site). �e agent’s 
foraging creates a feedback between the foraging quality of the site and the agent’s food income. �e food income 
of an agent refers to short-term food procurement, and consequently well-being. It also a�ects the likelihood that 
an agent will �ssion or die, and so is related to �tness and population growth. It also has no cumulative (i.e. stor-
age) or hereditary (i.e. passed on in an intergenerational manner) component. In this sense, an agent’s food 
income at the end of one iteration is not added to its food income in the next iteration, but rather it is recalculated 
based on the new environmental conditions. Agents have a mobility strategy, m, which is the probability of mov-
ing site in an iteration. �us sedentary agents are those with m close to 0, and highly mobile agents are those with 
m close to 1. Agents can die, �ssion, mutate mobility strategy, and move from site to site, according to di�erent 
probabilities. A visualization of two iterations of the model can be seen in Fig. 1 and the stages of the model are 
shown in Fig. 2.

Foraging resources stay within each site, and so do not include migrating animals. We assume there are two 
forces that act on the dynamics of a site’s foraging quality (q

f
): the natural replenishment rate, r, and a depletion 

scalar for when agents forage at the site, λ. We assume foraging quality grows logistically to a carrying capacity of 
1, and that the amount of depletion is population density-dependent (as in27,29,30). �us at iteration t+1 the forag-
ing quality at a site is the natural replenishment minus depletion due to foraging, i.e.:
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where n is the number of agents occupying the site.
�e food income of an agent changes within its lifetime, and is calculated at iteration t as:

Figure 1. A visualisation of the model. Agents (white numbers) move from site to site (green hexagonals). �e 
shade of the hexagonal re�ects the foraging quality of the site – where the best quality is shown in bright green, 
and worst quality in dark green. �e foraging qualities change from year to year according to natural growth 
and depletion.
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 then the agent 

dies. Hence, there is no accumulation of food income as the agent’s food income in the last iteration does not 
a�ect its current food income.

A successful family (agent) should be interpreted as one that is able to support its members, and hence a high 
food income level means an agent has procured su�cient resources to split, generating a new agent. When �ssion 
occurs the new agent occupies the same site as the parent agent, but is then free to move in the next iteration. 
�e new agent will have the same mobility strategy as its parent and a randomly chosen initial food income value 
(re�ecting the non-heritability of food income).

We assume that if an agent has the minimum food income ( f
min

) then there would be no chance of �ssioning. 
Using information from both3 and31 (see SI Appendix, section 1 for details of this data) we set the relationship 
between an agent’s food income and its probability of �ssioning, p, as

= −p p
p

f
f
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where data from3 indicates p 0 14
max
= .  and f

min n

1

max

= . See SI Appendix, section 2 for the details of these 

assumptions.
Following �ssion, all agents can then mutate their mobility strategy with probability µ ∈ [0, 1] each iteration. 

�is mutation could be thought of as random experimentation in cultural learning. We assume that approxi-
mately every generation, taken as 25 years, an agent changes the way it moves, and thus µ = = .1/25 0 04.

Change in mobility strategy is informed by both the agent’s food income and previous strategy. We use a 
Binomial distribution to pick the new mutated strategy value from, with parameters chosen such that the strategy 
value will not change much if the agent has a high food income level, and conversely if the agent has a low food 
income level then the change will be less conservative. �us, the rate of change in a cultural strategy is pay-o� 
dependent – �tting with the idea of necessity being “the mother of invention”32 (but see33). We describe the 
assumptions and the distribution for this in SI Appendix, section 3.

�e model allows for the evolution of the mobility strategy by natural selection, such that if, for example, a 
low mobility results in high agent food income, then agents with a low m value will be more likely to survive and 
�ssion (and so pass on their low m value) compared to agents with a high m value. Furthermore, we introduce 
variation into the population via the mutation step, so new and possibly more advantageous strategy m values can 
evolve. However, mobility strategies could emerge in a population randomly, or be set by the starting conditions, 
so to distinguish between the e�ects of selection on the one hand, and random cultural dri� and starting condi-
tions on the other, we introduce a ‘null strategy’. All agents have a null strategy that is initialized, passed on, and 
mutated in exactly the same way as the mobility strategy, but has no e�ect on behaviour or food income, i.e. the 
null strategy is randomly assigned and its value is unlinked to any agent behaviours. �us we can compare the 
changes in null strategy with the changes in mobility strategy to see if there are any real selection e�ects.

Re�ecting a key assumption of the IFD, agents are able to distinguish, and are more likely to move to, more 
‘attractive’ sites. Site attractiveness is a relative measure of how close a site is, scaled by how �t an agent could be 
if it moved there, and ranges between 0 and 1 (full details are given in SI Appendix, section 4). Moving sites costs 
the agent an amount of food income scaled by the distance it moves. If an agent moves from site a to site b its new 
food income level is

f f da b,η= −′

Figure 2. Stages of the model.
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where η is the cost of movement parameter, da b, is the distance between sites and f ′ was the agent’s food income 
before moving. We would expect that the outer sites in the region would be less densely populated than the inner 
sites since movement to inner sites is more likely.

Using ethnographic data3 we �nd that in a 10×10 region a realistic value for the maximum number of agents 
at a site, nmax, is 6 and the area of a site is 10 km2 (for full explanation see SI Appendix, section 5). �ere are 

ρ n s s
init max x y agents in the initial iteration of the model, where ρ

init
 is the initial population density, nmax is the max-

imum number of agents which can be supported at one site, and s sx y is the number of sites in a region (i.e. 10×10). 
�ese initial agents are all randomly assigned a site to occupy, their food income is randomly assigned in f[ , 1]

min
, 

and their mobility strategy is randomly assigned in [0.01, 0.99]. �e foraging qualities of sites are also randomly 
assigned in q[ , 1]

f min,
.

�e 4 main steps for every iteration of the model are: Foraging quality and food income updates -> Fissioning 
-> Mutation -> Movement. In the �rst and last steps, death of un�t agents can occur (Fig. 2). All the parameters, 
constants and variables in the Forager Model are given in Table 1.

Results and Discussion
Of the 100,000 simulations performed, 98,514 had ≥15 agents in the �nal iteration. �e 1486 simulations with 
<15 agents had very low values for the replenishment rate, r, high depletion rates, λ, and high costs of move-
ment, η. Under these conditions agents are unlikely to be sustained long-term, even at low population densities. 
Correlation coe�cients between parameters and outcomes are given in Table 2.

�e distributions of the simulation outcomes (number of agents, mean strategy values, mean food income and 
mean foraging quality) in the �nal iteration are shown in Fig. 3a–e. From this we see that the distribution of �nal 
mean mobility strategies is bimodal (Fig. 3b) – some simulations have mostly mobile agents in the �nal iteration, 
and some simulations have mostly sedentary agents in the �nal iteration. To see how these two di�erent types of 
mobility outcome co-occur with the other outcomes we develop the Outcome Clustering (OC) method described 
in the Methods section.

�e nine clusters of simulation outcomes found using the OC method all had over 5000 simulations assigned 
to each. Table 3 gives a summary of the properties of each cluster. In Fig. 4 each pair of outcome values are plotted 
for each simulation and coloured by the cluster the simulation was assigned to. Figure 5 shows the distributions of 
values for both the parameters (Fig. 5a–d) and the outcomes (Fig. 5e–i) in each of the 9 clusters.

�e �nal mean null strategy does not correlate with any of the other outcomes of the model (see Table 2), 
whereas the �nal mean mobility strategy does. In Fig. 3d we see that the �nal mean null strategy values are always 
around 0.5 for all simulations, consistent with its values only being shaped by its initial random assignment and 
random dri�, and it not in�uencing other model outcomes. �ese results reassuringly indicate that mobility 
strategies are evolving adaptively, rather than by random cultural dri�.

Type Symbol Description
Default 
Value Range

Value used or range 
varied in simulations

Parameter r Foraging quality replenishment rate — [0, 1] [0, 1]

Parameter λ Foraging quality depletion scalar — [0, 1] [0, 1]

Parameter κm Mobility strategy conservatism — — [50, 150]

Parameter pmax Maximum probability of �ssion 0.14 [0, 1] 0.14

Parameter η Food income cost of movement per site — [0, 1] [0, 0.1]

Parameter nmax Maximum number of agents which can be supported at a site 6 ≥1 6

Parameter µ Probability of mutation 0.04 [0, 1] 0.04

Parameter pinit Initial population density 0.1 [0, 1] 0.1

Constant sx Number of sites in the x axis 10 — 10

Constant sy Number of sites in the y axis 10 — 10

Constant qf,min Minimum foraging quality 0.1 — 0.1

Constant Nmax Maximum number of families possible in the region 600 nmaxsxsy 600

Constant Ninit Total number of agents initially 60 ρ n s s
init max x y

Constant fmin Death food income level 0.17 n1/ max 0.17

Variable qf Site foraging quality — q[ , 1]
f min,

Variable m Agent mobility strategy — . .[0 01, 0 99]

Variable f Agent food income — f[ , 1]
min

Variable p Probability of �ssion — p[0, ]
max

Variable da,b Distance between sites a and b — d[0, ]max

Variable f* Potential food income at a site — (0, 1]

Variable A Attractiveness of a site — [0, 1]

Variable n Number of agents at a site — n[0, ]max

Table 1. Parameters, constants, and variables in the model.

https://doi.org/10.1038/s41598-019-42006-2


5SCIENTIFIC REPORTS |          (2019) 9:5438  | https://doi.org/10.1038/s41598-019-42006-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

The mobility strategy conservatism parameter, κm, makes no difference to which cluster a simulation is 
assigned to (Fig. 5c), and there were no correlations between mκ  and any of the model outcomes (Table 2). �is 
implies that our simulations are of su�cient duration for mobility strategies to evolve by selection towards evolu-
tionarily stable strategies, and are not limited by κm.

Other than mκ , the distributions of parameter values are di�erent in each cluster (Fig. 5a,b,d). For the cluster 
with the least mobile agents, the foraging quality conditions are optimal; the replenishment rates of foraging 
quality, r, are high (Fig. 5a) and the depletion rates, λ, are low (Fig. 5b). On the other hand, for the cluster with the 
most mobile agents, the foraging quality conditions are poor; the replenishment rates of the foraging quality, r, are 
at a mid-range values and the depletion rates, λ, are high. �us, in our model we found that low mobility evolves 
in good foraging quality conditions. �is is consistent with Kelly’s3 ethnographic data; in regions of low primary 
biomass and high new primary productivity (i.e. where there is more to eat) there are fewer residential moves. It 
is also similar to one of the �ndings from the Hamilton et al.4 model; changes in subsistence ecology (speci�cally 
increases in biodiversity) cause switches to sedentism.

Even in low mobility clusters a high movement cost would lead to lower agent food income levels and there-
fore more agent death, and indeed we see that when the food income cost of movement, η, is large, there are 
fewer agents (Fig. 5d,e). In the clusters where η is small there are more agents, and when η is very low, high agent 
mobility strategies become more viable since there are few costs to movement.

We �nd that the �nal mean mobility strategy is negatively correlated with the �nal mean foraging quality and 
positively correlated with the �nal mean food income; more mobile agents generally have a higher food income. 
�ese outcomes were not predicted since there is no explicit relationship between mobility and other aspects of 
the model (i.e. there are no equations directly in�uencing an agent’s mobility strategy, and it is free to evolve), and 
hence the e�ects are indirect and multi-factored. Since there is a food income cost to movement, one may expect 

r λ κm η
Initial mean 
mobility strategy

Initial mean 
null strategy

Final number 
of agents

Final mean 
mobility strategy

Final mean 
food income

Final mean 
null strategy

λ 0.01

κm 0.00 −0.01

η 0.01 0.00 0.00

Initial mean mobility strategy 0.00 0.00 0.00 0.00

Initial mean null strategy 0.00 0.00 0.00 0.00 0.00

Final number of agents 0.39 −0.64 0.01 −0.42 −0.01 0.00

Final mean mobility strategy −0.23 0.64 −0.03 −0.16 0.08 0.00 −0.63

Final mean food income −0.24 0.52 0.01 0.43 0.01 0.00 −0.80 0.47

Final mean null strategy −0.01 0.00 0.00 0.00 0.00 0.21 0.00 0.01 0.00

Final mean foraging quality 0.37 −0.38 0.01 0.68 −0.01 0.00 0.26 −0.59 −0.02 0.00

Table 2. Pearson’s moment correlation coe�cients for each pair of parameters and outcomes. �e 98,514 
simulations which had ≥15 agents in the 1000th iteration of the model were used to calculate these. Shade 
signi�es strength of the correlation where red is for positive correlations and blue is for negative.

Figure 3. Histograms of the properties of 98,514 simulations of the model in the 1000th iteration.
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mobility to be negatively correlated with food income. Furthermore, since staying at one site for a number of iter-
ations incurs a depletion cost to the site, it may also be expected that mobility would be positively correlated with 
foraging quality. Hence, there are some indirect mechanisms that in�uence the evolved mean mobility strategy. 
Since the density of agents is highly correlated with these outcomes, it is likely that this plays a part in these super-
�cially counter-intuitive outcomes. As the region is bounded, inner sites will be more densely populated, and thus 
we expect there will be some spatial variation in the mobility strategies and food income of agents. However, in 
this analysis we investigate and compare the mean behaviour of the agents in di�erent conditions and always keep 
the region size the same (the e�ect of varying this may cause more pronounced edge e�ects in smaller regions).

We found that some simulations give rise to agents with high mobility strategies and some give rise to agents 
with low mobility strategies (Fig. 3b). By using the Outcomes Clustering method we found that the simulations 
are not only categorizable by how high and low the mobility strategies are alone, but also by the other outcomes 
(Figs 4 and 5). We found that the cluster of simulations with the least mobile agents also had the highest density of 
agents, the lowest �nal mean food incomes and the highest �nal mean foraging quality. �e cluster of simulations 
with the most mobile agents had the lowest �nal mean foraging qualities and high mean food incomes.

�e outcomes of this model replicate to some extent the exponentially decreasing relationship between mobil-
ity and population density seen in the ethnographic data3 (see SI Appendix, Fig. S1). Previous explanations for 
this relationship include that sedentary life allowed for shorter birth intervals, as reduced mobility allows for 
increased energy for reproduction19, and that in more mobile societies more than one young child would be di�-
cult to carry34. However, we �nd that this relationship arises without the need to invoke such processes.

Cluster 
number

Number of 
simulations Mean r Mean λ Mean κm Mean η

Mean �nal 
number of agents

Mean �nal mean 
mobility strategy

Mean �nal mean 
food income

Mean �nal mean 
foraging quality

1 6082 0.53 ± 0.006 0.64 ± 0.006 99 ± 0.7 0.01 ± 0.0001 100 ± 0.8 0.80 ± 0.001 0.44 ± 0.001 0.54 ± 0.002

2 14061 0.32 ± 0.003 0.65 ± 0.004 99 ± 0.5 0.04 ± 0.0003 47 ± 0.2 0.73 ± 0.001 0.52 ± 0.001 0.62 ± 0.002

3 15253 0.61 ± 0.004 0.59 ± 0.004 100 ± 0.5 0.04 ± 0.0003 72 ± 0.3 0.67 ± 0.002 0.54 ± 0.001 0.74 ± 0.001

4 5655 0.10 ± 0.002 0.66 ± 0.006 100 ± 0.8 0.04 ± 0.0006 23 ± 0.1 0.60 ± 0.003 0.56 ± 0.002 0.59 ± 0.004

5 18317 0.39 ± 0.004 0.70 ± 0.003 100 ± 0.4 0.08 ± 0.0002 27 ± 0.1 0.58 ± 0.002 0.56 ± 0.001 0.86 ± 0.001

6 10972 0.65 ± 0.004 0.45 ± 0.004 100 ± 0.5 0.08 ± 0.0002 50 ± 0.3 0.53 ± 0.002 0.54 ± 0.001 0.90 ± 0.001

7 5219 0.61 ± 0.007 0.26 ± 0.005 101 ± 0.8 0.01 ± 0.0002 195 ± 1.7 0.46 ± 0.005 0.42 ± 0.001 0.77 ± 0.003

8 9884 0.63 ± 0.005 0.25 ± 0.003 100 ± 0.6 0.06 ± 0.0005 115 ± 0.5 0.27 ± 0.002 0.48 ± 0.001 0.85 ± 0.002

9 13071 0.66 ± 0.004 0.13 ± 0.002 101 ± 0.5 0.04 ± 0.0004 206 ± 0.8 0.13 ± 0.001 0.40 ± 0.001 0.90 ± 0.001

Table 3. Properties of each cluster found using the Outcomes Clustering method – the number of simulations 
assigned to this cluster and the mean value and 95% con�dence interval for each parameter and outcome.

Figure 4. Scatter plots for each pair of outcomes. Each point represents one of the 98,514 simulations that had 
≥15 agents in the 1000th iteration of the model, and are coloured by the cluster the simulation was assigned to. 
Red represents the cluster with the most mobile agents and blue represents those with the least mobile agents.
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�e relationship between low mobility and low food income levels is interesting since the environmental 
quality is better in simulations generating these outcomes, so one may expect the food income levels to be higher. 
However, these conditions also mean that more agents can be supported, and hence the low food income re�ects 
the fact that agent density is at or near carrying capacity (i.e. where there are a maximum number of agents at the 
lowest possible food incomes; also see35–39). While a relationship between sedentism, higher population density 
and poorer health (represented in part by the food income term in our model) has been observed in the archaeo-
logical record – with the onset of farming – this is usually explained by factors such as increased infectious disease 
loads and shi�s to poorer quality diets17–23. Such factors may be important, but as our model suggests, they are not 
necessary to explain this o�en cited relationship.

To better understand why reduced mobility and higher population density predict lower food income – and 
so poorer health – in our model, we examined temporal oscillations in agent food income levels under two sets of 
conditions; one set that generated (a) high mobility, low population density, high food income, and another set 
that generated (b) low mobility, high population density, low food income. �ese two sets of conditions were 
chosen using the mean parameter values in the most and least mobile simulation clusters found from the 
Outcomes Clustering method (given in Table 3). We found that under conditions generating (a), food income 
oscillations were of greater amplitude than under conditions generating (b); the mean interquartile range of the 
food income values for each agent in the low mobility simulations was 0.14 and in the high mobility simulations 
was 0.20 (see SI Appendix, section 7, which gives the full details of these simulations and statistical tests). �is can 
be explained by mobility costs; high mobility generates additional food income drain variability. Given that agents 
with food income < f

min
 die – and death is an absorbing state – it follows that conditions generating high food 

income oscillation amplitudes would require higher mean food incomes than those generating low food income 
oscillation amplitudes in order to have an equivalent death rate. Such an explanation can be translated to 
real-world scenarios: To bu�er against the costs and risks of being mobile, foragers require higher short-term 
food procurement (high food income), while in sedentary populations low short-term food procurement (low 
food income) is less risky as long as that food procurement is predictable (e.g. farmed food).

�us, we can make a distinction between the traditional proximal cause explanations of reduced �tness in low 
mobility, high density populations (i.e. increased infectious disease loads and shi�s to poorer quality diets; see 
17–23), and the explanation we propose (i.e. reduced mobility costs generating reduced food income oscillations, 
and so lower mean food income levels required for survival). Both have the same ultimate causes40 in this context 
– the confounded processes of reduced mobility and increased population density – but the traditional explana-
tions of reduced �tness require additional factors, ones which are not necessary in our model to generate reduced 
food income (which is associated with survival in our model).

Conclusion
In this study we have added new methodological developments to the existing literature – developing a new 
evolutionary model of mobility decisions in hunter-gatherers with environmental interactions, including a null 
strategy as a means to check whether a simulated evolutionary pathway is via adaptation or cultural dri� (seldom 
included in behavioural ecology modelling41, being one exception), and analysing the e�ects of multiple interact-
ing parameters on a model’s behaviour using Outcomes Clustering.

Our model predicts that the evolution of sedentism in hunter-gatherers would co-occur with an increase in 
population density and a decrease in food income (which is associated in our model with health and survival), 
and it would occur in locations where the resource depletion rate is low and (to a lesser degree) the resource 

Figure 5. �e distributions of parameters (a–d) and outcomes (e–i) for each cluster using all 98,514 
simulations that had ≥15 agents in the 1000th iteration of the model. �e clusters with the highest and lowest 
mean value for the �nal mean mobility strategy (the red and clue lines respectively) are highlighted with a 
thicker line.
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replenishment rate is high. Hunter-gatherers are more likely to increase mobility in places where depletion of the 
environment is fast and the cost of movement is low, and this would co-occur with reduced population density.

Our model predictions echo those of Bettinger’s5 ‘traveler-processor model’, in which, as population den-
sities increase, hunter-gatherers shi� from high to low mobility strategies that involve lower movement costs 
at the expense of a wider diet breadth linked to increased processing costs. Such costs are characteristic of the 
low-depletion high-replenishment resources – plants and small game – associated with increased sedentism 
in our model. If such resources are absent then mobile strategies are the only option and if the resources are 
over-exploited the result is likely to be periodic regional abandonment. If they are available then the decline in 
fast-depletion slow-replenishment resources leads to the increased diet breadth that opens the way to higher 
population densities based on more sedentary strategies, because the resources on which they are based support 
higher carrying capacities. Agriculture based on domesticated resources is at the extreme end of this continuum. 
Our model simulations show how these processes occur, leading to a bimodal traveller-processor outcome. In a 
world where some resource patches do not have the capacity to generate sustainable resources but others do, both 
strategies may exist side-by-side for long periods42.

We found that the degree of mobility conservatism makes little di�erence for changes in agent mobility, con-
sistent with our simulations being of su�cient duration to allow mobility strategies to evolve by selection towards 
evolutionarily stable strategies, and with cultural selection on mobility being an important force. �is model has 
replicated the known relationships between reduced mobility and high population density, and between higher 
environmental quality and reduced mobility, seen in hunter-gatherer groups3. More importantly, our model pre-
dicts poorer food incomes, and consequently health status, in more sedentary and so higher density popula-
tions, without the need to invoke additional factors such as reduced diet quality and increased infectious disease 
loads17–23. Furthermore, these results were emergent rather than being speci�ed in the model. Given the impor-
tance of a low depletion rate for the high-density sedentary adaptation, a provocative implication of our model 
is that crop cultivation was simply a new means of reducing the depletion rate and increasing the replenishment 
rate, and that its association with reduced health status is a consequence of a more stable and predictable food 
procurement-consumption balance. In future studies we will show how our model can be developed to include 
other aspects of hunter-gatherer behaviour and environmental conditions (for example the e�ect of climate insta-
bility or geographical variability) and include di�erent subsistence strategies so that predictions about the coevo-
lution of sedentism and agriculture can be made.

Methods
In our model ∈q q[ , 1]

f f min,
, where >q 0

f min,
. �e foraging quality is not allowed to reach 0 since if it did it could 

never grow back (see Equation 4.1).
Since there are multiple agents and sites in every iteration of the model, we need a way to summarize the 

properties of the agents and sites in order to understand the behavior of the overall system. We use the mean 
value for this. �e mean outcome properties for agents and sites change over the iterations for 100 independent 
runs of the model, this is shown in SI Appendix, Fig. S5. When we further summarize each independent run of 
the model to investigate the e�ects of parameters on the outcomes we only consider the mean value in the �nal 
iteration of the model.

Preliminary Checks. Our main interest is to investigate the e�ect of the parameters (given in Table 1) on 
the outcomes of the model a�er a number of iterations. However, the model outcomes may also be dependent 
on the values we have chosen for the constants of the model. For the region size and the number of iterations in 
the model, there is a trade-o� between making sure that the values selected are large enough to give accurate and 
reproducible results, but not so large that computational costs are prohibitive.

�e model was run several times to investigate the e�ect of initial model conditions: the number of iterations 
the model is run for, the region size, and the minimum foraging quality. By making changes to each of these four 
constraints in turn and monitoring the di�erences they make to the �nal result, we found that the overall results 
were still quite similar. �us, we are con�dent that we are not biasing our interpretation of the results by picking 
random initial conditions for every run of the model, by using a region size of 10 × 10, by setting q 0 1

f min,
= . , or 

by running the model for 1000 iterations. �e analysis also shows that caution must be applied when interpreting 
�nal mean mobility strategies of around 0.5, as rather than this meaning that most agents have mobility strategies 
of around 0.5, it is likely to mean their strategies are distributed widely in the range of 0 to 1.

Set up and parameter fixing. To explore how di�erent parameters a�ect the model we ran it 100,000 times 
with randomly chosen parameter values for the foraging quality replenishment rate, r, the foraging quality deple-
tion scalar, λ, the mobility strategy conservatism, κm, and the food income cost of movement per site, η, and 
recorded outcomes of the simulations a�er they had run for 1000 iterations. We �xed the parameters that we had 
data-supported values for — the maximum probability of �ssion, p

max
, the maximum number of agents, nmax, and 

the probability of mutation, µ — and we set the initial population density to be 10% of the maximum possible (i.e. 

ρ = .0 1
init

).
�e simulation outcomes we record are the �nal number of agents, the �nal mean mobility and null strategies 

of agents, the �nal mean food income of agents, and the �nal mean foraging quality of the sites. We only consider 
simulations in the analysis that have ≥15 agents alive in the �nal iteration, since otherwise taking the mean of 
such a small sample will generate too much noise. �us, unless otherwise stated these are the subset of simula-
tions analyzed here.
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Outcome Clustering Method. With the data on parameter values and the �ve outcomes for many inde-
pendent simulations, we can investigate how parameter values in�uence certain model outcomes. �is can be 
done using the Fitting to Idealized Outcomes (FIO) method25; for example by selecting the simulations with the 
highest and lowest evolved mobilities and investigating the conditions that gave rise to these states. However, 
there are correlation structures among multiple outcomes, and while pairwise correlation coe�cients can be 
found (see Table 2), such coe�cients will not identify non-linearity or granularity among many outcomes. For 
these reasons, we propose the Outcome Clustering (OC) method. �is allows us to �nd salient groupings of 
outcomes, and identify the parameter combinations that shape them, permitting a more thorough exploration of 
model complexity without being biased by considering a single outcome.

For the OC method many simulations of the model are run, and outcomes are recorded. We then use the 
function ‘Mclust’ in the R library ‘mclust’43–45 to �nd clusters of simulations on the basis of four of their outcomes 
– �nal number of agents, �nal mean mobility strategy, �nal mean food income and �nal mean foraging quality. 
A�er identifying these simulation clusters the distributions of the parameter values in each cluster can be found. 
Due to processing taking a long time, we �nd outcome clusters based only on the �rst 10,000 simulations and then 
use these to predict the rest of the cluster classi�cations using the function ‘predict.Mclust’, also in the ‘mclust’ 
library.

Data Availability
�e datasets generated during the current study are available from Figshare (https://�gshare.com/articles/�e_
fast_and_the_�t_paper_data/7609763), and code for the model and analysis can be found on Github (https://
github.com/lizgzil/agriculture-origins).

References
 1. Grove, M. Hunter–gatherer movement patterns: causes and constraints. J. Anthropol. Archaeol. 28, 222–233 (2009).
 2. Anderies, J. & Hegmon, M. Robustness and resilience across scales: migration and resource degradation in the prehistoric US 

southwest. Ecol. Soc. 16 (2011).
 3. Kelly, R. L. �e Lifeways of Hunter-Gatherers: �e Foraging Spectrum. (Cambridge University Press, 2013).
 4. Hamilton, M. J., Lobo, J., Rupley, E., Youn, H. & West, G. B. �e ecological and evolutionary energetics of hunter-gatherer residential 

mobility. Evol. Anthropol. Issues News Rev. 25, 124–132 (2016).
 5. Bettinger, R. L. & Baumho�, M. A. �e Numic spread: Great Basin cultures in competition. Am. Antiq. 47, 485–503 (1982).
 6. Fretwell, S. D. & Lucas, H. L. On territorial behavior and other factors in�uencing habitat distribution in birds. Acta Biotheor. 19, 

16–36 (1969).
 7. Codding, B. F. & Jones, T. L. Environmental productivity predicts migration, demographic, and linguistic patterns in prehistoric 

California. Proc. Natl. Acad. Sci. 201302008 (2013).
 8. Charnov, E. L. Optimal foraging, the marginal value theorem. �eor. Popul. Biol. 9, 129–136 (1976).
 9. Bettinger, R. L. & Grote, M. N. Marginal value theorem, patch choice, and human foraging response in varying environments. J. 

Anthropol. Archaeol. 42, 79–87 (2016).
 10. Currie, T. E. & Mace, R. �e evolution of ethnolinguistic diversity. Adv. Complex Syst. 15, 1150006 (2012).
 11. Whallon, R. Social networks and information: Non-“utilitarian” mobility among hunter-gatherers. J. Anthropol. Archaeol. 25, 

259–270 (2006).
 12. Binford, L. R. In Pursuit of the Past. (�ames and hudson London, 1983).
 13. Migliano, A. B. et al. Characterization of hunter-gatherer networks and implications for cumulative culture. Nat. Hum. Behav. 1, 

0043 (2017).
 14. Powell, A., Shennan, S. & �omas, M. G. Late Pleistocene demography and the appearance of modern human behavior. Science 324, 

1298–1301 (2009).
 15. Bocquet-Appel, J.-P. When the world’s population took o�: the springboard of the Neolithic Demographic Transition. Science 333, 

560–561 (2011).
 16. Lambert, P. M. Health versus �tness. Curr. Anthropol. 50, 603–608 (2009).
 17. Barrett, R., Kuzawa, C. W., McDade, T. & Armelagos, G. J. Emerging and re-emerging infectious diseases: the third epidemiologic 

transition. Annu. Rev. Anthropol. 27, 247–271 (1998).
 18. Cohen, M. N. & Crane-Kramer, G. M. M. Ancient Health: Skeletal Indicators of Agricultural and Economic Intensi�cation. (University 

Press of Florida, 2007).
 19. Page, A. E. et al. Reproductive trade-o�s in extant hunter-gatherers suggest adaptive mechanism for the Neolithic expansion. Proc. 

Natl. Acad. Sci. 113, 4694–4699 (2016).
 20. Cohen, M. N. Introduction: rethinking the origins of agriculture. Curr. Anthropol. 50, 591–595 (2009).
 21. Macintosh, A. A., Pinhasi, R. & Stock, J. T. Early life conditions and physiological stress following the transition to farming in 

central/southeast Europe: Skeletal growth impairment and 6000 years of gradual recovery. PloS One 11, e0148468 (2016).
 22. Diamond, J. �e Worst Mistake in the History of the Human Race. Discov. Mag. (1987).
 23. Fournié, G., Pfei�er, D. U. & Bendrey, R. Early animal farming and zoonotic disease dynamics: modelling brucellosis transmission 

in Neolithic goat populations. R. Soc. Open Sci. 4, 160943 (2017).
 24. Bogaard, A. et al. Private pantries and celebrated surplus: storing and sharing food at Neolithic Çatalhöyük, Central Anatolia. 

Antiquity 83, 649–668 (2009).
 25. Gallagher, E. M., Shennan, S. J. & �omas, M. G. Transition to farming more likely for small, conservative groups with property 

rights, but increased productivity is not essential. Proc. Natl. Acad. Sci. 112, 14218–14223 (2015).
 26. Bowles, S. & Choi, J.-K. Coevolution of farming and private property during the early Holocene. Proc. Natl. Acad. Sci. 110, 

8830–8835 (2013).
 27. Freeman, J. & Anderies, J. M. Intensi�cation, tipping points, and social change in a coupled forager-resource system. Hum. Nat. 23, 

419–446 (2012).
 28. Dow, G. K. & Reed, C. G. �e origins of sedentism: Climate, population, and technology. J. Econ. Behav. Organ. 119, 56–71 (2015).
 29. Szulga, R. S. Endogenous population and resource cycles in historical hunter-gatherer economies. (2012).
 30. Winterhalder, B., Baillargeon, W., Cappelletto, F., Daniel, I. R. Jr & Prescott, C. �e population ecology of hunter-gatherers and their 

prey. J. Anthropol. Archaeol. 7, 289–328 (1988).
 31. Mace, R. Biased parental investment and reproductive success in Gabbra pastoralists. Behav. Ecol. Sociobiol. 38, 75–81 (1996).
 32. Rosenberg, M. �e mother of invention: Evolutionary theory, territoriality, and the origins of agriculture. Am. Anthropol. 92, 

399–415 (1990).
 33. Fitzhugh, B. Risk and invention in human technological evolution. J. Anthropol. Archaeol. 20, 125–167 (2001).

https://doi.org/10.1038/s41598-019-42006-2
https://figshare.com/articles/The_fast_and_the_fit_paper_data/7609763
https://figshare.com/articles/The_fast_and_the_fit_paper_data/7609763
https://github.com/lizgzil/agriculture-origins
https://github.com/lizgzil/agriculture-origins


1 0SCIENTIFIC REPORTS |          (2019) 9:5438  | https://doi.org/10.1038/s41598-019-42006-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

 34. Lee, R. B. �e! Kung San: Men, Women and Work in a Foraging Society. (CUP Archive, 1979).
 35. Wood, J. A �eory of Preindustrial Population Dynamics Demography,… - Google Scholar. Curr. Anthropol. 39, 99–135.
 36. Malthus, T. R. An Essay on the Principle of Population: Or, A View of its Past and Present E�ects on Human Happiness. (Reeves & 

Turner, 1888).
 37. Tuljapurkar, S. D. Population dynamics in variable environments. III. Evolutionary dynamics of r-selection. �eor. Popul. Biol. 21, 

141–165 (1982).
 38. Tuljapurkar, S. D. Population dynamics in variable environments. II. Correlated environments, sensitivity analysis and dynamics. 

�eor. Popul. Biol. 21, 114–140 (1982).
 39. Tuljapurkar, S. D. & Orzack, S. H. Population dynamics in variable environments I. Long-run growth rates and extinction. �eor. 

Popul. Biol. 18, 314–342 (1980).
 40. Mayr, E. Cause and e�ect in biology. Science 134, 1501–1506 (1961).
 41. Brantingham, P. J. A neutral model of stone raw material procurement. Am. Antiq. 68, 487–509 (2003).
 42. Bollongino, R. et al. 2000 years of parallel societies in Stone Age Central Europe. Science 1245049 (2013).
 43. Fraley, C. & Ra�ery, A. E. Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc. 97, 611–631 

(2002).
 44. Fraley, C., Ra�ery, A. E., Murphy, T. B. & Scrucca, L. mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, 

Classi�cation, and Density Estimation. 2012. Univ. Wash. Seattle.
 45. Team, R. C. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2014. 

(2014).

Acknowledgements
We are grateful to Joanna Bryson and Mark Altaweel for valuable comments. We also wish to thank Robert 
Kelly for sharing the hunter-gatherer data. E.M.G. was supported by funding from the Engineering and Physical 
Sciences Research Council, awarded through University College London Centre for Mathematics, Physics, and 
Engineering in the Life Sciences and Experimental Biology. M.G.T. is supported by a Wellcome Trust Senior 
Research Fellowship (Grant 100719/Z/12/Z, ‘Human adaptation to changing diet and infectious disease loads, 
from the origins of agriculture to the present’).

Author Contributions
E.G., S.S. and M.G.T. designed the study. E.G. formulated the model with input from S.S. and M.G.T. E.G. 
performed all simulations and devised the Outcomes Clustering approach. E.G. and M.G.T. wrote the paper with 
input from S.S.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-42006-2.

Competing Interests: �e authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional a�liations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. �e images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© �e Author(s) 2019

https://doi.org/10.1038/s41598-019-42006-2
https://doi.org/10.1038/s41598-019-42006-2
http://creativecommons.org/licenses/by/4.0/

	Food Income and the Evolution of Forager Mobility

	Model Overview

	Results and Discussion

	Conclusion

	Methods

	Preliminary Checks. 
	Set up and parameter fixing. 
	Outcome Clustering Method. 

	Acknowledgements

	Figure 1 A visualisation of the model.
	Figure 2 Stages of the model.
	Figure 3 Histograms of the properties of 98,514 simulations of the model in the 1000th iteration.
	Figure 4 Scatter plots for each pair of outcomes.
	Figure 5 The distributions of parameters (a–d) and outcomes (e–i) for each cluster using all 98,514 simulations that had ≥15 agents in the 1000th iteration of the model.
	Table 1 Parameters, constants, and variables in the model.
	Table 2 Pearson’s moment correlation coefficients for each pair of parameters and outcomes.
	Table 3 Properties of each cluster found using the Outcomes Clustering method – the number of simulations assigned to this cluster and the mean value and 95% confidence interval for each parameter and outcome.


